一种用于评价植物根系微生物群落多样性的土壤DNA提取方法

一种用于评价植物根系微生物群落多样性的土壤DNA提取方法
一种用于评价植物根系微生物群落多样性的土壤DNA提取方法

浅谈土壤微生物与植物的关系

浅谈土壤微生物与植物的关系 内蒙古师范大学生命科学与技术学院刘宇宁 摘要:土壤中生活着丰富的微生物类群,是一个重要的生物地下宝库。土壤微生物是土壤中的主要分解者,对环境起着天然的“过滤”和“净化”作用,在自然生态系统的功能发挥和维持能力方面极其重要。植物、土壤和微生物相互作用,构成了一个植物-土壤-微生物的有机整体。本文从植物根际有益微生物、根系分泌物、植物种植模式等方面,探讨土壤微生物与植物的关系,以期为今后农业生产、森林植物保护、植被恢复、污染土壤修复等环境治理提供参考。 关键词:土壤微生物;植物;关系 在陆地生态系统中,植物是生产者,土壤微生物是分解者,植物将光合产物以根系分泌物和植物残体形式释放到土壤,供给土壤微生物碳源和能源,微生物则将有机养分转化成无机养分,以利于植物吸收利用。根际微生物被认为是土壤微生物的子系统,影响着植物定植、生长和群落演替。植物通过其根系产生的分泌物影响根际微生物的群落结构。土壤微生物和植物共同作用在污染土壤的生物修复方面发挥着巨大作用。 1 植物根际有益微生物 植物根际有益微生物主要指对植物生长和健康具有促进作用的土壤微生物。这些微生物可以通过各种途径,促进植物定植、生长和发育。根据根际有益微生物主要作用可以将其分为植物根际促生微生物PGPM(Plant growth promoting micribiology)和生防微生物BCA(Biological control agents)两大类。 1.1 植物根际促生微生物 PGPM 植物根际促生微生物可界定为在一定条件下自由生活在土壤、根际、根表对植物具有直接促进作用的土壤微生物,主要包括细菌中的根际促生菌和菌根真菌。根际促生菌指根际对作物有益的细菌,主要包括固氮微生物、根瘤菌、沙雷氏菌属等20种属。 1.2 植物根际生防微生物 BCA 根际生防微生物指通过产生一些抗菌物质抑制病原菌在植物根际定殖和发展,同时也能够诱导植物系统对病原菌和外界不良条件产生一定抗性,从而间接促进植物生长的一类根际微生物。只有生防微生物定殖菌数达到有效水平,才能在植物根际同病原菌竞争,防止病原菌对植物的侵害。继续从土壤和植物根际筛选生防微生物,并通过生物工程、细胞工程等手段进行改良从而获得高效生防微生物,并将其商品化是我国学者在该领域仍需深入研究的关键问题。 2 植物根系与土壤微生物 2.1 根系分泌物 根系对根际微生物的作用主要是通过其根系分泌物来进行的。根系分泌物指在一定生

实验一-DNA提取

实验一-DNA提取

实验一DNA的小量制备 小量法提取植物基因组DNA(CTAB法) 1 实验目的: 随着基因工程等分子生物学技术的迅速发展及广泛应用,人们经常需要提取高分子量的植物DNA,用于构建基因文库、基因组southern 分析、酶切及克隆等,这是研究基因结构和功能的重要步骤。本实验目的是学习从植物材料中提取和测定DNA 的原理并掌握CTAB 提取DNA 的方法,进一步了解DNA 的性质。 2 实验原理 细胞中的DNA 绝大多数以DNA-蛋白复合物(DNP)的形式存在于细胞核内。提取DNA 时,一般先破碎细胞释放出DNP,再用含少量异戊醇的氯仿除去蛋白质,最后用乙醇把DNA 从抽提液中沉淀出来。DNP 与核糖核蛋白(RNP)在不同浓度的电解质溶液中溶解度差别很大,利用这一特性可将二者分离。以NaCl 溶液为例:RNP 在0.14mol/L NaCl中溶解度很大,而DNP 在其中的溶解度仅为纯水中的1%。当NaCl 浓度逐渐增大时,RNP的溶解度变化不大,而DNP 的溶解则随之不断增加。当NaCl 浓度大于1mol/L 时,DNP的溶解度最大,为纯水中溶解度的2 倍,因此通常可用1.4mol/L NaCl 提取DNA。为了得到纯的DNA 制品,可用适量的RNase 处理提取液,以降解DNA 中搀杂的RNA。 关于植物总DNA 的提取主要有两种方法: 1.CTAB 法: CTAB(十六烷基三甲基溴化铵,hexadecyltrimethylammonium bromide, 简称CTAB):是一种阳离子去污剂,可溶解细胞膜,它能与核酸形成复合物,在高盐溶液中(0.7mol/LNaCl)是可溶的,当降低溶液盐的浓度到一定程度(0.3 mol/L NaCl)时从溶液中沉淀,通过离心就可将CTAB 与核酸的复合物同蛋白、多糖类物质分开,然后将CTAB 与核酸的复合物沉淀溶解于高盐溶液中,再加入乙醇使核酸沉淀,CTAB 能溶解于乙醇中。 2.SDS 法: 利用高浓度的阴离子去垢剂SDS(十二烷基磺酸钠,Sodium dodecyl sulfate, 简称SDS)使DNA 与蛋白质分离,在高温(55~65℃)条件下裂解细胞,使染色体离析,蛋白变性,释放出核酸,然后采用提高盐浓度及降低温度的方法使蛋白质及多糖杂质沉淀,离心后除去沉淀,上清液中的DNA用酚/氯仿抽提,反复抽提后用乙醇沉淀水相中的DNA。一般生物体的基因组DNA 为107~109bp,在基因克隆工作中,通常要求制备的大分子DNA 的分子量为克隆片段长度的4 倍以上,否则会由于制备过程中随机断裂的末端多为平末端,导致酶切后有效末端太少,可用于克隆的比例太低,严重影响克隆工作。因此有效制备大分子DNA 的方法必须考虑两个原则:(1)尽量去除蛋白质、RNA、次生代谢物质(如多酚、类黄酮等)、多糖等杂质,并防止和抑制内源DNase 对DNA 的降解。(2)尽量减少对溶液中DNA 的机械剪切破坏。 几乎所有的DNase 都需要Mg2+或Mn2+为辅因子,故实现(1)尽量去除蛋白质的要求,需加入一定浓度的螯合剂,如EDTA、柠檬酸,而且整个提取过程应在

不同土壤DNA提取和纯化试剂盒及方法的比较学号

学校代码学号分类号密级 本科毕业论文 学院、系环境与资源学院 专业名称环境科学 年级2010级 学生姓名 指导教师 2014年5月

不同土壤DNA提取和纯化试剂盒及方法的比较 摘要 环境样品DNA的提取和纯化不仅是土壤微生物进行研究的前提条件,而且是环境宏基因组学中最关键的技术问题之一,DNA的产量和纯度对后续的一系列的分子生物学技术操作如:多聚酶链反应(PCR)扩增、核酸内切酶酶切消化、核酸分子杂交等等,都会产生很大的影响,所以后续试验有效进行,必须要先获得一定纯度、数量、有较好代表性和适当片段长度的DNA。本文针对三种典型的土壤类型(壤土、粘土和沙土),对目前应用比较广泛的三种不同的DNA 提取方法和四种不同的DNA 纯化方法的效果进行了比较。经过NanoDrop分光光度计和琼脂糖凝胶电泳对从三种典型土壤中提取和纯化的DNA的浓度和纯度进行检测,结果表明:Power Soil? DNA提取试剂盒和苯酚 - 氯仿抽提,异丙醇沉淀纯化方法的结合能提供满足环境组学研究的宏基因组测序要求的DNA。关键词:土壤微生物,DNA,提取,纯化

Comparison of DNA extraction and purification methods from different soils Abstract The extraction and purification of DNA from environmental samples is not only a prerequisite for microbial research, and is one of the environmental metagenomics most critical technical issues, the yield and purity of DNA on the subsequent series of molecular biology techniques operate such as: polymerase chain reaction (PCR) amplification,restriction enzyme digestion, the nucleic acid hybridization, etc. will have a huge impact, if follow-up tests effectively, you must first obtain a certain purity, quantity, better DNA fragments representative and appropriate length. In this paper, we have compared several different methods of DNA extraction and purification for three different soil, loam, sandy clay . After a NanoDrop spectrophotometer and by agarose gel electrophoresis and purified from the extract of the soil of three DNA concentration and purity, and the results showed that: Power Soil ? DNA extraction kit and phenol-chloroform extraction and isopropanol precipitation purification methods' combined provides the right DNA for the study of environmental groups metagenomic sequencing. Keywords:Microbial soil, DNA , Extraction, Purification

土壤中的微生物

土壤中的微生物 姓名: 学号: 专业: 年级: 学科:

土壤是由地壳表面的岩石经过长期风化和生物学作用而形成的一层疏松物质。土壤和以土壤为基质的生物种群紧密的联系在一起,构成一个有机整体,称为土壤生态系统。 一、土壤微生物的来源 土著微生物种群:指在一个给定的生境中那些能生存、生长和进行活跃代谢的微生物,并且这些微生物能与来自其他群落的微生物进行有效的竞争。土著微生物一般包括:G+球菌类、色杆菌、芽孢杆菌、节杆菌、分支杆菌、放线菌、青霉、曲霉等。对物质的分解、代谢、转化起着极为重要的作用,是化学元素参与生物地球化学物质循环的重要推动者。 外来微生物种群:指来自于其他生态系统的微生物,所以这些微生物不能在这一生境中长期生活下去。几乎不参与土壤生态学上重要的物质转化作用。 二、土壤微生物的种类 包括细菌、放线菌、真菌、藻类、病毒和原生动物。绝大部分微生物对人是有益的;也有一部分土壤微生物是动植物的病原体。 土壤中的微生物根据其对能源和营养的要求不同可分为四种营养类型 ●光能自养型 ●光能异养型 ●化能自养型 ●化能异养型 大多属异养型微生物 根据对氧的需要程度不同,可分为 ●专性厌氧 ●兼性厌氧 ●微需氧 ●专性需氧等

真菌属需氧型微生物,因此土壤深层或潮湿的黏土中真菌数量少。 1、土壤中的细菌 (1)土壤细菌的数量 土壤中的微生物以细菌数量最多,细菌占土壤微生物总量的70%~90%,1g 肥沃土壤中约有土壤细菌几十万~几十亿。 (2)土壤细菌的特点 1)个体形状和大小往往与人工培养条件下不同; 2)土壤细菌数量多、代谢强、繁殖快、代时短,对其延续带来很大好处; 3)种类多,其中多数是异养菌,少数是自养菌; 4)土壤细菌按其来源可分为土著性和外来性,一般土著是优势种: ●土著细菌:是土壤中真正的常驻者,如氨化细菌、硝化细菌、固氮 细菌、纤维素分解菌等,异养型,无芽胞、嗜中温。 ●外来细菌:人畜粪便、动物尸体、医院废弃物等污染土壤带入的。 如沙门菌、志贺菌、霍乱弧菌、大肠杆菌O157:H7、炭疽梭菌、 破伤风梭菌、肉毒梭菌等。 2、土壤中的放线菌 ●放线菌的数量仅次于细菌,主要分布于土表,是土壤重要的土著 性微生物,也是土壤微生物的第二大类群,占5~30%; ●常见的有链霉菌属、诺卡菌属、小单孢菌属和放线菌属; ●多数好气、腐生,以孢子或菌丝片段存在于土壤; ●细胞数104~106个/g土,土壤肥沃时可达108个/g土; ●对干燥条件抗性比较大(在沙漠土壤中生存); ●比较适合在碱性或中性条件下生长,并对酸性条件敏感(高氏1号 培养基); ●主要参与复杂有机物的分解,如木质素、几丁质、烃类。

磁珠法土壤基因DNA提取试剂盒

磁珠法土壤基因组DNA提取试剂盒 MagBeads Soil DNA Extraction Kit [目录号】SMDE-5005、SMDE-5010 【运输条件】2~25 C; 【保存条件】磁珠分散液2~8 C;蛋白酶K -20 C;其它组分室温保存; 【试剂盒组成】 【注意事项】 1. 磁珠悬浮液严禁反复冻融和离心,以免磁珠受到损害,使用前务必充分混匀; 2. 使用前请检查裂解液1和裂解液2是否出现沉淀,如有沉淀请将试剂瓶置于65 C水浴中温热至 液体澄清; 3. 蛋白酶K长期不使用,请置于-20 C保存,融化后4C保存,并尽快使用; 【产品简介】 本试剂盒适用于从新鲜或冷冻的干燥土壤中提取基因组DNA。试剂盒采用独特的缓冲液

体系,在裂解液环境中基因组DNA与磁珠高效结合,经过清洗和洗脱等步骤之后,可去除土壤中的杂质与腐植酸,获得高质量基因组DNA产物,OD260/OD280比值一般在1.7~1.9之间, 可直接用于酶切、PCR、电泳、Southern Blot、分子标记等下游分子生物学实验。 【试剂盒说明】 【自备仪器、耗材和试剂】 手动普通版:涡旋混合仪、水浴锅或金属浴、EP管(2.0mL )、EP管配套用磁力架、异丙醇、无水乙醇、RNase A 溶液(100mg/mL,分散液:10mM Tris-HCl、1mM EDTA、pH值8.0)。 手动高通量版:涡旋混合仪、水浴锅或金属浴、48孔尖底板、48孔板配套专用磁力架、超强 磁板架48孔板专用硅胶盖、异丙醇、无水乙醇、RNase A溶液(100mg/mL,分散液:10mM Tris-HCl、1mM EDTA、pH 值8.0 )。 【手动普通版】 本操作方法在2.0mL EP管中进行操作。 1. 释放土壤微生物 称取100~500mg 土壤样本至2.0mL EP管中,依次加入1.0mL裂解液1和20卩蛋白酶K, 涡旋振荡1~3min,将土壤样本分散均匀,58 C温浴10min,期间每隔5min颠倒3次混匀内容物。 注:1)如需去除RNA,请额外加入5 RNase A溶液;2)干燥的土壤样本请研磨至均一细小颗粒,有助于微生物的高效释放。 2. 获得土壤基因组DNA粗液 室温、12000rpm将EP管离心5min,然后转移全部上清液至新的 2.0mL EP管中。加入 400卩裂解液2,颠倒混匀,再次室温、12000rpm将EP管离心5min。 3. 核酸结合 转移全部上清液至另一只2.0mLEP管,依次加入400卩屏丙醇和50卩磁珠悬浮液(提前摇晃均匀),涡旋振荡5min。 4. 磁性分离 将EP管置于磁力架上静置约20s至磁珠吸附完全,如EP管内盖有残留磁珠,可保持EP管

dna粗提取的实验步骤

实验步骤——以洋葱为实验材料: 1、称取30克已切碎的洋葱,放入研钵中,加入少量石英砂助研,倒入10mL 2mol/L 的氯化钠溶液,充分研磨。 洋葱含有挥发性刺激物,有效减少刺激,才能使实验顺利进行。上课前,教师可先将洋葱放入冰箱冷冻一会儿,使其凉透但又不能结冰;或将洋葱切成几大块,放入清水泡一会儿,让其挥发性刺激物溶于水,可以减轻刺激。然后将洋葱切碎备用。研磨的目的主要是使洋葱细胞破裂,使DNA溶于2mol/L的氯化钠溶液,没必要将洋葱研成粥糊状,后者既浪费时间又影响实验效果。研磨时,切忌使用搅拌器(榨汁机)。使用搅拌器虽可以提高研磨效率,但搅拌器将洋葱切成极细小的颗粒,无法通过过滤将洋葱颗粒剔除。只能将酒精直接倒入滤液中,许多洋葱小颗粒因为轻会漂浮起来,DNA藏在其中,无法分辨。学生看不到白色纤维状粘稠物的DNA。 2、研磨后,用漏斗和纱布将汁液过滤到小烧杯中,得到滤液。 3、向滤液中加入95%的酒精溶液20mL,沿烧杯壁缓缓倒入,不要震动或搅拌。 此时,烧杯中的液体分为上、下两层,下层较浑浊,上层澄清,很快上层溶液中就会有白色纤维状粘稠物析出,用玻璃棒可将其轻轻卷起。 实例: 用鸡血细胞液粗提取DNA 并鉴定步骤 1、提取鸡血细将制备好的鸡血细胞液(已在课前配好) 5~10mL,注入到50ml 烧杯中。向烧杯中加入蒸馏水20mL,同时用玻璃棒沿一个方向快速搅拌5min,然后,用放有纱布的漏斗将血细胞过滤至1000mL 的烧杯中,取其滤液。图示胞的细胞核物质 2、溶解细胞核内的DNA 将物质的量浓度为2mol/ L 的NaCl 溶液40 mL 加入到滤液中,并用玻璃棒沿一个方向搅拌1min,使其混合均匀,这时DNA 在溶液中呈溶解状态。 3、析出含DNA的粘稠物沿烧杯内壁缓缓加入蒸馏水,同时用玻璃棒沿一个方向不停地轻轻搅拌,这时烧杯中有丝状物出现。继续加入蒸馏水,溶液中出现的黏稠物会越来越多。当黏稠物不再增加时停止加入蒸馏水。 4、滤取含DNA的粘稠物用放多层纱布的漏斗,过滤溶液至1000 mL 的烧杯中。取纱布上的黏稠物。 5、将DNA 的粘稠物再溶解取一个50 mL 烧杯,向烧杯内注入物质的量浓度为2mol/ L 的NaCl 溶液20 mL。用钝头镊子将纱布上的黏稠物夹至NaCl 溶液中,用玻璃棒沿一个方向不停地搅拌3min,使黏稠物尽可能多地溶解于溶液中。 6、过滤含DNA的氯化钠溶液取一个100 mL 烧杯,用放有两层纱布的漏斗过滤以上溶液。取其滤液(DNA 溶于滤液中)。 7、提取含杂质较少的DNA 在上述滤过的溶液中,加入冷却的、体积分数为95% 的酒精溶液50 mL(加入时动作要慢),并用玻璃棒沿一个方向搅拌,溶液中会出现含杂质较少的丝状物。当玻璃棒上出现丝状物缠绕时,继续慢慢搅拌,至不再增加时,用玻璃棒将丝状物卷起,并用滤纸吸取上面的水分。取两支20 mL 的试管,各加入物质的量浓度为0.015mol/ L 的NaCl 溶液5mL,将丝状物放入其中一支试管中,用玻璃棒搅拌,使丝状物溶解。然后,向两支试管中各加入4 mL的二苯胺试剂。混合均匀后,将试管置于沸水中加热5min,等试管冷却后,观察并且比较两支试管中溶液颜色的变化。

土壤DNA提取

1 试验材料 吉林省松江河镇人参栽培土壤。每份土壤样品经多点取样后充分混匀,用前过10 目筛,去除土壤中的须根、枯枝等杂物[2]。 1 . 2 仪器设备及药品 电子分析天平、恒温水浴锅、紫外凝胶成像系统、电泳槽、 电泳仪、高速冷冻离心机、微量加样器、PCR 仪等。 TENP 缓冲液(50 mmol/L Tris,20 mmol/L EDTA,100mmol/L Na Cl,1% PVP,pH 10.0)、CTAB 提取缓冲液(100mmol/L Tris,100 mmol/L EDTA,100 mmol/L Na3PO4,1.5mol/L Na Cl,1%CTAB,pH 8.0)、 SDS 提取缓冲液(100 mmol/LTris,50 mmol/L EDTA,50 mmol/L Na Cl,pH8.0,灭菌后加β-巯基乙醇至10 mmol/L)、 异丙醇、氯仿、异戊醇、无水乙醇、琼脂糖、EB、Taq DNA 聚合酶、d NTP、6×凝胶上样缓冲液、DNAMarker 等。 主要试剂有十二烷基硫酸钠(SDS)、乙二胺四乙酸(EDTA)、十六烷基三甲基溴化铵(CTAB)、异硫氰酸胍,均为分析纯级。 1 .3 试验方法 1.3.1 土壤微生物的洗涤取土壤样品2g,置于50m L 灭菌的离心管中;加入10m L TENP 缓冲液[3]悬浮土样,磁力搅拌器搅拌15 min;10000r/min 离心5min,弃上清,重复洗涤多次至上清基本无色;最后将沉淀收集至1.5ml 离心管中。 1.3.2 DNA 的提取 1.3. 2.1 CTAB 法按照李钧敏[4]的方法略作改动。将沉淀重悬于500μl CTAB 提取缓冲液→65℃水浴2h→8000r/min,室温离心15 min,取上清→加入等体积氯仿:异戊醇(24∶1),12,000r/min 离心10 min,取上清→加入0.6 倍体积的异丙醇,4℃淀过夜→12000 r/min 4℃离心20min 收集DNA 沉淀→70%乙醇漂洗两次→干燥后将沉淀溶于100 μl p H 8.0 TE 缓冲液,备用。 1.3. 2.2 SDS 法按照焦晓丹[5]的方法略作改动。取沉淀,重悬于500μl SDS 提取缓冲液,轻轻混匀→向管中加入50μL 20%SDS 溶液,混匀,不可过于强烈震荡以防基因组DNA 断裂→65℃保温2h,每隔20min 轻轻摇匀1 次→加入与上清液等体积的氯仿和异戊醇(24∶1),混匀后12000r/min 离心10min,取上清→加入2 倍体积的无水乙醇,静止于室温下2h →以12000r/min 离心20min,收集DNA 沉淀→70%乙醇漂洗两次→干燥后将沉淀溶于100μl p H 8.0 TE 缓冲液,备用。

实验 __DNA的粗提取与鉴定

实验 DNA 的粗提取与鉴定 教学目的 1. 初步掌握DNA 粗提取和鉴定的方法。 2. 观察提取出来的DNA 物质。 实验原理 1. DNA 在NaCl 溶液中的溶解度是随NaCl 的浓度变化而改变的。DNA 在0.14mol/L 的NaCl 溶液中的溶解度最低,据此可使DNA 充分溶解而使杂质沉淀或DNA 沉淀而杂质溶解。 2. DNA 不溶于酒精溶液,但细胞中某些物质可以溶于酒精溶液,据此可提取杂质较少的DNA 。 3. DNA 对蛋白酶、高温和洗涤剂(可以溶解细胞的细胞膜,除去脂质和蛋白质,而对DNA 没 有影响)都具有较好的耐性。 4. DNA +二苯胺?? →?沸水浴 蓝色(用于DNA 的鉴定) 实验材料: 鸡血细胞液(5-10ml ),体积分数为95%的酒精溶液(冷却),蒸馏水,质量浓度为0.1g/ml 的柠檬酸钠溶液(抗凝剂),物质的量浓度分别为2mol/l 和0.015mol/l 的氯化钠溶液,二苯胺试剂 实验步骤 1.材料制备 0.1g/ml 柠檬酸钠100ml 置于500ml 烧杯内→玻璃棒搅拌→1000r/min 离心2min →吸去上清 液→即得鸡血细胞液(也可将上述烧杯置于冰箱中,静置一天使鸡 血细胞自行沉淀) 活鸡血180ml

[思考]为什么要除去血液中的上清液? 2.方法步骤 取血细胞液5-10ml+20ml蒸馏水,玻璃棒沿一个方向快速 搅拌,使血细胞加速破裂,纱布过滤,滤液中含DNA和 其他核物质,如蛋白质 (1)提取鸡血细胞的细胞核物质 原理:血细胞吸水胀破,玻璃棒快速搅拌机械加速血细胞 破裂 (2)溶解核内DNA:滤液+2mol/LNaCl溶液40ml,玻璃棒沿一个方向搅拌 (3)析出含DNA的粘稠物:向上述溶液中缓缓加入蒸馏水,并轻轻地沿一个方向搅拌,出现 丝状物,当丝状物不再增加时,停止加水(此时NaCl溶液 相当于稀释到0.14mol/L) (4)滤取含DNA的粘稠物:用多层纱布过滤,含DNA的粘稠物留在纱布上 (5)DNA粘稠物再溶解:在50ml的烧杯中注入20ml 2mol/L的NaCl溶液,缓慢搅拌3 min 使上述粘稠物尽量多的溶解在溶液中。 (6)过滤含DNA的2mol/LNaCl溶液:用2层纱布过滤,滤液中含DNA (7)提取含杂质较少的DNA:上述溶液+冷却的95%的酒精50ml,缓慢搅拌,出现乳白色丝状 物,用玻璃棒将丝装物卷起。 (8)DNA鉴定:

土壤总DNA的几种提取方法

土壤总DNA的几种提取方法 SDS 高盐法(方案1) 具体步骤: 称取1 g 土壤,放入研钵中,倒入适量的液氮,立即研磨;再倒入适量的液氮,研磨,重复3 次,使土壤颗粒研成粉末; 将13.5 ml 提取缓冲液(0.1 mol/L磷酸盐[pH = 8.0 ] ,0.1 mol/L EDTA [pH 8.0 ] ,0.1 mol/L Tris-HCl [pH 8.0 ] ,1.5 mol/L NaCl ,1.0 % CTAB) 和50μl 蛋白酶K(10 g/L ) 与5 g 土壤置于50 ml 的离心管中,放入37 ℃恒温摇床上,225 r·min - 1振荡30 min ; 加入1.5 ml20 % SDS ,轻轻混匀,65 ℃水浴加热2 h ,每隔15~30 min 轻轻摇匀1 次;5 000 r·min - 1离心10 min ,将上清液转入新的50 ml 离心管中;取4.5 ml 提取缓冲液加入原离心管,摇匀泥浆,加入0.5 ml 20 % SDS ,65 ℃水浴15 min ,用上述同样的离心速度离心10 min ,将上清液与原上清液合并;再重复此步骤1 次; 用与上清液等量的三氯甲烷于离心管中混匀,5000 r·min - 1离心20 min ;收集上清液,并加入0.6 倍体积的异丙醇,室温静置1 h ;25 ℃下12 000 r·min - 1离心20 min ,倒出上清液,干燥后加入500μl 去离子水,溶解粘附于离心管壁的DNA 及其杂质,并收集于1.5 ml 的微型离心管中. 变性剂加SDS 高盐法(方案2) 具体步骤: 取1 g 土样和等量的灭菌石英砂在研钵中混合,加入1 ml 变性剂(4 mol/L异硫青酸胍,10mmol/L Tris-HCl [pH 7.0 ] ,1 mmol/L EDTA[pH 8.0 ] ,0.5 % 2-巯基乙醇) ;液氮冰冻,研磨至溶解,重复3 次; 转入50 ml 离心管中,加入9 ml 提取缓冲液(0.1 mol/L磷酸钠[pH 7.0 ] , Tris-HCl [ pH 7.0 ] , 0.1 mol /L EDTA [ pH8.0 ] ,1.5 mol/L NaCl ,1 %CTAB ,2 %SDS) ;65 ℃水浴1 h ,每10 min 轻轻混匀1 次;5 000 r·min - 1 离心10 min ,取上清; 在原管中加入5 ml 提取缓冲液,混合后,65 ℃水浴10min ,离心,取上清,合入上述上清液;重复一次;加入等体积的氯仿混合,5 000 r·min - 1离心20 min ,取上清;加入0.6 倍体积的异丙醇,室温沉淀1 h ;20~25 ℃,12 000 r·min - 1离心20 min ,TE 溶解沉淀. SDS-酚氯仿抽提法(方案3) 称取1g土壤样品,加入1ml 0.1mol/l PH8.0 磷酸缓冲液,玻璃珠振荡1min。溶菌酶5mg,使终浓度为 2.5mg/ml,室温振荡15min,放置冰箱30min,加125ul 20%SDS振荡处理15min,离心,分装EP管,加酚(1:1体积),抽提1次,氯仿-异戊醇(1:1体积),抽提2次,加0.6体积异丙醇,室温放置1h,离心,70%乙醇清洗,200Ul TE 溶解。 冻融溶菌酶SDS裂解法(方案4) 取1g土壤样品,加如0.5ml灭菌的抽提缓冲液(100 mmol/L Tris-HCl , 100 mmol/L EDTA, 200 mmol/L NaCl, 1.0% PVP, 2.0%CTAB , PH8.0), 加玻

实验6 动物肝脏中DNA的提取

实验六:动物肝脏中DNA的提取及定量测定 一、实验目的 1、学习和掌握用浓盐法从动物组织中提取DNA的原理与技术。 2、了解常见生化组分提取技术。 3、学习和掌握二苯胺法测定DNA含量的原理和方法。 二、实验原理 核酸和蛋白质在生物体中以核蛋白的形成存在,其中DNA主要存在于细胞核中,RNA 主要存在于核仁及胞质中,在制备核酸时应防止过酸、过碱及其他能引起核酸降解的因素的作用。全部操作过程应在低温下(4℃)进行,必要时还要加入酶抑制剂。如柠檬酸、氰化物、砷酸盐、乙二胺四乙酸(EDTA)等可以抑制DNA酶活性,皂土可抑制RNA酶活性,同时SDS 或苯酚等蛋白变性剂也可使核酸降解酶破坏。 动植物的DNA核蛋白能溶于水及高浓度的盐溶液(如1mol/L NaCl),但在0.14mol/L的盐溶液中溶解度很低,而RNA核蛋白则溶于0.14mol/L盐溶液,可利用不同浓度的氯化钠溶液,将脱氧核糖核蛋白和核糖核蛋白从样品中分别抽提出来。 将抽提得到的脱氧核糖核蛋白用SDS(十二烷基硫酸钠)处理,DNA即与蛋白质分开,可用氯仿-异戊醇将蛋白质沉淀除去,而DNA则溶解于溶液中。向含有DNA的水相中加入冷乙醇,DNA即呈纤维状沉淀出来。 DNA分子中的脱氧核糖基,在酸性溶液中变成w-羟基-r-酮基戊醛,与二苯胺试剂作用生成蓝色化合物(λmax=595nm)。 DNA(脱氧戊糖基) [H+]HO-CH2-C(=O)-CH2-CH2-CHO 二苯胺蓝色化合物 在DNA浓度为20~200μg/ml范围内,吸光度与DNA浓度成正比,可用比色法测定。 三、实验器材 猪肝,分光光度计(595nm),比色杯,匀浆器,量筒(50ml、10ml),离心机(5000r/min),离心管,试管及试管架,移液管(1.0ml、2.0ml、5.0ml),恒温水浴锅 四、实验试剂 氯化钠,柠檬酸钠,95%乙醇,SDS,氯仿,异戊醇,二苯胺试剂,DNA标准溶液(200μg/m1),二苯胺试剂等。 五、实验操作 1、配制溶液: 0.1mol/L NaCl-0.05mol/L柠檬酸钠溶液(2.925g氯化钠,20.85g柠檬酸钠,溶解于500mL 蒸馏水)。 氯仿-异戊醇混合液:按照体积比20:1配制500mL。 5%SDS溶液:10g SDS溶于200ml水中。 二苯胺试剂:称取纯二苯胺(如不纯,需在70%乙醇中重结晶2次)5克溶于500ml 分析纯的冰醋酸中,再加入50ml过氯酸(A.R,60%以上),混匀待用。当所用药品纯净时,配得试剂应为无色。临用前加入5ml 1.6%乙醛溶液(乙醛溶液应保存于冰箱中,一周内可使用),贮于棕色瓶。 2、称取猪肝2g,用匀浆器磨碎(冰浴),加入4ml的0.1mol/L NaCl-0.05mol/L柠檬酸钠缓冲液,研磨三次,然后倒出匀浆物,匀浆物在4000r/min下离心10min,弃上清;沉淀中再加入6ml缓冲液,于4000r/min离心10min;取沉淀。

湿地土壤微生物DNA提取及其脱腐技术

微生物学通报 AUG 20, 2010, 37(8): 1130?1137 Microbiology China ? 2010 by Institute of Microbiology, CAS tongbao@https://www.360docs.net/doc/411145173.html, 基金项目:国家973计划前期研究专项项目(No. 2009CB125909) *通讯作者:Tel: 86-471-4991676; : ndzj@https://www.360docs.net/doc/411145173.html, 收稿日期:2010-01-25; 接受日期:2010-05-24 摘 要: DNA 分子生物学技术的广泛应用, 为全面了解微生物群落提供了有力的工具。本文建立了一种新的从湿地土壤中提取微生物总DNA 的方法, 即氯化钙-SDS-酶法。在直接提取DNA 过程中采用氯化钙去除腐殖酸, DNA 提取缓冲液中不使用EDTA 螯合剂, 提取过程用时4 h 左右。与其他两种方法相比, 该方法高效去除湿地土壤腐殖酸, 纯度较高, 满足PCR 扩增, 为微生物生态学研究提供了一种高效的湿地土壤微生物总DNA 提取和纯化技术。 关键词: 湿地土壤, DNA 提取, 腐殖酸, PCR 扩增, 氯化钙-SDS-酶法 DNA Extraction and Removing Humic Substance from Wetland Soil LI Jing-Yu 1 ZHAO Ji 2* BIAN Yu 2 WU Lin-Hui 2 YU Jing-Li 2 (1. College of Life Sciences , Inner Mongolia University , Huhhot , Inner Monglia 010021, China ) (2. College of Environment & Resources , Inner Mongolia University , Huhhot , Inner Monglia 010021, China ) Abstract: DNA-based molecular biology techniques have widely been used as a powerful tool to un-derstand the microbial community. In this paper, a new method to extract microbial genomic DNA from wetland soil was established, namely Calcium Chloride-SDS-Enzymatic. Calcium chloride rather than EDTA chelating agent was used to remove humic acids in the process of direct DNA extraction. The extracting time is less than 4 hours. In comparing with other two methods, this method is more efficient in removing humic acids from wetland soil, and the purity of extracted DNA is higher which can be ap-plied to PCR amplification. It provides an efficient technology to extract and purify microbial genome DNA from soil for microbial ecological studies. Keywords: Wetland soil, DNA extraction, Humic acid, PCR amplification, Calcium chloride- SDS-enzymatic 从土壤和沉积物样品中提取微生物总DNA 是研究微生物多样性的前提和基础, 方法大致可以分为直接提取和间接提取两大类[1]。直接提取法获得DNA 的量较大, 但腐殖酸的存在会影响到下游的分 析[2]。为了获得纯度较高的微生物总DNA, 需要对其进行纯化处理。纯化处理的方法有硫酸铝捕获腐殖酸法[3]、PVPP 纯化法[4]、CTAB 法[5]、氯化铯密度梯度离心法[6]、交联葡聚糖和琼脂糖凝胶过滤树

土壤微生物研究进展

哈尔滨师范大学 学年论文 题目植物与微生物关系研究进展 学生李春葳 指导教师王全伟副教授 年级 2009级 专业生物科学 系别生物科学系 学院生命科学与技术学院 哈尔滨师范大学 2012年5月

论文提要 植物与其生长环境中的微生物关系密切,两者形成了植物—微生物共生体系统。植物影响着其周围及体内的微生物的群落结构,这些微生物又通过其生命活动影响植物的生长发育。了解与认识植物与微生物的相互作用对于农业生产具有重要意义。本文就植物类型及植物根系分泌物对微生物群落结构及多样性的影响,植物根际微生物、叶围微生物和内生菌(包括内生真菌、内生细菌以及内生放线菌)对植物生长发育的影响等进行综述,并就其将来的研究方向做了展望。

植物与微生物关系研究进展 李春葳 摘要:植物与其生长环境中的微生物关系密切,两者形成了植物—微生物共生体系统。植物影响着其周围及体内的微生物的群落结构,这些微生物又通过其生命活动影响植物的生长发育。了解与认识植物与微生物的相互作用对于农业生产具有重要意义。本文就植物类型及植物根系分泌物对微生物群落及其多样性的影响,植物根际微生物、叶围微生物和内生菌(包括内生真菌、内生细菌以及内生放线菌)对植物生长发育的影响等进行综述,并就其将来的研究方向做了展望。 关键词:植物植物根际微生物内生菌叶围微生物 植物与微生物的相互作用主要包括植物与根际微生物的互作、植物与叶围微生物的互作、植物与内生菌的互作及植物对微生物多样性的影响等。植物与周围环境生物的相互作用在自然界中普遍存在,其中以植物与微生物的互作为重要形式之一。本文就植物类型及植物根系分泌物对微生物群落及其多样性的影响,植物根际微生物、叶围微生物和内生菌(包括内生真菌、内生细菌以及内生放线菌)对植物生长发育的影响等进行综述,并就其将来的研究方向做了展望。 1植物根际有益微生生物与植物的关系 植物根际有益微生物主要指对植物生长和健康具有促进作用的土壤微生物。这些微生物可以通过一些途径,促进植物定植、生长和发育[1、2]。根据根际有益微生物主要作用可以将其分为植物根际促生微生物PGPM(plant growth promoting micribiology)和生防微生物BCA(biological control agents)2大类。 1.1植物促生微生物 植物促生微生物主要包括根瘤菌(Rhizobium)、菌根菌等。固氮微生物(自生固氮菌、联合固氮菌和共生固氮菌)可以通过固定大气中的N 从而增加植物对氮素的吸收。WuF 2 B发现,苗期海岛棉(Gossypium barbadense)接种自生固氮菌(Azotobacter sp.)、巴西固氮螺菌(Azospirillum brasilense)、多糖芽孢杆菌(Bacillus polymyxa)和根瘤菌后,其功能叶中氮、磷、叶绿素含量以及生物学产量均明显提高[3]。尽管固氮微生物在非豆科植物以外的其他植物根际所占比例很小(1%),但对某些植物来说其根际固氮微生物所固定的氮素对其生长来说仍是重要氮源[1]。有些植物根际促生微生物(主要是菌根真菌)可以通过影响植物根系形态及生理特征,如增加植物根系吸收面积、改变植物根系通透性从而影响植物对N、P、K的吸收[4]。陈洁敏等[5]研究表明,分别接种3种AMF(泡囊丛枝菌根真菌)的玉米(Zeamays)对氮和磷的吸收比未接种的玉米增加了41.14%~78.29%。一些植物根际促生微生物可以通过产生有机酸或酶一类的代谢产物作用于土壤中以螯合形式存在的营养元素,从而使其活化,特别是许多AM真菌对P直接进行活化,从而增加了土壤中植物可利用的P。也有研究表明,菌根可以增加植物对水分的吸收,从而提高植物的抗旱能力。

dna提取实验步棸

(1)取新鲜或冰冻动物组织块0.5 g,尽量剪碎。置于玻璃匀浆器中,加入5ml的细胞裂解缓冲液匀浆至不见组织块。 (2)转入2ml 离心管中(转2管或4管),每管转入1ml,用台式离心机以12000 rpm 离心5min,弃上清收集沉淀。 (3)加入300ul 10×TE缓冲液悬浮沉淀 (4)加入100μl 200mg/ml的溶菌酶,37℃水浴1h; (4)加入50ul 10%SDS ,20μl 20mg/ml蛋白酶K在50℃恒温水浴锅中水浴3h ,间歇振荡数次。 (4)加入100μl 5mol/L NaCl,65℃水浴10min (5)加等量(570ul)的氯仿:异戊醇(24:1)振荡混匀,离心12000 rpm,10min。 (6).取上层溶液至另一管,加入等体积的酚:氯仿:异戊醇(25:24:1),振荡混匀,离心12000 rpm,10min,取上层溶液至另一管,重复一次。 (7)加入2倍体积的无水乙醇,混匀后室温沉淀20min ,12000 rpm离心,10min。小心倒掉上清液,将离心管倒置于吸水纸上,将附于管壁的残余液滴除掉。 (8)用1ml 70%乙醇洗涤沉淀物1次,离心12000 rpm ,5min。小心倒掉上清液,将离心管倒置于吸水纸上,将附于管壁残余液滴除掉,室温干燥。 (11)加200ul 灭菌水重新溶解沉淀物。 (12)Nanophotometer仪测定DNA浓度及OD值。 (13)-20℃保存备用。 1.3.2菌群16S rRNA基因V3高变区PCR扩增 (1)16S rRNA基因V3高变区通用引物: V3F:5’-CGC CCG CCG CGC GCG GCG GGC GGG GCG GGG GCA CGG GGG GCC TAC GGG AGG CAG CAG-3’ V3R:5’- ATT ACC GCG GCT GCT GG-3’ 其中,CGC CCG CCG CGC GCG GCG GGC GGG GCG GGG GCA CGG GGG G为GC 夹。

实验室土壤DNA提取方法

改良CTAB-SDS法 1、称取1 g土壤样品,加1ml DNA提取液(0.1 mol/L Tris-Hcl;0.1 mol/L EDTA; 0.1 mol/L 磷酸钠;1.5 mol/L Nacl;1%CTAB;pH 8.0,将各种试剂按配置的体积数称量混合即可。),在漩涡震荡仪上混匀。 2、加入100ul溶菌酶温和37℃裂解30min,液氮冷冻10 min,65℃水浴10 min,反复冻融3次。 3、加入20% SDS缓冲液溶液100μl,65℃水浴2h,每20 min轻轻颠倒几次。8000 r/min离心10 min,取上清。 4、剩余残渣中再加500μl DNA提取液和100μl SDS 缓冲液,65℃水浴30 min,8000 r/min室温离心10 min,取上清,合并两次的上清液。 5、等体积的氛-氯仿-异戊醇(25:24:1)抽提2至3次(氯仿:异戊醇(24:1)抽提一次),静置10min,12000rpm,10min取上清。 6、加入0.1倍体积的NaAc和0.6倍体积的无水乙醇混匀,4℃沉淀过夜。 7、13000 r/min离心5 min,70%乙醇清洗2次,30μl ddH 2 O溶解。 8、提取粗DNA在0.6%(1%)的Agrose,70 V(100V)电压下电泳1.5 h(40min)。注意事项:这个千万不要4℃过夜啊,4℃过夜你会发现很多的絮状悬浮物,我之前犯过类似错误,这个是SDS和高浓度的盐在低温条件下析出来了。室温放置1-2h就好。 提取土壤微生物总DNA的纯度和浓度检测 对提取的土壤微生物总DNA进行琼脂糖凝胶电泳检测,同时采用紫外分光光度计分别测定提取土壤微生物总DNA稀释液在230 nm,260 nm,280 nm处的光 密度值。以OD 260/OD 280 (DNA/蛋白质),OD 260 /OD 230 (DNA/腐植酸)比值检测DNA纯 度。 DNA浓度=OD 260 值×50μg/ml×80×DNA 溶液体积/干土质量[68]

土壤微生物对植物所需各大中微量元素的转化作用

土壤微生物对植物所需各大中微量元素的转化作用 作者:ets时间:2009-5-15浏览:【字体:小大】 作物生长所必需的元素按其需求量分为大、中、微量三种,共13种。这些元素在土壤中以不同形式存在,有些元素的形式不经转化是不能被植物吸收利用的。而元素的转化必须在微生物的作用下才能进行。因此微生物的生命活动在矿质营养元素的转化中起着十分重要的作用。 下面就微生物对这13种元素中的N、P、K、S、Fe、Mn 6种元素的转化作用进行简单介绍。 一、微生物在氮转化中的作用 氮循环由6种转化氮化合物的反应组成,包括固氮、同化、氨化(脱氨)、硝化作用、反硝化作用及硝酸盐还原。氮是生物有机体的主要组成元素,氮循环是重要的生物地球化学循环。 (1)固氮:固氮是大气中氮被转化成氨(铵)的生化过程。固氮微生物都具有固氮基因和由其编码合成的固氮酶,生物固氮是只有微生物或有微生物参与才能完成的生化过程。 (2)氨化作用:氨化作用是有机氮化物转化成氨的过程。它是通过微生物的胞外和胞内酶系以及土壤动物释放的酶催化的。首先是胞外酶降解含氮有机多聚体,然后形成的单聚体被微生物吸收到细胞内代谢,产生的氨释放到土壤中。氨化作用放出的氨可被微生物固定利用和进一步转化。 (3)硝化作用:硝化作用是有氧条件下氨被氧化成硝酸盐的过程。硝化作用是由两群化能自养细菌进行的,先是亚硝酸单胞菌将氨氧化为亚硝酸;然后硝酸杆菌再将亚硝酸氧化为硝酸。氨和亚硝酸是它们的能源。 (4)硝酸盐还原和反硝化作用:土壤中的硝酸盐可以经由不同途径而被还原,包括同化还原和异化还原两方面,还原产物可以是亚硝酸、氧化氮、氧化亚氮等。 同化还原是指微生物将吸收的硝酸盐逐步还原成氨用于细胞物质还原的过程。植物、真菌和细菌都能够进行NO3-的同化还原,在同化硝酸酶系催化下先形成NO2-继而还原成NH2OH,最后成为NH3,由细胞同化为有机态氮。 硝酸盐的异化还原比较复杂,有不同途径。因微生物和条件不同,可以只还原为NO和N2O,也可以还原为分子氮。只有细菌具备NO3-的异化还原作用。 反硝化作用即反硝化细菌在缺氧条件下,还原硝酸盐,释放出分子态氮(N2)或一氧化二氮(N2O)的过程,即脱氮作用。能够进行反硝化作用的只有少数细菌。 二、微生物在磷循环中的作用 大气中没有磷素的气态化合物,因此磷是一种典型的沉积循环,主要在土壤、植物和微生物之间进行。土壤微生物既参加了无机磷化合物的溶解作用和有机磷化物的矿化作用,也参加了可给性磷的固持作用。在作物生长的季节里,虽然土壤微生物的生物量比植物的生物量少很多,但微生物的含磷量却比植物高10倍以上;而且在一季的时间内,微生物能繁殖很多代,结果是被微

相关文档
最新文档