一些常见的Z变换

一些常见的Z变换
一些常见的Z变换

附表A-2 常用函数的拉氏变换和z 变换表

号 拉氏变换()E s

时间函数()e t Z 变换()E s

1 1

δ(t)

1

2 Ts

e

--11

∑∞

=-=0

)()(n T nT t t δδ

1

-z z 3 s

1 )(1t

1

-z z 4 2

1s t

2

)1(-z Tz

5 3

1s 2

2t

3

2

)1(2)1(-+z z z T

6 11+n s

!n t n

)(!)1(lim 0aT n n n a e

z z a n -→-??- 7 a

s +1 at

e

- aT

e z z

-- 8 2

)(1a s +

at

te

-

2

)(aT aT e z Tze ---

9 )

(a s s a

+ at e --1 )

)(1()1(aT

aT e z z z

e ----- 10 )

)((b s a s a

b ++-

bt at e e ---

bT

aT e z z

e z z ----- 11 2

2ωω

+s t ωsin

2

sin 2cos 1

z T

z z T ωω-+ 12 2

2ω+s s

t ωcos

2

(cos )2cos 1

z z T z z T ωω--+ 13 22)(ω

ω

++a s t e

at

ωsin -

22sin 2cos aT aT aT

ze T

z ze T e ωω----+ 14 2

2)(ω+++a s a s

t e

at

ωcos -

222cos 2cos aT aT aT

z ze T z ze T e ωω-----+

15

a

T s ln )/1(1- T t a /

a

z z -

信号,x[n] Z变换,X(z) 收敛区域1 所有

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

信号与系统基础知识

第1章 信号与系统的基本概念 1.1 引言 系统是一个广泛使用的概念,指由多个元件组成的相互作用、相互依存的整体。我们学习过“电路分析原理”的课程,电路是典型的系统,由电阻、电容、电感和电源等元件组成。我们还熟悉汽车在路面运动的过程,汽车、路面、空气组成一个力学系统。更为复杂一些的系统如电力系统,它包括若干发电厂、变电站、输电网和电力用户等,大的电网可以跨越数千公里。 我们在观察、分析和描述一个系统时,总要借助于对系统中一些元件状态的观测和分析。例如,在分析一个电路时,会计算或测量电路中一些位置的电压和电流随时间的变化;在分析一个汽车的运动时,会计算或观测驱动力、阻力、位置、速度和加速度等状态变量随时间的变化。系统状态变量随时间变化的关系称为信号,包含了系统变化的信息。 很多实际系统的状态变量是非电的,我们经常使用各种各样的传感器,把非电的状态变量转换为电的变量,得到便于测量的电信号。 隐去不同信号所代表的具体物理意义,信号就可以抽象为函数,即变量随时间变化的关系。信号用函数表示,可以是数学表达式,或是波形,或是数据列表。在本课程中,信号和函数的表述经常不加区分。 信号和系统分析的最基本的任务是获得信号的特点和系统的特性。系统的分析和描述借助于建立系统输入信号和输出信号之间关系,因此信号分析和系统分析是密切相关的。 系统的特性千变万化,其中最重要的区别是线性和非线性、时不变和时变。这些区别导致分析方法的重要差别。本课程的内容限于线性时不变系统。 我们最熟悉的信号和系统分析方法是时域分析,即分析信号随时间变化的波形。例如,对于一个电压测量系统,要判断测量的准确度,可以直接分析比较被测的电压波形)(in t v (测量系统输入信号)和测量得到的波形)(out t v (测量系统输出信号),观察它们之间的相似程度。为了充分地和规范地描述测量系统的特性,经常给系统输入一个阶跃电压信号,得到系统的阶跃响应,图1-1是典型的波形,通过阶跃响应的电压上升时间(电压从10%上升至90%的时间)和过冲(百分比)等特征量,表述测量系统的特性,上升时间和过冲越小,系统特性越好。其中电压上升时间反映了系统的响应速度,小的上升时间对应快的响应速度。如果被测电压快速变化,而测量系统的响应特性相对较慢,则必然产生较大的测量误差。 信号与系统分析的另一种方法是频域分析。信号频域分析的基本原理是把信号分解为不同频率三角信号的叠加,观察信号所包含的各频率分量的幅值和相位,得到信号的频谱特性。图1-2是从时域和频域观察一个周期矩形波信号的示意图,由此可以看到信号频域和时域的关系。系统的频域分析是观察系统对不同频率激励信号的响应,得到系统的频率响应特性。频域分析的重要优点包括:(1)对信号变化的快慢和系统的响应速度给出定量的描述。例如,当我们要用一个示波器观察一个信号时,需要了解信号的频谱特性和示波器的模拟带宽,当示波器的模拟带宽能够覆盖被测信号的频率范围时,可以保证测量的准确。(2)

拉氏变换和z变换表

附录A 拉普拉斯变换及反变换 1.拉氏变换的基本性质 附表A-1 拉氏变换的基本性质 1()([n n k f t dt s s -+= +∑?个

2.常用函数的拉氏变换和z变换表 附表A-2 常用函数的拉氏变换和z变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式,即 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中,系数n n a a a a ,,...,,110-和011,, ,,m m b b b b -都是实常数;n m ,是正整数。按代数定理 可将)(s F 展开为部分分式。分以下两种情况讨论。 (1)0)(=s A 无重根:这时,F(s)可展开为n 个简单的部分分式之和的形式,即 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根;i c 为待定常数,称为()F s 在i s 处的留数,可按下列两式计算:lim()()i i i s s c s s F s →=- (F-2) 或 i s s i s A s B c ='= )() ( (F-3)

式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数为 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=1 i n s t i i c e =∑ (F-4) (2)0)(=s A 有重根:设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…,n s 为F(s)的n r -个单根;其中,1+r c ,…,n c 仍按式(F-2)或式(F-3)计算,r c ,1-r c ,…,1c 则按下式计算: )()(lim 11 s F s s c r s s r -=→ 11lim [()()]i r r s s d c s s F s ds -→=- )()(lim !11)() (1s F s s ds d j c r j j s s j r -=→- (F-5) )()(lim )!1(11)1() 1(11s F s s ds d r c r r r s s --=--→ 原函数)(t f 为 [])()(1 s F L t f -= ??????-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L 11 111 1111)()() ( t s n r i i t s r r r r i e c e c t c t r c t r c ∑+=---+?? ????+++-+-=112211 1 )!2()!1( (F-6)

拉氏变换和z变换表(精选.)

word. 附录A 拉普拉斯变换及反变换 1.拉氏变换的基本性质 1()([n n k f t dt s s -+=+∑? 个

2.常用函数的拉氏变换和z变换表 word.

word. 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式,即 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中,系数n n a a a a ,,...,,110-和011,, ,,m m b b b b -都是实常数;n m ,是正整数。按代数定理 可将)(s F 展开为部分分式。分以下两种情况讨论。 (1)0)(=s A 无重根:这时,F(s)可展开为n 个简单的部分分式之和的形式,即 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根;i c 为待定常数,称为()F s 在i s 处的留数,可按下列两式计算:lim()()i i i s s c s s F s →=- (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数为 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=1 i n s t i i c e =∑ (F-4) (2)0)(=s A 有重根:设0)(=s A 有r 重根1s ,F(s)可写为

拉氏变换和z变换表

附录A 拉普拉斯变换及反变换 1.拉氏变换的基本性质 1()([n n k f t dt s s -+= +∑?个 2.常用函数的拉氏变换和z 变换表 附表A-2 常用函数的拉氏变换和z 变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式,即

11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中,系数n n a a a a ,,...,,110-和011,,,,m m b b b b -都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分 分式。分以下两种情况讨论。 (1)0)(=s A 无重根:这时,F(s)可展开为n 个简单的部分分式之和的形式,即 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根;i c 为待定常数,称为()F s 在i s 处的留数,可按下列两式计算: lim()()i i i s s c s s F s →=- (F-2) 或 i s s i s A s B c ='= )() ( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数为 []? ?????-==∑=--n i i i s s c L s F L t f 11 1 )()(=1 i n s t i i c e =∑ (F-4) (2)0)(=s A 有重根:设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + =n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…,n s 为F(s)的n r -个单根;其中,1+r c ,…,n c 仍按式(F-2)或式(F-3)计算,r c ,1-r c ,…,1c 则按下式计算: )()(lim 11 s F s s c r s s r -=→ 11lim [()()]i r r s s d c s s F s ds -→=- )()(lim !11)() (1s F s s ds d j c r j j s s j r -=→- (F-5)

数字信号处理知识点归纳整理

数字信号处理知识点归纳整理 第一章时域离散随机信号的分析 1.1. 引言 实际信号的四种形式: 连续随机信号、时域离散随机信号、幅度离散随机信号和离散随 机序列。本书讨论的是离散随机序列 ()X n ,即幅度和时域都是离散的情况。随机信号相比随机变量多 了时 间因素,时间固定即为随机变量。随机序列就是随时间n 变化的随 机变量序列。 1.2. 时域离散随机信号的统计描述 1.2.1 概率描述 1. 概率分布函数(离散情况) 随机变量 n X ,概率分布函数: ()()n X n n n F x ,n P X x =≤ (1) 2. 概率密度函数(连续情况) 若 n X 连续,概率密度函数: ()()n n X X n n F x,n p x ,n x ?=

? (2) 注意,以上两个表达式都是在固定时刻n 讨论,因此对于随机序列而言,其概率分布函数和概率密度函数都是关于n 的函数。 当讨论随机序列时,应当用二维及多维统计特性。 ()()()()1 21 21 2,,,1 21122,, ,1 2 ,,,1 2 12,1,,2, ,,,,,,1,,2, ,,,1,,2, ,,N N N x X

X N N N N x X X N x X X N N F x x x N P X x X x X x F x x x N p x x x N x x x =≤≤≤?= ??? 1.2.2 数字特征 1. 数学期望 ()()()()n x x n n m n E x n x n p x ,n dx ∞ -∞ ==????? (3) 2. 均方值与方差 均方值: ()()22 n n x n n E X x n p x ,n dx ∞ -∞ ??=??? (4) 方差: ()()()222 2x n x n x n E X m n E X m n σ????=-=-???? (5)

1 光与视觉的基础知识介绍

光与视觉的基础知识 郭奉杰 杭州浙大三色仪器有限公司

人眼的视觉特性 ?光是一种电磁波,广义上它的波长从几个纳米至一毫米左右,而人眼所能看见的只是一小部分,通常波长范围为380nm至780nm,我们把这部分光称为可见光。

?可见光的波长不同,引起人眼的颜色感觉就不同。 单色光波长由长至短,对应的颜色感觉由红到紫。 一般认为: ?红色780nm~620nm 橙色620nm~590nm 黄色590nm~560nm ?黄绿色560nm~530nm 绿色530nm~500nm 青色550nm~470nm ?蓝色470nm~430nm 紫色430nm~380nm ?上述的范围只是根据人们的习惯大致划分。实际 上随着波长的变化,颜色是连续渐变的,没有严 格的界限。

?物体分为发光体和不发光体。 ?发光体的颜色由它本身发出的光谱所确定,如白炽灯发黄和日光灯发白。 ?不发光体的颜色与照射光的光谱和不发光体对照射光的反射、透射特性有关。如绿叶反射绿色的光、吸收其他颜色的光而呈现绿色;绿叶拿到暗室的红灯下观察成了黑色。 ?由此可见,光是一种客观存在的物质,而色是人眼对这种物质的视觉反应

白炽灯卤粉荧光灯低压汞灯 三基色荧光灯三基色绿粉蓝色LED

色温与标准光源 ?照明光源的作用非常重要,其光谱功率分布情况会直接影响被照物体的颜色。通常的照明光源,如太阳光、日光等发的光虽然都是白光,但它们的光谱成分相差很大,用它们照射相同物体时,呈现的颜色则相差较大。根据CIE (国际照明委员会)的规定,使用的标准光源主要有A、B、 C、D 、E五种,并以“色温”来表征。 65 ? 1. 色温 ?光源的色温是用来描述光源的光谱分布的物理量。在色度学上,它通常用光源的光与绝对黑体发出的光相比较,并用绝对黑体的绝对温度来表征。

一些常见的Z变换

附表A-2 常用函数的拉氏变换和z 变换表 序 号 拉氏变换()E s 时间函数()e t Z 变换()E s 1 1 δ(t) 1 2 Ts e --11 ∑∞ =-=0 )()(n T nT t t δδ 1 -z z 3 s 1 )(1t 1 -z z 4 2 1s t 2 )1(-z Tz 5 3 1s 2 2t 3 2 )1(2)1(-+z z z T 6 11+n s !n t n )(!)1(lim 0aT n n n a e z z a n -→-??- 7 a s +1 at e - aT e z z -- 8 2 )(1a s + at te - 2 )(aT aT e z Tze --- 9 ) (a s s a + at e --1 ) )(1()1(aT aT e z z z e ----- 10 ) )((b s a s a b ++- bt at e e --- bT aT e z z e z z ----- 11 2 2ωω +s t ωsin 2 sin 2cos 1 z T z z T ωω-+ 12 2 2ω+s s t ωcos 2 (cos )2cos 1 z z T z z T ωω--+ 13 22)(ω ω ++a s t e at ωsin - 22sin 2cos aT aT aT ze T z ze T e ωω----+ 14 2 2)(ω+++a s a s t e at ωcos - 222cos 2cos aT aT aT z ze T z ze T e ωω-----+ 15 a T s ln )/1(1- T t a / a z z -

计算机控制系统知识点

(一)基本概念 第一章 1、什么是计算机控制系统?与传统的控制系统相比,计算机控制系统的优点是什么? 答:计算机控制系统:用计算机代替常规控制系统中的模拟控制器对系统进行控制的系统。 优点:具有精度高速度快、存储容量大和逻辑判断功能,看完实现高级复杂的控制方法,获得快速静谧的控制效果。 2、简述计算机控制系统的硬件组成和各自的功能。 答:计算机控制系统的硬件一般由主机、接口和输入/输出通道、通用外部设备、执行机构、检测元件、仪表、操作台等部分组成。 主机:采用一台或多台计算机,通过接口和I/O口通道,接收检测设备传来的信息并向控制系统的各个部件发出命令,同时计算机对系统的各个参数进行巡回检测、数据处理、控制计算、分析报警、逻辑判断等。 接口与I/O通道:主机与被控对象之间进行信息交换的纽带。 通用外部设备:扩大计算机的功能,是计算机系统与操作人员的交互界面,用来完成信息的记录、存储、显示、打印、传送。 检测元件、仪表、执行机构:检测元件和仪表用来测量生产对象的某些参数,并将非电量的被测参数转换为电量表示;执行机构接受CPU的命令使被控对象完成规定的控制动作。 操作台:用来实现人机之间的交互功能。 3、计算机控制系统应当有哪些主要特征? 答:1.实时性 2.良好的输入/输出能力 3.标准化和系列化 4.模块化的系统结构 5.可靠性(平均无故障时间、抗干扰能力强、具有定时自动启动功能和硬件自检功能) 4、计算机控制系统大致可分为哪几类?简述各类计算机控制系统的结构和特点。 答:计算机控制系统大致可分为以下五类: 1)数据采集系统(DAS,Data Acquision System) 2)直接数字控制系统(DDC,Direct Digital Control) 3)计算机监督系统(SCC,Supervisory Computer Control) 4)分布式控制系统(DCS,Distributed Control System) 5)现场总线控制系统(FCS,Fieldbus Control System) 1)数据采集系统简称:DAS 计算机只对控制系统的参数进行采集、加工和分析处理,并将处理后的数据输出。操作人员根据输出的数据,对生产过程出现的问题进行处理,计算机不直接参与生产过程的控制,该系统结构简单,安全可靠。

(完整版)基于matlab的Z变换与反Z变换

《数字信号处理》 一、课程设计的目的及基本要求: 1. 巩固所学的理论知识。 2.提高综合运用所学理论知识独立分析和解决问题的能力。 3. 更好地将理论与实践相结合。 4.掌握信号分析与处理的基本方法与实现。 5.学习并使用Matlab 语言进行编程实现课题要求。 二、课程设计内容 1、 学习Matlab 软件及应用 2、 学习并研究信号分析与处理课题有关理论 3、利用Matlab 编程,完成相应的信号分析与处理课题 4、写出课程设计报告,打印程序,给出运行结果 (一) 实验目的 (二) 使用ztrans,iztrans 函数分别求出离散时间信号的Z 变换和逆Z 变换的结果,并用pretty 函数进行结果美化。编写函数时养成良好的注释习惯,有利于对函数的理解。复习MATLAB 的基本应用,如:help,可以帮助查询相关的函数的使用方法,巩固理论知识中的离散时间信号的传递函数与二次项式之间的转换。 实验项目一Z 变换 (1)求)(])31()21[()(n u n x n n += Z 变换 clear syms n f=0.5^n+(1/3)^n; %定义离散信号 F=ztrans(f) %z 变换 pretty(F); 运算结果

F (2)4 )(n n x = Z 变换 clear syms n f=n^4; %定义离散信号 F=ztrans(f) %Z 变换 pretty(F) 运算结果 (3))sin()(b an n x += Z 变换 clear syms a b n f = sin(a*n+b) %定义离散信号 F=ztrans(f) %Z 变换 pretty(F) 运算结果

附表A-2 常用函数的拉氏变换和z变换表

附录A拉普拉斯变换及反变换1.拉氏变换的基本性质 附表A-1 拉氏变换的基本性质 419

2.常用函数的拉氏变换和z变换表 附表A-2 常用函数的拉氏变换和z变换表 420

421 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式,即 11 10111) ()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++== ---- (m n >) 式中,系数n n a a a a ,,...,,110-和011,,,,m m b b b b - 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 (1)0)(=s A 无重根:这时,F(s)可展开为n 个简单的部分分式之和的形式,即 ∑ =-= -+ +-+ +-+ -= n i i i n n i i s s c s s c s s c s s c s s c s F 1 2 21 1)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根;i c 为待定常数,称为()F s 在i s 处的留数,可按下列两式计算:lim ()()i i i s s c s s F s →=- (F-2) 或 i s s i s A s B c ='= ) ()( (F-3) 式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数为 []?? ????-==∑=--n i i i s s c L s F L t f 11 1)()(=1i n s t i i c e =∑ (F -4) (2)0)(=s A 有重根:设0)(=s A 有r 重根1s ,F(s)可写为

信号与系统基础知识

1文档收集于互联网,如有不妥请联系删除. 第1章 信号与系统的基本概念 1.1 引言 系统是一个广泛使用的概念,指由多个元件组成的相互作用、相互依存的整体。我们学习过“电路分析原理”的课程,电路是典型的系统,由电阻、电容、电感和电源等元件组成。我们还熟悉汽车在路面运动的过程,汽车、路面、空气组成一个力学系统。更为复杂一些的系统如电力系统,它包括若干发电厂、变电站、输电网和电力用户等,大的电网可以跨越数千公里。 我们在观察、分析和描述一个系统时,总要借助于对系统中一些元件状态的观测和分析。例如,在分析一个电路时,会计算或测量电路中一些位置的电压和电流随时间的变化;在分析一个汽车的运动时,会计算或观测驱动力、阻力、位置、速度和加速度等状态变量随时间的变化。系统状态变量随时间变化的关系称为信号,包含了系统变化的信息。 很多实际系统的状态变量是非电的,我们经常使用各种各样的传感器,把非电的状态变量转换为电的变量,得到便于测量的电信号。 隐去不同信号所代表的具体物理意义,信号就可以抽象为函数,即变量随时间变化的关系。信号用函数表示,可以是数学表达式,或是波形,或是数据列表。在本课程中,信号和函数的表述经常不加区分。 信号和系统分析的最基本的任务是获得信号的特点和系统的特性。系统的分析和描述借助于建立系统输入信号和输出信号之间关系,因此信号分析和系统分析是密切相关的。 系统的特性千变万化,其中最重要的区别是线性和非线性、时不变和时变。这些区别导致分析方法的重要差别。本课程的内容限于线性时不变系统。 我们最熟悉的信号和系统分析方法是时域分析,即分析信号随时间变化的波形。例如,对于一个电压测量系统,要判断测量的准确度,可以直接分析比较被测的电压波形)(in t v (测量系统输入信号)和测量得到的波形)(out t v (测量系统输出信号),观察它们之间的相似程度。为了充分地和规范地描述测量系统的特性,经常给系统输入一个阶跃电压信号,得到系统的阶跃响应,图1-1是典型的波形,通过阶跃响应的电压上升时间(电压从10%上升至90%的时间)和过冲(百分比)等特征量,表述测量系统的特性,上升时间和过冲越小,系统特性越好。其中电压上升时间反映了系统的响应速度,小的上升时间对应快的响应速度。如果被测电压快速变化,而测量系统的响应特性相对较慢,则必然产生较大的测量误差。 信号与系统分析的另一种方法是频域分析。信号频域分析的基本原理是把信号分解为不同频率三角信号的叠加,观察信号所包含的各频率分量的幅值和相位,得到信号的频谱特性。图1-2是从时域和频域观察一个周期矩形波信号的示意图,由此可以看到信号频域和时域的关系。系统的频域分析是观察系统对不同频率激励信号的响应,得到系统的频率响应特性。频域分析的重要优点包括:(1)对信号变化的快慢和系统的响应速度给出定量的描述。例如,当我们要用一个示波器观察一个信号时,需要了解信号的频谱特性和示波器的模拟带宽,当示波器的模拟带宽能够覆盖被测信号的频率范围时,可以保证测量的准确。(2)为线性系统分析提供了一种简化的方法,在时域分析中需要进行的微分或积分运算,在频域分析中简化成了代数运算。

z变换的基本知识

z 变换基本知识 1 z 变换定义 连续系统一般使用微分方程、拉普拉斯变换的传递函数和频率特性等概念进行研究。一个连续信号()f t 的拉普拉斯变换()F s 是复变量s 的有理分式函数;而微分方程通过拉普拉斯变换后也可以转换为s 的代数方程,从而可以大大简化微分方程的求解;从传递函数可以很容易地得到系统的频率特征。因此,拉普拉斯变换作为基本工具将连续系统研究中的各种方法联系在一起。计算机控制系统中的采样信号也可以进行拉普拉斯变换,从中找到了简化运算的方法,引入了z 变换。 连续信号()f t 通过采样周期为T 的理想采样开关采样后,采样信号*()f t 的表达式为 0*()()()(0)()()()(2)(2)k f t f kT t kT f t f T t T f T t T δδδδ∞ ==-=+-+-+∑ (3)(3)f T t T δ-+L (1) 对式(1)作拉普拉斯变换 23*()[*()](0)()(2)(3)sT sT sT F s L f t f f T e f T e f T e ---==++++L ()e ksT k f kT ∞ -==∑ (2) 从式(2)可以看出,*()F s 是s 的超越函数,含有较为复杂的非线性关系,因此仅用拉普拉斯变换这一数学工具,无法使问题简化。为此,引入了另一个复变量“z ”,令 e sT z = (3) 代入式(2)并令1 ln *() ()s z T F x F z ==,得

1 2 ()(0)()(2)()k k F z F f T z f T z f kT z ∞ ---==+++=∑L (4) 式(4)定义为采样信号*()f t 的z 变换,它是变量z 的幂级数形式,从而有利于问题的简化求解。通常以()[*()]F z L f t =表示。 由以上推导可知,z 变换实际上是拉普拉斯变换的特殊形式,它是对采样信号作e sT z =的变量置换。 *()f t 的z 变换的符号写法有多种,如 [*()],[()],[()],[*()],()Z f t Z f t Z f k Z F s F z 等,不管括号内写的是连续信号、 离散信号还是拉普拉斯变换式,其概念都应该理解为对采样脉冲序列进行z 变换。 式(1),式(2)和式(3)分别是采样信号在时域、s 域和z 域的表达式,形式上都是多项式之和,加权系数都是()f kT ,并且时域中的()t kT s δ-、域中的 e ksT -及z 域中的k z -均表示信号延迟了k 拍,体现了信号的定时关系。 在实际应用中,采样信号的z 变换在收敛域内都对应有闭合形式,其表达式是z 的有理分式 11101110 () ()m m m n n n K z d z d z d F z z C z C z C ----++++= ++L L ++ m n ≤ (5) 或1z -的有理分式 1111011110(1) ()1l m m m n n n Kz d z d z d z F z C z C z C z ---+----+--++= ++++L L ++ l n m =- (6) 其分母多项式为特征多项式。在讨论系统动态特征时,z 变换写成零、极点形式更为有用,式(5)可改写为式(7) 11()() ()()()()() m n K z z z z KN z F z D z z p z p --= =--L L m n ≤ (7) 2 求z 变换的方法 1)级数求和法

第二章 液压传动基础知识.

第2章液压流体力学基础 本章介绍有关液压传动的流体力学基础知识,包括液体静力学方程、连续性方程、伯努利方程、动量方程的应用,压力损失、小孔流量的计算以及压力冲击现象等。 2.1 液体静力学 液压传动是以液体作为工作介质进行能量传递的,因此要研究液体处于相对平衡状态下的力学规律及其实际应用。所谓相对平衡是指液体内部各质点间没有相对运动,至于液体本身完全可以和容器一起如同刚体一样做各种运动。因此,液体在相对平衡状态下不呈现粘性,不存在切应力,只有法向的压应力,即静压力。本节主要讨论液体的平衡规律和压强分布规律以及液体对物体壁面的作用力。 2.1.1 液体静压力及其特性 作用在液体上的力有两种类型:一种是质量力,另一种是表面力。 质量力作用在液体所有质点上,它的大小与质量成正比,属于这种力的有重力、惯性力等。单位质量液体受到的质量力称为单位质量力,在数值上等于重力加速度。 表面力作用于所研究液体的表面上,如法向力、切向力。表面力可以是其他物体(例如活塞、大气层)作用在液体上的力;也可以是一部分液体间作用在另一部分液体上的力。对于液体整体来说,其他物体作用在液体上的力属于外力,而液体间作用力属于内力。由于理想液体质点间的内聚力很小,液体不能抵抗拉力或切向力,即使是微小的拉力或切向力都会使液体发生流动。因为静止液体不存在质点间的相对运动,也就不存在拉力或切向力,所以静止液体只能承受压力。 所谓静压力是指静止液体单位面积上所受的法向力,用p表示。 液体内某质点处的法向力ΔF对其微小面积ΔA的极限称为压力p,即: p=limΔF/ΔA (2-1) ΔA→0 若法向力均匀地作用在面积A上,则压力表示为: p=F/A (2-2) 式中:A为液体有效作用面积;F为液体有效作用面积A上所受的法向力。 静压力具有下述两个重要特征: (1)液体静压力垂直于作用面,其方向与该面的内法线方向一致。 (2)静止液体中,任何一点所受到的各方向的静压力都相等。 2.1.2 液体静力学方程 图2-1静压力的分布规律 静止液体内部受力情况可用图2-1来说明。设容器中装满液体,在任意一点A处取一微小面积dA,该点距液面深度为h,距坐标原点高度为Z,容器液平面距坐标原点为Z0。为了

信号与系统基础知识

《信号与系统》基础知识学习指导 第一章 信号与系统的基本概念 1.单位冲激信号的脉冲幅度为 ,脉冲强度为 ,持续时间为 。 2.单位抽样序列 (是/不是)奇异函数。 3.离散信号两个序号之间的序列值为 (零/无定义)。 4.虚指数序列的低频位置位于π的 倍附近,高频位置位于π的 倍附近。 5.虚指数序列的谐波个数为 (有限/无限)多个。 6.线性系统的三个性质为 、 和 。 7.系统的输出是由输入引起的,它的输出不能领先于输入,这种性质称为 。 8.若系统输入有界输出也有界,则系统满足 性。 9.系统输入输出关系为)()(t y t x →,若其满足)()(00t t y t t x -→-,则其具有 性。 10.积分t t t t t d )1()835(2 426?---+++δ的结果为 。 11.普通函数)(t x 与)(0t t -δ的乘积为 。 第二章 连续时间系统的时域分析 1.连续时间系统的时域数学模型为 。 2.系统的微分方程的齐次解为系统的 响应,特解为系统的 响应。 3.系统的单位冲激响应和阶跃响应都属于系统的 (零输入/零状态/全)响应。 4.单位冲激响应是单位阶跃响应的 (微分/积分)。 5.因果的LTI 系统的单位冲激响应)(t h 应满足的条件是 。 6.稳定的LTI 系统的单位冲激响应)(t h 应满足的条件是 。 7.系统的单位冲击响应)(t h 与输入)(t x 的卷积)()(t h t x *代表系统的 响应。 8.两个子系统)(1t h 和)(2t h 串联组成的系统的单位冲激响应为 。 9.两个子系统)(1t h 和)(2t h 并联组成的系统的单位冲激响应为 。 10.普通函数)(t x 与)(0t t -δ的卷积为 。 11.恒等系统的单位冲激响应为 。 12.积分系统的单位冲激响应为 。 13.微分系统的单位冲激响应为 。 第三章 离散时间系统的时域分析 1.离散时间系统的时域数学模型为 。 2.系统的单位抽样响应和阶跃响应都属于系统的 (零输入/零状态/全)响应。 3.因果的LTI 系统的单位抽样响应][n h 应满足的条件是 。 4.稳定的LTI 系统的单位抽样响应][n h 应满足的条件是 。 5.系统的单位抽样响应][n h 与输入][n x 的卷积和][][n h n x *代表系统的 响应。 6.两个子系统][1n h 和][2n h 串联组成的系统的单位冲激响应为 。 7.两个子系统][1n h 和][2n h 并联组成的系统的单位冲激响应为 。 8.若]3[][],2[][-=-=n n h n n x δδ,则][][n h n x *为 。 第四章 连续时间傅立叶变换 1.偶对称的周期信号的傅里叶级数中只包含直流项和 项。 2.奇对称的周期信号的傅里叶级数中只包含 项。 3.偶半波对称的周期信号的傅里叶级数中只包含 次谐波。 4.奇半波对称的周期信号的傅里叶级数中只包含 次谐波。

常用函数的拉氏变换和z变换表

附录A 拉普拉斯变换及反变换

… 3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式 11 10 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++==---- (m n >) 式中系数n n a a a a ,,...,,110-,m m b b b b ,,,110- 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 ① 0)(=s A 无重根 这时,F(s)可展开为n 个简单的部分分式之和的形式。 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根。i c 为待定常数,称为F(s)在i s 处的留数,可按下式计算: )()(lim s F s s c i s s i i -=→ (F-2) 或 @ i s s i s A s B c ='= )() ( (F-3)

式中,)(s A '为)(s A 对s 的一阶导数。根据拉氏变换的性质,从式(F-1)可求得原函数 []??????-==∑=--n i i i s s c L s F L t f 11 1 )()(=t s n i i i e c -=∑1 (F-4) ② 0)(=s A 有重根 设0)(=s A 有r 重根1s ,F(s)可写为 ()) ()()() (11n r r s s s s s s s B s F ---= + = n n i i r r r r r r s s c s s c s s c s s c s s c s s c -++-++-+-++-+-++-- 11 111 111)()()( 式中,1s 为F(s)的r 重根,1+r s ,…, n s 为F(s)的n-r 个单根; 其中,1+r c ,…, n c 仍按式(F-2)或(F-3)计算,r c ,1-r c ,…, 1c 则按下式计算: )()(lim 11 s F s s c r s s r -=→ )]()([lim 111 s F s s ds d c r s s r -=→- )()(lim !11)() (1s F s s ds d j c r j j s s j r -=→- (F-5) )()(lim )!1(11)1() 1(11s F s s ds d r c r r r s s --=--→ 原函数)(t f 为 [])()(1 s F L t f -= ????? ?-++-++-+-++-+-=++---n n i i r r r r r r s s c s s c s s c s s c s s c s s c L 11 111 1111)()()( t s n r i i t s r r r r i e c e c t c t r c t r c ∑+=---+?? ????+++-+-=112211 1 )!2()!1( (F-6)

z变换和离散时间系统z域分析-基本要求和知识要点

z 变换、离散时间系统的z 域分析 一、基 本 要 求 通过本章的学习,学生应该理解z 变换的定义、收敛域(ROC )的概念;掌握z 变换的性质,z 变换及逆z 变换的计算方法,以及离散系统的z 域分析法。深刻理解系统函数 )(z H 及)(z H 与离散系统因果性、稳定性的关系,离散系统的频率响应)(jw e H 。能绘 制系统的幅频响应、相频响应曲线。 二、知 识 要 点 1、z 变换 (1) Z 变换定义 (),z X ()[()]()z n n n x n z z x n x n z ξ∞--∞ ∞ -=???==? ???∑∑双边变换,单边变换 若()()()x n x n u n =,则 ()x n 的单边z 变换()x n =的双边z 变换 (2)z 变换的收敛域 ①一般地,双边序列()x n 的X ()z ,其收敛域为z 平面上以原点为中心的圆环内部,即 12R R x x z <<; ②有限长序列()x n 的X ()z ,其收敛域为整数个z 平面,即0z <<∞,也包括0z =或 z =∞; ③右边序列()x n 的X ()z ,其收敛域为某圆的外部,即1R x z <<∞,也可能包括 z =∞; ④左边序列()x n 的X ()z ,其收敛域为某圆的内部,即20R x z <<,可能包括0z =; (3)典型序列的z 变换 [()]1n ξδ=, 0z ≤≤∞

[()] 1 z u n z ξ=-, 1z > 2 [()] (1) z n u n z ξ=-, 1z > [()]u z a u n z a ξ=-, z a > 00 [()] n jw jw z e u n z e ξ=-, 0 1jw z e >= (4)逆z 变换 ①围线积分法(留数法) 1 ()R e s [X (z )z ] m n z z m x n -== ∑ 式中R e s 表示极点的留数,m z 为1X (z)z n -的极点。 计算s 阶极点m z 的留数公式为 1 1 11 1 R e s[X (z)z ][()()](1)!m m s n s n z z m s z z d z z X z z s d z ---=-=???? =-??-???? ②幂级数展开法(长除法) ()X (z)= () N z D z ()N z 除以()D z ,将F(z)展开成1 z -的幂级数。 注意:若原序列()x n 为右边序列,则将()N z 、()D z 按z 的降幂排序;若原序列()x n 为左边序列,则将()N z 、()D z 按z 的升幂排列。 ③部分分式展开法 当X (z)为z 的有理函数时,可先将 ()X z z 展成一些简单常见的部分分式之和,然后 每个分式乘以z ,再对各个分式求逆变换,最后相加即可得()x n 。 (5)z 变换的基本性质 设[()]()x n X z ξ= , 12x x R z R << [()]()y n y z ξ= , 12y y R z R << ① 线性

常用傅里叶_拉普拉斯_Z变换表

时域信号 弧频率表示的 傅里叶变换 注释 1 线性 2 时域平移 3 频域平移, 变换2的频域对应4 如果值较大,则会收缩 到原点附近,而会扩 散并变得扁平. 当 | a | 趋向 无穷时,成为 Delta函数。 5 傅里叶变换的二元性性质。通过 交换时域变量和频域变量 得到. 6 傅里叶变换的微分性质 7 变换6的频域对应 8 表示和的卷积—这

附录A 拉普拉斯变换及反变换 1.拉氏变换的基本性质 2.常用函数的拉氏变换和z变换表 附表A-2 常用函数的拉氏变换和z变换表

3. 用查表法进行拉氏反变换 用查表法进行拉氏反变换的关键在于将变换式进行部分分式展开,然后逐项查表进行反变换。设)(s F 是s 的有理真分式,即 1110 111)()()(a s a s a s a b s b s b s b s A s B s F n n n n m m m m ++++++++= =---- (m n >) 式中,系数n n a a a a ,,...,,110-和011,,,,m m b b b b - 都是实常数;n m ,是正整数。按代数定理可将)(s F 展开为部分分式。分以下两种情况讨论。 (1)0)(=s A 无重根:这时,F(s)可展开为n 个简单的部分分式之和的形式,即 ∑=-=-++-++-+-=n i i i n n i i s s c s s c s s c s s c s s c s F 122 11)( (F-1) 式中,n s s s ,,,21 是特征方程A(s)=0的根;i c 为待定常数,称为()F s 在i s 处的留数,可按下列两式计算:

相关文档
最新文档