金属热膨胀系数的测定

金属热膨胀系数的测定
金属热膨胀系数的测定

金属热膨胀系数的测定

[实验目的]

⒈了解DH4608A金属热膨胀系数实验仪的基本结构和工作原理。

⒉掌握千分表和温度控制仪的使用方法。

⒊掌握测量金属线热膨胀系数的基本原理。

4.测量不锈钢管、紫铜管等的线膨胀系数。

5、学会用热电偶测量温度。

6、学会用图解图示法处理实验数据,并分析实验误差。

[实验仪器]

恒温水浴锅、DH4608A金属热膨胀系数实验仪、千分表、待测样品、实验架。

[实验原理]

1、金属线膨胀仪的结构及使用方法

金属线膨胀仪结构图如图1所示。金属杆的一端用螺钉连接在固定端,滑动端装有轴承,金属杆在此方向可自由伸长,通过流过金属杆的水对金属加热,金属杆受热后在延杆的方向自由膨胀,着个膨胀量用千分表来测量。千分表是利用齿条与齿轮的传动将膨胀量这个线位移转换为角位移,由表针转动的角度来读出这个膨胀量。千分表的大表针转动一圈(小表针转动一格)代表线位移移动0.2mm,最小分度值为0.001mm。温度控制实验仪用来加热和控制金属杆的温度。

图1 实验架结构图

1-热电偶安装座2-待测样品3-挡板4-千分表

通常热电偶安装座安装在待测样品中间位置即挡板和左侧固定点的中间。安装座的一侧有一小孔,将热电偶涂上导热硅脂插在小孔中,实验仪上显示的是热电偶的热电势,查找铜-康铜热电偶分度表可以得出温度值。此表如下:

铜—康铜热电偶分度表

2、千分表使用说明

千分表是一种将量杆的直线位移通过机械系统传动转变为主指针的角位移,沿度盘圆周上有均匀的标尺标记,可用于绝对测量、相对测量、形位公差测量和检测设备的读数头。

本仪器采用的千分表技术参数:

千分表的使用方法:

一、使用前的准备工作:

(1).检验千分表的灵敏程度,左手托住表的背面,度盘向前用眼观察,

手拇指轻推表的测头,试验量杆的移动是否灵活。

(2). 检验千分表的稳定性,将千分表夹持在表架上,并使测头处于工作状态,反复几次提落防尘帽自由下落测头,观察指针是否指向原位。

二、测量和读数方法

(1). 先把表夹在表架或专用支架上,所夹部位应尽量是靠近下轴根部,但是不可以影响表圈的转动,夹紧即可,不要太过紧,以免压坏伸缩杆。

(2). 校准零位

校准零位有两种方法:第一种是,旋转表盘的外圈,使刻度盘对准“0”位对准指针。第二种是,轻而缓慢的移动表架的悬臂,使其升起或下降,通过升降量杆的压缩量,这就是等于旋转表针去对准刻度盘的“0”位。

在我们校对零位的时候,应尽量使表的测量头对准基本面,并使量杆有一定的伸缩量(如:0.02~0.2mm),再用扳手固定住千分表支架,夹住千分表。在对好零位后,应反复几次提起,放手让其回落防尘帽(升落0.1mm~0.2mm左右),待指针位稳定后方可旋转表外圈对零。在对零位时,我们要重复检查,要求指针测量既准又稳。

(3).测量

测量平面时,应使千分表的量杆轴线与所测量表面垂直,防止有斜角现象。测量圆柱体时,量杆轴线应该通过工件中心并与母线垂直。在测量过程中,可以看到大小指针都在转动。大指针每转一格为0.001mm(合0.0001in);大指针转一圈,小指针转一格。在开始测量时,我们要记住大小指针的初始值,待测量读数,做差值即为测量值。在读数视线要垂直于千分表的刻度盘,如果大指针停留在刻线之间,就进行估读。

3、金属线膨胀系数的测定

物质在受热情况下体积会增大,这就是热膨胀,热膨胀是物质的基本热力学性质之一。物质的热膨胀是由于其中的原子或分子的运动加剧造成的。热膨胀与物质的种类有关,即使是同一种物质,在不同的温度下热膨胀的程度也不同。对金属而言,它是由大量无规则排列的晶粒构成的,所以整体表现出各向同性,也就是在不同方向上膨胀程度相同。因此,常用线膨胀系数来表征金属的热膨胀程度。所以本实验只测金属的线膨胀系数。

在一定温度范围内,原长为l 的物体受热后的伸长量l ?与温度的增长t ?近似成正比,即

l l t α?=? (1)

α被称为线膨胀系数,单位为℃-1或K -1,其正规定义式为

1d d l l

l t

α=

(2) 设物体在温度为1t 时的长度为l ,温度升到2t 时其长度增加l ?,通过实验就可得到线膨胀系数为

21()

l

l t t α?=

- (3)

所以测量线膨胀系数的问题就转化为怎样测准由于温度变化引起长度的微小变化l ?的问题。要测准l ?就要借组上面介绍的千分表。

[实验步骤]

l 、将实验样品固定在实验架上,拧紧锁紧螺钉,注意挡板要正对着千分表。

2、调节千分表和挡板的相对位置,既要保证二者间没有间隙,又要保证千分尺有足够的伸长空间。

3、调节热电偶安装座的位置,使其处在待测样品的中间。

4、将热电偶涂上导热硅脂,插在热电偶安装座的小孔中,热电偶传感器的插头和实验仪上的插座相连。

5、样品的一端用硅胶管与恒温水浴锅出水口相连,一端与恒温水浴锅的进水口相连。

6、关闭水泵电源。

7、确保水浴锅内有足够的水。

8、最后检查仪器连接是否正确,仪器各部分的相对位置摆放合适。 9、打开仪器电源,进入实验。 10、打开水泵开关。

11、以室温为测温起点,每5℃设定一个控温点,再分别测量以后六个控温点,记录样品上的实测温度和千分表上的变化值。 12、根据数据l ?和t ?。通过公式

t l l

??=

α

计算线热膨胀系数。

13、换用不同的金属棒样品,分别测量并计算各自的线热膨胀系数。与附录一提供的参考值进行比较,计算出测量的不确定度。

[数据记录及处理]

固体线热膨胀系数测定表

测量样品: 仪器编号:

∑==

n

i i n 1

1

αα,)

1()(1

2

--=∑=n n U n

i i

αα

α,U ααα=±。

[注意事项]

1、千分尺与挡板的位置要安装合适,既要保证二者间没有间隙,又要保证千分尺有足够的伸长空间。

2、样品的一端用硅胶管与恒温水浴锅出水口相连,一端与恒温水浴锅的进水口相连。

3、在水浴锅没有和样品连接好的情况下不要将水泵电源打开。

4、打开水浴锅电源之前仔细检查连接是否正确。

5、温度控制设定值不要超过80度。

6、实验过程中防止水浴锅干烧。

7、实验过程中不能振动仪器和桌子,否则会影响千分表读数。

8、千分表是精密仪表,不能用力挤压。

[思考题]

1. 该实验的误差来源主要有哪些?

2. 利用千分表读数时应注意哪些问题,如何消除误差?

附录一

固体的线膨胀系数表

注:仅供参考,不同金属材料的线膨胀系数不相同;在不同的温度段也不同。

物理金属线膨胀系数测量实验报告

实验 (七) 项目名称:金属线膨胀系数测量实验 一、实验目的 1、学习测量金属线膨胀系数的一种方法。 2、学会使用千分表。 二、实验原理 材料的线膨胀是材料受热膨胀时,在一维方向的伸长。线胀系数是选用材料的一项重要指标。特别是研制新材料,少不了要对材料线胀系数做测定。 固体受热后其长度的增加称为线膨胀。经验表明,在一定的温度范围内,原长为L 的物体,受热后其伸长量L ?与其温度的增加量t ?近似成正比,与原长L 亦成正比,即: t L L ???α=? (1) 式中的比例系数α称为固体的线膨胀系数(简称线胀系数)。大量实验表明,不同材料的线胀系数不同,塑料的线胀系数最大,金属次之,殷钢、熔融石英的线胀系数很小。殷钢和石英的这一特性在精密测量仪器中有较多的应用。 实验还发现,同一材料在不同温度区域,其线胀系数不一定相同。某些合金,在金相组织发生变化的温度附近,同时会出现线胀量的突变。另外还发现线膨胀系数与材料纯度有关,某些材料掺杂后,线膨胀系数变化很大。因此测定线胀系数也是了解材料特性的一种手段。但是,在温度变化不大的范围内,线胀系数仍可认为是一常量。 为测量线胀系数,我们将材料做成条状或杆状。由(1)式可知,测量出时杆长L 、受热后温度从1t 升高到2t 时的伸长量L ?和受热前后的温度升高量t ?(12t t t -=?),则该材料在) , (21t t 温度区域的线胀系数为:) t L (L ???= α(2) 其物理意义是固体材料在)t , t (21温度区域内,温度每升高一度时材料的相对伸长量,其单位为1 )C (-。 测量线胀系数的主要问题是如何测伸长量L ?。我们先粗估算一下L ?的大小,若 mm 250L =,温度变化C 100t t 0 12≈-,金属的α数量级为105)C (10--?,则估算出 mm 25.0t L L ≈???α=?。对于这么微小的伸长量,用普通量具如钢尺或游标卡尺是测不准的。可采用千分表(分度值为mm 001.0)、读数显微镜、光杠杆放大法、光学干涉法等方法。本实验用千分表(分度值为mm 001.0)测微小的线胀量。 三、实验主要仪器设备和材料

金属线胀系数的测定实验报告

实验5 金属线胀系数的测定 测量固体的线胀系数,实验上归结为测量在某一问题范围内固体的相对伸长量。此相对伸长量的测量与杨氏弹性模量的测定一样,有光杠杆、测微螺旋和千分表等方法。而加热固体办法,也有通入蒸气法和电热法。一般认为,用电热丝同电加热,用千分表测量相对伸长量,是比较经济又准确可靠的方法。 一、实验目的 1.学会用千分表法测量金属杆长度的微小变化。 2.测量金属杆的线膨胀系数。 二、实验原理 一般固体的体积或长度,随温度的升高而膨胀,这就是固体的热膨胀。设物体的温度改变t ?时,其长度改变量为L ?,如果t ?足够小,则t ?与L ?成正比,并且也与物体原长L 成正比,因此有 t L L ?=?α (1) 式(1)中比例系数α称为固体的线膨胀系数,其物理意义是温度每升高1℃时物体的伸长量与它在0℃时长度之比。设在温度为0℃时,固体的长度为0L ,当温度升高为t ℃时,其长度为t L ,则有 t L L L t α=-00/)( 即 )1(0t L L t α+= (2) 如果金属杆在温度为1t ,2t 时,其长度分别为1L ,2L ,则可写出 )1(101t L L α+= (3) )1(202t L L α+= (4) 将式(3)代入式(4),又因1L 与2L 非常接近,所以,1/12=L L ,于是可得到如下

结果: )(12112t t L L L --=α (5) 由式(5),测得1L ,2L ,1t 和2t ,就可求得α值。 三、仪器介绍 (一)加热箱的结构和使用要求 1.结构如图5-1。 2.使用要求 (1)被测物体控制于mm 4008?φ尺寸; (2)整体要求平稳,因伸长量极小,故仪器不应有振动; (3)千分表安装须适当固定(以表头无转动为准)且与被测物体有良好的接触(读数在0.2~0.3mm 处较为适宜,然后再转动表壳校零); (4)被测物体与千分表探头需保持在同一直线。 (二)恒温控制仪使用说明

线膨胀系数实验报告参考

线胀系数测量实验报告参考稿 【实验目的】 1.学习并掌握测量金属线膨胀系数的一种方法。 2.学会用千分表测量长度的微小增量。 【实验仪器】 FB712型金属线膨胀系数测量仪一台,千分表(1-0-0.001mm )一个,待测铜管一根。 【实验原理】 材料的线膨胀是材料受热膨胀时,在一维方向的伸长。线胀系数是选用材料的一项重要指标。特别是研制新材料,少不了要对材料线胀系数做测定。 如图所示,待测铜管的线胀系数为: () t L L ???= α 式中L 为温度为1t 摄氏度时的管长,L ?为管受热后温度从1t 升高到2t 时的伸长量,t ?为管受热前后的温度升高量 (12t t t -=?) 。 该式所定义的线胀系数的物理意义是固体材料在()21t , t 温度区域内,温度每升高一度时材料的相对伸长量,其单位为()1 C -?。 【实验内容和步骤】 1.把样品铜管安装在测试架上。连接好加热皮管,打开电源开关,以便从仪器面板水位显示器上观察水位情况。水箱容积大约为ml 750。 3.加水步骤:先打开机箱顶部的加水口和后面的溢水管口塑料盖,用漏斗从加水口往系统内加水,管路中的气体将从溢水管口跑出,直到系统的水位计仅有上方一个红灯亮,其余都转变为绿灯时,可以先关闭溢水管口塑料盖。接着可以按下强制冷却按钮,让循环水泵试运行,由于系统内可能存在大量气泡,造成水位计显示虚假水位,只有利用循环水泵试运行过程,把系统内气体排出,这时候水位下降,仪器自动保护停机。 4.设置好温度控制器加热温度:金属管加热温度设定值可根据金属管所需要的实际温度值设置。 5.将铜管(或铝管)对应的测温传感器信号输出插座与测试仪的介质温度传感器插座相连接。将千分尺装在被测介质铜管(或铝管)的自由伸缩端固定位置上,使千分表测试端与被测介质接触,为了保证接触良好,一般可使千分表初读数为mm 2.0左右,只要把该数值作为初读数对待,不必调零。(如认为有必要,可以通过转动表面,把千分尺主指针读数基本调零,而副指针无调零装置。) 6.正常测量时,按下加热按钮(高速或低速均可,但低速档由于功率小,一般最多只能加热到C 50?左右),观察被测金属管温度的变化,直至金属管温度等于所需温度值(例如C 35?)。.

金属线膨胀系数测定

金属线膨胀系数的测量 绝大多数物质都具有“热胀冷缩”的特性,这是由于物体内部分子热运动加剧或减弱造成的。这个性质在工程结构的设计中,在机械和仪器的制造中,在材料的加工(如焊接)中,都应考虑到。否则,将影响结构的稳定性和仪表的精度。考虑失当,甚至会造成工程的毁损,仪表的失灵,以及加工焊接中的缺陷和失败等等。 材料的线膨胀是材料受热膨胀时,在一维方向上的伸长。线胀系数是选用材料的一项重要指标。特别是研制新材料,少不了要对材料线胀系数作测定。 一、实验教学目的 1.掌握一种测线膨胀系数的方法; 2.应用逐差法处理数据。 二、实验教学重难点 1.千分表的读数 2.逐差法处理数据 三、实验仪器与用具 数字智能化热学综合实验平台、千分表、游标卡尺。 四、实验原理 固体受热后其长度的增加称为线膨胀。经验表明,在一定的温度范围内,原长为L 的 物体,受热后其伸长量L ?与其温度的增加量t ?近似成正比,与原长L 亦成正比,即 L L t α?=? 式中的比例系数α 。大量实验表明,不同材几种材料的线胀系数 实验还发现,同一材料在不同温度区域,其线胀系数不一定相同。某些合金,在金相组织发生变化的温度附近,同时会出现线胀量的突变。因此测定线胀系数也是了解材料持性的一种手段。但是,在温度变化不大的范围内,线胀系数仍可认为是一常量。 为测量线胀系数,我们将材料做成条状或杆状。由(1)式可知,测量出1t 时杆长L 、

受热后温度达2t 时的伸长量L ?和受热前后的温度1t 及2t ,则该材料在(1t ,2t )温区的线胀系数为: 21() L L t t α?= - (2) 其物理意义是固体材料在(t 1,t 2)温区内,温度每升高一度时材料的相对伸长量,其单位为(℃)-1 。 测线胀系数的主要问题是如何测伸长量ΔL 。先粗估算出ΔL 的大小,若L ≈250mm ,温度变化t 2-t 1≈100℃,金属的a 数量级为10-5 (℃)-1 ,则可估算出ΔL ≈0.25mm 。对于这么微小的伸长量,用普通量具如钢尺或游标卡尺是测不准的,可采用千分表(分度值为0.001mm )、读数显微镜、光杠杆放大法、光学干涉法。本实验中采用千分表测微小的线胀量。 五、实验步骤

金属线膨胀系数测量实验报告

梧州学院学生实验报告 成绩: 指导教师: 专业: 班别: 实验时间: 实验人: 学号: 同组实验人: 实验名称:金属线膨胀系数测量 实验目的:1、学习测量金属线膨胀系数的一种方法。 2、学会使用千分表。 实验仪器: 型号规格 单位 数量 备注 FB7 1 2型金属线膨 胀系数测定仪 台 1 被测件测试架 台 1 千分表 只 1 传感器连接线 根 2 L=80c m 红黑各一根 小漏斗 只 1 电源线 根 1 实验讲义(说明书)] 本 1 注意事项:1、做实验前必须精读FB712型金属线膨胀系数测定仪的使用说明书,正规操作 2 、注意千分表的使 用规范。 FB712型金属线膨胀系数测量仪实验装置示意图 【实验原理】 材料的线膨胀是材料受热膨胀时,在一维方向的伸长。线胀系数是选用材料的一项重要指标。 特别是研制新材料,少不了要对材料线胀系数做测定。 固体受热后其长度的增加称为线膨胀。经验表明,在一定的温度范围内,原长为 L 的物体, 受热后其伸长量厶L 与其温度的增加量△ t 近似成正比,与原长L 亦成正比,即: △ L=a ? L ?△ t (1) 式中的比例系数a 称为固体的线膨胀系数(简称线胀系数)。大量实验表明,不同材料的线胀系数 不同,塑料的 47 -J?V 叱-■: <■:"負号 ■'a ^_A s'.Vi Pf jW 丹 >¥ -i~ ■ "I irtf I - *■ 4 !■":■_! 牡二盂:J 豪迂二辽山输咤或典: &::?,、性%世*巴电冷忙即卜亠:.豆凳;其 応宓云I 恣心加[文 图&匹丁型金属线勝胀無数测定仪实物黑片 强制风冷 低速如撰 高速&]壇 盥控设齧 放水阀 H 水fr 匕 千分表 铝骨 FT1碱度传感黯 循环水管 削* 口 金廉管温度扬示 甥管 爲虔倩号践 S 度 指

固体线热膨胀系数的测定实验报告

固体线热膨胀系数的测定 【实验目的】 材料的线膨胀指的是材料受热后一维长度的伸长。当温度升高时,一般固体由于其原子或分子的热运动加剧,粒子间的平均距离发生变化,温度越高,其平均距离越大,这就是固体的热膨胀。热膨胀是物质的基本热学性质之一。物体的热膨胀不仅与物质种类有关。对金属晶体而言,由于它们是由许多晶粒构成的,这些晶粒在空间方位上排列是无规则的,整体表现出各相同性。它们的线膨胀在各个方向均相同。 虽然固体的热膨胀非常微小,但使物体发生很小形变时就需要很大的应力。在建筑工程、机械装配、电子工业等部门中都需要考虑固体材料的热膨胀因素。因此固体线胀系数是选择材料的一项重要指标,测定固体的线膨胀系数具有重要的实际意义。 1. 掌握测量固体线热膨胀系数的基本原理。测量铁、铜、铝棒的线热膨胀系数。 2. 学会使用千分表,掌握温度控制仪的操作。 3. 学习图解图示法处理实验数据。 【实验原理】 设为物体在温度时的长度,则该物体在时的长度可由下式表示: (1) 其中,为该物体的线膨胀系数,在温度变化不大时,可视为常数。将式(23-1)改写为: (2) 可见,的物理意义为:温度每升高时物体的伸长量与它在时的长度之比,单位为:或。 实际测量中,一般只能测得材料在温度及时的长度及,设是常量,则有: (3) 由式(6)即可求得物体在温度之间的平均线膨胀系数。其 中,微小长度变化量可直接用千分表测量。本实验对金属铁、铜、 铝进行测量求出不同金属的线膨胀系数。 【实验仪器】 FD-LEA固体线热膨胀系数测定仪(一套)、(电加热箱、千分 表、温控仪)金属棒、电源线、加热线、传感器及电缆 仪器介绍 1.千分表是一种测定微小长度变化量的仪表,其外形结构如图

固体热膨胀系数的测量实验报告

固体热膨胀系数的测量 实验报告 Revised as of 23 November 2020

固体热膨胀系数的测量 班级: 姓名: 学号: 实验日期: 一、实验目的 测定金属棒的线胀系数,并学习一种测量微小长度的方法。 二、仪器及用具 热膨胀系数测定仪(尺读望远镜、米尺、固体线膨胀系数测定仪、铜棒、光杠杆、温度计等) 三、实验原理 1.材料的热膨胀系数 线膨胀是材料在受热膨胀时,在一维方向上的伸长。在一定的温度范围内,固体受热后,其长度都会增加,设物体原长为L ,由初温t1加热至末温t2,物体伸长了 △L,则有 ()12t t L L -=?α (1) (2) 此式表明,物体受热后其伸长量与温度的增加量成正比,和原长也成正比。比例系数称为固体的线胀系数。一般情况下,固体的体胀系数为其线胀系数的3倍。 2.线胀系数的测量 在式(1)中△L 是个极小的量,这样微小的长度变化,普通米尺、游标卡尺的精度是不够的,可采用千分尺、读数显微镜、光杠杆放大法、光学干涉法等。考虑到测量方便和测量精度,我们采用光杠杆法测量。光杠杆系统是由平面镜及底座,望远镜和米尺组成的。光杠杆放大原理如下图所示: () 12t t L L -?= α

当金属杆伸长△L 时,从望远镜中叉丝所对标尺刻度前后为b1、b2,这时有: 带入(2)式得固体线膨胀系数为: 四、实验步骤及操作 1.单击登陆进入实验大厅 2.选择热力学试验单击 3.双击固体热膨胀系数的测量进入实验界面 4.在实验界面单击右键选择“开始实验” 5.调节平面镜至竖直状态 6.进行望远镜调节,调节方位、聚焦、目镜是的标尺刻线清晰,调节中丝读数为,并打开望远镜视野 7.单击铜棒测量长度,单击温度计显示铜棒温度,打开电源加热,记录每升高10度时标尺读数直至温度升高到90度止 l L D b b ?=-212()D l b b L 212-= ?()()k DL l t t DL b b l 221212=--= α

金属热膨胀系数测量

金属线热膨胀系数测定 一、实验目的 1、了解千分表膨胀仪的结构和原理。 2、掌握相变对金属热膨胀系数的影响。 二、实验原理 1、线热膨胀系数的确定 当温度由T 1到T 2,相应地长度由L 1变到L 2时,材料在该温区的平均热膨胀系数为: 212111 ()L L L T T L T L α-?= = -?? (1) 平均线性膨胀系数,表示温度升高1K 时物体长度的相对增大。 当ΔT →0时,真线性膨胀系数αT 为 (2) 膨胀系数的单位为K -1。固体材料αT 不是一个常数,通常随温度升高而加大。 2、金属正常热膨胀的来源 金属固体多以晶态存在,周期排列的原子都在围绕其平衡位置做简谐振动,随温度增加,振幅加大,动能随之增加。 3、影响热膨胀的主要因素 金属热膨胀系数主要与其化学成分、晶体结构和键强度等密切相关。 ① 键强度:键强度高,热膨胀系数低;金属熔点高,键强度高,热膨胀系数低。 d 1 d T T L T L α=?

② 晶体结构: a 结构紧密的晶体热膨胀系数都较大,而比较松散的非晶态的热膨胀系 数都较小。如多晶石英与无定形石英 。 b 非等轴晶系的晶体,各晶轴方向的膨胀系数不等,如石墨等层状结构 材料,层内联系紧密,而层间联系较松散,使得层间膨胀系数较小,而层内膨胀系数较大。 ③ 相变的影响 a 一级相变:如纯金属同素异构转变时,点阵结构重排时体积突变,伴随着金属比容突变,导致线膨胀系数发生不连续变化。 b 二级相变:发生二级相变时,体积没有变化,也没有伴随热量的吸收和释放,只是热容量、热膨胀系数等物理量发生变化。如有序-无序转变时,膨胀系数在相变温区仅出现拐折。金属与合金在接近居里温度发生磁性转变,其膨胀曲线会出现明显的膨胀峰。与正常曲线相比,它具有明显的反常现象,其中Ni 和Co 具有正膨胀峰,Fe 具有负膨胀峰。 图3 有序-无序转变膨胀曲线 ④ 合金成分和组织的影响 组成合金的溶质元素对合金热膨胀有明显影响: a 由简单金属与非铁磁性金属组成的单相均匀固溶体合金的线膨胀系数 图1 一级相变时α和ΔL 随T 的变化 图2 二级相变时α和ΔL 随T 的变化

金属线膨胀系数的测量

第 1 页 共 9 页 金属线膨胀系数的测 量 (FB712型金属线膨胀系数测定仪) 绝大多数物质都具有“热胀冷缩”的特性,这是由于物体内部分子热运动加剧或减弱造成的。这个性质在工程结构的设计中,在机械和仪器的制造中,在材料的加工(如焊接)中,都应考虑到。否则,将影响结构的稳定性和仪表的精度。考虑失当,甚至会造成工程的损毁,仪器的失灵,以及加工焊接中的缺陷和失败等等。 【实验目的】 1.学习并掌握测量金属线膨胀系数的一种方法。 2.学会用千分表测量长度的微小增量。 【实验仪器】 FB712型金属线膨胀系数测量仪实验装置如图1、图2所示: nemo xatu 2011.11.21

第 2 页 共 9 页 【实验原理】 材料的线膨胀是材料受热膨胀时,在一维方向的伸长。线胀系数是选用材料的一项重要指标。特别是研制新材料,少不了要对材料线胀系数做测定。 固体受热后其长度的增加称为线膨胀。经验表明,在一定的温度范围内,原长为L 的物体,受热后其伸长量L Δ与其温度的增加量t Δ近似成正比,与原长L 亦成正比,即: t L L Δ??α=Δ (1) 式中的比例系数α称为固体的线膨胀系数(简称线胀系数) 。大量实验表明,不同材料的线胀系数不同,塑料的线胀系数最大,金属次之,殷钢、熔融石英的线胀系数很小。殷钢和石英的这一特性在精密测量仪器中有较多的应用。 几种材料的线胀系数 材 料 铜、铁、铝 普通玻璃、陶瓷殷 钢 熔凝石英 数量级 ()15C 10??°× ()16C 10??°× ()16C 102??°×< ()1 7C 10??°× 实验还发现,同一材料在不同温度区域,其线胀系数不一定相同。某些合金,在金相组织发生变化的温度附近,同时会出现线胀量的突变。另外还发现线膨胀系数与材料纯度有关,某些材料掺杂后,线膨胀系数变化很大。因此测定线胀系数也是了解材料特性的一种手段。但是,在温度变化不大的范围内,线胀系数仍可认为是一常量。 为测量线胀系数,我们将材料做成条状或杆状。由(1)式可知,测量出时杆长L 、受热后温度从1t 升高到2t 时的伸长量L Δ和受热前后的温度升高量t Δ(12t t t ?=Δ),则

固体线膨胀系数的测定

固体线膨胀系数的测定 绝大多数物质具有热胀冷缩的特性,在一维情况下,固体受热后长度的增加称为线膨胀。在相同条件下,不同材料的固体,其线膨胀的程度各不相同,我们引入线膨胀系数来表征物质的膨胀特性。线膨胀系数是物质的基本物理参数之一,在道路、桥梁、建筑等工程设计,精密仪器仪表设计,材料的焊接、加工等各种领域,都必须对物质的膨胀特性予以充分的考虑。 【实验目的】 1、学习测量固体线膨胀系数的一种方法。 2、了解一种位移传感器——数字千分表的原理及使用方法。 3、了解一种温度传感器——AD590的原理及特性。 4、通过仪器的使用,了解数据自动采集、处理、控制的过程及优点。 5、学习用最小二乘法处理实验数据。 【实验原理】 1、线膨胀系数 设在温度为t1时固体的长度为L1,在温度为t2时固体的长度为L2。实验指出,当温度变化范围不大时,固体的伸长量△L= L2-L1与温度变化量△t= t2-t1及固体的长度L1成正比。即: △L=αL1△t (1)式中的比例系数α称为固体的线膨胀系数,由上式知: α=△L/Ll·1/△t (2)可以将α理解为当温度升高1℃时,固体增加的长度与原长度之比。多数金属的线膨 胀系数在(0.8—2.5)×10-5/℃之间。 线膨胀系数是与温度有关的物理量。当△t很小时,由(2)式测得的α称为固体在温度为t1时的微分线膨胀系数。当△t是一个不太大的变化区间时,我们近似认为α是不变的,由(2)式测得的α称为固体在t1—t2温度范围内的线膨胀系数。 由(2)式知,在L1已知的情况下,固体线膨胀系数的测量实际归结为温度变化量△t与相应的长度变化量△L的测量,由于α数值较小,在△t不大的情况下,△L也很小,因此准确地测量△L及t是保证测量成功的关键。 2、微小位移的测量及数字千分表 测量微小位移,以前用得最多的是机械百分表,它通过精密的齿条齿轮传动,将位移转化成指针的偏转,表盘最小刻度为0.01mm,加上估读,可读到0.001mm,这种百分表目前在机械加工行业仍广泛使用。 物理实验中常用光杠杆法测微小位移,它通过光学系统将微小位移量放大再加以观测。

大学物理实验-金属线膨胀系数的测量

(1314实验室) 金属线膨胀系数的测量 绝大多数物质都具有“热胀冷缩”的特性,这是由于物体内部分子热运动加剧或减弱造成的。这个性质在工程结构的设计中,在机械和仪器的制造中,在材料的加工(如焊接)中,都应考虑到。否则,将影响结构的稳定性和仪表的精度。考虑失当,甚至会造成工程的损毁,仪表的失灵,以及加工焊接中的缺陷和失败等等。 一.实验目的 学习测量金属线膨胀系数的一种方法。 二.实验仪器 金属线膨胀系数测量实验装置、FT-RZT-I 数字智能化热学综合实验平台、 游标卡尺、千分表、待测金属杆 金属线膨胀系数测量的实验装置如图1所示 内有加热引线和温度传感器引线 图1 FT-RZT-I 数字智能化热学综合实验平台面板如图2所示 图2 三.实验原理 材料的线膨胀是材料受热膨胀时,在一维方向的伸长。线胀系数是选用材料的一项重要指标。特别是研制新材料,少不了要对材料线胀系数做测定。 固体受热后其长度的增加称为线膨胀。经验表明,在一定的温度范围内,原长为L的物体,受热后其伸长量?L与其温度的增加量?T近似成正比,与原长L亦成正比,即

?L = T L ?α (1) 式中的比例系数α称为固体的线膨胀系数(简称线胀系数)。大量实验表明,不同材料的线胀系数不同,塑料的线胀系数最大,金属次之,殷钢、熔凝石英的线胀系数很小。殷钢和石英的这一特性在精密测量仪器中有较多的应用。 几种材料的线胀系数 实验还发现,同一材料在不同温度区域,其线胀系数不一定相同。某些合金,在金相组织发生变化的温度附近,同时会出现线胀量的突变。因此测定线胀系数也是了解材料特性的一种手段。但是,在温度变化不大的范围内,线胀系数仍可认为是一常量。 为测量线胀系数,我们将材料做成条状或杆状。由(1)式可知,测量出1T 时杆长L (一般,杆在1T 时的长度L 可以近似等于杆在常温时的长度)、受热后温度达2T 时的伸长量?L 和受热前后的温度1T 及2T ,则该材料在(1T ,2T )温区的线胀系数为: α = ) (12T T L L -? (2) 其物理意义是固体材料在(1T ,2T )温区内,温度每升高一度时材料的相对伸长量,其单位为1)(-?C 。 测线胀系数的主要问题是如何测伸长量?L 。而?L 是很微小的,如当L ≈250mm,温度变化12T T -≈100℃,金属的a 数量级为10 5 -1)(-?C 时,可估算出?L ≈0.25mm 。对于这么微小的伸长量,用普通量具 如钢尺或游标卡尺是测不准的。可采用千分表(分度值为0.001mm )、读数显微镜、光杠杆放大法、光学干涉法。本实验中采用千分表测微小的线胀量。 千分表是一种通过齿轮的多极增速作用,把一微小的位移,转换为读数圆盘上指针的读数变化的微小长度测量工具,它的传动原理如图3所示,结构如图4所示, 千分表在使用前,都需要进行调零,调零方法是:在测头无伸缩时,松开“调零固定旋钮”,旋转表壳,使主表盘的零刻度对准主指针,然后固定“调零固定旋钮”。调零好后,毫米指针与主指针都应该对准相应的0刻度。 千分表的读数方法:本实验中使用的千分表,其测量范围是0-1mm 。当测杆伸缩0.1mm 时,主指针转动一周,且毫米指针转动一小格,而表盘被分成了100个小格,所以主指针可以精确到0.1mm 的1/100,即0.001mm ,可以估读到0.0001mm 。即: 千分表读数=毫米表盘读数+ ?1000 1 主表盘读数 (单位:mm ) (毫米表盘读数不需要估读,主表盘读数需要估读) 例如:图5中千分表读数为:0.2+?1000 1 59.8=0.2598 mm

固体热膨胀系数的测量实验报告

固体热膨胀系数的测量 班级: 姓名: 学号: 实验日期: 一、实验目的 测定金属棒的线胀系数,并学习一种测量微小长度的方法。 二、仪器及用具 热膨胀系数测定仪(尺读望远镜、米尺、固体线膨胀系数测定仪、铜棒、光杠杆、温度计等) 三、实验原理 1.材料的热膨胀系数 线膨胀是材料在受热膨胀时,在一维方向上的伸长。在一定的温度范围内,固体受热后,其长度都会增加,设物体原长为L ,由初温t1加热至末温t2,物体伸长了 △L,则有 ()12t t L L -=?α (1) (2) 此式表明,物体受热后其伸长量与温度的增加量成正比,和原长也成正比。比例系数称为固体的线胀系数。一般情况下,固体的体胀系数为其线胀系数的3倍。 2.线胀系数的测量 在式(1)中△L 是个极小的量,这样微小的长度变化,普通米尺、游标卡尺的精度是不够的,可采用千分尺、读数显微镜、光杠杆放大法、光学干涉法等。考虑到测量方便和测量精度,我们采用光杠杆法测量。光杠杆系统是由平面镜及底座,望远镜和米尺组成的。光杠杆放大原理如下图所示: ()12t t L L -?= α

当金属杆伸长△L 时,从望远镜中叉丝所对标尺刻度前后为b1、b2,这时有: 带入(2)式得固体线膨胀系数为: 四、实验步骤及操作 1.单击登陆进入实验大厅 2.选择热力学试验单击 3.双击固体热膨胀系数的测量进入实验界面 4.在实验界面单击右键选择“开始实验” 5.调节平面镜至竖直状态 6.进行望远镜调节,调节方位、聚焦、目镜是的标尺刻线清晰,调节中丝读数为0.0mm,并打开望远镜视野 7.单击铜棒测量长度,单击温度计显示铜棒温度,打开电源加热,记录每升高10度时标尺读数直至温度升高到90度止 l L D b b ?=-212()D l b b L 212-= ?()()k DL l t t DL b b l 221212=--= α

选做-干涉法测量金属的线膨胀系数讲解

干涉法测量金属的线膨胀系数 固体的线膨胀是指固体受热时在某一方向上的伸长。这种特性是工程结构设计、机械和仪表制造、材料加工中要考虑的重要 因素。在相同条件下,不同材料的固体线膨胀的程度不同。各种材料膨胀特性用线膨胀系数(简称线胀系数)来描述。线胀系数是选用材料的一项重要指标,实际中经常要对材料线胀系数做测定。对于金属材料,温度变化引起长度的微小变化比较微小,一般采用光杠杆、光的衍射法等进行精确测量。本实验中利用干涉法测量金属棒的热膨胀系数。 一、实验目的 1.观察物体线膨胀现象,学会测量金属的线胀系数. 2.掌握应用迈氏干涉仪测量物体长度微小变化的方法. 二、实验仪器 SGR —1型热膨胀实验装置、游标卡尺、铜棒、铝棒. 三、工作原理 在不太大的温度变化范围内,原长为l 0的物体,受热后其伸长量l ?与其原长l 0、温度的增加量t ?近似成正比,即 0l l t α?=??? (1) 式中的比例系数α 即称为线胀系数,它表示当温度升高1℃时固体的相对伸长量。由上式可得 l l t α?=?? (2) 不同材料的线胀系数不同,塑料的线胀系数最大,金属次之,石英玻璃线胀系数很小。线胀系数是选用材料的一项重要指标。附表中列出几种物质的线胀系数值,对应有一个温度范围。

表1 几种材料的线胀系数 实验指出,同一材料在不同的温度区段,其线胀系数是不同的,但在温度变化不大的范围内,线膨胀系数近似是一个常量。线膨胀系数的测定是人们了解材料特性的一种重要手段。在本实验中我们用SGR-1型热膨胀实验装置测量金属棒在20℃~50℃范围内的线膨胀系数,其工作原理是基于光干涉法来进行微小长度量的测量,其光路图见图1所示。从He-Ne 激光器出射的激光束经过分束器(半反镜)后分成两束,分别由两个反射镜:定镜和动镜反射回来,由于分束器的作用两束反射光在观察屏上会相遇并形成明暗相间的同心环状干涉条纹。 长度为l 0的待测固体试件被电热炉加热,当温度从t 0上升至t 时,试件因受热膨胀,从l 0伸长到l ,同时推动迈克耳孙干涉仪的动镜,使干涉条纹发生N 个环的变化,则 l - l 0 = Δl = N 2 λ (3)

热膨胀系数测定实验报告doc

热膨胀系数测定实验报告 篇一:固体热膨胀系数的测量实验报告 固体热膨胀系数的测量 班级:姓名:学号:实验日期: 一、实验目的 测定金属棒的线胀系数,并学习一种测量微小长度的方法。 二、仪器及用具 热膨胀系数测定仪(尺读望远镜、米尺、固体线膨胀系数测定仪、铜棒、光杠杆、温度计等) 三、实验原理 1.材料的热膨胀系数 线膨胀是材料在受热膨胀时,在一维方向上的伸长。在一定的温度范围内,固体受热后,其长度都会增加,设物体原长为L,由初温t1加热至末温t2,物体伸长了△L,则有 ?L?L??L?t2?t1?(1) Lt 2 ?t 1 (2) ?? 此式表明,物体受热后其伸长量与温度的增加量成正比,和原长也成正比。比例系数称为固体的线胀系数。一般情况下,固体的体胀系数为其线胀系数的3倍。 2.线胀系数的测量

在式(1)中△L是个极小的量,这样微小的长度变化,普通米尺、游标卡尺的精度是不够的,可采用千分尺、读数显微镜、光杠杆放大法、光学干涉法等。考虑到测量方便和测量精度,我们采用光杠杆法测量。光杠杆系统是由平面镜及底座,望远镜和米尺组成的。光杠杆放大原理如下图所示:当金属杆伸长△L时,从望远镜中叉丝所对标尺刻度前后为b1、b2,这时有: 带入(2)式得固体线膨胀系数为: b2?b1?L ?2Dl ?L? ?b2?b1?l 2D ?? l?b2?b1?l ?k 2DLt2?t12DL 四、实验步骤及操作 1.单击登陆进入实验大厅 2.选择热力学试验单击 3.双击固体热膨胀系数的测量进入实验界面 4.在实验界面单击右键选择“开始实验” 5.调节平面镜至竖直状态

6.进行望远镜调节,调节方位、聚焦、目镜是的标尺刻线清晰,调节中丝读数为0.0mm,并打开望远镜视野 7.单击铜棒测量长度,单击温度计显示铜棒温度,打开电源加热,记录每升高10度时标尺读数直至温度升高到90度止 8.单击卷尺,分别测量l、D, 9.以t为横轴,b为纵轴作b-t关系曲线,求直线斜率。 10.代入公式计算线膨胀系数值。 由图得k=0.3724 五、实验数据记录与处理 六、思考题 1.对于一种材料来说,线胀系数是否一定是一个常数?为什么? 答:不是。因为同一材料在不同的温度区域,其线性系数是不同的,有实验结果的事实可证明。 2.你还能想出一种测微小长度的方法,从而测出线胀系数吗? 答:目前想不到更好地方法。 3. 引起测量误差的主要因素是什么? 答:仪器的精准度,操作过程中的不可避免性的失误,温度变化的控制,铜棒受热不均匀等。

金属线膨胀系数测量实验

金属线膨胀系数测量实验 (FB712型金属线膨胀系数测定仪) 绝大多数物质都具有“热胀冷缩”的特性,这是由于物体内部分子热运动加剧或减弱造成的。这个性质在工程结构的设计中,在机械和仪器的制造中,在材料的加工(如焊接)中,都应考虑到。否则,将影响结构的稳定性和仪表的精度。考虑失当,甚至会造成工程的损毁,仪器的失灵,以及加工焊接中的缺陷和失败等等。 【实验目的】 1.学习并掌握测量金属线膨胀系数的一种方法。 2.学会用千分表测量长度的微小增量。 【实验仪器】 FB712型金属线膨胀系数测量仪实验装置如图1、图2所示: 【实验原理】 材料的线膨胀是材料受热膨胀时,在一维方向的伸长。线胀系数是选用材料的一项重要指标。特别是研制新材料,少不了要对材料线胀系数做测定。 固体受热后其长度的增加称为线膨胀。经验表明,在一定的温度范围内,原长为L的 ?与其温度的增加量t?近似成正比,与原长L亦成正比,即: 物体,受热后其伸长量L

t L L ???α=? (1) 式中的比例系数α称为固体的线膨胀系数(简称线胀系数)。大量实验表明,不同材料的线胀系数不同,塑料的线胀系数最大,金属次之,殷钢、熔融石英的线胀系数很小。殷钢和石英的这一特性在精密测量仪器中有较多的应用。 几种材料的线胀系数 织发生变化的温度附近,同时会出现线胀量的突变。另外还发现线膨胀系数与材料纯度有关,某些材料掺杂后,线膨胀系数变化很大。因此测定线胀系数也是了解材料特性的一种手段。但是,在温度变化不大的范围内,线胀系数仍可认为是一常量。 为测量线胀系数,我们将材料做成条状或杆状。由(1)式可知,测量出时杆长L 、受热后温度从1t 升高到2t 时的伸长量L ?和受热前后的温度升高量t ?(12t t t -=?),则该材料在)t , t (21温度区域的线胀系数为: () t L L ???=α (2) 其物理意义是固体材料在()21t , t 温度区域内,温度每升高一度时材料的相对伸长量,其单位为()1 C -?。 测量线胀系数的主要问题是如何测伸长量L ?。我们先粗估算一下L ?的大小,若 mm 250L =,温度变化C 100t t 12?≈-,金属的α数量级为()15C 10--??,估算 mm 25.0t L L ≈???α=?。对于这么微小的伸长量,用普通量具如钢尺或游标卡尺是测不准的。可采用千分表(分度值为mm 001.0)、读数显微镜、光杠杆放大法、光学干涉法等方法。本实验就用千分表分度值为mm 001.0千分表测微小的线胀量。 【实验内容和步骤】 1.把样品空心铜棒、铝棒安装在测试架上。在室温下用米尺重复测量金属杆的原有长度3~2次,记录到表1中,求出L 原有长度的平均值。 2.参照图1安装好实验装置,连接好加热皮管,打开电源开关,以便从仪器面板水位显示器上观察水位情况。水箱容积大约为ml 750。 3.加水步骤:先打开机箱顶部的加水口和后面的溢水管口塑料盖,用漏斗从加水口往系统内加水,管路中的气体将从溢水管口跑出,直到系统的水位计仅有上方一个红灯亮,其余都转变为绿灯时,可以先关闭溢水管口塑料盖。接着可以按下强制冷却按钮,让循环水泵试运行,

金属线膨胀系数的测量

金属线膨胀系数的测量 轻院实验 绝大多数物质都具有“热胀冷缩”的特性,这是由于物体内部分子热运动加剧或减弱造成的。这个性质在工程结构的设计中,在机械和仪器的制造中,在材料的加工(如焊接)中,都应考虑到。否则,将影响结构的稳定性和仪表的精度。考虑失当,甚至会造成工程的损毁,仪器的失灵,以及加工焊接中的缺陷和失败等等。 【实验目的】 1、学习测量金属线膨胀系数的一种方法。 2、学会使用千分表。 【实验仪器】 FB712型金属线膨胀系数测量仪实验装置如图1、图2所示: 【实验原理】 材料的线膨胀是材料受热膨胀时,在一维方向的伸长。线胀系数是选用材料的一项重要指标。特别是研制新材料,少不了要对材料线胀系数做测定。 固体受热后其长度的增加称为线膨胀。经验表明,在一定的温度范围内,原长为L的 ?与其温度的增加量t?近似成正比,与原长L亦成正比,即: 物体,受热后其伸长量L ?α(1) ? = t L L?? 式中的比例系数α称为固体的线膨胀系数(简称线胀系数)。大量实验表明,不同材料的线胀系数不同,塑料的线胀系数最大,金属次之,殷钢、熔融石英的线胀系数很小。殷钢和石英的这一特性在精密测量仪器中有较多的应用。 实验还发现,同一材料在不同温度区域,其线胀系数不一定相同。某些合金,在金相组织发生变化的温度附近,同时会出现线胀量的突变。另外还发现线膨胀系数与材料纯度有关,

某些材料掺杂后,线膨胀系数变化很大。因此测定线胀系数也是了解材料特性的一种手段。但是,在温度变化不大的范围内,线胀系数仍可认为是一常量。 为测量线胀系数,我们将材料做成条状或杆状。由(1)式可知,测量出时杆长L 、受热后温度从1t 升高到2t 时的伸长量L ?和受热前后的温度升高量t ?(12t t t -=?),则该材料在) , (21t t 温度区域的线胀系数为: ) (t L L ???=α (2) 其物理意义是固体材料在)t , t (21温度区域内,温度每升高一度时材料的相对伸长量,其单位为10)C (-。 测量线胀系数的主要问题是如何测伸长量L ?。我们先粗估算一下L ?的大小,若mm 250L =,温度变化C 100t t 012≈-,金属的α数量级为105)C (10--?,则估算出mm t L L 25.0≈???=?α。对于这么微小的伸长量,用普通量具如钢尺或游标卡尺是测不准的。可采用千分表(分度值为mm 001.0)、读数显微镜、光杠杆放大法、光学干涉法等方法。本实验用千分表(分度值为mm 001.0)测微小的线胀量。 【实验内容】 1.把样品空心铜棒、铝棒安装在测试架上。在室温下用米尺重复测量金属杆的原有长度3~2次,记录到表1中,求出L 原有长度的平均值。 2.如图1、图2所示,安装好实验装置,连接好加热皮管,打开电源开关,以便从仪器面板水位显示器上观察水位情况。水箱容积大约为ml 750。 3. 加水步骤:先打开机箱顶部的加水口和后面的溢水管口塑料盖,用漏斗从加水口往统内加水,管路中的气体将从溢水管口跑出,直到系统的水位计仅有上方一个红灯亮,其余都转变为绿灯时,可以先关闭溢水管口塑料盖。接着可以按下强制冷却按钮,让循环水泵试运行,由于系统内可能存在大量气泡,造成水位计显示虚假水位,只有利用循环水泵试运行过程,把系统内气体排出,这时候水位下降,仪器自动保护停机。(说明:为了保护加热器不损坏,仪器设有自动保护装置,只有水位正常状态才能启动加热或强制冷却,系统水位过低、缺水将自动停机。)因此,在虚假水位显示已满的情况下,采用反复启动强制冷却按钮,利用循环水泵的间断工作把管路中的空气排除,即启动强制冷却按钮→自动停机→再加水的反复过程,直到最终系统的水位计稳定显示,水位计只剩上方一个红灯未转变为绿灯,此时必须停止加水,以防水从系统溢出,流淌到实验桌上。接下来即可进行正常实验,实验过程中发现水位下降,应该适时补充。 4.设置好温度控制器加热温度,一般加热温度(水温)设定值应该比金属管所需要的实验温度值高C 5~10,具体可根据温度的高低,决定温度提高量。 5.将铜管(或铝管)对应的测温传感器信号输出插座与测试仪的介质温度传感器插座相连接。将千分尺装在被测介质铜管(或铝管)的自由伸缩端固定位置上,使千分表测试端与被测介质接触,为了保证接触良好,一般可使千分表初读数为mm 2.0左右,只要把该数值作为初读数对待,不必调零。(如认为有必要,可以通过转动表面,把千分尺主指针读数基本调零,而副指针不能调零。) 6.正常测量时,可以把不测量的测件的水龙头关闭,可节约能源,缩短加热时间。实验时,按下加热按钮(高速或低速均可,但低速档由于功率小,一般最多只能加热到C 500左右),观察水温和被测金属管温度的变化,直至金属管温度等于所需温度值(C 350 )。 7.测量并记录数据: 当被测介质温度为C 035时,读出千分表数值35L ,记入表2中。接着在温度为C 70 ,C 65 ,C 60 ,C 55 ,C 50 ,C 45 ,C 400000000时,记录对应的千分表读数70656055504540L ,L ,L ,L ,L ,L ,L

选做-干涉法测量金属的线膨胀系数教材

干涉法测量金属的线膨胀系数 固体的线膨胀是指固体受热时在某一方向上的伸长。这种特性是工程结构设计、机械和仪表制造、材料加工中要考虑的重要 因素。在相同条件下,不同材料的固体线膨胀的程度不同。各种材料膨胀特性用线膨胀系数(简称线胀系数)来描述。线胀系数是选用材料的一项重要指标,实际中经常要对材料线胀系数做测定。对于金属材料,温度变化引起长度的微小变化比较微小,一般采用光杠杆、光的衍射法等进行精确测量。本实验中利用干涉法测量金属棒的热膨胀系数。 一、实验目的 1.观察物体线膨胀现象,学会测量金属的线胀系数. 2.掌握应用迈氏干涉仪测量物体长度微小变化的方法. 二、实验仪器 SGR —1型热膨胀实验装置、游标卡尺、铜棒、铝棒. 三、工作原理 在不太大的温度变化范围内,原长为l 0的物体,受热后其伸长量l ?与其原长l 0、温度的增加量t ?近似成正比,即 0l l t α?=??? (1) 式中的比例系数α 即称为线胀系数,它表示当温度升高1℃时固体的相对伸长量。由上式可得 l l t α?= ?? (2) 不同材料的线胀系数不同,塑料的线胀系数最大,金属次之,石英玻璃线胀系数很小。线胀系数是选用材料的一项重要指标。附表中列出几种物质的线胀系数值,对应有一个温度范围。

表1 几种材料的线胀系数 实验指出,同一材料在不同的温度区段,其线胀系数是不同的,但在温度变化不大的范围内,线膨胀系数近似是一个常量。线膨胀系数的测定是人们了解材料特性的一种重要手段。在本实验中我们用SGR-1型热膨胀实验装置测量金属棒在20℃~50℃范围内的线膨胀系数,其工作原理是基于光干涉法来进行微小长度量的测量,其光路图见图1所示。从He-Ne 激光器出射的激光束经过分束器(半反镜)后分成两束,分别由两个反射镜:定镜和动镜反射回来,由于分束器的作用两束反射光在观察屏上会相遇并形成明暗相间的同心环状干涉条纹。 长度为l 0的待测固体试件被电热炉加热,当温度从t 0上升至t 时,试件因受热膨胀,从l 0伸长到l ,同时推动迈克耳孙干涉仪的动镜,使干涉条纹发生N 个环的变化,则 l - l 0 = Δl = N 2 λ (3)

固体线膨胀系数的测定-大学物理实验-海南大学

固体线膨胀系数的测定 [实验目的] 1、测量两种金属杆的线膨胀系数。 2、进一步使用光杠杆测定固体长度的微小变化。 3、初步掌握温度测量的要领。 [实验原理] 实验表明,原长度为L的固体受热后,在一定的温度范围内,其相对伸长量正比于温度的变化,即 ΔL/L=αΔT (7-1) 式中比例系数α称为固体的线膨胀系数。对于一种确定的固体材料,在一定温度范围内,它是常数,材料不同,α的值也不同。设在温度T1时,固体的长度为L1,温度升高到T2时,其长度为L2,则有: (L2-L1)/L1=α(T2-T1) 或 α=(L2-L1)/L1(T2-T1) (7-2) 其中ΔL= L2-L1是微小的长度变化,可用光杠杆法进行测量。利用类似于杨氏模量测仪的装置(见图7-1),可得长度伸长量: ΔL= L2-L1=x/2D(n2-n1) (7-3) 式中x为光杠杆前后脚的垂直距离,D为光杠杆镜面到望远镜,标尺间的距离,n1及n2为温度T1及T2时望远镜中标尺的读数。代入式(7-2)得 α= x(n2-n1)/2D L1(T2-T1)(7-4) 如果测得L1、T2、T1、n1、n2、x及D,便可从式(7-4)求出α值。 [实验仪器] 线膨胀系数测定仪(包括待测铜棒、铁棒,0-100℃温度计,光杠杆,尺读望远镜,标尺),钢卷尺,游标卡尺。 [实验内容] 测定铜棒和铁棒的线膨胀系数(两者实验步骤相同) (1)测量金属杆的长度L1并把它装入加热管道内。 (2)小心地把温度计插入加热管的被测棒孔内,记下加热前的温度T1。

(3)将光杠杆三个构成等腰三角形的尖脚放在白纸上轻轻地按一下,得到三个支点的位置。通过作图量出等腰三角形的高X,然后将光杠杆放在平台上,使它的顶点脚放在金属杆的上端。 (4)调整光杠杆的位置,以及望远镜的位置和焦距,使得在望远镜中能清楚地看到标尺的刻度(调整方法同实验五),记下加热前标尺的读数n1。 (5)接通加热开关,要求测一组n-T值,作出n-T曲线,由曲线求α,并和附录附表8所载的标准值比较之。 (6)估计α的测量误差。 注意: (1)该实验在测量读数时是在温度连续变化时进行,因此读数时要快而准。 (2)在测量过程中不能碰动线膨胀系数测定仪、光杠杆及望远镜的整个系统(打开加热开关时一定要轻),稍有碰动,实验得从头做起。 [思考题] (1)试比较式(7-7)中各个测量量对测量结果误差的影响,说明为什么对(n2-n1)的测量要精确。 (2)如何保证金属管内各点温度均匀而且稳定? (3)若实验中加热时间过长,使仪器支架受热膨胀,对实验结果产生怎样影响? (4)如采用逐差法处理数据,测量时就做到什么?

相关文档
最新文档