2015年全国大学生数学建模比赛A题一等奖论文

2015年全国大学生数学建模比赛A题一等奖论文
2015年全国大学生数学建模比赛A题一等奖论文

太阳影子定位问题

摘要

目前,如何确定视频的拍摄地点和拍摄日期是计算机视觉的热点研究问题,是视频数据分析的重要方面,有重要的研究意义。本文通过建立数学模型,给出了通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的方法。

对于问题一,建立空间三维直角坐标系和球面坐标系对直杆投影和地球进行数学抽象,引入地方时、北京时间、太阳赤纬、杆长、太阳高度角等五个参数,建立了太阳光下物体影子的长度变化综合模型。求解过程中,利用问题所给的数据,得到太阳赤纬等变量,将太阳赤纬等参量代入模型,求得了北京地区的9:00至15:00的影子长度变化曲线,当12:09时,影子长度最短;并分析出影长随这些参数的变化规律,利用控制变量法思想,总结了五个参数与影子长度的关系。最后进行模型检验,将该模型运用于东京、西藏两地,得到了这两座城市的影长变化规律曲线,发现变化规律符合实际两地实际情况。

对于问题二,为了消除不同直角坐标系带来的影响,将实际坐标转换为二次曲线的极坐标,建立了极坐标下基于多层优化搜索算法的空间匹配优化模型。求解时,先将未知点的直角坐标系的点转换为极坐标,然后设计了多层优化搜索算法,通过多次不同精度的搜索,最后得出实际观测点的经纬度为东经E115?北纬N25?。同时对模型进行验证,实地测量了现居住地的某个时间段的值,通过模型二来求解出现居住地的经纬度,分析了误差产生的原因:大气层的折射和拟合误差。

对于问题三,将极坐标转换后的基本模型转换为优化模型,建立了基于遗传算法的时空匹配优化模型。将目标函数作为个体的适应度函数,将经度纬度及日期作为待求解变量,用遗传算法进行求解,得到可能的经度纬度及其日期:北纬20度,东经114度,5月21日;北纬20度,东经114度,7月24日;东经94.5度,北纬33.8度,6月19日。最后,将遗传算法与多层优化搜索算法进行对比分析,得出遗传算法的求解效率和求解精度均优于多层次搜索算法。

对于问题四,首先将视频材料以1min为间隔进行采样得到41帧(静态图片),将这些静止图片先利用matlab进行处理,后进行阀值归一化处理,得到这些帧的灰度值矩阵。在图片上建立参考模型,获得影子端点的参考位置。利用投影系统和模型二,建立了基于图形处理的视频拍摄地点搜索模型。利用模型二中多层搜索算法,求得满足精度的最优地点。最优的地点是:东经119,北纬48.7,在内蒙古的呼伦贝尔市。同时假设日期是未知量,将模型四与模型三相结合,得到了可能的地点和时间,并分析了可能出现误差的原因,最后回答了当视频日期未知,也可以确定其位置和日期。

最后,给出了模型的优缺点和改进方案。

关键词:极坐标化,多层优化搜索算法,遗传算法,图像处理,MATLAB

1.问题重述

1.1问题背景

随着现代科技的发展,日常生活中摄像机的应用越来越普遍。无论是个人家庭还是组织单位,都通过摄像机来录制各种视频以分享信息,例如实时视频监控、记录自然景观、观测气象信息等。而通过视频来确定拍摄地点的地理位置信息是目前计算机视觉领域的热点研究问题之一。一个视频的地理位置能够提供当地气候、平均温度、平均降雨量、植物索引、地表概况、海拔高度和人口密度等大量背景信息[1]。因此从视频中确定地理位置是一项有很大潜力应用空间的技术。

1.2问题描述

视频数据分析是视频处理过程中的重要环节,而如何确定视频的拍摄地点和拍摄日期是视频数据分析的重要方面。太阳影子定位技术就是通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的一种方法。

试建立数学模型讨论下列问题:

1.建立影子长度变化的数学模型,分析影子长度关于各个参数的变化规律,并应用所建立的模型画出2015年10月22日北京时间9:00-15:00之间天安门广场3米高的直杆的太阳影子长度的变化曲线。

2.根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点。将模型应用于附件1的影子顶点坐标数据,给出若干个可能的地点。

3. 根据某固定直杆在水平地面上的太阳影子顶点坐标数据,建立数学模型确定直杆所处的地点和日期。将模型分别应用于附件2和附件3的影子顶点坐标数据,给出若干个可能的地点与日期。

4.附件4为一根直杆在太阳下的影子变化的视频,并且已通过某种方式估计出直杆的高度为2米。请建立确定视频拍摄地点的数学模型,并应用此模型给出若干个可能的拍摄地点。如果拍摄日期未知,能否根据视频确定出拍摄地点与日期?

2.问题分析

2.1问题一分析

问题一要求分析投影长度随各参数的变化规律,建立影子长度变化的数学模型。首先对直杆建立空间三维坐标系,将地球简化成规则球体建立球面坐标系。在这两个坐标系中,通过几何证明,运用向量知识可分析出影响影子长度的各种参数,得出地球上某日白天某时刻影子顶端在地平面上的具体位置,由此可以给出影子长度的变化规律。

2.2问题二分析

问题二要求根据某固定直杆在水平地面上的太阳影子顶点坐标数据及日期数据,建立数学模型确定直杆所处的地点。与第一问有相似之处,但分析附件所给数据,发现附

件中只给出x 、y 坐标值,而并没有给出xy 轴的准确方向,所以考虑将直角坐标转换成极坐标,来消除由于不同坐标系选取所造成的影响。 2.3问题三分析

问题三与问题二有相似处,区别是第三问附件没有提供日期,需要根据直杆影子端点坐标确定直杆所在地点的经纬度和日期。具体的日期可以由太阳直射点纬度来确定,而根据问题二中的模型,xy 坐标与太阳直射点纬度有关。如果继续用第二问的模型来求解,需要不断改变太阳直射点纬度来拟合极坐标方程,这样做算法复杂度会很大。所以考虑对问题二模型进行修改,不采用拟合,而直接建立与待求点经纬度以及日期有关的目标函数,通过约束经纬度范围来缩小待求点的可行域,从而简化算法复杂度。

2.4问题四分析

问题四中,直接以视频的方式给出了固定杆长的距离变化规律。将图片形式的影长变化规律以坐标的形式进行转换,转换为现实的坐标形式。这样就可以利用问题二的模型,整合现有的算法,求出拍摄地点。

3. 模型假设与符号系统

3.1模型的假设

(1)假设地球为一个规则的球体。

(2)由于日地距离远大于地球半径,所以假设太阳光线为平行光。 (3)假设地球上某地的水平地面是地球球面上过该地的切面。 (4)假设不考虑太阳光线穿过大气层时所发生的折射。 (5)假设一天中太阳直射点的纬度不变。

(6)假设不考虑太阳的视面角、高山阻挡、海拔高度等因素的影响。 (7)假设不考虑阴天没有阳光的情况。

3.2符号系统

问题一符号系统

符号 意义 单位

α

直杆所在地纬度值 度 β 太阳直射点的纬度 度

θ

A 、

B 两地经度差 度 ? 太阳光线与直杆的夹角 度

h

直杆长度 米 L

直杆影长 米 t 0t 地方时 北京时间 时 时

E直杆所在地的经度度

问题二、三符号系统

符号意义单位

α直杆所在地纬度值度

β太阳直射点的纬度度

y附件1中第一组坐标的y值米

1

ρ极径

h直杆长度米

θ极角度

问题四符号系统

符号意义单位

L固定杆长度米

k实际长度与灰度值坐标下的转换比例

P投影系统

4.问题一的建模与求解

4.1问题分析

在问题一中,为了描述直杆影子长度变化的动态过程,首先以直杆为z轴,建立空间三维坐标对直杆影子的变化进行数学抽象。再将地球作为规则球体建立球面坐标系,利用空间解析几何与平面解析几何的知识,对两个坐标系中的相关向量与角度进行分析,分析出影响影子长度的参数,得到影子端点在坐标系中的位置表达式。由此可以求出影子长度随各个参数的变化规律。

建模流程图如下所示:

图4.1问题一建模流程图

4.2模型准备

为了建模的方便,先给出一些地理名词的解释和一些数据的预处理方法。

4.2.1名词解释[6]

地方时:以一个地方太阳升到最高的地方时间为正午12时,将连续两个正午12时之间等分为24个小时,所成的时间系统。它是观测者所在的子午线的时间。

北京时间:是中国采用北京时区的区时作为标所在的东八准时间。北京时间并不是

北京(东经116.4°)地方的时间,而是东经HF

120°地方的地方时间。

太阳赤纬:是地球赤道平面与太阳和地球中心的连线之间的夹角。

太阳直射点:地球表面太阳光射入角度(即太阳高度角 )为90度的地点,它是地心与日心连线和地球球面的交点。

太阳高度角:对于地球上的某个地点,太阳高度角是指太阳光的入射方向和地平面之间的夹角;专业上讲是指某地太阳光线与通过该地与地心相连的地表切线的夹角。

4.2.2数据预处理

(1)经纬度转换

在问题一中,天安门广场的坐标是用经纬度(度分秒)的形式给出的。为了下面建模求解的方便,将其统一转换成以“度”为单位。

换算方法为:分位数除以60,秒位数除以3600。 所以,天安门广场的纬度可以转换为:

395426=39+5460+263600=39.907'''?÷÷? 经度可以转换为:

1162329=116+2360+293600=116.391'''?÷÷?

(2)北京时间与地方时的转换[9]

问题中所给出的时刻为北京时间,而北京时间指的是东经120°地方的地方时,并不是问题中地点的地方时。所以先要将所给的北京时间转换成相应的地方时。

转换规则为:东经度<120度地区,每减少1度,减4分钟; 东经度>120度地区,每增加1度,加4分钟。 所以有转化公式:

00

(E 120)*4,E 120=(120E)*4E 120t t t +->??--

其中,E 表示直杆所在地点的经度,0t 是北京时间,t 是直杆所在地方的地方时。

用此公式对问题一中的北京时间进行操作,得到直杆所在地的地方时,如下表所示:

要研究影子的变化,需要建立空间三维坐标对直杆影子的变化进行数学抽象。通过对直杆和地球分别建立了两个空间直角坐标系,用空间解析几何和向量知识,可以确定两个坐标系上各点之间的位置和角度关系。

4.3.1建立直杆处空间三维坐标系

根据假设,视太阳光线为平行光,以直杆所在地点的正东方向为x 轴,以正北方向为y 轴,以直杆直立即垂直于0x y 平面的方向为z 轴,建立空间直角坐标系,得到直杆在0x y 平面的投影与光线的位置关系,如下图所示:

图4.2直杆空间三维坐标系

其中,AE 是与过A 处的经线相切的方向向东的单位向量;AK

是A 处地平面内方向向北的单位向量。AH 是A 处垂直于xOy 平面的直杆,AF 是该直杆在xOy 平面内的投影,HF 是当天太阳光线的照射方向,照射方向与直杆所成角度FHA ?∠=。

4.3.2建立直杆在地球上的宏观空间球面坐标系

根据假设,可视地球为规则球体1O ,过直杆底端A 处的经线与赤道交于D 点,B

点为某日的太阳直射点,过B 点的经线与赤道交于C 点。

以O 为原点,以OD 所在直线为x 轴,以地轴ON 所在直线为z 轴建立空间直角坐标系O xyz -,如图4.3所示:

图4.3 直杆在地球上的空间三维坐标系

4.3.3确定各点之间的位置和角度关系

设地球半径为R ,1,,,AOD BOC DOC AOB αβθ?∠=∠=∠=∠=,则有:

(1)α为直杆所处位置的纬度数,并且9090α-≤≤ 。 若A 地在北半球,则0α>,若A 地在北半球,则0α<。

(2)β为太阳直射点B 地的纬度,

亦即上面提到的赤纬,并且2326'2326'β-≤≤ 。 (3)θ为A 地与B 地的经度差,t 是地方时。 对于某日A 地白昼t 时刻:(12)15(024)t t θ=-?≤≤ 。

(4)AOB AHF ∠=∠,证明过程如下:

由假设可知,太阳光线是一簇簇的平行线,所以//HF BO ,如图 4.4,圆O ’是过A,B 两地的大圆,于是AOB AHF ∠=∠,证毕。

由以上分析可得:

(0,1,0),(sin ,0,cos )(cos ,0,sin ),(cos cos ,cos sin ,sin )cos cos ,cos cos cos sin sin AE AK A R R B R R R OA OB ααααβθβθβ?αβθαβ

?==-?

??

=<>=+?

图4.4 过A 、B 两地,以地球中心为圆心的圆

4.3.4确定日影坐标及其长度

(1)确定影子端点的横坐标

如图4.4,在Rt AHF ?中,cos cos AH h

HF ??

==,其中h 为直杆长度。 设HF 与AE 所成角为δ,则cos cos ,cos ,cos sin HF AE BO AE δβθ=<>=<>=-

如图4.2,对HF 在AE 上的正投影AJ ,有cos cos cos AJ HF h δ

δ?

==

,即F 点在平面A xy -上投影端点的横坐标:

cos sin cos cos cos sin sin x h βθ

αβθαβ

-=+(4.1)

(2)确定影子端点的纵坐标 设HF 与AK 成角为γ,cos cos ,cos ,sin cos cos HF AK BO AK γαβθ=<>=<>=

cos sin αβ-,如图1,对HF 在AK 上的正投影AG ,有cos cos cos AG HF h γ

γ?

==

,即点F 在A xy -上投影端点的纵坐标:

sin cos cos cos sin cos cos cos sin sin y h αβθαβαβθαβ-=+(4.2)

(3)确定日影坐标的长度

已知直杆投影端点的横纵坐标,并且直杆底端即为坐标原点,所以可以得到直杆影长:

L = 4.3)

4.3.5影子长度变化的综合模型

根据上面的分析,太阳光下物体影子的长度变化综合模型为:

cos sin cos cos cos sin sin sin cos cos cos sin cos cos cos sin sin (12)15(024)

L x h y h t t βθαβθαβ

αβθαβαβθαβθ=-?=+-=+=-??

?

???

?????≤≤ (4.4)

4.4模型的求解

4.4.1赤纬角β求解

太阳赤纬角β在每一年的任何时刻的值都是可求的,其计算公式为[7]: 1111111

0.373223.2567sin 0.1149sin 20.1712sin 30.758cos 0.3656cos 20.0201cos 32365.220079.67640.2422*(1985)floor((year 1985)/4)

T

T N N N year βθθθθθθ

πθ=++-+++==-=+-???

?--??

??

? (4.5) 其中式中1θ为日角,即1=2/365.2422t θπ;N 为积日,即日期在年内的顺序号,如平年12月31日为365,闰年的12月31日是366。year 为计算时刻所在的年份,floor 为向下取整函数。

根据问题一中的2015年10月22日,可知积日N=295,year=2015,所以可以求出:

=215.0576T ,1 3.6996(θ=弧度)

根据上述所求结果,得到:

-10.8636β=(度)

4.4.2直杆所在地与太阳直射点之间的纬度差θ的求解

纬度差计算公式有:

(12)*15()t θ=-度

其中t 为直杆所在地的地方时。

将4.2.2中由北京时间转换出的地方时t 代入以上公式,可以得到不同时刻,直杆所在地点与太阳直射点的纬度差θ的变化值,如下所示:

4.4.3影长变化的求解结果

由于在很短时间内,影子不会出现大的变化,所以可以认为1分钟内,影子长度是近似不变的。将这段时间分为361个时间段,每一分钟是一个小时刻,将这个时刻的影长作为这一分钟内的影子长度。

将上面计算出来的β和θ代入影子端点的坐标和影子长度表达式,得到每一分钟,平面直角坐标系内影子端点的坐标变化值和影子长度变化值。由于数据较多,这里只给出每隔30分钟的数据样点,结果如下表所示:

由上表,可以作出天安门广场3米高的直杆在太阳下影子长度的变化曲线,如下所示:

图4.5直杆影子长度随时间的变化曲线

结论:

(1) 直杆的影长从9时开始,先减小,减小至北京时间12:09时,影长达到最

短,为3.673731米,之后开始增大。

(2) 10月22日北京正处于秋末,太阳直射点在赤道和南回归线之间,此时正

午时分直杆的影长比其本身更长。

(3) 北京时间12:00的影长为3.679733米,比12:09时稍长,这也进一步说

明北京时间并不是指示北京的地方时。

4.5分析影子长度和各参数之间的变化规律

问题中要求分析影子随各参数的变化情况,首先,根据4.3.5中的模型,可以看出影长L 和β、θ、α有关。而赤纬β是关于日期的函数,θ是关于地方时t 的函数,t 又是关于经度的函数。

所以综上可知,影响影子长度的参数有:直杆所在地的经纬度、地方时、当前的日期。

以影子长度与纬度的变化关系为例,研究直杆同一时刻同一经线上不同纬度地点的影长变化,将β,θ均视为定值,设:

1cos sin k βθ=,2cos cos k βθ=,3sin k β=

则影子端点的坐标为:

1232323cos sin sin cos cos sin k x h k k k k y h k k αααααα-?

=?+?

?

-?=?+?

(4.6) 为了简明地表达二者之间的关系,取时刻为当地时间12点,即0θ=,取日期为问题所给10月22日时的太阳直射点赤纬,即10.86β=- ,则:

10k =,20.982k =,30.188k =-

所以影子端点的坐标为:

015.950.9820.188tan x y α=??

?

=?-?

此时影子的长度为:

15.95

0.9820.188tan L α=

-

由此可以作出影子长度随纬度变化的变化趋势,如下所示:

图4.6东经120度上影子随纬度的变化规律图

结论:

(1) 在东经120度上,直杆影子长度随着纬度的增加而逐渐增加,在纬度近似

为N 76?时,影长开始陡增,在北纬79?达到一个远大于正常情况的极大值,越过此极大值之后,影长又开始陡减,在纬度近似为N 82?时减少速率逐渐平缓。

(2) 如下图所示:当太阳直射点纬度不是0度时即不直射赤道时,影子最长点

会出现在小于北纬90?的某个纬度处,并且此时的影长接近无穷长,这就是图中在北纬79?出现一个极高峰值的原因。

图4.7日照光线示意图

其他因素以此为例,进行同样的分析,就可得到各因素与影长的变化关系,正午影长随日期的变化如下图所示:

图4.8 天安门广场午时影长随日期变化规律图

结论:

(1)午时天安门广场的影长随日期的变化规律为:一年中从第一天开始随着日期的变化,影子长度先减小,达到一个最小值,再增大。

(2) 2015年天安门广场午时影长最短的一天是一年中的第173天。

4.5模型检验

将问题一模型运用到2015年的10月22日的其他城市。在这里,取西藏(东经91.11,北纬29.97)和东京(东经138.6,北纬35.5)为检验的对象。

由上面的模型,计算出在西藏和东京,一根3m长的直杆在太阳下得到的影子长度随北京时间的变化曲线分别是:

图4.9 西藏在北京时间9:00至15:00的影子长度变化曲线

图4.10 东京在北京时间9:00至15:00的影子长度变化曲线

结论:

(1)西藏的地方时比东八区(东经120度)区时晚2小时左右,所以西藏的正午时间为北京时间14:00左右,模型规律与实际的影长曲线规律是相符的。

(2)东京的地方时比东八区(东经120度)时间早1小时左右,所以东京的正午时间为北京时间11:00左右,模型规律与实际的影长曲线规律是相符的。

5.问题二的建模与求解

5.1问题分析

问题二中,附件给出的仅仅是直杆所处地平面上未知x轴方向和y轴方向的坐标值。为了消除观测者在观测时任意选定坐标轴造成的影响,对题目所给的坐标数据进行平移

处理,再将直角坐标转换成极坐标,给出影子端点轨迹的极坐标方程。再根据附件中的数据,对含有参数的极坐标方程进行拟合,得出相关参数值。对于每一个确定经纬度和日期的观测点,代入极坐标方程可以得到相应函数值。以该函数值最接近0为目标,建立基于多层优化搜索算法的空间匹配优化模型。

建模流程图如下所示:

图5.1问题二建模流程图

5.2模型的准备

由于附件中并没有给出直杆的原长,所以需要先对直杆的长度进行估算,下面直杆长度的计算需要用到正午太阳高度角的概念。正午太阳高度角H 指的是一天中最大的太阳高度角。计算公式如下所示:

=90||H βα?--

其中,β为太阳直射点的纬度,α为直杆所在地的纬度。

5.3模型的建立

通过第一问求得的影子端点坐标,得到影子端点的直角坐标系下的轨迹方程,再建立极坐标系,将处理过后的xy 坐标转换成极坐标,给出极坐标下的轨迹方程。

5.3.1确定影子端点的轨迹方程

由模型一可知影子端点的横纵坐标表达式为:

cos sin cos cos cos sin sin sin cos cos cos sin cos cos cos sin sin x h y h βθαβθαβαβθαβαβθαβ-?

=?

+?

?

-?=?+?

移项代入化简得:

sin sin cos sin cos cos sin cos sin cos sin sin cos y h h y x h y αβαββθααββθαα+?

=?-?

?

?-=

?-?

(5.1)

两边平方消去θ,可以得日影端点F 在直杆底端所在平面A xy -上的轨迹方程为:

2222sin cos()cos()sin 2sin()sin()0x y hy h βαβαβααβαβ-+-+-+-=(5.2)

5.3.2将直角坐标转换为极坐标

为了消除不同地点观测者选取坐标轴方向的随机性对坐标产生的影响,将直角坐标转换成具有统一极点和极轴的极坐标系。

(1) 对原先直角坐标进行预处理

对于附件1中21组xy 坐标的数据,保持他们横坐标不变,纵坐标都减去附件1中第一组坐标的纵坐标值,即:

1''x x

y y y =??

=-?(5.3)

这样的处理相当于对投影端点轨迹曲线作了平移,将第一组数据平移到了x 轴上,

如下图所示:

图5.2对附件1中坐标进行预处理

(2)对影子端点建立极坐标系

以直杆所处位置底端为极点,以极点到第一组影子端点连线方向为极轴,建立极坐标系,如下图所示:

图5.3对影子端点建立的极坐标系

(3)将模型一中求得的轨迹方程转换成极坐标方程

应用上述规则,预处理之后的坐标为:1,x x y y y ''==-,其中,x y 代表原先的21组数据值。

为了将轨迹方程转换成极坐标方程,令sin ,y cos x ρθρθ''==,所以有:

1cos ,sin x y y ρθρθ==+,(5.4)

代入式(4.8),求得影子端点轨迹的极坐标方程(,)0f ρθ=:

222221cos sin sin cos()cos()sin (sin 22cos()cos())h y ρθβρθαβαβρθααβαβ-+-+?-+-+

2211sin 2sin()sin()cos()cos()0hy h y ααβαβαβαβ-+--+-=

为了便于观察,将极坐标中变量的系数用常数符号表示,得到了确定日期确定经纬度以及确定杆长的固定直杆的影子端点随时间变化轨迹的极坐标方程,如下:

22221234cos sin sin 0k k k k ρθρθρθ-++=(5.5)

其中:

2123

122411

sin cos()cos()

sin 22cos()cos()sin 2sin()sin()cos()cos()k k k h y k hy h y βαβαβααβαβααβαβαβαβ?=?

=+-??

=?-+-??=-+--+-?(5.6)

5.3.3对已给数据进行极坐标二次曲线拟合

由以上推导,待求位置固定直杆在所在地平面上的投影的极坐标方程形式已知。所以可以用极坐标系下的二次曲线模型对已知xy 坐标的21组数据进行拟合:

2222cos sin sin 0A B C D ρθρθρθε-+++=

其中,,,A B C D 为回归系数,ε为随机误差,服从均值为0的正态分布,,ρθ为21组平面直角坐标经过坐标转换之后得到的极坐标值,拟合精度为-710

拟合出的极坐标方程为:

22220000(,)cos sin sin 0W A B C D ρθρθρθρθ=-++=( 5.7)

5.3.4建立直杆地点的空间匹配优化模型

(1)确定目标函数:

1

(,)

min (1,2,...,)n

i

i

i i W F i n n

ρθ==

=∑ (5.8)

其中,i i ρθ为每一搜索点处的极坐标值。

(2)建立直杆地点的空间匹配优化模型:

122220000

1

(,)min (1,2,...,)

(,)cos sin sin 0

cos ,sin cos sin cos cos cos sin sin sin cos cos cos sin cos cos cos sin sin n

i i i i W F i n n W A B C D x y y x h

y h

ρθρθρθρθρθρθρθβθ

αβθαβαβθαβαβθαβ====-++===+-=?

?

??

???

????????+-=+∑ (5.9)

5.4模型的求解

为了求解上述模型,设计如下多层优化搜索算法: Step1,先对搜索点杆长的近似估计,得到合理的杆长;

Step2,再确定搜索点处影子端点极坐标,作为判断所搜点是否可行的依据; Step3,由陆地经纬度范围确定搜索点的论域;

Step4,以5度为步长进行顶层搜索,搜索出下层搜索的搜索点论域; Step5,以更小步长进行下层步长进行搜索,再次更新搜索点论域;

Step6,是否满足精度要求,不满足精度要求,再次进行step5,否则,当前值是最优值。

5.4.1搜索点杆长的近似估计

由于附件中没有给出具体杆长,所以在每一个搜索点,可以根据5.2中所提到的正午太阳高度角给出杆长的近似估计。

以东经90度北纬30的搜索点17,25P 为例,杆长计算步骤如下: (1)根据搜索点经度将所给数据北京时间信息转换成当地时间,014.7t =是附录所给北京时间,可以算出当地的地方时为:

0(120())/15=14.7-(120-90)/15=12.7k t t Lo i =--

(2)对所给横纵坐标()()(,)(1,2,...,21)k k x y k =用最小二乘法进行拟合,求得横纵坐标随时间推移的线性关系:

y ax b =+

拟合结果如下:

0.1470.3475y x =+

(3)确定当地时间为正午12点时的影子长度

可将影子横纵坐标均视为随着时间的推移线性变换,所以得到当地时间正午时刻影子端点的横纵坐标:

(1)(21)(1)(1)

00

0()(12)

k x x x x t y ax b ?=---??

=+?? (5.10) 其中(1)k

t

为附录数据的第一组的当地时间。

直杆正午时刻的影长l :

l =以17,25P 点为例,正午时刻的影长为:

00 1.0365(1.8277 1.0365)(12.712)0.48270.1470.48270.34750.4185x y =---=??

=?+=?

0.6389l =

(4)根据正午时刻太阳高度角近似估计杆长

,tan(90())i j h La j β=--

以17,25P 点为例,估算出的杆长为:

17,25tan(9010.368630) 1.1763

h =--=

5.4.2确定搜索点处影子端点极坐标

首先根据式[8]得到影子端点的横纵坐标值:

,,,,cos sin ()cos cos cos sin sin sin ()cos cos cos ()sin ()cos ()cos cos sin ()sin k i j

i j k

k i j

i j k x k h La j La j y k h La j La j βθαβθαββθββθβ-?

=?+??

-?=?+?

(5.11) 其中()La j 为搜索点纬度,β为该日赤纬角在本题中为定值,k θ为观测点与当地时刻k t 太阳直射点的经度差:(12)15(024;1,2,...,21)k k k t t k θ=-?≤≤=

再依据坐标转换规则得到影子端点的极坐标值:

,,,,,()()(1)

()arctan

(1)i j i j i j i j i j k y k y k x ρθ?=??

?-=???

(5.12) 以17,25P 点为例,第五组的极坐标值计算公式如下:

,,,,,(5) 1.173

(5)(1)(5)arctan 0.024(5)i j i j i j i j

i j y y x ρθ?==???-==???

以此类推得到了17,25P 点的21组极坐标值,如下表所示:

表5.1P点的21组不同时刻极坐标值

5.4.3搜索点论域的确定

求解以上模型的关键是搜索方法的简化,经过查找资料,得到了七大洲大致的陆地经纬度范围:

5.4.4求解结果

在每一大洲的经纬度范围内,取五度为一步长,确定了每一个大洲搜索点论域,进行初步搜索

初步计算结果如下所示:

经过顶层搜索,确定了待求位置的取值区间。将取值区间更细划分,取1度为步长,进行下层搜索来进一步细化搜索过程。

下层搜索计算结果:

北纬N25?,东经E115?(具体地点为江西赣州)

5.5模型验证

为了验证该模型的正确性,我们进行了实地测量。

取40厘米长的直杆,于14:30至15:30在现居住地(E113,N30)进行了影长的坐标采样,得到了相关的数据,数据见附录。

利用模型二对此实测数据进行求解,得出的结果为:E115,N25

模型验证的结论:

(1)和实际的地点存在出入,但是误差相对较小。

(2)误差来源:未考虑太阳折射的误差、拟合曲线的误差,实地测量的误差。

(3)改进算法可使误差减小。

数学建模国家一等奖优秀论文

2014高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写):B 我们的报名参赛队号为(8位数字组成的编号): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3.

指导教师或指导教师组负责人(打印并签名): ?(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。) 日期: 2014 年 9 月15日 赛区评阅编号(由赛区组委会评阅前进行编号):

2014高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):

数学建模论文省

2015年杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则。 我们完全明白,在竞赛开始后参赛队员不能以任式(包括、电子、网上咨询等)于对外的任人(包括指导教师)研究,讨论与参赛有关的问题。 我们知道,抄袭别人的成果是违反赛事的规定的,如果引用别人的成果或其他公开资料(包括网上查到的资料),必须按照有关规定的参考文献的表达式在正文引用处和参考文献中明确列出。 我们重承诺,格遵守竞赛规则,以保证竞赛的公开、公平性。如有违反竞赛规则的行为,我们将受到肃处理。 我们参赛选择的题号是(从A/B/C/D/E/F中选择一项填写): D 我们参赛的报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名):工业大学 参赛队员(打印并签名): 1. 杜东旭20131583 :机电工程学院 2. 红星20132768 :机电工程学院 3. 郝昆昆20132812 :机电工程学院

2015年“杯”数学建模夏令营 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 赛区评阅记录(可供赛区评阅时使用): 全国统一编号(由赛区组委会送交全国前编号):

全国评阅编号(由全国组委会评阅前进行编号):

基于延误率对航班延误问题进行分析 摘要 航班延误如今是国际各机场存在的普遍问题,一直困扰着航空承运和广大旅客。航班延误不仅给旅客的出行带来不便,也给航空公司带来经济损失。 目前国外对航班延误的分析较多,部分文献从定性角度和处理措施面进行了一定程度的研究【1-3】;部分文献从航班延误的波及关系出发,提出了航班延误链式反应波及的机场个数与飞机的初始延误时间【4-6】;也有文献提出针对延误成本分析模型【7-9】。本文主要是关于航班延误的统计分析、延误原因及合理性建议问题。 问题一的解决:通过EXCEL软件对国际上主要航空公司数据的统计、整理,分析各航空公司航班总数,延误航班数,建立模型比较延误率及延误班数,得出国际上航班延误最重的10个机场中中国所占个数。 问题二的解决:首先进行数据统计与整理,找到影响航班延误的主要因素,计算各因素影响航班延误的比例,做出比例分布直图,根据数据结合实际情况找出导致航班延误的主要因素为:航空公司的运行管理、流量控制、恶劣天气的影响、军事活动的影响与机场保障。 问题三的解决:影响航班延误的因素众多,我们就流量控制因素、乘客因素进行分析处理,研究控制地面总损失、航班延误与时间段,建立了地面等待问题、延误时间段的数学模型,通过数据调查、分析统计,提出对航班延误问题的合理化处理式。

全国大学生数学建模竞赛论文范例

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则、 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果就是违反竞赛规则的, 如果引用别人的成果或其她公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处与参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号就是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1、 2、 3、 指导教师或指导教师组负责人(打印并签名): 日期: 年月日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国评阅编号(由全国组委会评阅前进行编号):

眼科病床的合理安排 摘要 病床就是医院的重要卫生资源,其使用情况就是反映医院工作效率的重要指标,合理分配床位、提高病床使用率对于充分利用医疗资源、提高医院的两个效益有着十分重要的意义。 本题针对某医院眼科病床分配中存在的不合理现象,让我们建立一个合理的病床安排 模型,以解决病床的最优分配问题,从而提高对医院资源的有效利用。 针对问题一,本文制定的指标评价体系包括门诊相关指标集(病人平均等待时间、门诊等待平均队长、病人平均满意度)与病床相关指标集(出院者平均住院日数、病床平均工作日、病床平均周转率、实际病床利用率)。为了能够全面地评价出模型的优劣,本文采用目前普遍使用的密切值法、TOPSIS法与RSR法等综合评价方法,并对应建立了三个评价模型,以得出更为科学合理的结论。 针对问题二,本文建立了以病床需求数为状态转移变量、以各类病人的病床安排数为决策变量的动态规划模型。模型中,充分考虑了观测期内病人平均等待时间、病床平均周转率、病床利用率与潜在流失率等指标,且在制定寻优策略时,引入了病人满意度量化函数与优先 级函数,使得模型更加合理。通过Matlab对该模型求解,得出了次日病床安排方案(结果见表4)。 综合评价模型时,以该医院目前的病床安排方案与我国医院通用的病床安排方法为比 较对象,借助上述三种评价方法与模型,进行了综合评价比较,从综合评价结果来瞧,本文的模型相对较优(评价结果见表9)。 针对问题三,本文既充分考虑了如何缩短病人平均等待时间与提高病床利用率,又兼顾 了公平原则,根据病症的不同与就诊病人到院的顺序制订了优先服务策略,给出了每个病人 相应的入住时间区间(见P18)。 针对问题四,由于住院部周六与周日不安排手术,对某些类型病人的病床安排产生了一 定的影响,因此我们对问题二中模型的优先级函数进行了相应的调整,并利用Matlab进行了求解(结果见表10)。 为了判断手术安排时间就是否改变,本文根据问题一的评价方法与模型对修改后的模 型进行了综合评价,从评价结果得知,手术安排时间应该做相应的调整。 针对问题五,为了使所有病人在系统内的平均逗留时间(含等待入院及住院时间)最短, 本文建立了以其为目标函数且带约束条件的非线性规划模型,并利用了Lingo软件对其进行求解,得出的结论就是:分配给外伤、白内障(双眼)、白内障(单眼)、青光眼、视网膜疾病等各类型病人的床位数依次为:8、16、12、21、22,分别占总床数的比例为:10、13%、20、25%、15、19%、26、58%、27、85%。 最后,本文对所建模型的优点与缺点进行了客观的评价,认为本文研究的结果在实际医院病床安排中有一定的参考价值。 关键词:病人平均等待时间;实际病床利用率;RSR法;满意度量化函数;动态规划模型;非线性规划

关于小学数学建模论文

关于小学数学建模论文 摘要: 在小学数学教学中融入数学建模思想,一定要把握好数学建模的内涵,不能只看型丢 弃核。在建模活动过程中注意遵循小学生的儿童性、认知水平以及思维特点。通过创设的 问题情境让建模思想渗透进去,让小学生们在实践、探究、运用中形成一种建模技能,建 立建模的思维方法,懂得建模的价值和重要性,合理定位小学数学建模。 关键词:小学生;数学建模;遵循规律 数学是一门研究数量关系、空间形式的科学。主要特点是概念的抽象性、逻辑的严密性、结论的明确性、体系的完整性、应用的广泛性。无论是研究数学还是学习数学,其目 的是将数学应用于社会服务于社会。实现此目的的途径是把实际问题与数学联系起来,通 过数学模型来实现的。“模型化是数学中的一个基本概念,它处于所有的数学应用之心脏”。[1]建立数学模型是数学学习的重要部分。数学建模的特殊地位与作用,早已从大 学向基础教育延伸。小学阶段展开数学建模是否可行,日常的小学数学教学与贯彻建模思 想的小学数学教学又有什么差别,是一个值得深究的问题。 数学建模的核心本质是它更突出显现对原始问题的分析、假设、抽象;更突出显现数 学教学工具和教学方法以及教学模型的取舍、分析加工过程。数学模型的分析――求 解――验证――再分析――修改――假设――再求解的迭代过程更完整地表现出学生学习 数学和应用数学解决实际问题的关系。这样一个迭代的过程,再现出一种“微型的科研过程”,使学生耳目一新。这不仅促进学生们数学意识的加强和数学素养的提高,更重要的 是促进学生们数学品质的提升。无论是高校还是初级小学,数学建模的价值对学生的学习 都会产生积极的影响,所以在数学教学中要贯彻数学建模思想,关键问题是如何才能把握 好数学建模的内涵,如何才能展开一个完美过程,如何科学定位这是一个需要深思的问题。下面从数学建模的实体、目标、原则、途径做一些讨论。 一、建模主体的儿童性 在初级学校数学建模的主体是小学生,知识运用的特点是小学数学,因此在小学展开 数学建模,创设问题情境,一定注意掌握复杂性的适度,根基于学生“最近发展区”,还 要以“看得见、够得着”为原则,直抵学生的“最优发展区”。要合理定位数学建模的难度、深度、温度、适度,不仅要学生认真思考,积极探索,又要学生经过探索发现问题, 并能运用所学知识解决问题。 1基于建模主体的生活经验。数学建模提供一个完整、真实的问题情境,将现实生活 中与数学有关的素材及时融入到学习课堂中,把教材内容结合生活实际、社会热点、自然 环境等与数学问题有关系的各种因素,巧妙地转化为儿童日常生活数学问题的火热思考, 把其当做解决问题的支撑物来启动教学,使学生产生学习兴趣,让学生从身边具体的情境 中发现问题、提出问题、解决问题;让学生认识到问题的价值性;让学生抓住问题的锚桩,

2003年数学建模A题

2003高教社杯全国大学生数学建模竞赛题目 (请先阅读“对论文格式的统一要求”) A题 SARS的传播 SARS(Severe Acute Respiratory Syndrome,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。请你们对SARS 的传播建立数学模型,具体要求如下: (1)对附件1所提供的一个早期的模型,评价其合理性和实用性。 (2)建立你们自己的模型,说明为什么优于附件1中的模型;特别要说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。附件2提供的数据供参考。

(3)收集SARS对经济某个方面影响的数据,建立相应的数学模型并进行预测。附件3提供的数据供参考。 (4)给当地报刊写一篇通俗短文,说明建立传染病数学模型的重要性。 附件1: SARS疫情分析及对北京疫情走势的预测 2003年5月8日 在病例数比较多的地区,用数理模型作分析有一定意义。前几天,XXX老师用解析公式分析了北京SARS疫情前期的走势。在此基础上,我们加入了每个病人可以传染他人的期限(由于被严格隔离、治愈、死亡等),并考虑在不同阶段社会条件下传染概率的变化,然后先分析香港和广东的情况以获得比较合理的参数,最后初步预测北京的疫情走势。希望这种分析能对认识疫情,安排后续的工作生活有帮助。 1 模型与参数 假定初始时刻的病例数为N0,平均每病人每天可传染K个人(K

全国大学生数学建模竞赛论文

2009高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名):1. 2. 3. 指导教师或指导教师组负责人(打印并签名):指导教师组 日期:年月日 赛区评阅编号(由赛区组委会评阅前进行编号):

2009高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国评阅编号(由全国组委会评阅前进行编号):

论文标题 摘要 摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。 一般说来,摘要应包含以下五个方面的内容: ①研究的主要问题; ②建立的什么模型; ③用的什么求解方法; ④主要结果(简单、主要的); ⑤自我评价和推广。 摘要中不要有关键字和数学表达式。 数学建模竞赛章程规定,对竞赛论文的评价应以: ①假设的合理性 ②建模的创造性 ③结果的正确性 ④文字表述的清晰性 为主要标准。 所以论文中应努力反映出这些特点。 注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。

数学建模优秀论文范文

数学建模优秀论文范文 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须

依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的 发展空间和潜力。 二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题审题题设条件代入数学模型求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对 应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需 进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干 个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模 型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过 程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解 题质量,同时也体现一个学生的综合能力。 3(1提高分析、理解、阅读能力。

全国大学生数学建模竞赛论文格式规范

全国大学生数学建模竞赛论文格式规范 ●本科组参赛队从A、B题中任选一题,专科组参赛队从C、D题中任选一题。(全国评奖时,每个 组别一、二等奖的总名额按每道题参赛队数的比例分配;但全国一等奖名额的一半将平均分配给本组别的每道题,另一半按每道题参赛队比例分配。) ●论文用白色A4纸单面打印;上下左右各留出至少2.5厘米的页边距;从左侧装订。 ●论文第一页为承诺书,具体内容和格式见本规范第二页。 ●论文第二页为编号专用页,用于赛区和全国评阅前后对论文进行编号,具体内容和格式见本规 范第三页。 ●论文题目、摘要和关键词写在论文第三页上,从第四页开始是论文正文,不要目录。 ●论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。 ●论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。 ●论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字, 左端对齐(不居中)。论文中其他汉字一律采用小四号宋体字,行距用单倍行距。打印文字内容时,应尽量避免彩色打印(必要的彩色图形、图表除外)。 ●提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重 要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。 ●论文应该思路清晰,表达简洁(正文尽量控制在20页以内,附录页数不限)。 ●在论文纸质版附录中,应给出参赛者实际使用的软件名称、命令和编写的全部计算机源程序(若 有的话)。同时,所有源程序文件必须放入论文电子版中备查。论文及程序电子版压缩在一个文件中,一般不要超过20MB,且应与纸质版同时提交。 ●引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方 式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为: ●[编号] 作者,书名,出版地:出版社,出版年。 ●参考文献中期刊杂志论文的表述方式为: ●[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。 ●参考文献中网上资源的表述方式为: ●[编号] 作者,资源标题,网址,访问时间(年月日)。 ●在不违反本规范的前提下,各赛区可以对论文增加其他要求(如在本规范要求的第一页前增加 其他页和其他信息,或在论文的最后增加空白页等);从承诺书开始到论文正文结束前,各赛区不得有本规范外的其他要求(否则一律无效)。 ●本规范的解释权属于全国大学生数学建模竞赛组委会。 ●[注] 赛区评阅前将论文第一页取下保存,同时在第一页和第二页建立“赛区评阅编号”(由各 赛区规定编号方式),“赛区评阅纪录”表格可供赛区评阅时使用(各赛区自行决定是否在评阅时使用该表格)。评阅后,赛区对送全国评阅的论文在第二页建立“全国统一编号”(编号方式由全国组委会规定,与去年格式相同),然后送全国评阅。论文第二页(编号页)由全国组委会评阅前取下保存,同时在第二页建立“全国评阅编号”。 全国大学生数学建模竞赛组委会 2017年修订

数学建模全国赛07年A题一等奖论文

关于中国人口增长趋势的研究 【摘要】 本文从中国的实际情况和人口增长的特点出发,针对中国未来人口的老龄化、出生人口性别比以及乡村人口城镇化等,提出了Logistic、灰色预测、动态模拟等方法进行建模预测。 首先,本文建立了Logistic阻滞增长模型,在最简单的假设下,依照中国人口的历史数据,运用线形最小二乘法对其进行拟合,对2007至2020年的人口数目进行了预测,得出在2015年时,中国人口有13.59亿。在此模型中,由于并没有考虑人口的年龄、出生人数男女比例等因素,只是粗略的进行了预测,所以只对中短期人口做了预测,理论上很好,实用性不强,有一定的局限性。 然后,为了减少人口的出生和死亡这些随机事件对预测的影响,本文建立了GM(1,1) 灰色预测模型,对2007至2050年的人口数目进行了预测,同时还用1990至2005年的人口数据对模型进行了误差检验,结果表明,此模型的精度较高,适合中长期的预测,得出2030年时,中国人口有14.135亿。与阻滞增长模型相同,本模型也没有考虑年龄一类的因素,只是做出了人口总数的预测,没有进一步深入。 为了对人口结构、男女比例、人口老龄化等作深入研究,本文利用动态模拟的方法建立模型三,并对数据作了如下处理:取平均消除异常值、对死亡率拟合、求出2001年市镇乡男女各年龄人口数目、城镇化水平拟合。在此基础上,预测出人口的峰值,适婚年龄的男女数量的差值,人口老龄化程度,城镇化水平,人口抚养比以及我国“人口红利”时期。在模型求解的过程中,还对政府部门提出了一些有针对性的建议。此模型可以对未来人口做出细致的预测,但是需要处理的数据量较大,并且对初始数据的准确性要求较高。接着,我们对对模型三进行了改进,考虑人为因素的作用,加入控制因子,使得所预测的结果更具有实际意义。 在灵敏度分析中,首先针对死亡率发展因子θ进行了灵敏度分析,发现人口数量对于θ的灵敏度并不高,然后对男女出生比例进行灵敏度分析得出其灵敏度系数为0.8850,最后对妇女生育率进行了灵敏度分析,发现在生育率在由低到高的变化过程中,其灵敏度在不断增大。 最后,本文对模型进行了评价,特别指出了各个模型的优缺点,同时也对模型进行了合理性分析,针对我国的人口情况给政府提出了建议。 关键字:Logistic模型灰色预测动态模拟 Compertz函数

初中数学建模论文范文

初中数学建模论文范文 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 二、数学应用题如何建模 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力

数学建模论文相关论文总结

蚊香设计 题目:蚊香设计 目前市场上销售一种“雷达牌”蚊香,每盘蚊香如图1所示,图中a,b数值的单位:毫米。使用时拆成两片,如图2所示。经过实验发现,该蚊香的燃烧速度约为每小时120毫米。请用近似的方法解决下列问题: (1)每一片蚊香大约可以燃烧多长时间; (2)根据市场需求,请设计持续燃烧时间分别为4小时、8小时、10小时的蚊香,蚊香燃烧速度不变。分别计算出它们的a,b值。 摘要:该题由于不能用常规方法求蚊香条纹长度,所以采用面积近似法求蚊香燃烧时间。因为两片蚊香可以无缝镶嵌成一个近似椭圆,所以求一片蚊香可燃烧的时间只需求出一盘蚊香(两片蚊香)可燃烧的时间,再除以二即可。所以本题的求解思路为将蚊香近似看成一个椭圆,通过面积公式求出

椭圆面积。由于椭圆的长和宽题目均已给出,数出长和宽方向的条纹数,就可以求出每条条纹的宽度。条纹宽度再乘以条纹的燃烧速度,得单位时间蚊香燃烧的面积。再由一盘蚊香的面积以及该蚊香的面积燃烧速度即可求出一盘蚊香的燃烧时间。该时间再除以二即为一片蚊香可燃烧的时间。关键词:近似,椭圆,面积,燃烧速度,条纹。 引言:通过面积近似以及面积燃烧速度巧妙地求解燃烧时间,从而避免了难求的条纹长度,间接地求出蚊香可燃烧的时间。 问题分析:该蚊香呈螺旋状,蚊香条纹宽度和蚊香条纹间的间隙相等。由于该蚊香每圈构成的条纹既不是椭圆也不是圆,所以不能按正常的几何图形周长求解,需另辟蹊径,避开求解蚊香条纹长度。 模型假设:1.忽略蚊香条纹构成的圈由于宽度造成的靠外一边的长度与靠内边的长度的差值。 2.将一盘蚊香看成规则椭圆,忽略每片蚊香两头突出来的不平滑部分造成的面积误差。 3.忽略蚊香中心不再是等宽条纹造成的燃烧时间计算误差。 模型建立:将该一盘蚊香看成规则椭圆,椭圆长轴为a,短轴为b。蚊香条纹始终看成等宽处理。 模型的求解及结果:

高中数学建模论文

高中数学建模论文 目前国际数学界普遍赞同通过开展数学建模活动和在数学教学中推广使用现代化技术来推动数学教育改革。美国、德国、日本等发达国家普遍都十分重视数学建模教学,把数学建模活动从大学生向中学生转移是近年国际数学教育发展的一种趋势。“我国的数学教育在很长一段时间内对于数学与实际、数学与其它学科的联系未能给予充分的重视,因此,高中数学在数学应用和联系实际方面需要大力加强。”我国普通高中新的数学教学大纲中也明确提出要切实培养学生解决实际问题的能力,要求增强应用数学的意识,能初步运用数学模型解决实际问题。这些要求不仅符合数学本身发展的需要,也是社会发展的需要。因此我们的数学教学不仅要使学生知道许多重要的数学概念、方法和结论,而且要提高学生的思维能力,培养学生自觉地运用数学知识去处理和解决日常生活中所遇到的问题,从而形成良好的思维品质。而数学建模通过”从实际情境中抽象出数学问题,求解数学模型,回到现实中进行检验,必要时修改模型使之更切合实际”这一过程,促使学生围绕实际问题查阅资料、收集信息、整理加工、获取新知识,从而拓宽了学生的知识面和能力。数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一,是改善学生学习方式的突破口。因此有计划地开展数学建模活动,将有效地培养学生的能力,提高学生的综合素质。 数学建模可以提高学生的学习兴趣,培养学生不怕吃苦、敢于战胜困难的坚强意志,培养自律、团结的优秀品质,培养正确的数学观。具体的调查表明,大部分学生对数学建模比较感兴趣,并不同程度地促进了他们对于数学及其他课程的学习.有许多学生认为:”数学源于生活,生活依靠数学,平时做的题都是理论性较强,实际性较弱的题,都是在理想化状态下进行讨论,而数学建模问题贴近生活,充满趣味性”;”数学建模使我更深切地感受到数学与实际的联系,感受到数学问题的广泛,使我们对于学习数学的重要性理解得更为深刻”。数学建模能培养学生应用数学进行分析、推理、证明和计算的能力;用数学语言表达实际问题及用普通人能理解的语言表达数学结果的能力;应用计算机及相应数学软件的能力;独立查找文献,自学的能力,组织、协调、管理的能力;创造力、想

2015年全国大学生数学建模比赛A题一等奖论文

太阳影子定位问题 摘要 目前,如何确定视频的拍摄地点和拍摄日期是计算机视觉的热点研究问题,是视频数据分析的重要方面,有重要的研究意义。本文通过建立数学模型,给出了通过分析视频中物体的太阳影子变化,确定视频拍摄的地点和日期的方法。 对于问题一,建立空间三维直角坐标系和球面坐标系对直杆投影和地球进行数学抽象,引入地方时、北京时间、太阳赤纬、杆长、太阳高度角等五个参数,建立了太阳光下物体影子的长度变化综合模型。求解过程中,利用问题所给的数据,得到太阳赤纬等变量,将太阳赤纬等参量代入模型,求得了北京地区的9:00至15:00的影子长度变化曲线,当12:09时,影子长度最短;并分析出影长随这些参数的变化规律,利用控制变量法思想,总结了五个参数与影子长度的关系。最后进行模型检验,将该模型运用于东京、西藏两地,得到了这两座城市的影长变化规律曲线,发现变化规律符合实际两地实际情况。 对于问题二,为了消除不同直角坐标系带来的影响,将实际坐标转换为二次曲线的极坐标,建立了极坐标下基于多层优化搜索算法的空间匹配优化模型。求解时,先将未知点的直角坐标系的点转换为极坐标,然后设计了多层优化搜索算法,通过多次不同精度的搜索,最后得出实际观测点的经纬度为东经E115?北纬N25?。同时对模型进行验证,实地测量了现居住地的某个时间段的值,通过模型二来求解出现居住地的经纬度,分析了误差产生的原因:大气层的折射和拟合误差。 对于问题三,将极坐标转换后的基本模型转换为优化模型,建立了基于遗传算法的时空匹配优化模型。将目标函数作为个体的适应度函数,将经度纬度及日期作为待求解变量,用遗传算法进行求解,得到可能的经度纬度及其日期:北纬20度,东经114度,5月21日;北纬20度,东经114度,7月24日;东经94.5度,北纬33.8度,6月19日。最后,将遗传算法与多层优化搜索算法进行对比分析,得出遗传算法的求解效率和求解精度均优于多层次搜索算法。 对于问题四,首先将视频材料以1min为间隔进行采样得到41帧(静态图片),将这些静止图片先利用matlab进行处理,后进行阀值归一化处理,得到这些帧的灰度值矩阵。在图片上建立参考模型,获得影子端点的参考位置。利用投影系统和模型二,建立了基于图形处理的视频拍摄地点搜索模型。利用模型二中多层搜索算法,求得满足精度的最优地点。最优的地点是:东经119,北纬48.7,在内蒙古的呼伦贝尔市。同时假设日期是未知量,将模型四与模型三相结合,得到了可能的地点和时间,并分析了可能出现误差的原因,最后回答了当视频日期未知,也可以确定其位置和日期。 最后,给出了模型的优缺点和改进方案。 关键词:极坐标化,多层优化搜索算法,遗传算法,图像处理,MATLAB

数学建模论文参考

安徽建筑工业学院大学生数学建模竞赛报名表 编号(由活动组织者填写): 队员详细信息(选手题写) 参赛组员1 姓名姜恩三性别男院系安徽建筑工业学院土木工程学院专业 勘查技术与 工程 年级大二宿舍17#314 宿舍电话 电子信箱手机 参赛组员2 姓名徐可性别男院系安徽建筑工业学院土木工程学院专业 勘查技术与 工程 年级大二宿舍17#319 宿舍电话 电子信箱手机 参赛组员3 姓名张义性别男院系安徽建筑工业学院土木工程学院专业勘查年级大二宿舍17#317 宿舍电话 电子信箱手机 指导教师:宫珊珊 数学建模竞赛 摘要 本文通过分析安徽省各校以及全国各赛区建模成绩,构造合理的数学模型,对安徽省各高校以及全国各赛区的数学建模竞赛实力进行排序并给出其分布情况。最后依据分析得出的数据为参加全国赛的同学提供了一些有价值的建议。 针对问题一题目附件中给出了安徽省各高校的建模成绩获奖统计。根据此我们引用层次分析法构建数学模型,对各高校建模成绩各奖项加权赋值,得到安徽赛区各高校建模成绩排序以及其分布情况。 针对问题二题目中只给出全国各高校的获奖情况,没有区分各高校所属哪赛区,所以我们首先将各高校按所属省或者直辖市分赛区,共分30个赛区,利用Excel软件统计出的全国各赛区参加2010年高教社杯报名及获奖情况。按获奖比例对国家一、二等奖加权赋值,得到各赛区的本科组与专科组建模成绩。然

后两组数据运用加权赋值方法处理得到此赛区的总评。得出全国各赛区建模实力的排序。 针对问题三由问题一、问题二得出的数据,我们从各赛区获奖概率,各赛区获奖分布、队员的分职合作、心态、技巧等各方面提出了自己的意见与建议。关键词:层次分析法数学建模加权赋值 一、问题的重述 “一次参赛,终身受益”,全国大学生数学建模竞赛是教育部与中国工业 与应用数学学会举办的全国性大学生竞赛,是目前参赛人数最多、最具影响力的全国性大学生学科竞赛。请根据2010全国赛的报名和获奖情况(见附件)分别讨论以下问题: 1.安徽赛区各高校的数学建模竞赛实力排名及分布情况; 2.全国各赛区的大学生数学建模竞赛实力排名及分布情况; 3.通过数据分析为参加全国赛的同学提供一些有价值的建议。 二、问题分析 关于问题一需要对安徽赛区各校建模成绩科学、合理地排序。首先观察附件1中安徽赛区各校各队的建模成绩,从中统计出各高校成绩的汇总。然后针对获奖的种类,通过层次分析法对国家一、二等奖省一、二、三等奖进行由定性到定量的转化,并计算出各校的对应得分。最后,以得分为标准对高校的成绩进行了排序。另外,在对安徽赛区建模成绩进行排序时,由于题中给出2010年高教社杯报名与获奖情况的数据,数据中成功参赛仅代表并不能体现一个学校的建模实力,即与建模实力无关,因此在考虑实力权重时可忽略。排序只能代表2010年时各高校的建模实力。 关于问题二给出全国各个赛区的建模成绩科学合理排序。结合附件2所给出的数据,我们运用Excel软件统计出全国各赛区高校2010年高教社杯获奖情况,按获奖比列对国家本科组和专科组一、二等奖加权赋值,求出各赛区建模成绩排序。考虑到某些省份或者直辖市未参加建模竞赛的对数较少,所以将参加队数较少的省份或者直辖市与周边省赛区合并。这样全国可分为二十个赛区。详情见附表3;通过加权之后得到本科组G1和专科组G2数据,然后将G1和G2再进行一次加权,得到G,既是各赛区的最后总得分,依此得分为标准,进行赛区排名。排名结果见附表4;在对各赛区数学建模竞赛实力的分布上,我们给出了全国各赛区得分折线图。 关于问题三问题三的解决主要是对问题一与问题二的总结与拓展。在对问题一、二经过分析的基础上可以从赛区实力,南北差异以及各高校高考时招收学生分数进行对比。 三、基本假设与符号说明 3.1基本假设 1.假设各学校、各队获奖互不影响,相互独立。 2.假设各赛区评分报奖标准一致。

2015年全国大学生数学建模竞赛A题.

太阳影子定位 (一)摘要 根据影子的形成原理和影子随时间的变化规律,可以建立时间、太阳位置和影子轨迹的数学模型,利用影子轨迹图和时间可以推算出地点等信息,从而进行视频数据分析可以确定视频的拍摄地点。本文根据此模型求解确定时间地点影子的运动轨迹和对于已知运动求解地点或日期。 直立杆的影子的位置在一天中随太阳的位置不断变化,而其自身的所在的经纬度以及时间都会影响到影子的变化。但是影子的变化是一个连续的轨迹,可以用一个连续的函数来表达。我们可以利用这根长直杆顶端的影子的变化轨迹来描述直立杆的影子。众所周知,地球是围绕太阳进行公转的,但是我们可以利用相对运动的原理,将地球围绕太阳的运动看成是太阳围绕地球转动。 我们在解决问题一的时候,利用题目中所给出的日期、经纬度和时间,来解出太阳高度角h,太阳方位角Α,赤纬角δ,时角Ω,直杆高度H和影子端点位置(x0,y o),从而建立数学模型。影子的端点坐标是属于时间的函数,所以可以借助时间写出参数方程来描述影子轨迹的变化。问题二中给出了日期和随时间影子端点的坐标变化,可以根据坐标变化求出运用软件拟合出曲线找到在正午时纵坐标最小,横坐标最大,影子最短的北京时间,根据时差与经度的关系,求出测量地点的经度。根据太阳方位角Α,赤纬角δ,时角Ω,可以求出太阳高度角h。再结合问题一中的表达式,建立方程求解测量地点的纬度Ф。我们在求解第三问的思路也是沿用之间的模型,但第三问上需要解出日期。 对于问题四的求解,先获取自然图像序列或者视频帧,并对每一帧图像检测出影子的轨迹点;然后确定多个灭点,并拟合出地平线;拟合互相垂直的灭点,计算出仿射纠正和投影纠正矩阵;进而还原出经过度量纠正的世界坐标;在拟合出经过度量纠正世界坐标中的影子点的轨迹,利用前面几问中的关系求出经纬度。 关键字:太阳影子轨迹Matlab 曲线拟合

数学建模论文

A题:食品质量安全抽检数据分析 摘要 关键字:数据统计拟合,层次分析法,影响程度排序, 一.问题重述 随着科技的发展社会的进步,人们的思想观念也发生了翻天覆地的变化,越来越注重个人的饮食安全。而饮食安全问题归根结底为质量安全问题。本文主要针对深圳市的近几年的食品抽检数据还有其他一些有关食品类知识综合考虑解决以下三方面的问题并给出了切实有效的解决实际问题的方案:(1)综合对深圳市近几年的各主要食品领域的重金属,微生物,添加剂含量的变化趋势进行客观的评价。其中重金属选了具有代表性的铅,隔,铜,铬,砷。微生物选了具有代表性的大肠菌群和菌落总数。添加剂选了具有代表性的铝的残留量,苯甲酸,柠檬黄,山梨酸,SO2残留量。(2)针对所给数据和其他查阅数据综合分析食品质量与季节因素,食品质量与生产地,食品质量与销售地之间的的规律性的关系(3)根据研究结果制定出一套更能有效的反映食品质量安全情况的抽检方法且不过分的增加费用。最后综合以上三问题给出一套解决实际食品质量安全问题的方案。 二、模型假设 (1)每年每期对各个食品领域的的抽检是均匀的。 (2)每年每期对各个食品领域的各种抽检指标是随机的。 (3)每一年和后一年的抽检间隔时间基本和年间的抽检间隔时间相同。 (4)对于各种食品领域,抽检的项目指标都是对食品质量有很大的影响或不容忽视,而对于没有检测到的项目则认为其对该食品领域的相应的食品的质量影响太小以至于可以忽略不计。 (5)抽检的季节,地点每年是均匀的大致相同的。 (6)数据所给出的只有各领域食品的生产日期,而没有给出食品的保质期,所以假设季节因素的影响主要是从生产食品完成之日到检测之日所经历的季节因素作为影响食品质量安全的季节因素。 (7)每次抽检的期数的增长代表着时间的增长。

全国大学生数学建模竞赛论文格式规范

全国大学生数学建模竞赛论文格式规范 (全国大学生数学建模竞赛组委会,2019年修订稿) 为了保证竞赛的公平、公正性,便于竞赛活动的标准化管理,根据评阅工作的实际需要,竞赛要求参赛队分别提交纸质版和电子版论文,特制定本规范。 一、纸质版论文格式规范 第一条,论文用白色A4纸打印(单面、双面均可);上下左右各留出至少2.5厘米的页边距;从左侧装订。 第二条,论文第一页为承诺书,第二页为编号专用页,具体内容见本规范第3、4页。 第三条,论文第三页为摘要专用页(含标题和关键词,但不需要翻译成英文),从此页开始编写页码;页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。摘要专用页必须单独一页,且篇幅不能超过一页。 第四条,从第四页开始是论文正文(不要目录,尽量控制在20页以内);正文之后是论文附录(页数不限)。 第五条,论文附录至少应包括参赛论文的所有源程序代码,如实际使用的软件名称、命令和编写的全部可运行的源程序(含EXCEL、SPSS等软件的交互命令);通常还应包括自主查阅使用的数据等资料。赛题中提供的数据不要放在附录。如果缺少必要的源程序或程序不能运行(或者运行结果与正文不符),可能会被取消评奖资格。论文附录必须打印装订在论文纸质版中。如果确实没有源程序,也应在论文附录中明确说明“本论文没有源程序”。 第六条,论文正文和附录不能有任何可能显示答题人身份和所在学校及赛区的信息。 第七条,引用别人的成果或其他公开的资料(包括网上资料)必须按照科技论文写作的规范格式列出参考文献,并在正文引用处予以标注。 第八条,本规范中未作规定的,如排版格式(字号、字体、行距、颜色等)不做统一要求,可由赛区自行决定。在不违反本规范的前提下,各赛区可以对论文增加其他要求。 二、电子版论文格式规范 第九条,参赛队应按照《全国大学生数学建模竞赛报名和参赛须知》的要求提交以

数学建模论文

我们的数学建模课 摘要:数学建模设一门很有趣的课程,也值得大家好好思考。学完 之后,我就试了一下两道题目,一个是狼找兔子,另一个是设置输 油管的布置,写出了自己思考的过程。对于老师讲的课程,我抱有 很大的兴趣,也希望以后将这种思维运用到以后的学习工作中去。 关键词:数学建模编号位置费用 最初接触数学建模是又一次在五羊广场看到一个数学建模的比赛,听到这个 名称我就感到很好奇,也很想参加比赛。后来的故事当然顺理成章,我选了这 门课程,但同学们的反应却很惊讶,“干嘛选这种课程啊”、“你简直就是一 怪人”、“这种课程应该很难吧!”,各种质疑声铺天而来,我也很吃惊,想 着有必要嘛,不就是选了数学建模嘛!因为感兴趣,所以我选了这门课程!因 为好奇,我还是选了这门课程!也许这就是大学设置课程的好处吧! 很多与数学有关的东西,我都有很大兴趣,但是我的专业是劳动与社会保障,主要方向是人力资源管理和劳动关系,由于很多东西不甚了解,也并不喜欢做 那些文字性的东西。例如将绩效考评用模型来进行评估或者评价某一项管理好坏,总的来说这些东西对我来说都比较虚,不如数字来得直白。数据更能容易 引起我的关注,也比较喜欢做这一类的题目。如果将论文联系到我的专业的话,那实在是没什么想法,我想换另外一种方式,那就思考一些题目。 一:狼追兔子的故事 一只兔子躲进了10个环形分布洞的某一个中,狼在第一个洞中没有找到兔子,就隔一个洞,到第三个洞去找,也没有找到,就间隔两个洞,到第六个洞去找,以后每次多一个洞去找兔子…这样下去,如果狼一直找不到兔子.请问兔子可能躲在哪个洞中?给出算法步骤,并编程求出结果 求解过程: 洞是环形结构的,将十个洞分别编号:1、2、3、、、、9、10,在狼第一圈找兔子的时候,狼找洞的序号是1、3、6、10,在第二圈的时候是5,由于十个数字是环形的,我们可以直接用数字计算,而计算超过十所得数据的尾数就是落到那个洞的洞号。即在第二圈我们可以计算出一个数字15,而洞的编号就是5也就是15的个位数字,以后的狼没跳到一个洞口,我们都可以计算一个数据,规则同上。 ……………… 1 3 6 10 15 21 28 36 45 55 66 78 ………….. 箭头表示的是下面两个数字的差值。两个相邻数字的差额成等差数列, 公差是一。 a a a 设N个数据为12.....n

相关文档
最新文档