51单片机入门零基础2.3定时器闪烁LED灯

51单片机入门零基础2.3定时器闪烁LED灯
51单片机入门零基础2.3定时器闪烁LED灯

2.3定时器应用之定时器闪烁LED灯(不含中断)

2.3.1 STC15L104E定时器简介

定时器具有计数功能,拿16位定时器0来举例,它产生溢出时候的位是2^16(65536),那么我们如果要定时器定时a,我们就要向定时器里存65536-a。很多人不明白定时器到底是怎么回事,我们把定时器比喻为一个水桶,满水(65536)就溢出,我们想定时器a个数就相当于我们想向水桶里放入a水后水桶就溢出,那么水桶里原来存的水就是65536-a。这就是定时器。

STC15L104E内部设置了两个16位定时器/计时器T0和T1,它们都有计数方式和定时方式两种工作方式。定时还是计数由TMOD寄存器的C/T决定,置1计数器,置0定时器。TMOD寄存器如图0-1所示。定时器/计数器的核心部件是一个加法计数器,其本质是对脉冲进行计数。脉冲来源系统时钟则采用定时方式,此时定时器每12个时钟或者1个时钟得到一个计数脉冲,计数值加1;脉冲来源单片机外部引脚(T0为P3.4,T1为P3.5)则为计数方式,每来一个脉冲加1。

定时器/计数器的工作模式由TMOD寄存器的M1、M0决定,定时器/计数器工作模式寄存器TMOD,它控制两个定时器的工作模式,高4位控制定时器1,低四位控制定时器0。如图0-1所示。

图0-1 TMOD寄存器

当定时器/计数器工作在定时模式时,AUXR寄存器的T0x12和T1x12分别决定系统时钟是12分频还是1分频。AUXR寄存器如图0-2所示。当定时器/计数器工作在计数模式时,对外部脉冲不分频。

图0-2 AUXR寄存器

与定时器/计数器相关的寄存器还有TL0、TL1、TH0、TH1、TCON和INT_CLKO寄存器。

TL0/1、TH0/1分别为定时器0/1的低位和高位。TCON寄存器是定时器/计数器的控制寄存器,同时也锁存T0、T1溢出中断源和外部请求中断源等,TOCN 寄存器如图0-3所示。

图0-3 TCON寄存器

图0-4 INT_CLKO寄存器

INT_CLKO寄存器的0位和1位控制定时器。如图0-4所示。

0位T1CLKO置1将P3.4/T0管脚配置为定时器1时时钟输出CLKOUT1,置0不允许P3.4/T0管脚配置为定时器1时时钟输出。

1位T0CLKO置1将P3.5/T1管脚配置为定时器0时时钟输出CLKOUT0,置0不允许P3.5/T1管脚配置为定时器0时时钟输出。

2.3.2硬件连接原理

详情请参见错误!未找到引用源。,本章节不做介绍。

2.3.3原工程详解

打开计时器无中断控制小灯亮灭的工程,方法错误!未找到引用源。中第一段讲过。定时器控制小灯,我们自然要用到定时器,原理部分我们已经深入的了解了定时器,下面我们就将程序和原理结合吧。

a.#include

sbit BEEP =P3^4;

sfr AUXR = 0x8E; // AUXR寄存器的地址为0x8e

unsigned int count=0;

void Delay_mS(unsigned int time);

首先是加头文件(#include ),定义位BEEP为P3.4(sbit BEEP =P3^4;),(sfr AUXR = 0x8E;)定义寄存器AUXR(它的地址是0x8E,见图0-2),这些上一章都讲解过,详情请见错误!未找到引用源。。

定义寄存器的这一语句后面多了个“// AUXR寄存器的地址为0x8e”,这个是一条注释,就是为了解释同行的语句,即解释前面的sfr AUXR = 0x8E; ,注释的写法为//要注释的内容,也可写成/*要注释的内容*/。

接下来是声明了一个变量并赋初值0(unsigned int count=0;),此变量count 为无符号整型变量。

最后声明了一个子函数(void Delay_mS(unsigned int time);),子函数的写法为“返回值数据类型函数名(参数类型参数); ”千万不能忘记加“;”。b.void TIM0_init(void) //20us @11.0592MHz

{

AUXR = 0xdf; //定时器0为1T模式

TMOD = 0x00; //设置定时器为模式0//(16位自动重装载)

TL0 = 0x22; //设置定时初值

TH0 = 0xFF; //设置定时初值

TR0 = 1; //定时器0开始计时

}

上面这段程序是定时器初始化子函数,子函数的写法是返回值类型子函数名称(参数类型参数){执行的内容},我们注意到子函数的写法和声明子函数的写法有些类似,是将声明子函数最后的“;”去掉并加上{}。

子函数中首先是对AUXR寄存器赋值0xdf,对照图0-2,我们知道7、6位都置1了说明我们对定时器0不分频。对TOMD寄存器赋初值0x00,对照图0-1我们可知定时器0采用了16位自动重装的工作方式。

接下来是对定时器赋初值,我们赋值0xff22,将低位赋给TL0高位赋给TH0。对于定时器的赋值,我们前面已经讲过“水桶”的原理,具体怎么做呢,比如我们想让定时器定时20us(时钟震荡(时钟频率为11.0592MHZ)一次定时器定时一位,定时一位的时间就为1/11.0592us,定时器总共有2^16位,所以定时器总共定时的时间为65536/11.0592=5926us,定时时间不能超过5926us),20us对应的位是221位(20/(1/11.0592)),那么我们就要向定时器里存65535-221=65314=0xff22位(转化为16进制),定时器里能存65536个数为什么减法中编程了65535呢,这是因为定时器定时的第一位是从0开始的,到65536就溢出了。

最后开启定时器0允许位,寄存器详情请见图0-3。

c.void main() //主函数

{

while(1)

{

TIM0_init();

if(TF0)

{

count =count+1;

TF0=0;

}

while(count==1000)

{

count=0 ;

TR0 = 0;

BEEP=~BEEP;

}

}

}

上面这段代码就是主函数了,首先是一个while语句,while()中的为条件,为1就执行内部代码,条件为0就跳出while语句,此处为1,说明主函数一直在执行while里面的程序,直到给单片机断电。

接下来我们看while里面的程序,首先调用定时器0初始化子函数,调用方法是直接在主函数中写出声明函数,可以将返回值省去,但是参数没有的时候省略,此处就省略,有参数的时候一定要加参数,遇到实例时再讲解。

接下来是if语句,if(),()中的为条件,条件为真(即为1),执行if {}中的语句,条件为假就执行{}后的语句,“if(TF0)”TF0是定时器0的溢出位(TCON寄存器详见图0-3),定时器定时一周溢出了,溢出位TF0就为1,当我们定时20us后TF0就为1,我们就执行count =count+1;TF0=0;,count加1,将溢出位TF0赋值0。

继续看下面的代码,当count==1000的时候(注意=为赋值,==为等于),才执行while里面的语句,也就是定时器定时了1000次(20000us),我们就将count重新赋值0,关闭定时器,将BEEP取反,BEEP是小灯的控制IO口,这是就会看到板子上小灯闪烁了。

为什么我们要对count做定时器的计数,计数了1000次才执行闪烁程序,这是因为定时器定时最大才5926us,就是定时器定时满65536位5926us再执行闪烁程序,我们肉眼也是看不出来闪烁的。

读者可以试试自行增加定时器定时时间。

C51单片机定时器及数码管控制实验报告

理工大学信息工程与自动化学院学生实验报告 (201 — 201学年第1 学期) 课程名称:单片机技术

一、实验目的 1.掌握定时器T0、T1 的方式选择和编程方法,了解中断服务程序的设计方法,学会实时程序的调试技巧。 2.掌握LED 数码管动态显示程序设计方法。 二、实验原理 1.89C51 单片机有五个中断源(89C52 有六个),分别是外部中断请求0、外部中断请求1、定时器/计数器0 溢出中断请求、定时器/计数器0 溢出中断请求及串行口中断请求。每个中断源都对应一个中断请求位,它们设置在特殊功能寄存器TCON 和SCON 中。当中断源请求中断时,相应标志分别由TCON 和SCON 的相应位来锁寄。五个中断源有二个中断优先级,每个中断源可以编程为高优先级或低优先级中断,可以实现二级中断服务程序嵌套。在

同一优先级别中,靠部的查询逻辑来确定响应顺序。不同的中断源有不同的中断矢量地址。 中断的控制用四个特殊功能寄存器IE、IP、TCON (用六位)和SCON(用二位),分别用于控制中断的类型、中断的开/关和各种中断源的优先级别。中断程序由中断控制程序(主程序)和中断服务程序两部分组成: 1)中断控制程序用于实现对中断的控制; 2)中断服务程序用于完成中断源所要求的中断处理的各种操作。 C51 的中断函数必须通过interrupt m 进行修饰。在C51 程序设计中,当函数定义时用了interrupt m 修饰符,系统编译时把对应函数转化为中断函数,自动加上程序头段和尾段,并按MCS-51 系统中断的处理方式自动把它安排在程序存储器中的相应位置。 在该修饰符中,m 的取值为0~31,对应的中断情况如下: 0——外部中断0 1——定时/计数器T0 2——外部中断1 3——定时/计数器T1 4——串行口中断 5——定时/计数器T2 其它值预留。 89C51 单片机设置了两个可编程的16 位定时器T0 和T1,通过编程,可以设定为定时器和外部计数方式。T1 还可以作为其串行口的波特率发生器。

基于51单片机的简易计算器制作

基于51单片机的简易计算器制作专业:电气信息班级:11级电类一班 姓名:王康胡松勇 时间:2012年7月12日 一:设计任务 本系统选用AT89C52单片机为主控机。通过扩展必要的外围接口电路,实现对计算器的设计,具体设计如下: (1)由于设计的计算器要进行四则运算,为了得到较好的显示效果,经综合分析后,最后采用LED 显示数据和结果。 (2)采用键盘输入方式,键盘包括数字键(0~9)、符号键(+、-、×、÷)、清除键(on\c)和等号键(=),故只需要16 个按键即可,设计中采用集成的计算键盘。 (3)在执行过程中,开机显示零,等待键入数值,当键入数字,通过LED显示出来,当键入+、-、*、/运算符,计算器在内部执行数值转换和存储,并等待再次键入数值,当再键入数值后将显示键入的数值,按等号就会在LED上输出运算结果。 (4)错误提示:当计算器执行过程中有错误时,会在LCD上显示相应的提示,如:当输入的数值或计算得到的结果大于计算器的表示范围时,计算器会在LED上提示八个0;当除数为0时,计算器会在LED上会提示八个负号。 设计要求:分别对键盘输入检测模块;LED显示模块;算术运算模块;错误处理及提示模块进行设计,并用Visio画系统方框图,keil与protues仿真 分析其设计结果。 二.硬件设计 单片机最小系统 CPU:A T89C52 显示模块:两个4位7段共阴极数码管 输入模块:4*4矩阵键盘 1.电路图

电路图说明 本电路图采用AT89C52作为中处理器,以4*4矩阵键盘扫描输入,用两个74HC573(锁存器)控制分别控制数码管的位于段,并以动态显示的方式显示键盘输入结果及运算结果。为编程方便,以一个一位共阴极数码管显示负号。 三,程序设计 #include #define Lint long int #define uint unsigned int #define uchar unsigned char sbit dula=P2^6; //锁存器段选sbit wela=P2^7; sbit display_g=P2^0; //负号段选 sbit display_w=P2^1; //负号位选uchar code table[]={0x3f,0x06,0x5b,0x4f, //0,1,2,3

51单片机定时器的使用

1 51单片机定时器/计时器的使用 步骤: 1、 打开中断允许位: 对IE 寄存器进行控制,IE 寄存器各位的信息如下图所示: EA : 为0时关所有中断;为1时开所有中断 ET2:为0时关T2中断;为1时开T2中断,只有8032、8052、8752才有此中断 ES : 为0时关串口中断;为1时开串口中断 ET1:为0时关T1中断;为1时开T1中断 EX1:为0时关1时开 ET0:为0时关T0中断;为1时开T0中断 EX0:为0时关1时开 2、 选择定时器/计时器的工作方式: 定时器TMOD 格式 CPU 在每个机器周期内对T0/T1 检测一次,但只有在前一次检测为1和后一次检测为0时才会使计数器加1。因此,计数器不是由外部时钟负边沿触发,而是在两次检测到负跳变存在时才进行计数的。由于两次检测需要24个时钟脉冲,故T0/T1线上输入的0或1的持续时间不能少于一个机器周期。通常,T0或T1输入线上的计数脉冲频率总小于100kHz 。 方式0:定时器/计时器按13位加1计数,这13位由TH 中的高8位和TL 中的低5位组成,其中TL 中的高3位弃之不用(与MCS-48兼容)。 13位计数器按加1计数器计数,计满为0时能自动向CPU 发出溢出中断请求,但要它再次计数,CPU 必须在其中断服务程序中为它重装初值。 方式1:16位加1计数器,由TH 和TL 组成,在方式1的工作情况和方式0的相同,只是计数器值是方式0的8倍。

2 方式2:计数器被拆成一个8位寄存器TH 和一个8位计数器TL ,CPU 对它们初始化时必须送相同的定时初值。当计数器启动后,TL 按8位加1计数,当它计满回零时,一方面向CPU 发送溢出中断请求,另一方面从TH 中重新获得初值并启动计数。 方式3:T0和T1工作方式不同,TH0和TL0按两个独立的8位计数器工作,T1只能按不需要中断的方式2工作。 在方式3下的TH0和TL0是有区别的:TL0可以设定为定时器/计时器或计数器模式工作,仍由TR0控制,并采用TF0作为溢出中断标志;TH0只能按定时器/计时器模式工作,它借用TR1和TF1来控制并存放溢出中断标志。因此,T1就没有控制位可以用了,故TL1在计满回零时不会产生溢出中断请求的。 显然,T0和T1设定为方式3实际上就相当于设定了3个8位计数器同时工作,其中TH0和TL0为两个由软件重装的8位计数器,TH1和TL1为自动重装的8位计数器,但无溢出中断请求产生。由于TL1工作于无中断请求状态,故用它来作为串口可变波特 3、 为计数器赋值 计数器初值计算 TC =M ?C TC :计数器初值,M :计数器模值(2k ),C :把计数器计满的计数值 定时器初值计算 T =(M ?TC )T 计数 或 TC =M ?T/T 计数 M :模值,T 计数:单片机时钟周期T CLK (ΦCLK 的倒数)的12倍;TC 为定时器的定时初值,T 为欲定时的时间。 TC =M ?T ×ΦCLK /12 M :模值,ΦCLK :单片机时钟周期ΦCLK ;TC 为定时器的定时初值,T 为欲定时的时间。 例如:单片机主脉冲频率ΦCLK 为12MHz ,最大定时时间为: 方式0时 T MAX = 213×1us = 8.192ms 方式1时 T MAX = 216×1us = 65.536ms 方式2和方式3 T MAX = 28×1us = 0.256ms 4TR0:为0时,停T0计数;为1时,启T0计数

基于51单片机的计算器设计

目录 第一章引言 (3) 1.1 简述简易计算器 (3) 1.2 本设计主要任务 (3) 1.3 系统主要功能 (4) 第二章系统主要硬件电路设计 (4) 2.1 系统的硬件构成及功能 (4) 2.2 键盘电路设计 (5) 2.3 显示电路设计 (6) 第三章系统软件设计 (7) 3.1 计算器的软件规划 (7) 3.2 键盘扫描的程序设计 (7) 3.3 显示模块的程序设计 (8) 3.4 主程序的设计 (9) 3.5 软件的可靠性设计 (9) 第四章调试 (9) 第五章结束语 (10) 参考文献 (11) 附录源程序 (11)

第一章引言 1.1 简述简易计算器 近几年单片机技术的发展很快,其中电子产品的更新速度迅猛。计算器是日常生活中比较的常见的电子产品之一。如何才能使计算器技术更加的成熟,充分利用已有的软件和硬件条件,设计出更出色的计算器呢? 本设计是以AT89S52单片机为核心的计算器模拟系统设计,输入采用4×6矩阵键盘,可以进行加、减、乘、除9位带符号数字运算,并在LCD1602上显示操作过程。 科技的进步告别了以前复杂的模拟电路,一块几厘米平方的单片机可以省去很多繁琐的电路。现在应用较广泛的是科学计算器,与我们日常所用的简单计算器有较大差别,除了能进行加减乘除,科学计算器还可以进行正数的四则运算和乘方、开方运算,具有指数、对数、三角函数、反三角函数及存储等计算功能。计算器的未来是小型化和轻便化,现在市面上出现的使用太阳能电池的计算器, 使用ASIC设计的计算器,如使用纯软件实现的计算器等,未来的智能化计算器将是我们的发展方向,更希望成为应用广泛的计算工具。 1.2 本设计主要任务 以下是初步设定的矩阵键盘简易计算器的功能: 1.扩展4*6键盘,其中10个数字,5个功能键,1个清零 2.强化对于电路的焊接 3.使用五位数码管接口电路 4. 完成十进制的四则运算(加、减、乘、除); 5. 实现结果低于五位的连续运算; 6. 使用keil 软件编写程序,使用汇编语言; 7. 最后用ptoteus模拟仿真; 8.学会对电路的调试

基于51单片机的多功能定时器

摘要 本设计要求以单片机为核心主体,完成最小系统板的设计与制作(通过Protel 软件,对电路进行设计,调试。生成PCB板,再对元器件进行排布,焊接。)之后要进行初调试,证实电路板无误后才能进行下面的内容。电路板完成后,在总程序基础上通过编程设计家用多路定时控制器。本课程设计目标:具有正常数字钟功能,包括时间校正,具有至少三路定时开关控制功能,每路定时时间可以任意设置。但重要的是要有一定的创新,因为此系统还有很多值得开发的功能,单纯的三路定时只是设计内容的基本要求。 关键词:Protel,单片机,MCS-51

目录 摘要........................................................................................................ - 1 - 引言........................................................................................................ - 2 - 1 绪论.................................................................................................... - 2 - 1.1系统背景 (1) 1.1.1单片机技术及其发展特点 (1) 1.1.2单片机在电子技术中的应用 (3) 1.1.3课程设计的内容与任务 (4) 2 系统电路设计 (5) 2.1 系统总体设计框架结构 (5) 2.2 系统硬件单元电路设计 (6) 2.2.1 时钟电路设计 (6) 2.2.2 复位电路设计 (6) 2. 2.3 按键电路设计 (7) 2.3数码管电路设计 (8) 2.3.1、数码管的分类 (8) 2.3.2、数码管的驱动方式 (8) 2.3 系统硬件总电路 (14) 3 系统软件设计 (10) 3.1 系统软件流程图 (10) 4 实验结果和分析 (11) 4.1 实验使用的仪器设备 (11) 4.2 测试结果分析 (11) 结论 (12) 参考文献 (13) 附录 (13) 系统程序设计 (15) Abstract (25) 致谢 (25)

MCS-51单片机计数器定时器

80C51单片机内部设有两个16位的可编程定时器/计数器。可编程的意思是指其功能(如工作方式、定时时间、量程、启动方式等)均可由指令来确定和改变。在定时器/计数器中除了有两个16位的计数器之外,还有两个特殊功能寄存器(控制寄存器和方式寄存器)。 : 从上面定时器/计数器的结构图中我们可以看出,16位的定时/计数器分别由两个8位专用寄存器组成,即:T0由TH0和TL0构成;T1由TH1和TL1构成。其访问地址依次为8AH-8DH。每个寄存器均可单独访问。这些寄存器是用于存放定时或计数初值的。此外,其内部还有一个8位的定时器方式寄存器TMOD和一个8位的定时控制寄存器TCON。这些寄存器之间是通过内部总线和控制逻辑电路连接起来的。TMOD主要是用于选定定时器的工作方式;TCON主要是用于控制定时器的启动停止,此外TCON还可以保存T0、T1的溢出和中断标志。当定时器工作在计数方式时,外部事件通过引脚T0(P3.4)和T1 (P3.5)输入。 定时计数器的原理: 16位的定时器/计数器实质上就是一个加1计数器,其控制电路受软件控制、切换。 当定时器/计数器为定时工作方式时,计数器的加1信号由振荡器的12分频信号产生,即每过一个机器周期,计数器加1,直至计满溢出为止。显然,定时器的定时时间与系统的振荡频率有关。因一个机器周期等于12个振荡周期,所以计数频率fcount=1/12osc。如果晶振为12MHz,则计数周期为: T=1/(12×106)Hz×1/12=1μs 这是最短的定时周期。若要延长定时时间,则需要改变定时器的初值,并要适当选择定时器的长 度(如8位、13位、16位等)。 当定时器/计数器为计数工作方式时,通过引脚T0和T1对外部信号计数,外部脉冲的下降沿将触发计数。计数器在每个机器周期的S5P2期间采样引脚输入电平。若一个机器周期采样值为1,下一个机器周期采样值为0,则计数器加1。此后的机器周期S3P1期间,新的计数值装入计数器。所以检测一个由1至0的跳变需要两个机器周期,故外部事年的最高计数频率为振荡频率的1/24。例如,如果选用12MHz 晶振,则最高计数频率为0.5MHz。虽然对外部输入信号的占空比无特殊要求,但为了确保某给定电平在变化前至少被采样一次,外部计数脉冲的高电平与低电平保持时间均需在一个机器周期以上。

基于51单片机的计算器设计程序代码汇编

DBUF EQU 30H TEMP EQU 40H YJ EQU 50H ;结果存放 YJ1 EQU 51H ;中间结果存放GONG EQU 52H ;功能键存放 ORG 00H START: MOV R3,#0 ;初始化显示为空MOV GONG,#0 MOV 30H,#10H MOV 31H,#10H MOV 32H,#10H MOV 33H,#10H MOV 34H,#10H MLOOP: CALL DISP ;PAN调显示子程序WAIT: CALL TESTKEY ; 判断有无按键JZ WAIT CALL GETKEY ;读键 INC R3 ;按键个数 CJNE A,#0,NEXT1 ; 判断就是否数字键 LJMP E1 ; 转数字键处理NEXT1: CJNE A,#1,NEXT2 LJMP E1 NEXT2: CJNE A,#2,NEXT3 LJMP E1 NEXT3: CJNE A,#3,NEXT4 LJMP E1 NEXT4: CJNE A,#4,NEXT5 LJMP E1 NEXT5: CJNE A,#5,NEXT6 LJMP E1 NEXT6: CJNE A,#6,NEXT7 LJMP E1 NEXT7: CJNE A,#7,NEXT8 LJMP E1 NEXT8: CJNE A,#8,NEXT9 LJMP E1 NEXT9: CJNE A,#9,NEXT10 LJMP E1 NEXT10: CJNE A,#10,NEXT11 ;判断就是否功能键LJMP E2 ;转功能键处理NEXT11: CJNE A,#11,NEXT12 LJMP E2 NEXT12: CJNE A,#12, NEXT13 LJMP E2

基于51单片机的数字计算器的设计

《单片机技术及其应用》课程设计报告 专业:通信工程 班级:09312班 姓名:某某某 学号:09031069 指导教师: 二0一二年六月十八日

目录 1设计目的 (1) 2 设计题目描述与要求 (1) 3 设计过程 (2) 4硬件总体方案及说明 (6) 5 软件总体方案及设计流程 (9) 6 调试与仿真 (13) 7 心得体会 (14) 8 指导老师意见 (15) 9 参考文献 (16) 附录一 (16) 附录二 (21)

基于51单片机的数字计算器的设计 1设计目的 简易计算器的原理与设计是单片机课程设计课题中的一个。在完成理论学习和必要的实验后,我们掌握了单片机的基本原理以及编程和各种基本功能的应用,但对单片机的硬件实际应用和单片机完整程序设计还不清楚,实际动手能力不够,因此对该课程进行一次课程设计是有必要的。单片机课程设计既巩固了课本学到的理论,还学到了单片机硬件电路和程序设计,简易计算器课程设计通过自己动手用计算机电路设计软件,编写和调试,最后仿真,来加深对单片机的认识,充分发挥我们的个人创新和动手能力,并提高我们对单片机的兴趣,同时学习查阅资料、参考资料的方法。 本设计是基于51系列的单片机进行的简易计算器系统设计,可以完成计算器的键盘输入,进行加、减、乘、除3位无符号数字的简单四则运算,并在LED 上相应的显示结果。 设计过程在硬件与软件方面进行同步设计。硬件选择AT89C51单片机和74ls164,输入用4×4矩阵键盘。显示用5位7段共阴极LED静态显示。软件从分析计算器功能、流程图设计,再到程序的编写进行系统设计。选用编译效率最高的Keil软件进行编程,并用proteus仿真。 2 设计题目描述与要求 基于AT89C51数字计算器设计的基本要求与基本思路: (1)扩展4*4键盘,其中10个数字,5个功能键,1个清零 (2)使用五位数码管接口电路

基于单片机实现的定时器设计

第一章单片机的简介 一个8位的80c51微处理器,片内256字节数据存储器RAM/SFR,用以存放可以读写的数据,如运算的中间结果,最终结果以及欲显示的数据;片内4kb程序存储器Flash ROM,用以存放程序,一些原始数据和表格;4个8位并行I/O 口P0~P3,每个端口既可用作输入,也可用作输出;两个16位的定时器/计数器,每个定时器/计数器都可设置成计数方式,用以对外部事件进行计数,也可设置成定时方式,并可以根据计数或者定时的结果实现计算机控制;具有5个中断源,两个中断优先级的中断控制系统;一个全双工UART(通用异步接受发送器)的串行I/O口,用于实现单片机之间或者单片机与PC机之间的串行通信;片内振荡器和时钟产生电路,但石英晶体和微调电容需要外接,最高允许震荡频率为24MHz;89c51与80c51相比具有节电工作方式,即休闲方式及掉电方式。 1.1中央处理器(CPU): CPU是单片机内部的核心部件,是一个8位二进制数的中央处理单元,主要由运算器、控制器和寄存器阵列构成。 1.1.1 运算器: 运算器用来完成算术运算和逻辑运算功能,它是 89C51内部处理各种信息的主要部件。运算器主要由算术逻辑单元(ALU)、累加器(ACC)、暂存寄存器(TMP1、TMP2)和状态寄存器(PSW)组成。算术逻辑单元(ALU): 89C51中的ALU由加法器和一个布尔处理器组成。

累加器(ACC):用来存放参与算术运算和逻辑运算的一个操作数或运算的结果。暂存寄存器(TMP1、TMP2):用来存放参与算术运算和逻辑运算的另一个操作数,它对用户不开放。 状态寄存器(PSW):PSW是一个8位标志寄存器,用来存放ALU操作结果的有关状态。 1.1.2控制器: 控制器是单片机内部按一定时序协调工作的控制核心,是分析和执行指令的部件。控制器主要由程序计数器PC、指令寄存器IR、指令译码器ID和定时控制逻辑电路等构成。程序计数器PC是专门用于存放现行指令的16位地址的。CPU 就是根据PC中的地址到ROM中去读取程序指令码和数据,并送给指令寄存器IR 进行分析。指令寄存器IR用于存放CPU根据PC地址从ROM中读出的指令操作码。指令译码器ID是用于分析指令操作的部件,指令操作码经译码后产生相应于某一特定操作的信号。定时控制逻辑中定时部件用来产生脉冲序列和多种节拍脉冲。1.1.3寄存器阵列: 寄存器阵列是单片机内部的临时存储单元或固定用途单元,包括通用寄存器组和专用寄存器组。通用寄存器组用来存放过渡性的数据和地址,提高CPU的运行速度。 专用寄存器组主要用来指示当前要执行指令的内存地址,存放特定的操作数,指示指令运行的状态等。 1.1.4存储器: 89C51单片机内部有256个字节的RAM数据存储器和4KB的闪存程序存储器

基于51单片机的简易计算器设计

河南##############学校 毕业设计(论文) 基于51单片机的简易计算器 系部: 自动控制系 专业: 电气自动化 班级: 自083 姓名: 崔 # # 学号: 091415302 指导老师: 许 # 二零一二年五月八日

基于51单片机的简易计算器 摘要 工程实践教学环节是为了学生能够更好地巩固和实践所学专业知识而设置的,在本次工程实践中,我以《智能化测量控制仪表原理与设计》、《MCS-51系列单片微型计算机及其应用》课程中所学知识为基础,设计了简易计算器。本系统以MCS-51系列中的8051单片机为核心,能够实现多位数的四则运算。该系统通过检测矩阵键盘扫描,判断是否按键,经数据转换把数值送入数码管动态显示。本系统的设计说明重点介绍了如下几方面的内容:基于单片机简易计算器的基本功能,同时对矩阵键盘及数码管动态显示原理进行了简单的阐述;介绍了系统的总体设计、给出了系统的整体流程框图,并对其进行了功能模块划分及所采用的元器件进行了详细说明;对系统各功能模块的软、硬件实现进行了详细的设计说明。 关键词:MCS-51;8051单片机;计算器;加减乘除

Based on the simple calculator 51 SCM Abstract The engineering practice teaching is to students better to consolidate and practice have set up by the professional knowledge, in this engineering practice, I to the intelligent measurement control instrument principle and design ", "the MCS-51 series single chip computer and its application" course knowledge as the foundation, the design the simple calculator. This system to MCS-51 of the 8051 series single chip microcomputer as the core, can realize the connection arithmetic. The system through the test matrix keyboard scan, judge whether key, the data transfer the numerical into digital tube dynamic display. This system mainly introduced the design that the following aspects of content: based on single chip microcomputer simple calculator basic functions, and the matrix keyboard and a digital tube dynamic display of the principle of a simple expatiated; introduced the design of the whole system, the whole process of the system are discussed, and its function module partition and the components for a detailed explanation; the functional modules of the system hardware and software of the implementation of the detailed design instructions. Key words: MCS-51;8051 single chip microcomputer;Calculator;Add, subtract, multiply and divide:

51单片机定时器初值的计算

51单片机定时器初值的计算 一。10MS定时器初值的计算: 1.晶振12M 12MHz除12为1MHz,也就是说一秒=1000000次机器周期。10ms=10000次机器周期。 65536-10000=55536(d8f0) TH0=0xd8,TL0=0xf0 2.晶振11.0592M 11.0592MHz除12为921600Hz,就是一秒921600次机器周期,10ms=9216次机器周期。 65536-9216=56320(dc00) TH0=0xdc,TL0=0x00 二。50MS定时器初值的计算: 1.晶振12M 12MHz除12为1MHz,也就是说一秒=1000000次机器周期。50ms=50000次机器周期。 65536-50000=15536(3cb0) TH0=0x3c,TL0=0xb0 2.晶振11.0592M 11.0592MHz除12为921600Hz,就是一秒921600次机器周期,50ms=46080次机器周期。 65536-46080=19456(4c00) 三。使用说明 以12M晶振为例:每秒钟可以执行1000000次机器周期个机器周期。而T 每次溢出 最多65536 个机器周期。我们尽量应该让溢出中断的次数最少(如50ms),这样对主程序的干扰也就最小。开发的时候可能会根据需要更换不同频率的晶振(比如c51单片机,用11.0592M的晶振,很适合产生串口时钟,而12M晶振很方便计算定时器的时间),使用插接式比较方便。 对12MHz 1个机器周期 1us 12/fosc = 1us 方式0 13位定时器最大时间间隔 = 2^13 = 8.192ms 方式1 16位定时器最大时间间隔 = 2^16 = 65.536ms 方式2 8位定时器最大时间间隔 = 2^8 = 0.256ms =256 us 定时5ms, 计算计时器初值 M = 2^K-X*Fosc/12 12MHz 方式0 : K=13,X=5ms,Fosc=12MHz 则 M = 2^13 - 5*10^(-3)*12*10^6/12= 3192 = 0x0C78 THx = 0CH,TLx = 78H, 方式1: K=16,X=5ms,Fosc=12MHz 则 M = 2^16 - 5*10^(-3)*12*10^6/12= 60536 = 0xEC78

基于单片机的简易计算器设计

2013 - 2014 学年_一_学期 山东科技大学电工电子实验教学中心 创新性实验研究报告 实验项目名称__基于51单片机的简易计算器设计_ 2013 年12 月27 日

四、实验内容

2、实验内容 (一)、总体硬件设计 本设计选用AT89C52单片机为主控单元。显示部分:采用六位LED动态数码管显示。按键部分:采用2*8键盘;利用2*8的键盘扫描子程序,读取输入的键值。 (二)、键盘接口电路 计算器输入数字和其他功能按键要用到很多按键,如果采用独立按键的方式,在这种情况下,编程会很简单,但是会占用大量的I/O 口资源,因此在很多情况下都不采用这种方式,而是采用矩阵键盘的方案。矩阵键盘采用两条I/O 线作为行线,八条I/O 线作为列线组成键盘,在行线和列线的每个交叉点上设置一个按键。这样键盘上按键的个数就为2×8个。这种行列式键盘结构能有效地提高单片机系统中I/O 口的利用率。 矩阵键盘的工作原理: 计算器的键盘布局如图2所示:一般有16个键组成,在单片机中正好可以用一个P口和另一个P口的两个管脚实现16个按键功能,这种形式在单片机系统中也最常用。 矩阵键盘布局图: 矩阵键盘内部电路图如下图所示:

(三)、LED显示模块 本设计采用LED数码显示来显示输出数据。通过D0-D7引脚向LED写指令字或写数据以使LED实现不同的功能或显示相应数据。 (四)运算模块(单片机控制) MCS-51 单片机是在一块芯片中集成了CPU、RAM、ROM、定时器/计数器和多功能I/O等一台计算机所需要的基本功能部件。如果按功能划分,它由如下功能部件组成,即微处理器(CPU)、数据存储器(RAM)、程序存储器(ROM/EPROM)、并行I/O 口、串行口、定时器/计数器、中断系统及特殊功能寄存器(SFR)。 单片机是靠程序运行的,并且可以修改。通过不同的程序实现不同的功能,尤其是特殊的独特的一些功能,通过使用单片机编写的程序可以实现高智能,高效率,以及高可靠性!因此我们采用单片机作为计算器的主要功能部件,可以很快地实现运算功能。

基于51单片机内部定时器的简易闹钟课程设计论文

基于51单片机内部定时器的简易闹钟 摘要 现代社会电子闹钟已广泛用于各种私人和公众场合,成为我们生活、工作和学习中不可缺少的好帮手,因此研究实用性更强的电子闹钟具有十分重要的意义。本设计是基于单片机的电子钟设计,不仅具有时分秒的显示功能,还具有双闹铃和倒计时的功能,实用性非常强。电子钟的计时部分采用AT89S52单片机内部定时器实现,而显示功能是采用液晶模块LCD1602来实现,该电子闹钟可以让使用者通过按键来轻松选择的功能菜单和调节时间,具有非常良好地人机界面。 关键词:电子闹钟;倒计时;AT89S52;液晶LCD1602;按键 Abstract In modern society, the electronic alarm clock has been widely used in various occasions and become indispensable to life.It is a good helper to our work and learning. So,there is very important significance to research more practical electronic alarm clock.This design is based on single chip microcomputer,It has display function of hours,minutes and seconds,dual alarm and countdown.The internal timer of AT89S52 achieve the part of time.The liquid crystal LCD1602 achieve the part of display.The users can use the push-buttons to choice the menu of functions and adjust the time.The man-machine interface is very good. Key words: electronic alarm; countdown; AT89S52; liquid crystal LCD1602; button

基于51单片机的简易计算器

目录 摘要....................................................................................... 第一章绪论......................................................................... 1.1课题简介.................................................................... 1.2设计目的.................................................................... 1.3简易计算器系统简介....................................................第二章总体电路设计..........................................................第三章主要模块介绍.......................................................... 3.1AT89C51....................................................................... 3.2LED数码管的结构及工作原理......................................... 3.3 矩阵按键.................................................................. 3.4 蜂鸣器模块...............................................................第四章计算器系统设计..................................................... 4.1计算器硬件............................................................... 4.2 系统框图.................................................................. 4.3 程序设计..................................................................结语.....................................................................................参考文献..............................................................................

51单片机实现数码管99秒倒计时

51单片机实现数码管99秒倒计时,其实很简单,就是使用定时器中断来实现。 目的就是学习怎样用单片机实现倒计时,从而实现一些延时控制类的东西,99秒只是一个例子,你完全可以做出任意倒计时如10秒倒计时程序。 定时器定时时间计算公式:初值X=M(最大计时)-计数值。 初值,换算成十六进制,高位给TH0,低位给TL0,如果用定时器0的话。 M(最大计时)如果是16位的,就是2的16次方,最大定时,65535 微秒,实现1秒定时,可以通过定时10毫秒,然后100次改变一次秒值即可。10*100毫秒=1S 计数值:你要定时多长时间,如果定时1毫秒,就是1000微秒,(单位为微秒),如果定时10毫秒,就是10000(微秒),当然,最大定时被定时器本身位数限制了,最大2的16次方(16位定时计数器),只能定时65.535毫秒。定时1S当然不可能1S定时器中断。 下面为实现99秒倒计时C语言源程序 /*了解定时器,这样的话,就可以做一些基本的实验了,如定时炸弹~~,10秒后打开关闭继电器*/ /*数码管,12M晶振*/ #include #define uchar unsigned char sbit p11=P1^1; //连的是继电器。。 code unsigned char tab[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f}; uchar shiwei; uchar gewei; void delay(unsigned int cnt) { while(--cnt); } void main() { TMOD|=0x01; /*定时器0 16位定时器X=65535-10000(10毫秒)=55535=D8F0(十六进制)定时10ms */ TH0=0xd8; TL0=0xf0; IE=0x82; //这里是中断优先级控制EA=1(开总中断),ET0=1(定时器0允许中断),这里用定时器0来定时

单片机定时器实验

实验三单片机内部定时器应用 实验目的 1、理解单片机内部定时器的工作原理及使用方法 2、了解单片机定时中断程序的编写和调试方法 3、掌握定时器的基本使用方法 实验仪器 单片机开发板、万利仿真机、稳压电源、计算机 实验原理 1、单片机定时器的工原理 MCS-51 单片机内部有两个16 位可编程的定时器/计数器T0 和T1。它们即可用作定时器方式,又可用作计数器方式。其中T0 由TH0 和TL0 计数器构成;T1 由TH1 和TL1 计数器构成。 工作于定时器方式时,通过对机器周期(新型51单片机可以对振荡周期计数)的计数,即每一个机器周期定时器加1,来实现定时。故系统晶振频率直接影响定时时间。如果晶振频率为12MHZ,则定时器每隔(1/12MHZ)×12=1us 加1。 工作于计数器方式时,对或管脚的负跳变(1→0)计数。它在每个机器周期的S5P2 时采样外部输入,当采样值在这个机器周期为高,在下一个机器周期为低时,计数器加1。因此需要两个机器周期来识别一个有效跳变,故最高计数频率为晶振频率的1/24。 特殊功能寄存器TMOD 用于定时器/计数器的方式控制。高4 位用于设置T1,低4 位用于设置T0。如图4-7所示。 图4-7 定时器模式控制字格式

TCON 寄存器用于定时器的计数控制和中断标志。如图4-8所示。 图4-8 定时控制寄存器数据格式 编写程序控制这两个寄存器就可以控制定时器的运行方式。 单片机内部定时器/计数器的使用,简而概之:(1)如需用中断,则将EA 和相关中断控制位置1;(2)根据需要设置工作方式,即对TMOD 设置;(3)然后启动计数,即对TR0或TR1置1。(4)如使用中断,则计数溢出后硬件会自动转入中断入口地址;如使用查询,则必须对溢出中断标志位TF0或TF1进行判断。 2、 用定时器编写一个秒计时器 假设系统使用的晶振频率为12MH Z ,即每个机器周期为1us 。如使用方式1,则定时时间最长是216 ×1us=65536us=,小于1s 。故必须设置一个软件计数单元,即假设定时器定时中断时间为50ms ,则必须定时中断20次才达到1s 并对秒计时单元加1,20即为软件计数次数。最后再把秒计时单元的值转成显示数码送显示缓冲区。 图4-9 定时器应用程序流程图

51单片机定时器使用

51单片机定时器使用——小灯闪烁一、定时器工作方式设置TMOD=0x01 GATE =0 由TR=1控制开始计时; C/ T=0 作为定时时器使用; M1=0\M0=1 用作16位定时器 二、计数寄存器TH0\TL0初始值计算如定时0.02秒 普通51单片机12T模式: (一)手工计算例如晶振为10.6850MHZ 定时20毫秒 X/10.6850*1000000*12=20毫秒 X=17808 原始值T0=Y Y+17808=65536 Y=47728 利用科学计算器进行16进制转换为0Xb800 TH0=0x80 TL0=0x00 (二)单片机公式计算 TL0=T1MS;//初始化定时的计数初值(第8位),高8位丢失 (三)启动定时器(TR0=1),判断是否溢出(If(TF0==1){//}),时间到。 (四)闪烁的小灯代码 #include //P1 0脚接LED小灯 sbit led=P1^0;

//定义延时函数,循环cs次,时间长为20*cs毫秒 void delay20(unsigned int cs) { unsigned int shuL=0; TMOD=0x01; //初始值根据单片机时钟频率计算 TH0=0xB8; TL0=0x00; //启动定时器 TR0=1; while(shuL<=cs) { if(TF0==1) //查询是否溢出,溢出后复位溢出标志,赋初始值,循环计数加。{TF0=0; TH0=0xBA; TL0=0x70; shuL=shuL+1; } } } void main()

{ delay20(500); //小灯取反,亮500*20毫秒,即10秒; led=~led; delay20(500); }

基于51单片机的简易计算器设计

基于单片机的简易计算器设计 摘要 (2) 关键字:80C51 LCD1602 4*4矩阵键盘计算器 (2) 第一章绪论 (3) 1、1系统开发背景 (3) 1、2系统开发意义 (3) 1、3设计目的 (3) 1、4设计任务 (3) 第二章单片机发展现状 (4) 2、1目前单片机的发展状况 (4) 2、1、1单片机的应用场合 (4) 2、2计算器系统现状 (5) 2、3简易计算器系统介绍 (5) 第三章系统硬件设计及说明 (6) 3、1系统组成及总体框图 (7) 3、2AT89S52单片机介绍 (7) 3、3其它器件介绍及说明 (10) 3、3、1 LCD1602液晶显示 (10) 3、3、2 4*4矩阵扫描按键 (13) 第四章 PROTEUS模拟仿真 (14) 第五章系统硬件设计及说明 (16) 第六章软件设计 (17) 6、1汇编语言与C语言的特点及选择 (17) 6、2源程序代码 (17)

摘要 近年来随着科技的飞速发展,单片机的应用正在不断深入,同时带动传统控制检测技术日益更新。在实时检测与自动控制的单片机应用系统中,单片机往往作为一个核心部件来使用,但仅单片机方面的知识就是不够的,还应根据具体硬件结构、软硬件结合,来加以完善。 计算机在人们的日常生活中就是比较常见的电子产品之一。可就是它还在发展之中,以后必将出现功能更加强大的计算机,基于这样的理念,本次设计主要以80C51单片机为控制芯片,用C语言进行编程实现,通过4*4矩阵键盘控制,输出用液晶屏LCD1602显示,该计算器可以实现一般的加减乘除四则混合运算。 关键字:80C51 LCD1602 4*4矩阵键盘计算器

相关文档
最新文档