21 广义特征值与极大极小原理

21 广义特征值与极大极小原理
21 广义特征值与极大极小原理

第二十一讲 广义特征值与极小极大原理

一、 广义特征值问题

1、定义:设A 、B 为n 阶方阵,若存在数λ,使得方程Ax Bx =λ存在非零解,则称λ为A 相对于B 的广义特征值,x 为A 相对于B 的属于广义特征值λ的特征向量。

● 是标准特征值问题的推广,当B =I (单位矩阵)时,广义特征值问题退化为标准特征值问题。 ● 特征向量是非零的 ● 广义特征值的求解

()A B x 0-λ= 或者 ()B A x 0λ-=

→ 特征方程 ()det A B 0-λ=

求得λ后代回原方程Ax Bx =λ可求出x

本课程进一步考虑A 、B 厄米且为正定矩阵的情况。 2、等价表述

(1) B 正定,1B -存在 →1B Ax x -=λ,广义特征值问题化为了标准

特征值问题,但一般来说,1B A -一般不再是厄米矩阵。 (2) B 厄米,存在Cholesky 分解,H B GG =,G 满秩 H Ax GG x =λ 令H G x y = 则 ()

1

1

H G A G

y y --=λ 也成为标准特征值问题。

()

1

1

H G A G

--为厄米矩阵,广义特征值是实数,可以按大小顺序

排列12n λ≤λ≤≤λ ,一定存在一组正交归一的特征向量,即存在

12n y ,y ,y 满足

()

1

1

H i i G A G

y y --=λ

H i j ij

1

i j

y y 0i j

=?=δ=?≠? 还原为()

1

H

i i x G y -= (i=1,2, ,n),则

(

)()

H H H

H i

j i

j i

j ij 1

i j

y y x G G x x Bx 0

i j

=?===δ=?

≠? (带权正交)

二、 瑞利商

A 、

B 为n 阶厄米矩阵,且B 正定,称()()H H x Ax

R x x 0x Bx =≠为A

相对于B 的瑞利商。

12n x ,x ,x 线性无关,所以,n x C ?∈,存在12n a ,a ,a C ∈ ,使得 n

i i i 1x a x ==∑

H

n

n n n

2H

H

i i i j j j i j i i 1j 1i,j 1

i 1x Bx a x B a x a a x Bx a ====????=== ? ?????∑∑∑∑

n n n

2

H

H

H i i j i

j j i

i j i i i,j 1

i,j 1

i 1

x Ax a a x Ax a a x Bx a =====λ=λ∑∑∑

∴ ()n

2

i i

i 1n

2

i

i 1

a R x a ==λ=

∑∑

●()1x 0

minR x ≠=λ ()n x 0

maxR x ≠=λ

证明:()()()()()

H

H

H

H kx A kx x Ax R x x Bx kx B kx == k 为非零常数 可取1

k x

=, kx 1=

∴ ()H H

x 1

x Ax

R x x Bx

== (闭区域)

当1x x =或()i a 0i 2,3,,n == 时,()1R x =λ i 1λ≥λ ()n

2i i 11

1n

2i

i 1a R x a

==≥λ=λ∑∑

()1x 0

minR x ≠=λ

另一方面,i n λ≤λ ()n

2i i 1n n n

2i

i 1a R x a

==≤λ=λ∑∑

∴ ()n x 0

maxR x ≠=λ

[证毕] 当B =I 时,标准特征值问题 A x x =λ (H A A =)

12n

H

i j ij

x x λ≤λ≤≤λ??=δ? 则 ()H 1H x 0x Ax min x x ≠=λ ()H n H x 0x Ax

max x x

≠=λ

进一步分析可得

()

12x 0

a 0

minR x ≠==λ ()

n n 1x 0

a 0

max R x -≠==λ

()

12k k 1x 0

a a a 0

minR x +≠=====λ ()

n n 1n k n k 1x 0

a a a 0

max R x ----≠=====λ

定理1.设{}r r 1s L span x ,x ,,x += ()r r 1s +λ≤λ≤≤λ ,则 ()r x 0

x L

minR x ≠∈=λ ()s x 0x L

max R x ≠∈=λ

这一结果不便于应用,希望对上述结果进行改造,改造成不依赖于i x 的一种表达方式。

1a 0=和n a 0=的情况均对应于x 在(n-1)维的子空间内变动,x 在L 中变动是在一个(s-r+1)维子空间中变化。

一般的,x 在n C 的(n-1)维子空间n 1V -中变动时,

()n 1

2x 0x V min R x -≠∈≤λ ()n 1

n 1x 0x V max R x --≠∈≥λ

即,对于不同的n 1V -,()R x 的最小值及最大值有可能不同,其中各个最小值中最大者为2λ,各个最大值中的最小者为n 1-λ

()n n 1n 12x 0

V C x V max min R x --≠∈∈??

=λ?????? ()n n 1n 1n 1x 0V C x V min max R x ---≠∈∈??=λ??????

定理2. 设k V 是n C 的一个k 维子空间,则

()n k k n k 1x 0

V C x V max minR x -+≠∈∈??

=λ?????? ()n k k k x 0V C x V min

max R x ≠∈∈??=λ??????

以上两式称为广义特征值的极小极大原理。 ● B =I 时,标准特征值问题同样存在上述关系。

● 矩阵奇异值问题:()()

2

H

A A A ??σ=λ??

(非零) ()()

2H H 2

2H

2

x A A x

Ax R x x x

x

=

=

n k k 2n k 1x 0V C x V 2Ax max min x -+≠∈∈??σ=??????

n

k k 2k x 0V C x V 2Ax min max x ≠∈∈??

σ=??????

几种数学计算方法的比较

有限元法,有限差分法和有限体积法的区别 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。 构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有Lagrange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。 对于有限元方法,其基本思路和解题步骤可归纳为 (1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值

电磁学主要公式、定理、定律

电磁学主要公式、定理、定律 一. 电场 1.库仑定律:212 q q F K r = 2.电场强度定义式:F E q = 3.点电荷电场强度决定式:2 Q E K r = 4.电势定义式:P E q ?= 5.两点间电势差:AB A B U ??=- 6.场强与电势差的关系式:AB U Ed = (只适用于匀强电场) 7.电场力移动电荷做功:AB W U q =? 8平行板电容器电容定义式:Q C U = (U 就是电势差AB U ) 9.平行板电容器电容决定式:4S C Kd επ= ( 式中,ε为介质的介电常数,S 为两板正对面积, K 为静电力恒量,d 为板间距离) 10.带电粒子在匀强电场中被加速:21 2mv qU = 11.带电粒子在匀强电场中偏转:2 2 02qL U y mv d = (U 为两板间电压) 二.恒定电流 1.电流强度定义式:q I t = 2.电流微观表达式:I nqSv = (其中n 为单位 体积内 的自由 电荷数,q 为每个电荷的电量值,S 为导体的横截面积,v 为 自由电荷定向移动速率。) 3.电动势定义式:W E q = (W 为非静电力移送电荷做的功,q 为被移送的电荷量) 4.导线电阻决定式:L R S ρ = ( 式中ρ为电阻率,由导线材料、温度决定,L 为导线长,S

为导线横截面积。) 5.欧姆定律:U I R = (只适用于金属导电和电解液导电的纯电阻电路,对含电动机、电解槽 的非纯电阻电路,气体导电和半导体导电不适用) 6.串联电路: (1) 总电阻 12......R R R =++总 (2) 电流关系 123.....I I I I === (3) 电压关系 123......U U U U =++总 7.并联电路: (1)总电阻 123 1111 ......R R R R =+++总 ①只有两个电阻并联时用 12 12 R R R R R = +总 更方便快捷; ②若是n 个相同的电阻并联。可用1= R R n 总 (2) 电流关系 123=......I I I I +++总 (3) 电压关系 123=......U U U U ===总 8.电功的定义式:W qU UIt == ( 在纯电阻电路中 ,2 2 U W UIt I Rt t R ===) 9.电功率定义式:W P UI t == ( 在纯电阻电路中 , 22 U P I R R ==) 10.焦耳定律(电热计算式):2Q I Rt = 11.电热与电功的关系 : (1)在纯电电路中,W Q = (2)在非纯电阻电路中 W qU UIt == >Q 2I Rt = 12.电功率定义式:W P t = 13.电功率通用式:W P t = 和 P UI = (对纯电阻电路,22 W U P UI I R t R ====) 14.闭合电路欧姆定律:E I R r =+ (变形:E U U =+外内 ;E IR Ir =+; E U Ir =+外) 三. 磁场

物理电磁学论文

物理电磁学论文 现代人的生活已经离不开电,与此同时,电磁也充斥着我们生活中的每一个角落。随着电磁学,电磁技术的发展,我们已经离不开它了,在越来越多的领域,越来越多的角落,电磁学都在发挥着它的作用。1电磁对家庭输电的影响 现在人们越来越关注周围的生活环境了,所谓的污染已经不再是我们的眼睛所能看到的垃圾,耳朵听到的噪声,鼻子闻到的恶臭,还有我们看不见,摸不着的电磁辐射。随着科学技术的发展和信息社会的到来,我们的居室内不仅有冰箱,彩色电视机,洗衣机,微波炉和空调机等家用电器,而且不少家庭中还有计算机,传真机等多种信息交流的工具,相应地,进入每个家庭的输电线强磁场对人体也特别有害处。 摘要:介绍了电磁学计算方法的研究进展和状态,对几种富有代表性的算法做了介绍,并比较了各自的优势和不足,包括矩量法、有限元法、时域有限差分方法以及复射线方法等。 关键词:矩量法;有限元法;时域有限差分方法;复射线方法 1 引言 1864年Maxwell在前人的理论(高斯定律、安培定律、法拉第定律和自由磁极不存在)和实验的基础上建立了统一的电磁场理论,并用数学模型揭示了自然界一切宏观电磁现象所遵循的普遍规律,这就是著名的Maxwell方程。在11种可分离变量坐标系求解Maxwell方程组或者其退化形式,最后得到解析解。这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。对于不规则形状或者任意形状边界则需要比较高的数学技巧,甚至无法求得解析解。20世纪60年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法发展起来,并得到广泛地应用,相对于经典电磁理论而言,数值方法受边界形状的约束大为减少,可以解决各种类型的复杂问题。但各种数值计算方法都有优缺点,一个复杂的问题往往难以依靠一种单一方法解决,常需要将多种方法结合起来,互相取长补短,因此混和方法日益受到人们的重视。 2 电磁场数值方法的分类 电磁学问题的数值求解方法可分为时域和频域2大类。频域技术主要有矩量法、有限差分方法等,频域技术发展得比较早,也比较成熟。时域法主要有时域差分技术。时域法的引入是基于计算效率的考虑,某些问题在时域中讨论起来计算量要小。例如求解目标对冲激脉冲的早期响应时,频域法必须在很大的带宽内进行多次采样计算,然后做傅里叶反变换才能求得解答,计算精度受到采样点的影响。若有非线性部分随时间变化,采用时域法更加直接。另外还有一些高频方法,如GTD,UTD和射线理论。 从求解方程的形式看,可以分为积分方程法(IE)和微分方程法(DE)。IE和DE相比,有如下特点:IE法的求解区域维数比DE法少一维,误差限于求解区域的边界,故精度高;IE法适合求无限域问题,DE法此时会遇到网格截断问题;IE法产生的矩阵是满的,阶数小,DE法所产生的是稀疏矩阵,但阶数大;IE法难以处理非均匀、非线性和时变媒质问题,DE 法可直接用于这类问题〔1〕。 3 几种典型方法的介绍 有限元方法是在20世纪40年代被提出,在50年代用于飞机设计。后来这种方法得到发展并被非常广泛地应用于结构分析问题中。目前,作为广泛应用于工程和数学问题的一种通用方法,有限元法已非常著名。

各种计算电磁学方法比较和仿真软件

各种计算电磁学方法比较和仿真软件 各种计算电磁学方法比较和仿真软件微波EDA 仿真软件与电磁场的数值算法密切相关,在介绍微波EDA 软件之前先简要的介绍一下微波电磁场理论的数值算法。所有的数值算法都是建立在Maxwell 方程组之上的,了解Maxwell 方程是学习电磁场数值算法的基础。计算电磁学中有众多不同的算法,如时域有限差分法(FDTD )、时域有限积分法(FITD )、有限元法(FE)、矩量法(MoM )、边界元法(BEM )、谱域法(SM)、传输线法(TLM )、模式匹配法(MM )、横向谐振法(TRM )、线方法(ML )和解析法等等。在频域,数值算法有:有限元法( FEM -- Finite Element Method)、矩量法(MoM -- Method of Moments ),差分法( FDM -- Finite Difference Methods ),边界元法( BEM --Boundary Element Method ),和传输线法 ( TLM -Transmission-Line-matrix Method )。在时域,数值算法有:时域有限差分法( FDTD - Finite Difference Time Domain ),和有限积分法( FIT - Finite Integration Technology )。这些方法中有解析法、半解析法和数值方法。数值方法中又分零阶、一阶、二阶和高阶方法。依照解析程度由低到高排列,依次是:时域有限差分法(FDTD )、传输线法(TLM )、时域有限积分法(FITD )、有限元法(FEM )、矩量法(MoM )、线方法(ML )、边界元法(BEM )、谱域法(SM )、模式匹配法

计算电磁学入门基础介绍

计算电磁学入门基础介绍 一. 计算电磁学的重要性 在现代科学研究中,“科学试验,理论分析,高性能计算”已经成为三种重要的研究手段。在电磁学领域中,经典电磁理论只能在11 种可分离变量坐标系中求解麦克斯韦方程组或者其退化形式,最后得到解析解。解析解的优点在于: ①可将解答表示为己知函数的显式,从而可计算出精确的数值结果; ②可以作为近似解和数值解的检验标准; ③在解析过程中和在解的显式中可以观察到问题的内在联系和各个参数对数值结果所起的作用。 这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。当遇到不规则形状或者任意形状边界问题时,则需要比较复杂的数学技巧,甚至无法求得解析解。20 世纪60 年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法也迅速发展起来,并在实际工程问题中得到了广泛地应用,形成了计算电磁学研究领域,已经成为现代电磁理论研究的主流。简而言之,计算电磁学是在电磁场与微波技术学科中发展起来的,建立在电磁场理论基础上,以高性能计算机技术为工具,运用计算数学方法,专门解决复杂电磁场与微波工程问题的应用科学。相对于经典电磁理论分析而言,应用计算电磁学来解决电磁学问题时受边界约束大为减少,可以解决各种类型的复杂问题。原则上来讲,从直流到光的宽广频率范围都属于该学科的研究范围。近几年来,电磁场工程在以电磁能量或信息的传输、转换过程为核心的强电与弱电领域中显示了重要作用。 二. 电磁问题的分析过程 电磁工程问题分析时所经历的一般过程为: 三. 计算电磁学的分类 (1) 时域方法与谱域方法 电磁学的数值计算方法可以分为时域方法(Time Domain或TD)和频域方法(Frequeney Domain或FD)两大类。 时域方法对Maxwell方程按时间步进后求解有关场量。最著名的时域方法是时域有限差分法(Finite Difference Time Domain或FDTD)。这种方法通常适用于求解在外界激励下场

计算电磁学结课论文

《计算电磁学》学习心得 姓名:桑dog 学号: 班级: 联系方式:

前言 计算电磁学是科技的重要领域它的研究涉及到应用计算机求解电磁方程它的重要性基于麦克斯韦方程——唯一的可以描述小到亚原子大到天体尺度的所有物理现象的方程, 。而且, 麦克斯韦方程式对于结果拥有很强的预测能力: 对于一个复杂问题的麦克斯韦方程的解通常可以准确的预知实验结果。因此, 麦克斯韦方程的解对于提高我们对复杂系统之物理现象的洞察力和设计复杂系统的能力均有极大帮助所以, 成功求解麦克斯韦方程式拥有广泛的应用前景: 例如纳米技术, 电脑微电子电路, 电脑芯片设计, 光学, 纳米光学, 微波工程, 遥感, 射电天文学, 生物医学工程, 逆散射和成象等等。 这篇文章的安排如下:第一章介绍了计算电磁学的重要意义以及发展状况。第二章介绍了计算电磁学中解决问题的方法分类。第三章对主要的数值方法进行了简介。第四章展望了计算电磁学的发展趋势。

第1章计算电磁学的重要性 在现代科学研究中,“科学试验,理论分析,高性能计算”已经成为三种重要的研究手段[1]。在电磁学领域中,经典电磁理论只能在11 种可分离变量坐标系中求解麦克斯韦方程组或者其退化形式,最后得到解析解。解析解的优点在于: ●可将解答表示为己知函数的显式,从而可计算出精确的数值结果; ●可以作为近似解和数值解的检验标准; ●在解析过程中和在解的显式中可以观察到问题的内在联系和各个参数对数值 结果所起的作用。 这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题[2]。当遇到不规则形状或者任意形状边界问题时,则需要比较复杂的数学技巧,甚至无法求得解析解。20 世纪60 年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法也迅速发展起来,并在实际工程问题中得到了广泛地应用,形成了计算电磁学研究领域,已经成为现代电磁理论研究的主流。简而言之,计算电磁学是在电磁场与微波技术学科中发展起来的,建立在电磁场理论基础上,以高性能计算机技术为工具,运用计算数学方法,专门解决复杂电磁场与微波工程问题的应用科学。相对于经典电磁理论分析而言,应用计算电磁学来解决电磁学问题时受边界约束大为减少,可以解决各种类型的复杂问题。原则上来讲,从直流到光的宽广频率范围都属于该学科的研究范围。近几年来,电磁场工程在以电磁能量或信息的传输、转换过程为核心的强电与弱电领域中显示了重要作用。[3]

计算电磁学数值方法的探究

计算电磁学数值方法的探究 13208-2 许嘉晨 摘要:本文介绍了计算电磁学数值求解方法的研究进展和状态,对几种富有代表性的算法做了介绍,并比较了各自的优势和不足,其中包括矩量法、有限元法以及时域有限差分方法。关键词:电磁学数值求解、矩量法、有限元法、时域有限差分法。 1引言 计算电磁学是指基于麦克斯韦方程组,建立逼近实际问题的连续型数学模型,合理地利用理想化或工程化假设,准确地给出问题的定解条件(初始条件、边界条件),然后采用相应的数值计算方法,经离散化处理,将连续型数学模型转化为等价的离散型数学模型,应用有效的代数方程组解法,求解出该数学模型的数值解(离散解)。再经各种后处理过程,得出场域中任意点处的场强,或任意区域的能量、损耗分布,以及各类电磁参数值等,以达到理论分析、工程判断和优化设计等目的。对计算天线性能,电磁兼容,雷达散射截面和非自由空间的电波传播等问题具有深刻意义。本文将介绍计算电磁学的研究进展,并重点探究矩量法、有限元法以及时域有限差分方法的基本思路和特点。 2计算电磁学发展 1864年,Maxwell在前人理论和实验的基础上建立了统一的电磁场理论,并用数学模型揭示了自然界一切宏观电磁现象所遵循的普遍规律,这就是Maxwell方程组。笼统而言,所有的宏观电磁问题都可以归结为Maxwell 方程组在各种边界条件下的求解问题。从整个电磁理论发展的过程来看,可以大概地把它分为2个阶段。20世纪60年代以前可以称为经典电磁学阶段。在这个时期,电磁场理论和工程中的许多问题大多采用解析或渐进的方法进行处理,即在11种可分离变量的坐标系中求解Maxwell方程组或其退化形式,最后得到解析解。这种方法能够得到问题的准确解,而且计算效率比较高,但适用范围较窄,只能求解具有规则边界的简单问题,对任意形状的边界则无能为力或需要很高的数学技巧。20世纪60年代以后以基于积分方程的矩量法和基于微分方程的差分类方法为代表的数值计算方法的运用标志着计算电磁学阶段的到来,当然这也得益于电子计算机的迅速发展,使大型数值计算成为可能。相对于经典电磁学而言,数值方法几乎不再受限于边界的约束,能解决各种类型的复杂问题。经过几十年世界各国学者的研究和发展,计算电磁学已成为现阶段电磁理论的主要组成部分。当然这种划分也不是绝对的,经典电磁理论的研究也一直在进行着,它是计算电磁学的理论基础,没有它,计算电磁学也不可能得到蓬勃的发展。 计算电磁学之所以能取代经典电磁学而成为现代电磁理论研究的主流,主要得益于计算机硬件和软件的飞速发展以及计算数学的丰富成果。计算机内存容量不断增大,计算速度不断提高,软件功能不断强大,计算方法不断改进,再加上并行计算机的使用,使得我们能解决的电磁问题越来越大,越来越复杂,因此计算电磁学已经被广泛应用于诸如天线、雷达、电磁兼容等各种电磁领域,具有巨大的实用价值。 3 计算电磁学数值方法概述 当前电磁学研究领域十分广泛,电磁学问题的数值求解方法从求解方程的形式看,可以分为两大类,一类是以电磁场问题的积分方程为基础的数值方法——积分方程法(IE),如:矩量法、直接积分法、等效源法、边界元法等;另一类是以电磁场问题的微分方程为基础的数值方法——微分方程法(DE),如:有限差分法、有限元法等。

电磁学计算方法的比较

电磁学计算方法的比较 | [<<] [>>]摘要:介绍了电磁学计算方法的研究进展和状态,对几种富有代表性的算法做了介绍,并比较了各自的优势和不足,包括矩量法、有限元法、时域有限差分方法以及复射线方法等。 关键词:矩量法;有限元法;时域有限差分方法;复射线方法 1 引言 1864 年Maxwell在前人的理论(高斯定律、安培定律、法拉第定律和自由磁极不存在)和实验的基础上建立了统一的电磁场理论,并用数学模型揭示了自然界一切宏观电磁现象所遵循的普遍规律,这就是著名的Maxwell方程。在11种可分离变量坐标系求解Maxwel l方程组或者其退化形式,最后得到解析解。这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。对于不规则形状或者任意形状边界则需要比较高的数学技巧,甚至无法求得解析解。20世纪60年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法发展起来,并得到广泛地应用,相对于经典电磁理论而言,数值方法受边界形状的约束大为减少,可以解决各种类型的复杂问题。但各种数值计算方法都有优缺点,一个复杂的问题往往难以依靠一种单一方法解决,常

需要将多种方法结合起来,互相取长补短,因此混和方法日益受到人们的重视。 本文综述了国内外计算电磁学的发展状况,对常用的电磁计算方法做了分类。 2 电磁场数值方法的分类 电磁学问题的数值求解方法可分为时域和频域2大类。频域技术主要有矩量法、有限差分方法等,频域技术发展得比较早,也比较成熟。时域法主要有时域差分技术。时域法的引入是基于计算效率的考虑,某些问题在时域中讨论起来计算量要小。例如求解目标对冲激脉冲的早期响应时,频域法必须在很大的带宽内进行多次采样计算,然后做傅里叶反变换才能求得解答,计算精度受到采样点的影响。若有非线性部分随时间变化,采用时域法更加直接。另外还有一些高频方法,如GTD,UTD和射线理论。 从求解方程的形式看,可以分为积分方程法(IE)和微分方程法(DE)。IE和DE相比,有如下特点:IE法的求解区域维数比DE法少一维,误差限于求解区域的边界,故精度高;IE法适合求无限域问题,DE法此时会遇到网格截断问题;IE法产生的矩阵是满的,阶数小,DE法所产生的是稀疏矩阵,但阶数大;IE法难以处理非均匀、非线性和时变媒质问题,DE法可直接用于这类问题〔1〕。

计算电磁学各种方法和电磁仿真软件

计算电磁学各种方法和电磁仿真软件 计算电磁学中有众多不同的算法,如时域有限差分法(FDTD)、时域有限积分法(FITD)、有限元法(FE)、矩量法(MoM)、边界元法(BEM)、 谱域法(SM)、传输线法(TLM)、模式匹配法(MM)、横向谐振法(TRM)、线方法(ML)和解析法等等。 在频域,数值算法有:有限元法 ( FEM -- Finite Element Method)、矩量法( MoM -- Method of Moments),差分法( FDM -- Finite Difference Methods),边界元法( BEM --Boundary Element Method),和传输线法( TLM -- Transmission-Line-matrix Method)。 在时域,数值算法有:时域有限差分法( FDTD - Finite Difference Time Domain ),和有限积分法( FIT - Finite Integration Technology )。 这些方法中有解析法、半解析法和数值方法。数值方法中又分零阶、一阶、二阶和高阶方法。依照解析程度由低到高排列,依次是:时域有限差分法(FDTD)、传 输线法(TLM)、时域有限积分法(FITD)、有限元法(FEM)、矩量法(MoM)、线方法(ML)、边界元法(BEM)、谱域法(SM)、模式匹配 法(MM)、横向谐振法(TRM)、和解析法。 依照结果的准确度由高到低,分别是:解析法、半解析法、数值方法。 在数值方法中,按照结果的准确度有高到低,分别是:高阶、二阶、一阶和零阶。 时域有限差分法(FDTD)、时域有限积分法(FITD)、有限元法(FEM)、矩量法(MoM)、传输线法(TLM)、线方法(ML)是纯粹的数值方法; 边界元法(BEM)、谱域法(SM)、模式匹配法(MM)、横向谐振法(TRM)则均具有较高的分辨率。 模式匹配法(MM)是一个半解析法,倘若传输线的横向模式是准确可得的话。理论上,模式可以是连续谱。但由于数值求解精度的限制,通常要求横向模式是离散 谱。这就要求横向结构上是无耗的。更通俗地讲,就是无耗波导结构。换言之,MM 最适用于波导空腔、高Q且在能量传输的某一维上结构具有一定的均匀性。譬如,它适用于两个圆柱腔在高度维上的耦合的分析,但不适用

计算电磁学

电磁学: 电磁学是研究电磁现象的规律和应用的物理学分支学科,起源于18世纪。广义的电磁学可以说是包含电学和磁学,但狭义来说是一门探讨电性与磁性交互关系的学科。主要研究电磁波、电磁场以及有关电荷、带电物体的动力学等等。 计算电磁学: 内容简介: 本书在论述计算电磁学的产生背景、现状和发展趋势的基础上,系统地介绍了电磁仿真中的有限差分法、人工神经网络在电磁建模中的应用,遗传算法在电磁优化中的应用等。 图书目录: 第一章绪论 1.1 计算电磁学的产生背景 1.1.1 高性能计算技术 1.1.2 计算电磁学的重要性 1.1.3 计算电磁学的研究特点 1.2 电磁场问题求解方法分类 1.2.1 解析法 1.2.2 数值法 1.2.3 半解析数值法 1.3 当前计算电磁学中的几种重要方法 1.3.1 有限元法

1.3.2 时域有限差分法 1.3.3 矩量法 1.4 电磁场工程专家系统 1.4.1 复杂系统的电磁特性仿真 1.4.2 面向CAD 的复杂系统电磁特性建模1.4.3 电磁场工程专家系统 第一篇电磁仿真中的有限差分法 第二章有限差分法 2.1 差分运算的基本概念 2.2 二维电磁场泊松方程的差分格式 2.2.1 差分格式的建立 2.2.2 不同介质分界面上边界条件的离散方法2.2.3 第一类边界条件的处理 2.2.4 第二类和第三类边界条件的处理 2.3 差分方程组的求解 2.3.1 差分方程组的特性 2.3.2 差分方程组的解法 2.4 工程应用举例 2.5 标量时域有限差分法 2.5.1 瞬态场标量波动方程 2.5.2 稳定性分析 2.5.3 网格色散误差

计算电磁学习题集

计算电磁学习题集 1.麦克斯韦方程是根据那些电磁现象的实验定律创建的?概述这些实验的过程和意义(画出实验的原理示意图)。 2.试由矢量场的旋度和散度积分式推导出矢量场的旋度和散度微分式。 3.麦克斯韦方程组的四个微分方程之间虽有具有一定的关系(根据亥姆霍兹定理,矢量场同时要由其旋度和散度才能唯一确定)。可在四个微分方程和电流连续性方程中,只有三个方程是独立的。试证明由麦克斯韦方程组的两个散度方程和电流连续性方程可以推导出两个旋度方程。 4.试推证导电媒质中欧姆定律的微分形式E J σ=。 5.虚拟了磁荷和磁流的观念后,对应于导电媒质中欧姆定律的微分 形式E J σ=,有导磁媒质中欧姆定律的微分形式 H J m m σ=, 其中 m σ称为磁导率。试推导m σ的量纲表达。 6.对于时谐电磁场的电场表达式: ) t )cos((2)t )cos((2t),(y x ?ω?ω+++=r E e r E e r E y y x x ) t )cos((2z ?ω++r E e z z 试画示意图阐述这样表达的合理性。 7.利用傅里叶变换,由麦克斯韦方程的瞬时形式(时域)推导其复数形式(频域)。 8.试从微观上分别阐述媒质在电磁场中极化和磁化的过程(画示意图),解释极化强度和磁化强度的物理涵义。

9.对于高频系统和微波系统来说,电流的时谐表示一般为: )sin(r k J J 0??=t ω。试结合电流连续性方程 t -??=??t) ,(t),(r r ρJ ,论证:高频系统和微波系统中到处 都进行着充、放电的过程。 10.在非均匀介质中,ε和μ是坐标位置的函数。试对于无源区导出:(1)只含E 和H 的麦克斯韦方程;(2)E 和H 的波动方程。 11.推导在导电媒质中的波动方程和矢量位方程。 12.利用麦克斯韦积分方程推导两种媒质边界上的边界条件: s ρ=??)(21n D D e m s ρ=??)(21n B B e m s J E E e 21n ?=?×)(s 21n J H H e =?×)(13.在各向异性媒质中, ???? ? ??????=→ → 0,0,2j,1,0j,01,0εε,当:(1)x E e E 0=;(2)y E e E 0=;(3)z E e E 0=;(4))y x E e (e E 0+=;

广义特征值与极大极小原理

第二十一讲 广义特征值与极小极大原理 一、 广义特征值问题 1、定义:设A 、B 为n 阶方阵,若存在数λ,使得方程Ax Bx =λ存在非零解,则称λ为A 相对于B 的广义特征值,x 为A 相对于B 的属于广义特征值λ的特征向量。 ● 是标准特征值问题的推广,当B =I (单位矩阵)时,广义特征值问题退化为标准特征值问题。 ● 特征向量是非零的 ● 广义特征值的求解 ()A B x 0-λ= 或者 ()B A x 0λ-= → 特征方程 ()det A B 0-λ= 求得λ后代回原方程Ax Bx =λ可求出x 本课程进一步考虑A 、B 厄米且为正定矩阵的情况。 2、等价表述 (1) B 正定,1B -存在 →1 B A x x -=λ,广义特征值问题化为了标准 特征值问题,但一般来说,1B A -一般不再是厄米矩阵。 (2) B 正定,存在Cholesky 分解,H B G G =,G 满秩 H A x G G x =λ 令H G x y = 则 () 1 1 H G A G y y --=λ 也成为标准特征值问题。 ( ) 1 1 H G A G --为厄米矩阵,广义特征值是实数,可以按大小顺序 排列12n λ≤λ≤≤λ ,一定存在一组正交归一的特征向量,即存在 12n y ,y ,y 满足

() 1 1 H i i G A G y y --=λ H i j ij 1i j y y 0 i j =?=δ=?≠? 还原为()1 H i i x G y -= (i=1,2, ,n),则 ()() H H H H i j i j i j ij 1 i j y y x G G x x Bx 0 i j =?===δ=? ≠? (带权正交) 二、 瑞利商 A 、 B 为n 阶厄米矩阵,且B 正定,称()()H H x A x R x x 0x Bx =≠为A 相对于B 的瑞利商。 12n x ,x ,x 线性无关,所以,n x C ?∈,存在12n a ,a ,a C ∈ ,使 得 n i i i 1 x a x == ∑ H n n n n 2 H H i i i j j j i j i i 1j 1i ,j 1 i 1 x Bx a x B a x a a x Bx a ====???? == = ? ????? ∑∑∑ ∑ n n n 2 H H H i i j i j j i i j i i i ,j 1 i ,j 1 i 1 x A x a a x A x a a x Bx a ==== = λ= λ∑ ∑ ∑ ∴ ()n 2 i i i 1n 2 i i 1 a R x a ==λ= ∑ ∑ ●()1x 0 min R x ≠=λ ()n x 0 max R x ≠=λ 证明:()()()() () H H H H kx A kx x A x R x x Bx kx B kx = = k 为非零常数 可取1k x =, kx 1=

计算电磁学结课论文学习资料.doc

《计算电磁学》学习心得 姓名:桑 dog 学号: 班级: 联系方式:

前言 计算电磁学是科技的重要领域它的研究涉及到应用计算机求解电磁方程它的重要性基 于麦克斯韦方程——唯一的可以描述小到亚原子大到天体尺度的所有物理现象的方程, 。而且,麦克斯韦方程式对于结果拥有很强的预测能力 : 对于一个复杂问题的麦克斯韦方程的解通常 可以准确的预知实验结果。因此 , 麦克斯韦方程的解对于提高我们对复杂系统之物理现 象的洞察力和设计复杂系统的能力均有极大帮助所以, 成功求解麦克斯韦方程式拥有广泛 的应用前景 : 例如纳米技术 , 电脑微电子电路 , 电脑芯片设计 , 光学 , 纳米光学 , 微波工程 , 遥感 , 射电天文学 , 生物医学工程, 逆散射和成象等等。 这篇文章的安排如下:第一章介绍了计算电磁学的重要意义以及发展状况。第二章介绍了计算电磁学中解决问题的方法分类。第三章对主要的数值方法进行了简介。第四章展望了计算电磁学的发展趋势。

第1章计算电磁学的重要性 在现代科学研究中,“科学试验,理论分析,高性能计算”已经成为三种重要的研究手 段[1]。在电磁学领域中,经典电磁理论只能在11 种可分离变量坐标系中求解麦克斯韦方程 组或者其退化形式,最后得到解析解。解析解的优点在于: 可将解答表示为己知函数的显式,从而可计算出精确的数值结果; 可以作为近似解和数值解的检验标准; 在解析过程中和在解的显式中可以观察到问题的内在联系和各个参数对数值 结果所起的作用。 这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题[2] 。当遇到不规则形状或者任意形状边界问题时,则需要比较复杂的 数学技巧,甚至无法求得解析解。20 世纪60 年代以来,随着电子计算机技术的发展,一 些电磁场的数值计算方法也迅速发展起来,并在实际工程问题中得到了广泛地应用,形成了 计算电磁学研究领域,已经成为现代电磁理论研究的主流。简而言之,计算电磁学是在电磁场 与微波技术学科中发展起来的,建立在电磁场理论基础上,以高性能计算机技术为工具, 运用计算数学方法,专门解决复杂电磁场与微波工程问题的应用科学。相对于经典电磁理论 分析而言,应用计算电磁学来解决电磁学问题时受边界约束大为减少,可以解决各种类型的 复杂问题。原则上来讲,从直流到光的宽广频率范围都属于该学科的研究范围。近几年来, 电磁场工程在以电磁能量或信息的传输、转换过程为核心的强电与弱电领域中显示了重要作 用。 [3]

计算电磁学

计算电磁学 (1) 时域方法与谱域方法 电磁学的数值计算方法可以分为时域方法(Time Domain或TD)和频域方法(Frequeney Domain或FD)两大类。 时域方法对Maxwell方程按时间步进后求解有关场量。最著名的时域方法是时域有限差分法(Finite Difference Time Domain或FDTD)。这种方法通常适用于求解在外界激励下场的瞬态变化过程。若使用脉冲激励源,一次求解可以得到一个很宽频带范围内的响应。时域方法具有可靠的精度,更快的计算速度,并能够真实地反应电磁现象的本质,特别是在诸如短脉冲雷达目标识别、时域测量、宽带无线电通讯等研究领域更是具有不可估量的作用。 频域方法是基于时谐微分、积分方程,通过对N个均匀频率采样值的傅立叶逆变换得到所需的脉冲响应,即研究时谐(Time Harmonic)激励条件下经过无限长时间后的稳态场分布的情况,使用这种方法,

每次计算只能求得一个频率点上的响应。过去这种方法被大量使用,多半是因为信号、雷达一般工作在窄带。当要获取复杂结构时域超宽带响应时,如果采用频域方法,则需要在很大带宽内的不同频率点上的进行多次计算,然后利用傅立叶变换来获得时域响应数据,计算量较大;如果直接采用时域方法,则可以一次性获得时域超宽带响应数据,大大提高计算效率。特别是时域方法还能直接处理非线性媒质和时变媒质问题,具有很大的优越性。时域方法使电磁场的理论与计算从处理稳态问题发展到能够处理瞬态问题,使人们处理电磁现象的范围得到了极大的扩展。 频域方法可以分成基于射线的方法(Ray-based)和基于电流的方法(Current-based)。前者包括几何光学法(GO)、几何绕射理论(GTD)和一致性绕射理论(UTD)等等。后者主要包括矩量法(MoM)和物理光学法(PO)等等。基于射线的方法通常用光的传播方式来近似电磁波的行为,考虑射向平面后的反射、经过边缘、尖劈和曲面后的绕射。当然这些方法都是高频近似方法,主要适用于那些目标表面光滑,其细节对于工作频率而言可以忽略的情况。同时,它们对于近场的模拟也不够精确。另一方面,基于电流的方法一般通过求解目标在外界激励下的感应电流进而再求解感应电流产生的散射场,而真实的场为激励场与散射场之和。基于电流的方法中最著名的是矩量法。矩量法严格建立在积分方程基础上,在数字上是精确的。其实,我们并不能判断它是一种低频方法或者是高频方法,只是矩量法所需要的存

极小值原理的一个实例

极小值原理的一个实例 背 景 最优控制主要用于对各种控制系统的优化。例如,导弹系统的最优控制,能保证用最少燃料完成飞行任务,用最短时间达到目标;再如飞机、船舶、电力系统等的最优控制,化工、冶金等工厂的最佳工况的控制。计算机接口装置不断完善和优化方法的进一步发展,还为计算机在线生产控制创造了有利条件。最优控制的对象也将从对机械、电气、化工等硬系统的控制转向对生态、环境以至社会经济系统的控制。 随着社会的进步和发展,特别是运输行业的大力发展,各种汽车数量不断增加,汽车拥有率已成为衡量人民生活水平的重要标志。近30年来,国内汽车销售量以超过年均15%的速度增长,汽车需求量已占有50% 上的全球份额。 在人们的生活中,汽车已经成为必不可少的部分,所以研究汽车的行驶,成为最优控制理论研究的必然要求。本文通过一道例题,来说明最优控制理论在汽车行驶中的作用。 最短时间问题 一般情况下,汽车从开始运行,到停止要经过加速、匀速和减速的过程,在这个过程中,速度从零开始先增加,然后保持不变,最后再减速到零。我们把汽车看成质点,且汽车的重量忽略不计。记汽车的位移为1x ,速度为2x ,汽车受到的力是u 。为了使问题简单化,我们假设电梯开始的位置是()100x =,开始的速度()202x =,通过控制电梯受到的力u ,且()1u t ≤。求电梯在最短时间T 内达到零态,即()()120,0x T x T ==。下面把这个问题转化为最优控制问题。 根据电梯的运动,得到其运动方程为 122 x x x u =??=? 初始条件为 ()() 1200 02x x =??? =?? 控制函数为()u t ,在约束条件()1u t ≤下,使系统以最短时间从给定初始状态转移到零态,即()()120,0x T x T ==。

电磁学计算题题库(附答案)

《电磁学》练习题(附答案) 1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求: (1) 在它们的连线上电场强度0=E ? 的点与电荷为+q 的点电荷相距多远? (2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远? 2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10- 5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大? 3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度. 4. 一半径为R 的带电球体,其电荷体密度分布为 ρ =Ar (r ≤R ) , ρ =0 (r >R ) A 为一常量.试求球体外的场强分布. 5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10- 12C 2 / N ·m 2 ) 6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为: E x =bx , E y =0 , E z =0. 常量b =1000 N/(C ·m).试求通过该高斯面的电通量. 7. 一电偶极子由电荷q =1.0×10- 6 C 的两个异号点电荷组成,两电 荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩. (2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功. 8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10- 6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2 N -1m -2 ) 9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有 一静电场,场强为j i E ? ??300200+= .试求穿过各面的电通量. 10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000 N/(C · m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2 ) 11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势 分布. 12. 如图所示,在电矩为p ? 的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之间距离)移到B 点,求此过程中电场力所作的功. 13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = 2.5 ×10- 8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功. (1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ; (3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角). 14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10- 7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. ( 41 επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2,B 面的电荷面密度σB =35.4 ×10-8 C ·m - 2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 ) 16. 一段半径为a 的细圆弧,对圆心的角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度. 17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若半圆弧AB R ,试求圆心O 点的场强. 18. 真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为-λ和+λ.试求: (1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点). E ? q L q P Ⅱ d a σA σB A B q ∞ ∞

相关文档
最新文档