伺服曲柄压力机设计说明书

伺服曲柄压力机设计说明书
伺服曲柄压力机设计说明书

伺服曲柄压力机设计计算

目录

0引言

1 伺服曲柄压力机技术参数

2伺服曲柄压力机原理与性能设计分析

3 伺服曲柄压力机工艺曲线设计分析

4 伺服曲柄压力机负载曲线设计分析

5 伺服曲柄压力机电机功率设计分析

6 伺服曲柄压力机传动机构设计

7 伺服曲柄压力机工作机构设计

0 引言

金属的锻压加工大量采用曲柄压力机,也称为冲床,据不完全统计,我国在用的曲柄压力机冲床数量高达数百万台。目前,锻压生产所用曲柄压力机由高转差率的电动机驱动,由刚性离合器和摩擦离合器控制,存在安全性差、能耗高、故障率高的缺陷。

高转差率电动机的效率低于GB18613-2012《中小型三相异步电动机能效限定值及能效等级》,从2012年9月1日起被强制淘汰,选用高能效的电动机成为压力机换代升级的首要目标。

“开关磁阻电机系统是一种机电一体化节能型调速电机系统。它由开关磁阻电动机、功率变换器及控制器组成。同传统的直流及交流电机调速系统比较,具有以下优点:电机结构坚固、制造成本低;效率高,不仅在额定输出状态下,而且在宽广的调速范围内也能保持高效率运行;一般系统效率达80%以上;启动转矩大、启动电流小;制动性能好,能实现再生制动,节约电能效果显著;系统调控性能好,四象限控制灵活;具有无刷结构,适合于在高粉尘、高速、易燃易爆等恶劣环境下运行;可以在各行各业应用。”(摘自《中华人民共和国国家发展和改革委员会中华人民共和国科学技术部国家环境保护总局公告2005年第65号》)采用节能的开关磁阻电机替代高耗能的传统电机成为企业节能的发展方向。

目前,国外的伺服压力机技术采用永磁伺服技术,抗冲击性能不好,可靠性低、成本高,没有形成对传统压力机的全面替代。

1999年以来,由山东科汇电力自动化有限公司研发生产的开关磁阻伺服系统,在压力机领域获得广泛应用。在山东理工大学赵婷婷教授的技术支持下,开关磁阻伺服压力机分别在青岛益友锻压机械有限公司、扬力集团等单位进行了研制,各吨位系列的开关磁阻伺服压力机相继诞生,并开始投入批量生产。实际应用证明,与现有压力机比较,开关磁阻伺服压力机的优势明显、特点突出,特别是高效节能、智能数控自动化与高可靠性的独特优势,受到广大用户的积极响应,并获得一致好评。

淄博市能源监测部门的监测,给出了开关磁阻伺服螺旋压力机比摩擦式螺旋压力机节能67.86%的结果(引自《淄博市能源监测中心检测报告》编号J1010138),由此,当地政府颁布文件,用节能数控压力机强制淘汰摩擦压力机(引自淄经信节字[2011]77号)。

电机能效新国标的强制执行与开关磁阻伺服电机技术的成熟,为传统压力机的升级换代以及冲压生产节能智能化带来发展机遇。开关磁阻伺服压力机是具有感知、决策、执行功能的智能锻压装备。智能锻压装备作为高端装备制造业的重点发展方向和信息化与工业化深度融合的重要体现,大力培育和发展智能锻压装备产业对于加快锻压业转型升级,提升生产效率、技术水平和产品质量,降低能源资源消耗,实现锻压生产过程的智能化和绿色化发展具有重要意义。

1 伺服曲柄压力机技术参数

250吨伺服曲柄压力机技术参数

F/ kN: 2500

公称压力

g

S/ mm: 13

公称压力行程

g

滑块行程S/ mm: 315

n/ spm: 20

行程次数(额定值)

g

行程次数调速范围n/ spm:10—40

2伺服曲柄压力机原理与性能设计分析

2.1 伺服曲柄压力机原理与分析

伺服压力机由开关磁阻伺服电机驱动,与传统机械压力机结构不同之处是没有飞轮、离合器、气动制动器及其控制系统。结构组成为:开关磁阻伺服电机经过减速驱动曲柄连杆滑块运动;电机轴设置电磁制动器,电机轴与曲轴端设置位置传感器;制动器和位置传感器连接电机控制器(图2-1)。

结构件的连接关系为:伺服电机输出轴键固连小带轮,小带轮通过V 带传动连接大带轮,大带轮键固连传动轴的一端,传动轴通过轴承连接机身,传动轴的另一端键固连小齿轮,小齿轮与大齿轮相互齿轮传动,大齿轮键固连接曲柄轴的一端,曲柄轴通过轴承连接机身,曲柄轴的中部通过轴承连接连杆的大端,连杆的另一端滑动连接滑块.

图2-1 伺服曲柄压力机原理图

1、开关磁阻伺服电机

2、角位移传感器

3、制动器

4、皮带传动

5、传动轴

6、齿轮传动

7、曲轴

8、 连杆

9、滑块 10、传感器 11、机身 12、模具 13、液压缸 14、电机控制器

工作原理:

压力机起动时,开关磁阻伺服电机以大起动转矩由零速加速旋转,通过减速传动带动曲柄连杆滑块运动,电机在起动加速过程提供的能量储存于系统转动惯量,其能量为

2

2

1e e J ,此能量(可由电机转速数控值决定)大于等于额定工作能量g E ,压力行程时,电机全速降,释放此能量,实施冲压;位置传感器给出滑块上止点的位置,通过电机控制器传给伺服电机。

单击状态下,当滑块靠近上止点时,伺服电机减速,制动器实施制动,滑块停在上至点,完成一个工作循环。

开关磁阻伺服曲柄压力机与传统曲柄压力机的原理比较:

)(2

1212

2212ωωω-==

J J E e e (2-1)

2.2 伺服系统原理与分析

伺服系统有永磁伺服系统和无永磁伺服系统两种。考虑到压力机的冲击性负载特性,主

运动采用无永磁体的开关磁阻伺服系统驱动。,

开关磁阻伺服系统(SRD )由电机(SRM )及控制器两大部分组成。其电机定、转子由冲有凸极和凹槽的硅钢冲片叠压而成。转子上既无绕组也无永磁体,定子的相绕组为集中绕组。结构设计如图2-2所示。以图中三相12/8极定、转子的相对位置作为起始位置,依次给B →C →A 相绕组通电,转子即会逆着励磁顺序以逆时针方向连续旋转;反之,则电机会顺时针方向转动。绕组电流是单向的,有效避免了直通短路。

当绝缘栅双极晶体管(IGBT )S1、S2导通时,A 相绕组从直流电源U 吸收电能,而当S1、S2关断时,绕组电流经续流二极管D1、D2继续流通,并回馈给电源U 。因此,SRD 的特点是具有再生作用,系统节电、效率高。

转子上固定有齿盘,定子上装有检测齿盘转动的光电传感器,转子角位移以电脉冲信号的方式传送给SRD 控制器,由SRD 控制器控制电机的工作运动。

SRD 控制器包括嵌入式微处理器、PLD 可编程逻辑器件、IGBT 驱动电路、光电隔离、通信接口、显示屏、键盘、电力电子器件及软件(图2-3)。微处理器把输入信息、反馈信息处理计算,结果传给可编程逻辑器件,PLD 控制驱动单元和IGBT 的导通与关断,因定、转子的两凸极对齐位置下电感最大max L ,不对齐位置下电感最小min L ,可通过控制电流的斩波值i 、开通角on θ和关断角off θ,来控制电机运行。

图2-2 SRM 控制原理图

2.3 曲柄压力机数控方法设计

驱动压力机的开关磁阻伺服系统工作在用户设定的转速数值。具体数控方法如下:

电机定子相电流和转子瞬时转矩及其运动方程为:

θ

θd dL i M e 2)(21=

(2-2) dt

d J M M L

e ω

=- (2-3)

式中 i --相电流(A) θ--转子角位移 e M --电机转矩 (N ·m)

t --时间(s)

L M 为负载转矩(N ·m)

J --电机转子及工作运动部分的转动惯量(kg ·m 2) L --相电感(H)

ω--电机角速度(s -1)

考虑

θ

d dL

电感上升沿或下降沿的斜率近似为K ,则电机的转矩可写为 +++∈???????<->=R K Ki Ki M n n n n e ,,2

1,211212

ωωωω (2-4)

在额定转速以下电机运行在电流斩波状态,把(2-3)、(2-4)式合并,并写成数值的形

式,则斩波电流瞬时值为:

?

???

?

????

??<--->+--=++++++n n L

n

n n n n n L n

n n

n K M

t t J K M t t J i ωωωωωωωω111111 ,2/ ,2/ (2-5)

由电流计算值,给定电流上限幅值0i i i H ?+=和下限幅值0i i i L ?-=。若检测电流值

H c i i >,IGBT S1、S2同时关断,迫使电流下降;若检测电流L c i i <,IGBT 导通,电流又

开始上升,以此实现对电流斩波值的限定。

图2-3 SRD 控制器系统框图

数控方法由图3的控制电路实现。根据反馈的转子位置信号,确定上止点和下止点的位置,并计算出转速反馈值n ω,根据PID 算法使1+n ω逼近ω,根据公式(5)计算电流斩波值i ;PLD 根据位置编码通过驱动电路控制IGBT 的导通与关断。

2.4 开关磁阻伺服曲柄压力机的特性分析

开关磁阻伺服系统与其它系统相比有以下优点: (1) 系统效率高

开关磁阻伺服在其宽广的调速范围内,整体效率比其它调速系统高出至少10%。在低转速及非额定负载下高效率则更加明显。

(2) 调速范围宽,低速下可长期运转

开关磁阻调速带负荷长期运转的转速范围可在零到最高转速内,电机及控制器的温升低于工作在额定负载时的温升。

(3) 无过冲起动电流

开关磁阻伺服具有软起动特性,电机起动过程没有交流电机起动电流大于额定电流5~7倍的现象,而是起动电流平滑增加至所需的电流。设定的电机起动时间越长,起动电流越小。

(4) 高起动转矩,低起动电流

开关磁阻伺服起动转矩达到额定转矩的150%时,起动电流仅为额定电流的30%。 (5) 三相输入电源缺相或控制器输出缺相不烧电动机

开关磁阻伺服若三相输入电源缺相或者欠功率运行或者停转,不会烧毁电机和控制器。电动机输入缺相只会导致电动机输出功率减小,或者有可能导致电动机无法起动。

(6) 过载能力强

开关磁阻伺服过载能力强,当负载短时大于额定负载时,转速下降,保持最大输出功率,不出现过流现象。当负载恢复正常时,转速恢复到设定转速。

(7) 功率器件控制错误不会引起短路

开关磁阻伺服的上下桥臂功率器件和电机的绕组串联,不存在发生功率器件控制错误导致短路而烧毁的现象。

(8) 可靠性高

开关磁阻伺服的转子无绕组和鼠笼条,电机可高速运转而不变形,机械强度和可靠性均

高于其它类设备。定子线圈嵌装容易,端部短而牢固,热耗大部分在定子,易于冷却。转子无永磁体,可有较高的最大允许温升。

(9) 功率因数高

普通交流电机空载时功率因数为0.2~0.4,满载时为0.86~0.89;而开关磁阻伺服的功率因数空载时可达0.995,满载时可达0.98。

与现有压力机比较,开关磁阻伺服曲柄压力机的突出优势为: (1) 运动数控 曲柄压力机滑块速度sin sin 22e

v R i ωλαα??

=

+ ???

,电机角速度e ω的闭环数控,使滑块运动曲线可根据工艺要求进行数字设置,可以设计特殊的工作特性曲线,进行高难度、高精度加工,能够实现低速锻冲急回的变速功能。

(2) 生产率高 可以根据工况和自动化连线的需要,在较大范围内数字设定滑块行程次数,其宽范围调速功能,可以有效提高生产率,彻底解决了“不能用连续行程压延较大较深的零件”的难题。

(3) 能量数控 开关磁阻数控曲柄压力机加压能量可数控,数控其速度,即数控其能量。 (4) 智能数控 对不同工艺、不同材料可调用计算机存储的不同工作曲线,使压力机的加工性能、加工范围大大提高。工艺曲线、时间、产量、耗电量等数据可由微机智能存储和处理,易实现制造过程信息化管理的目标。

(5)制件精度高 没有液压过载保护装置,不存在液体受压变形影响闭合高度,床身弹性变形误差小,压力重复精度高,制件精度高。

(6)可视化 加压速度、压力、压制时间等工艺参数实时反馈并显示。

(7) 通用性提高 现有压力机根据工艺不同而种类繁多,开关磁阻数控压力机可依工艺调节,而满足不同工艺的需求,使同一台压力机工作在不同工况。

(8) 模具寿命高 因压制工件的能量和速度可准确数控,使模具受冲击速度减小,寿命提高。

(9) 结构简化 曲柄压力机没有了大皮带轮、离合器、液压过载保护装置等,结构极大地得到简化。因滑块能量数控,在吨位仪指示下,打击力不会超载,无需过载保护装置。

(11) 上止点位置可控 摆动工艺的上止点可以任意设定, 正常停机时,确保滑块停在上止点,编码器反馈位置信号,在停机前电机减速;当滑块处在上止点时,电机轴制动,确保滑块停在上止点。

(12) 安全性高 在电机制动和制动器作用下,滑块可以在任何位置紧急制动停止。 (13) 节能 在额定点以下工作,开关磁阻电机比其他电机耗能低;在低速阶段,节能更加明显。数控伺服压力机没有离合器结合能耗,滑块停止后,电机停转,也没有了电机、

皮带轮空转,能耗显著降低。同时,开关磁阻电机在制动时可变为发电机,能量回馈,重新利用。

(14) 工作可靠性高与其他电机系统相比,开关磁阻电机转子即无绕组也无永磁体,机械强度高;电机在三相输入电源缺相或者欠功率运行或者闷车的情况下,不会烧毁电机和控制器;功率器件不会发生因控制错误导致短路而烧毁的现象,并且温升低。

(15)不会闷车当故障停车时,电机反转回程,不会发生闷车现象。

(16)可以保压在下止点压紧工件时,滑块可以短时间停留,实现液压机的保压功能。

(17)易维护没有易损易耗件,减少了维护工作、维护时间和维护费用。

(18)使用方便模具调试时,能够以极慢的速度寸动下行,不会发生故障,不用配置微调传动,调模试模极为方便,需要外设调模试模液压机,可以在导柱导套接触后,试冲工件,不会发生闷车。

(19)多机同步控制多台压机连线时,开关磁阻数控系统更容易实现同步控制。

开关磁阻伺服曲柄压力机即保持了机械驱动的种种优点,又改变了其工作特性不可调的缺点,能极方便地改变滑块的运动曲线,获得不同的工件变形速度,使机械驱动的成形装备也具有了柔性化和智能化的特点,工作性能和工艺适应性大大提高,保证了冲压件的质量;同时,结构简化,重量减轻,安装、调试、使用方便,无离合器及其气动系统,减少维修、降低能耗,可靠性提高,安全性提高,实现主运动的数字化信息化控制。

开关磁阻伺服曲柄压力机的高效节能、智能数控性能优越,能够逐步替代现有的交流电机和直流电机驱动的各种曲柄压力机,实现传统产业的升级换代。开关磁阻伺服压力机提升了成形加工产业的制件精度的整体水平,将使我国制造业水平进入了高技术低消耗的新阶段。

3 伺服曲柄压力机工艺曲线设计分析

3.1工艺曲线设计需求分析

由于冲压工艺有冲裁、弯曲、拉深等多种加工方法,不同的加工方法对压力行程、速度等工艺参数有相应的要求,伺服曲柄压力机应满足不同工艺的参数即运动曲线要求。

3.2曲柄滑块运动分析

空载状态下的运动分析如下.

3.2.1滑块位移与曲柄转角的关系

图3-1曲柄连杆滑块机构运动分析图

图3-1中:

(1 )O点为曲柄的回转中心;

(2 )A点为连杆与曲柄的连接点;

(3 )B点为连杆与滑块的连接点,B点的运动代表滑块的运动(即分析时滑块可看作点运动);

(4 )OA表示曲柄半径R;

(5 )AB表示连杆长度L;

(6 ) 为曲柄与铅垂线的夹角,顺时针为正方向;

( 7 ) ω曲柄旋转的角速度,逆时针为正方向; ( 8 ) s 代表滑块距下死点的距离,向上为正;

( 9 ) ν代表滑块作往复直线运动的速度,向下为正方向; ( 10) 曲轴在最高点为0180,最低点为00度。曲轴从0180逆时针正转经过090到00,随后正转经过-090到0180-为一工作周期。

根据图3-2,滑块位移s 的数学表达式为

)cos cos (βαL R L R s +-+= (3-1)

L

R

=

λ(λ连杆系数) 由三角函数公式可得:ββ2sin 1cos -= 由图3-2结构,可得:αλα

βsin sin sin ==

L

R αλββ222sin 1sin 1cos -=-=

)]sin 11(1

)cos 1[(22αλλ

α--+

-=∴R s

将cos β按泰勒公式展开,取前两项得:

αλβ22sin 2

1

1cos -=

又22cos 1sin 2α

α-=

??

?

???-+-=∴)2cos 1(41)cos 1(αλαR s (3-2)

假设,曲柄上止点为0度,下止点为180度。令

θπα-=

??

?

???-++=∴)2cos 1(41)cos 1(θλθR s (3-3)

(3-3)式中,s 为滑块位移,向上为正方向;λ 为连杆系数 ,L

R

=

λ; R 为曲柄半径。 3.2.2 滑块速度与曲柄转角的关系

根据运动学中位移和速度的微分方程 ν=dt

ds 又因速度正方向向下,可列以下速度公式

??

?

??+=--=-=-=-=

αλαωωαα2sin 21sin )()2(R dt ds dt d d ds dt ds dt s R d v

其中 --ω=

dt

d α

令θπα-=

??

?

??-=θλθω2sin 2sin R v (3-4)

(3-4)式中,ω为曲柄的角速度,ν为滑块速度,向下为

正方向。

3.2.3滑块加速度与转角的关系

利用相同的原理可对速度公式进行时间求导得滑块的角加速度

()()αλαωωαλαωααα2cos cos 2sin 21sin 2

+-=-??

??????? ??+===

R R d d dt d d dv dt dv a

令θπα-=

()θλθω2cos -cos 2R a =(3-5)

由以上分析可得滑块的运动学公式: 滑块运动与曲柄转角的关系式

??

?

???-++=∴)2cos 1(41)cos 1(θλθR s

??

?

??-=θλθω2sin 2sin R v

()θλθω2cos -cos 2R a =

(3-6)

滑块运动与时间的关系式

匀速运动时,令t ωθ=

??

?

???-++=∴)2cos 1(41)cos 1(t t R s ωλω

??

?

??-=t t R v ωλωω2sin 2sin

()t t R a ωλωω2cos -cos 2= (3-7)

由公式(3-6)、(3-7)可知:

1)滑块的运动特性在曲柄角速度一定时只与曲柄转角刚性有关,与其他因素没有关系。不同的行程次数时,由于滑块的速度v ,加速度a 都与曲柄的角速度有关,在不同的行程次数下,滑块的速度v ,加速度a 是变化的。

2 )滑块的行程只是在上下止点间循环滑动,不可随意的刚性缩短或增长。 3)ω是曲柄滑块的转速,其大小是由伺服电机通过传动机构按照一定的传动比转换过来参数(电ω=

i ?曲ω,i

为传动比),所以计算机控制伺服电动机

的角速度可以直接控制滑块的运动。考虑到t ωθ= ,滑块运动曲线随时间发生

变化。

3.3曲柄滑块运动工艺曲线设计计算 3.3.1 滑块运动工艺曲线与曲柄转角的关系

根据位移s 、速度v 、加速度a 的公式,

??

?

???-++=∴)2cos 1(41)cos 1(θλθR s

??

?

??-=θλθω2sin 2sin R v

()θλθω2cos -cos 2R a =

式中, R 为曲柄半径,mm 5.1572/3152/S R ===,

λ为连杆系数,λ=0.1

θ为曲柄转角。

计算得:

表0 角度-位移的对应数据

序号角度θ/°位移s/mm

1 0 315.0

2 30 295.9

3 60 242.2

4 90 165.4

5 120 84.70

6 150 23.10

关键点

α=22.4Sg=13

g

7 160 10.40

8 170 2.600

9 180 0

10 210 23.10

11 240 84.70

12 270 165.4

13 300 242.2

14 330 295.9

15 360 315.0

图3-2角度-位移曲线图当行程次数分别为:

n1= n g /2=10,

n2=15,

n g=20,

n4=1.5 n g =30,

n5=2 n g =40,(/min-1)时,

计算得如下数据:

表1 行程次数n1=10,滑块速度、加速度数据

序号角度

θ/°位移

s/mm

曲轴转速

n1/rpm

滑块速度

v1/mm?s-1

滑块加速度

a1/mm?s-2

1 0 315.010 0155.4

2 30 295.975.30140.9

3 60 242.2135.794.90

4 90 165.4164.917.30

5 120 84.70149.9-77.70

6 150 23.1089.60-158.1关键点157.6 Sg=13 68.60-171.9

7 160 10.4061.70-175.5

8 170 2.60031.50-186.3

9 180 00-189.9

10 210 23.10-89.60-158.2

11 240 84.70-149.9-77.70

12 270 165.4-164.917.30

13 300 242.2-135.794.90

14 330 295.9-75.30140.9

15 360 315.00155.4

图3-3 角度、位移-速度曲线图

图3-4角度、位移-加速度曲线图

表2 行程次数n g=15,滑块速度、加速度数据

序号角度

θ/°位移

s/mm

曲轴转速

n1/rpm

滑块速度

v1/mm?s-1

滑块加速度

a1/mm?s-2

1 0 315.015 0349.4

2 30 295.9112.9316.8

3 60 242.2203.4213.5

4 90 165.4247.338.80

5 120 84.70224.9-174.7

6 150 23.10134.3-355.6关键点157.6 Sg=13 102.9-386.5

7 160 10.4092.50-394.5

8 170 2.60047.20-418.8

9 180 00-427.0

10 210 23.10-134.4-355.6

11 240 84.70-224.9-174.7

12 270 165.4-247.338.80

13 300 242.2-203.4213.5

14 330 295.9-112.9316.8

15 360 315.0-0349.4

图3-5角度、位移-速度曲线图

图3-6角度、位移-加速度曲线图

表3 行程次数n g=20,滑块速度、加速度数据

序号角度

θ/°位移

s/mm

曲轴转速

n1/rpm

滑块速度

v1/mm?s-1

滑块加速度

a1/mm?s-2

1 0 315.020 0619.2

2 30 295.9150.3561.4

3 60 242.2270.8378.4

4 90 165.4329.268.80

5 120 84.70299.3-309.6

6 150 23.10178.8-630.2

关键点 157.6 Sg=13

137.0 -684.8 7 160 10.40 123.2 -699.2 8 170 2.600 62.80 -742.2 9 180 0 0 -756.7 10 210 23.10 -178.8 -630.2 11 240 84.70 -299.3 -309.6 12 270 165.4 -329.2 68.80 13 300 242.2 -270.8 378.4 14 330 295.9 -150.3 561.4 15

360

315.0

619.2

图3-7角度、位移-加速度曲线图

图3-8角度、位移-加速度曲线图

表 4 行程次数n g =30,滑块速度、加速度数据 序号 角度 θ/° 位移 s/mm 曲轴转速n 1/rpm 滑块速度 v 1/mm ?s -1 滑块加速度

a 1/mm ?s -2

1 0 315.0 30

0 1398

2 30 295.9225.91267

3 60 242.2406.9854.1

4 90 165.4494.6155.3

5 120 84.70449.7-698.8

6 150 23.10268.7-1423关键点157.6 Sg=13 205.9-1546

7 160 10.40185.0-1578

8 170 2.60094.30-1675

9 180 00-1708

10 210 23.10-268.7-1423

11 240 84.70-449.7-698.8

12 270 165.4-494.6155.3

13 300 242.2-406.9854.1

14 330 295.9-225.91267

15 360 315.001398

图3-9角度、位移-加速度曲线图

图3-10角度、位移-加速度曲线图

10吨螺杆压力机设计说明书

(1)拉紧螺栓直径: 拉紧螺栓直径决定于机身的预紧力。机身预紧力通常根据压力机的公称压力及其结构形式确定。拉紧螺栓一般采用45号钢制造。 当采用正火处理的45号钢时,对于组合机身的拉紧螺栓直径d 可按以下经验公式计算,然后根据标准直径圆 初步选定。 d =式中 g p ——压力机公称压力(KN)。 对于整体机身,可取预紧力为(0.7~1.0) g p ,但是在目前实际设计时也有人取和机身同样大小的预紧力。 拉紧螺栓两端通常采用45锯齿形螺纹,其牙型与基本尺寸分别见标准,螺母采用圆螺母。当拉紧螺栓的直径确定后,两端螺纹和螺母可以按标准表(见设计手册)选取。 (2)立柱断面尺寸 立柱最小断面积按下面这个公式选取: [] min 2G P F γ= σ; P γ——预压力,通常可取P γ=(1.2~1.5)g p ; G σ——许用应力,可近似取40~60MPa (3)机身高度的确定 机身的高度可按下式确定: H=h+S+L+H1+A+H2+H3+H4; 式中h ——最大装模高度; S ——压力机行程长度; L ——连杆长度;

H1——滑块底面与连杆小头中心线的距离; A+H2——偏心轴心与上横梁顶面的距离; H3——楔形工作台的高度; H4——底座的高度; 封闭高度采用偏心压力销或偏心套调整的压力机,在计算机身高度时,不应计人H3。 (4)底座尺寸和底座与基础接触面积 底座后面尺寸可近似按以下经验公式决定: E=T+2/3D; 式中T——机身中心线至传动轴支座孔中心线的距离; D——飞轮直径(mm)。 机身底座与基础接触面积按下式确定; P=mg/p; 式中 m——压力机质量; g——重力加速度; p——机身底座与基础接触面的单位压力,一般可取0.7~0.8MPa。 4.4 机身机架的选用、受力及强度的校核 本课题选用的机身为三梁四柱式机身,机身结构简图如下图4-1所示 1-横梁 2-移动横梁 3-立柱 4-工作台 图4-1 机身结构简图 整体机身框架力的传递由上图可以看出上下横梁和立柱交界内转角处为危险区域,并为受拉状态,所以在设计的时候应该保证以下几点原则。 (1)应使力的传递距离最短。 (2)结构布置和材料分配应考虑力的传递路线。

曲柄压力机解读

曲柄压力机 一、工作原理及运动操作 曲柄压力机是通过曲柄连杆机构将电动机的旋转运动转换为滑块的往复直线运动。工作原理图如下:电动机1通过V带把运动传给大带轮3,在经过小齿轮4,大带轮5传给曲柄7,通过连杆9转换为滑块10的往复直线运动,若在滑块10和工作台14上分别安装上、下模,可完成相应的材料成形工艺。 JB23-63开式曲柄压力机工作原理图 1-电动机 2-小带轮 3-大带轮 4-小齿轮 5-大齿轮 6-离合器 7-曲柄 8-制动器 9-连杆 10-滑块 11-上模 12-下模 13-垫板 14-工作台 15导轨 16-机身机械压力机工作原理图由于生产工艺的需要,滑块有时运动,有时停止,所以装有离合器6与制动器8,压力机在整个工作周期内进行工艺操作的时间很短,也就是说,有负荷的工作时间很短,大部分时间为无负荷的空闲时间。为了使电动机的负荷均匀,有效地利用能量,因而装有飞轮。大皮带轮3即起飞轮的作用。 与JB23-63型压力机相 同。只是它的工作机构采用了 偏心齿轮驱动的曲柄连杆机 构,即在最末一级齿轮上铸有 一个偏心轮,构成偏心齿轮。 如图所示,偏心齿轮9由小齿 轮8带动,在心轴10上旋转, 带动套在偏心齿轮上的连杆 12摆动,连杆带动滑块13上 下运动,实现冲压加工。此外, 这种压力机上还装有液压气垫 18,在拉深工序中起压边作用 或冲裁卸料时顶出制件。 J31-315闭式压力机外形和工作示意图1—电动机 2—小带轮 3—大带轮 4—制动器 5—离合器 6,8—小齿轮 7— 大齿轮 9—偏心齿轮 10—心轴 11—机身 12—连杆 13—滑块 14—上模 15—下模 16—垫板 17—工作台 18—液压气垫

压力机的安全使用方法与安全管理

压力机的安全使用方法 与安全管理 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

压力机的安全使用方法与安全管理防止冲压事故是一个复杂、综合性的工作,应从多方面、多层次给予重视。压力机本质安全和采用安全装置是压力作业安全的基础和前提,使用与管理是安全的保证,包括制定严格的安全操作规程、创造良好的环境和舒适的工作条件,采用辅助安全措施等。否则压力机及其安全装置再好,但得不到正确的使用和维护,甚至遭到人为损坏或拆除,事故仍可能发生。 一、手用工具 冲压事故率最高的时段发生在送、取料阶段,而我国目前相当数量的冲压机械还仍然靠手工送、取料。解决这个问题的一个廉价简便的方法就是利用手用工具。手用工具的作用是以工具代手,避免操作者手伸进模口区的危险。 手用工具是指在压力机主机以外,为用户安全操作额外提供的手用操作工具。手用工具种类很多,常用的有手用钳、钩、镊、夹、各式吸盘(电磁、真空、永磁)及工艺专用工具等,是安全操作的辅助手段。 手用工具的设计和选用要注意以下几点: 1.符合安全人机工程学要求 手用工具的手柄形状要适于操作者的手把持,并能阻止在用力时,手向前握或前移都不能达到不安全位置,避免因使用工具不当而受到伤害。 2.结构简单、方便使用

手用工具的工作部位应与所夹持坯料的形状相符,以利夹持可靠、迅速取送、准确入模。 3.不得对模具造成损伤 手用工具应尽量采用软质材料制作,以防在意外情况下,工具未及时退出模口,而在模具又闭合时,造成压力机过载。 4.符合手持电动工具的安全要求 手持电动工具应采用安全电压,并保证绝缘。 需要强调指出,在正常操作时,坚持使用手用工具对降低冲压事故确实能起到一定作用,但手用工具本身并不具备安全装置的基本功能,因而不是安全装置。它只能代替人手伸进危险区,不能防止操作者的手意外伸进危险区。采用手用工具还必须同时使用安全装置。 二、良好的工作环境和操作位置 冲压作业单调、重复,容易引起操作者疲劳;噪声和振动使操作意识下降,这也是导致事故的重要原因之一。如果操作者的姿势不正确,会加速疲劳,增加危险性,所以操作位置和姿势,以及周围环境诸因素都应给予充分注意。 1.操作位置和姿势应符合安全人机学的要求 尽量为操作者提供舒适安全的作业条件,以便更有效地发挥人的作用,提高生产率。国外的一些做法可供我国借鉴,如日本搞了冲压作业的标准操作尺寸。不仅在压力机的尺寸设计上考虑了人体参数,而且还设置了肘托板、高度可调的椅子和脚踏板,增加操作的舒适性。 2.提供良好的生理和心理工作环境

热模锻压力机设计说明书

热模锻压力机设计说明书 课程名称:现代设计 学院:机械工程学院 专业:机自 姓名:苏军 学号:1008030355 年级:机自107 班 任课教师:何玲 20013年 11 月20 日 设计任务书 小组成员:丁万飞韦晓光苏军王清鹤指导教师:何玲 一.题目:设计连杆式热模锻压力机。压力机工作平稳,其中热模锻压力机由一般规模厂中小批量生产。

热模锻压力机传动系统简图 二.设计内容: 一)设计计算 1.传动零件的设计; 2.轴的设计; 二)图纸的绘制 热模锻压力机装配图绘制;零件图绘制 三)编写课程设计说明书 内容包括:目录、设计题目、设计内容、终结、参考文献。 三.设计要求 热模锻压力机装配图1张(A1)。 2、零件图一张(A4) 3、详细设计计算说明书1份(含标准封面、正文并装订)。 目录 一、设计说明 (1) 二、轴设计…………………………………………………………

1.偏心轴设计…………………………………………………… 2.细长轴设计…………………………………………………… 三、连杆设计……………………………………………………… 四、齿轮设计……………………………………………………… 五、设计优缺点分析……………………………………………… 六、终结…………………………………………………………… 七、参考文献……………………………………………………… 一、设计说明 热模锻压力机在汽车、拖拉机、内燃机、船舶、航空、矿山机械、石油机械、五金工具等制造业中,用于进行成批大量的黑色和有色金属的模锻和精整锻件,

锻造出的锻件精度高,材料的利用率高,生产率高,易于实现自动化,对工人的操作技术要求低,噪声和振动小等优点。设计一个连杆式两级传动热模锻压力机。 二、轴设计 1.偏心轴 轴总长d=1000mm 偏心轴效果图 2.细长轴 轴总长d=1000mm 细长轴效果图 三、连杆设计

机械原理课程设计 曲柄压力机机构设计

机械原理课程设计 说明书 设计课题:曲柄压力机 学院:机械与电气工程学院

曲柄压力机机构设计 [摘要] 曲柄压力机是以曲柄传动的锻压机械,适用于板料的冲孔、落料弯曲、线拉伸及成型等工作。床身可作适当倾斜,以便于把冲压的成品或铁屑等物,依靠自重滑落,若装上自动送料机构,则可以推行半自动冲压工作,一般用于农业机械、电气工业、汽车、拖拉机工业等用途较为广泛。 这篇设计说明书介绍了设计压力机的设计过程,从确定传动方案开始,到压力机主体机构的尺寸参数确定和运动分析,在到电动机选择,最后压力机传动系统主要零部件的设计计算。此阶段主要对压力机主体机构的尺寸参数确定和运动分析进行研究设计。 此次通过对对心曲柄滑块机构的运动分析及相互之间的比较,选则合适的机构来达到设计目的。由于冲压工件时冲击较大,传动系统中采用了变位齿轮,提高了齿轮的承载能力和耐磨性能。通过这些前期的设计过程,还有借助AUTOCAD辅助分析软件,就能设计出比较合理的压力机。 [关键词]曲柄压力机;冲压;曲柄滑块机构;对心曲柄滑块机构

目录 1前言 (1) 2选题背景 (2) 2.1 课题来源 (2) 2.2 研究目的与意义 (2) 2.3 国内外现状及发展趋势 (3) 2.3.1 国内外现状 (3) 2.3.2 发展趋势 (4) 3 曲柄压力机的分析 (5) 3.1 各个部分的作用 (6) 3.2 工作原理 (6) 4拟解决的主要问题 (7) 5初步设计及简单计算 (7) 5.1 曲柄滑块机构的参数确定 (8) 5.2 齿轮几何尺寸计算 (12) 6 主要参考文献 (13) 7附页 (14)

课程设计任务书(2级)

电子技术课程设计任务书 题目一:信号发生器 一、设计目的 根据常用的电子技术知识,以及可获得的技术书籍与电子文档,初步形成电子设计过程中收集、阅读及应用技术资料的能力;熟悉电子系统设计的一般流程;掌握分析电路原理、工程计算及对主要技术性能进行测试的常见方法;最终,完成从设计图纸到实物搭建的整个过程,并调试作品。 二、任务与要求 1、熟悉信号发生器的组成和基本原理,了解单片集成信号发生器的功能特点; 2、掌握信号波形参数的调节和测试方法的应用; 3、电路能够产生正弦波、方波、锯齿波; 4、掌握信号发生器的设计测试方法; 5、工作电源为+5~+15V 连续可调。 参考方案: 图1、ICL8038原理框图 参考原理: ICL8030内部由恒流源I 1、I 2、电压比较器A 和B 、触发器、缓冲器和三角波变正弦波变换电路组成。外接电容C 经过两个恒流源进行充放电,电压比较器A 、B 的参考电压分别为电源电压(U CC +U CE )的2/3和1/3。恒流源的恒流源I 1、I 2的大小可通过外接电阻调节,但必须I 2>I 1。当触发器的输出为低电平时,恒流源I 2断开,I1给电容充电,其两端电压U C 随时间上升,当U C 上升到电源电压的2/3时,电压比较器A 的输出电压发生跳变,使触发器输出由低电平变为高电平,恒流源I 2接通,由于I 2>I 1(设I 2=2I 1),恒流源I 2加到C 上反充电,相当于C 由一个净电流I 1放电,C 两端电压U C 转为直线下降,当下降到电源电压1/3时,电压比较器B 的输出电压发生跳变,使触发器的输出由高电平变为原来的低电平,恒流源I 2断开,I 1对C 充电,如此重复,产生振荡信号。 若通过调节外接电阻使得I 2=2I 1,触发器的输出为方波,反向缓冲后由9脚输出;C 上

YES-2000压力机使用说明书

外形样式 二、主要用途 本机主要用于混凝土、砖、石等建筑材料的抗压试验,是公路、建筑、铁路、桥梁等施工单位及监理公司、质检部门必备是试验装置。 三、技术指标 1、最大试验力:2000kN 2、试验力量程:0~2000kN 3、安全保护:超过2000kN的3%自动停机 4、试验精度:I级 5、出厂标定值:2000kN 6、压盘间距:< 350mm 7、立柱间距:340mm 8、压盘尺寸:① 300mm 9、活塞行程:< 50mm 10、:380V 11、电机功率:0.75kW 12、外形尺寸:800x400x1200mm 13、重量:650Kg 四、工作条件 1、在室温10~35°范围内。 2、在无震动环境中。

额定工作电压: ~380V ±10%,50HZ 功耗: < 10VA 非线性: <± 1% 工作温度: 仪表保险丝: 0.5A (二)、功能 周围无腐蚀性介质、无磁场干扰的环境中。 电源电压波动范围小于的 ±10% 。 地基应平整、牢固。 五、结构简介 本机由门式加力架、手动丝杠、油缸活塞、测力系统组成。油缸活塞落在加力的下横梁 上,活塞依次放有防尘罩、下压盘,加力架的上横梁上安装有手动丝杠、丝母、丝杠上端是 大手轮,下端依次是球面、球座、 力仪表。 六、测力仪表简介 仪表面板示意图: LM-02型数字式测力仪 力值(KN ) 加荷速度(KN/S ) (一)、主要技术参数: 上压盘、加力架右侧上挂有自下往上油源、送回油阀、测 时钟 检测 查询 清零 退出 状态 标定 0检定确认P

1.时间:年、月、日、时、分 3.截面设定: 2.组号设定:0001-9999 (1)---用于100x100mm 的立方体抗压试块 (2)---用于150x150mm 的立方体抗压试块 (3)---用于200x200mm 的立方体抗压试块 (4)---适用于任意截面的抗压试块 (5)---用于150x150x550mm 的抗折试块 (6)---用于100x100x400mm 的抗折试块 (7)---用于40x40x160mm 的抗压试块 (8)---用于70.7X70.7的立方体抗压试件 4.储存:本仪表内储存的资料断电不丢失,恢复通电后能调取原存资料打印和传输。 本仪表可最大储存量为150个测试单元,编号范围为01-150#,当你输入151个编号时第一个编号被清除。存入151#数据后第一个编号的数据被清除。 5.查询:在保存的前提下,查询键方可起作用。 具体步骤:按查询”键按照检测的步骤输入组号和面积再按确定”即可查询对应存储的组号下的三块试块的压力值。 (三)、操作 1、面板操作 主要功能有:检测、检定、标定、打印、时钟等。 2、时钟设定 用户初次使用时,应对仪表的日期和时钟进行设置。正常使用时不用调整。按进入日期和时钟设定状态。仪表显示: 时钟”键, XXXX年XX月XX日如不对输入相应的数字更改, 按原来数字重新输入后按正确输入相应正确值后按”确认”仪表显示XX时XX分XX秒,如正确按上一步操作,如不确认”键退出。 七、使用操作 操作人员必须仔细阅读本试验机,对试验机的结构、性能、操作方法和故障排除都了解清楚,方能上机操作,现将使用与操作方法叙述如下: 1、初次使用:

水质工程学课程设计说明书

水质工程学(一)课程设计说明书 1设计任务 此课程设计的目的在于加深理解所学专业理论,培养运用所学知识综合分析和解决实际工程设计问题的初步能力,在设计、运算、绘图、查阅资料和设计手册以及使用设计规X等基本技能上得到初步训练和提高。 1.1设计要求 根据所给资料,设计一座城市自来水厂,确定水厂的规模、位置,对水厂工艺方案进行可行性研究,计算主要处理构筑物的工艺尺寸,确定水厂平面布置和高程布置,最后绘出水厂平面布置图、高程布置图(达到初步设计的深度),并简要写出一份设计计算说明书。 1.2基本资料 1.2.1城市用水量资料 1.2.2原水水质及水文地质资料

(1) 原水水质情况:水源为河流地面水 ⑵水文地质及气象资料 ①河流水位特征 最高水位-1m,,最低水位-5m,常年水位-3m ②气象资料 历年平均气温16.00C,年最高平均气温390C,年最低平均气温-30C,年平均降水量1954.1mm,年最高降水量2634.5mm,年最低降水量1178.7mm。常年主导风向为东南风,频率为78%,历年最大冰冻深度:20cm。 ③地质资料 第一层:回填、松土层,承载力8kg/cm2, 深1~1.5m 第一层:粘土层,承载力10kg/cm2, 深3~4m 第一层:粉土层,承载力8kg/cm2, 深3~4m 地下水位平均在粘土层下0.5m 2水厂选址

厂址选择应在整个给水系统设计方案中全面规划,综合考虑,通过技术经济比较确定。在选择厂址时,一般应考虑以下几个方面: ⑴厂址应选择在工程地质条件较好的地方。一般选在地下水位低、承载力较大、湿陷性等级不高、岩石较少的地层,以降低工程造价和便于施工。 ⑵水厂应尽可能选择在不受洪水威胁的地方。否则应考虑防洪措施。 ⑶水厂应尽量设置在交通方便、靠近电源的地方,以利于施工管理和降低输电线路的造价。并考虑沉淀池排泥及滤池冲洗水排除方便。 ⑷当取水地点距离用水区较近时,水厂一般设置在取水构筑物附近,通常与取水构筑物建在一起;当取水地点距离用水区较远时,厂址选择有两种方案,一是将水厂设置在取水构筑物附近;另一是将水厂设置在离用水区较近的地方。 根据综合因素考虑,将水厂设置在取水构筑物附近,水厂和构筑物可集中管理,节省水厂自用水的输水费用并便于沉淀池排泥和滤池冲洗水排除。 3水厂规模及水量确定 Q生活=240×52000×10-3=12480m3/d Q工业=12480×1.78=22214.4m3/d Q三产=12960×0.82=10233.6m3/d Q工厂=0.5+0.8+0.6+1.1=30000m3/d

CAD,CAM课程设计任务说明书

、 八、, 刖言 本次课程设计按照任务说明书的要求,我做的是二级圆柱齿轮减速器的三维建模以及运动仿真,主要设计数据来自我的机械设计的课程设计计算,其中模型的尺寸主要依据我的二维图纸(后附),模型共有以下几部分组成:箱体、齿轮、轴、轴承、轴套、端盖、螺钉。总计用时大概三天时间,我分一周的时间分别各部完成,下面就将我的主要成果一一书写如下,请老师指正。 1 ?零部件建模 箱体 箱体建模主要由拉伸构成,辅助以打孔、阵列、镜像、倒角、筋工具。其中油标孔由旋转而成。具体数据参数见后附的CAD工程图。 齿轮 本模型中共有两对四个齿轮,均采用轮廓法建模而成(方法由网上教程而来),通过参数方 程获得渐开线,而后获得轮齿的完整轮廓,最后阵列,得到一个完整的齿轮,鉴于齿轮建模较为陌生下面我将说明齿轮建模具体的步骤。

1?用拉伸画一个直径为齿顶圆,厚度为齿宽的的圆柱体 2?插入基准曲线---从方程--完成--选取--坐标(三个面的交点)---笛卡尔---输入参数(参数如下) 文件(F)辑揖旧梧式〔6查看M縉助(H) 为馆卡儿坐标系输入参数方程 作根据t (将从0变到D对心y和£ /*画如:対立x-yd面的一个圆「中心在原点 "半径=良参魏方程将是: /* x = 4 * cos ( t * 360 ) /+ y = 4 ?sin ( t * 360 ) /* z = 0 /*--------------------------------------------- m=2 z=98 a=20 r=(m*z*cos(a))/2 fi=t*90 arc=(pi*r*t)/2 x^r^co s(f i)+arc+s i n (f i) y=r*sin(f i)-arc*cos(f i) z=0 3.选中步骤2做好的蓝色的曲线---镜像---得到第2根蓝色的曲线,此时两根曲线是相交的八字形.如图4?点取第2根曲线(注意此时曲线以粗红色显示) 主菜单编辑”--复制”--主菜单编辑”一一选择性粘贴”--在操作面板上选取旋转”按钮,――选取旋转中心轴----输入旋转角度((360/2/z) +) 得到第3根细红色的曲线,该曲线与第一根曲线相交的。(注意:原来的第2根曲线消失了) 5?选中第3根曲线(注意此时曲线以粗红色显示) 、 主菜单编辑”--复制”--主菜单编辑”一一选择性粘贴”--在操作面板上选取旋转”按钮,――选取旋转中心轴----输入旋转角度(-360/z),(即该曲线要与前面旋转的方向相反) ,此时发现模型区域如下所示:点取确定退出操作,得到第4根蓝色曲线,此时两根曲线成八字 所示如图:

课程设计说明书范例

综合测评系统的分析与设计 目录 第一章需求分析 (2) 一、需求调查 (2) 二、建立用例图 (2) 三、描述用例 (3) 第二章系统分析 (5) 一、寻找系统中的实体类 (5) 二、建立实体类的类图 (7) 三、建立用户界面类的类图 (7) 三、建立交互图 (8) 第三章系统设计 (10) 一、类图的调整与修改 (10) 二、人机界面设计 (10) 三、数据库设计 (14) 第四章系统实现 (15) 一、开发环境 (15) 二、建立数据库 (15)

第一章需求分析 一、需求调查 为贯彻党的教育方针,加强对学生的教育管理,鼓励学生在校期间刻苦学习、奋发向上、德智体全面发展,培养具有较高综合素质的优秀人才,河南科技大学制定了《河南科技大学学生德智体综合测评试行办法》、《河南科技大学优秀学生奖学金评定办法》。根据这两个文件的有关精神,我校每个学期都要对学生进行综合测评,并根据综合测评的结果,评选综合奖学金。由于在校学生较多,传统的手工计算方式难以满足学校日常工作的要求,因此,我校急需开发一个综合测评系统,以提高该项工作的效果和效果。 通过调查,我校综合测评工作的运行过程如下:由学习委员录入本班学生上一学期的各门课程的成绩,计算各个学生的课程成绩的平均分。由团支书录入本班学生上一学期的德育成绩。由体育委员录入本班学生上一学期的体育成绩。德智体三个方面的成绩录入完成后,由班长计算各个学生的综合分,计算公式为:综合分=智育分×70%+德育分×20%+体育分×10%。最后,由辅导员根据综合分评选综合奖学金。 二、建立用例图 从以上需求描述中,我们发现系统中的参与者有:学习委员、团支书、体育委员、班长、辅导员。识别出参与者后,从参与者的角度就可以发现系统的用例,并绘制出系统的用例图,如图1-1所示。

液压传动课程压力机液压系统设计

安徽建筑工业学院 液压传动 设计说明书 设计题目压力机液压系统设计 机电工程学院班 设计者 2010 年4 月10 日 液压传动任务书 1. 液压系统用途(包括工作环境和工作条件)及主要参数: 单缸压力机液压系统,工作循环:低压下行→高压下行→保压→低压回程→上限停止。自动化程度为半自动,液压缸垂直安装。 最大压制力:20×106N;最大回程力:4×104N;低压下行速度:25mm/s;高压下行速度:1mm/s;低压回程速度:25mm/s;工作行程:300mm;液压缸机械效率。 2. 执行元件类型:液压缸 3. 液压系统名称:压力机液压系统。 设计内容 1. 拟订液压系统原理图; 2. 选择系统所选用的液压元件及辅件; 3. 设计液压缸; 4. 验算液压系统性能; 5. 编写上述1、2、3和4的计算说明书。 压力机液压系统设计

1 压力机的功能 液压机是一种利用液体静压力来加工金属、塑料、橡胶、木材、粉末等制品的机械。它常用于压制工艺和压制成形工艺,如:锻压、冲压、冷挤、校直、弯曲、翻边、薄板拉深、粉末冶金、压装等等。 液压机有多种型号规格,其压制力从几十吨到上万吨。用乳化液作介质的液压 机,被称作水压机,产生的压制力很大,多用于重型机械厂和造船厂等。用石油型液压油做介质的液压机被称作油压机,产生的压制力较水压机小,在许多工业部门得到广泛应用。 液压机多为立式,其中以四柱式液压机的结构布局最为典型,应用也最广泛。图所示为液压机外形图,它主要由充液筒、上横梁2、上液压缸3、上滑块4、立柱5、下滑块6、下液压缸7等零部件组成。这种液压机有4个立柱,在4个立柱之间安置上、下两个液压缸3和7。上液压缸驱动上滑块4,下液压缸驱动下滑块6。为了满足大多数压制工艺的要求,上滑块应能实现快速下行→慢速加压→保压延时→快速返回→原位停止的自动工作循环。下滑块应能实现向上顶出→停留→向下退回→原位停止的工作循环。上下滑块的运动依次进行,不能同时动作。 2 压力机液压系统设计要求 设计一台压制柴油机曲轴轴瓦的液压机的液压系统。 轴瓦毛坯为:长×宽×厚 = 365 mm×92 mm×7.5 mm 的钢板,材料为08Al ,并涂有轴承合金;压制成内径为Φ220 mm 的半圆形轴瓦。 液压机压头的上下运动由主液压缸驱动,顶出液压缸用来顶出工件。其工作循环为:主缸快速空程下行?慢速下压?快速回程?静止?顶出缸顶出?顶出缸回程。 液压机的结构形式为四柱单缸液压机。 图 液压机外形图 1-充液筒;2-上横梁;3-上液压缸;4-上滑块;5-立柱;6-下滑块;7-下液压缸;8-电气操纵箱;9-动力机构

曲柄压力机的传动机构毕业设计

摘要 近年来,电子、通讯、计算机、家电及汽车工业的迅猛发展,对冲压零件的需求量迅猛增长。冲压零件可分为功能性和外观性零件。尺寸与形状均趋于标准化和系列化的功能性冲压件,生产批量越来越大(如中小型电机的定转子硅钢片、高压器硅钢片、刮脸刀、(IT芯片等)),为降低成本和提高劳动生产率,这类零件很适合在高速压力机上进行大批量生产;而外观性冲压零件,它的品种、外形与产量多变,为了适应市场,如果组织投资大批量生产,经济效益极不合算,因此,它们适宜于在行程次数较低高效率低的一般通用机械压力机上进行冲压。 我做的毕业设计就是曲柄压力机的传动机构的设计,通过查阅和分析相关的设计资料按标准来完成齿轮传动、皮带传动、轴传动的设计。本文就是介绍了对曲柄压力机的齿轮传动、皮带传动、轴传动的设计计算来完成曲柄压力机的传动机构的设计。 关键字:传动系统、齿轮传动、皮带传动

目录 一、引言 (3) 二、主要参数的确定 (3) 2.1公称力pg (3) 2.2 公称力行程Sg (6) 2.3 滑块行程S (6) 三、传动系统的配置 (7) 3.1传动系统的配置 (7) 3.2传动系统的布置方式 (7) 3.3传动级数及速比的分配 (7) 四、传动零件的计算特点 (9) 4.1 齿轮传动 (9) 4.2 皮带传动计算 (12) 4.3 传动轴 (14) 4.4曲轴的计算 (15) 4.5 连接件 (17) 五、总结评价 (20) 致谢 (21) 参考文献 (21) 附录 (22) 2

曲柄压力机的传动机构设计 一、引言 锻压生产已有悠久的历史,但是,采用锻压机械生产却只有一百多年历史。19世纪三十年代,世界上出现了第一台简易的平锻机。六十年代生产了冲压用的液压机。直到十九世纪末才出现相当规模的曲柄压力机。前期二十世纪末,由于汽车工业的兴起,曲柄压力机以及其他锻压设备得到了迅速的发展。 近年来,电子、通讯、家电及汽车工业的迅猛发展,对冲压零件的需求量迅猛增长。冲压零件可分为功能性和外观性零件。尺寸与形状均趋于标准化和系列化的功能性冲压件,生产批量越来越大(如中小型电机的定转子硅钢片、高压器硅钢片、(IT芯片等)),为降低成本和提高劳动生产率,这类零件很适合在高速压力机上进行大批量生产;而外观性冲压零件,它的品种、外形与产量多变,为了适应市场,如果组织投资大批量生产,经济效益极不合算,因此,它们适宜于在行程次数较低高效率低的一般通用机械压力机上进行冲压。通用机械压力机的滑块每分钟的行程次数n 一般不超过200s.p.m,因此,可简单地将n>200s.p.m 称为高速压力机。国内外有一些公司通常将高速压力机分为下述 3 个速度等级:超高速n>1000s.p.m,高速n>400-1000s.p.m,次高速250-400s.p.m。但根据现目前最高已达4000s.p.m,我们认为:按超高速1500s.p.m,真高速n>800-1500s.p.m,准高速n>250-800s.p.m 来分更科学。机械压力机电动机功率Pg 除与n 有关外,还和公称力P及滑块行程长度有关,划分是否为高速压力机不能简单用n 来测量,因此,还有待于提出更科学的定义。 二、主要参数的确定 2.1公称力pg 1、冲裁力(包括冲孔、落料)由下式计算: P=0.8Ltσb/1000 KN 式中:L-工件剪切长度 mm t-工件厚度 mm σb-材料抗拉强度 N/mm2 对Q235-A:σb=400/mm2 2、弯曲成形力计算: 自由弯曲时的成形力由下式计算: P=k1σbbt/1000 KN 式中:σb-材料抗拉强度 N/mm2 l-凹模内腔宽度 mm 3

园林工程课程设计设计说明书1

课程设计任务书 课程设计名称园林工程课程设计 学生姓名 专业班级 设计题目洛阳工会苑小区中心绿地园林工程设计 一、课程设计目的 课程设计目的与任务在于使学生能够掌握园林工程设计的基本知识和锻炼初步的实践操作技能。要求学生掌握园林绿化施工图的制作基本原则、制图方法和园林绿化工程设计的具体内容;能综合运用园林工程、城市绿地设计、CAD 计算机辅助设计等专业课程的技能,完成相应园林绿地的设计图纸、园林工程施工图纸以及设计说明。 在课程设计过程中促进学生专业知识的积累和设计、制图技能的提高,培养学生综合分析问题、解决问题的能力,建立正确的园林工程设计概念、编写完善的设计说明以及学习规范化园林工程施工图纸的制作技能。 二、设计内容、技术条件和要求 一)设计内容: 1. 完成给定CAD图纸的设计范围内绿地的设计平面图、竖向与排水设计图、园路与场地的铺装设计和结构设计、绿化种植施工图、以及该园林建设工程的设计说明(设计说明中含工程概算部分)。 2. 所有图纸内容在四张A3的CAD图纸上完成,图纸比例为1:250(园路与场地设计图比例自定)。设计说明字数不少于3000字,格式制作参照毕业论文格式,由指导老师给定。 3. 图样中文字用HZTXT细线体,字高3mm;图样名用宋体,字高6mm。二)技术条件和要求: 1. 设计要体现较好的平面构图,各种园林要素布局合理,地被植物组成的图案样式可以简洁明了,乔灌木行列式配置或自然式配置均可。经济技术指标用

标准的三线表完成,绿地率大于30%。 2. 园林工程设计中植物应具有合理的常绿、落叶树种比例(3:7左右),考虑规划合适的树种以及其他绿化材料,对各种绿化材料的观赏特性、观赏季节、苗木规格安排合理;园路与铺装场地的结构设计图纸符合园林制图标准规范。 3. 绿地的竖向与排水设计一般考虑由中心绿地排向小区内车行道,铺装场地排水坡度要求在0.5%——1%。 4. 种植施工图要求表明植物学名、株高、胸径、冠径等指标,正确统计数量,备注栏根据实际情况填写,植物图例表要符合园林施工的相关要求。 5. 设计图纸加统一的封面装订成一份,设计任务书加封面(含概算部分)统一装订成一份。 6. 设计说明、设计图纸严禁抄袭,如有抄袭现象,一律重做。 三、时间进度安排 2010-11-17 课程设计动员,明确目的要求和设计任务; 2010-11-18——2010-11-20 完成设计草稿,并由指导教师初步审查; 2010-11-21——2010-11-24 完成CAD图纸,提交指导教师审查; 2010-11-25——2010-11-27 完成施工设计说明,提交指导教师审查; 2010-11-28——2010-11-29 图纸、设计说明整改并打印装订; 2010-11-30 课程设计统一讲评。 四、主要参考文献 孟兆侦毛培琳黄庆喜.园林工程[M].北京:中国林业出版社,1996. 居住区绿地设计规范DB11/T 214-2003 城市绿化工程施工及验收规范CJJ/T82-99 环境景观--室外工程细部构造03J012-1 指导教师签字:苏维2011年11 月16 日

课程设计说明书

东南大学成贤学院 课程设计报告 题目Y4232C剃齿机右顶针架体的机械加 工工艺规程及重要工序专用夹具设计 课程名称机械制造工程学 专业机械汽车工程 班级 XXXXXXXX 学生姓名 XXXX 学号 XXXXXXXXX 设计地点 XXXXXXX 指导教师 XXXXXX 设计起止时间:2012年5月21日至2012年6月8日

目录 序言……………………………………………………… 一. 零件的分析………………………………………… 1.零件的作用……………………………………………… 2.零件的工艺分析…………………………………………二.工艺规程的设计…………………………………… 1. 确定毛坯的制造形式…………………………………… 2. 基准的选择……………………………………………… 3. 制定工艺路线…………………………………………… 4. 机械加工余量,工序尺寸及毛坯尺寸的确定………… 5. 确定切削用量…………………………………………… 三.专用夹具设计………………………………………… 1.设计宗旨…………………………………………………… 2. 零部件的选用…………………………………………… 3.对机床专用夹具的基本要求……………………………… 四.课程设计心得体会……………………………………五.参考文献……………………………………………… 序言

本次课程设计是在我们学完了大学的全部基础课,技术基础课以及大部分专业课之后进行的。这是我们在进行毕业设计之前对所学各课程的一次深入的综合性的链接,也是一次理论联系实际的训练。因此,它在我们的大学生活中占有十分重要的地位。它能让我们在毕业之前得到综合性的训练,增强我们独立思考问题和解决问题的能力。 我想我能在下面几方面得到锻炼: (1)熟练的运用机械制造基础、机械制造技术和其他有关先修课程中的基本理论,以及在生产实习中所学到的实践知识,正确地解决一个零件在加工中的定位,夹紧以及工艺路线安排,工艺尺寸确定等问题,保证零件的加工质量。 (2)通过设计夹具的训练,获得根据被加工零件的加工要求,设计出高效,省力,经济合理而能保证加工质量的夹具的能力。 (3)学会使用手册以及图表资料。掌握与本设计有关的各种资料的名称及出处,能够做到熟练的运用 就我个人而言,我希望通过这次课程设计对自己未来将从事的工作进行一次适应性训练,从中锻炼自己。 一、零件的分析

伺服曲柄压力机设计说明书

伺服曲柄压力机设计计算 目录 0引言 1 伺服曲柄压力机技术参数 2伺服曲柄压力机原理与性能设计分析 3 伺服曲柄压力机工艺曲线设计分析 4 伺服曲柄压力机负载曲线设计分析 5 伺服曲柄压力机电机功率设计分析 6 伺服曲柄压力机传动机构设计 7 伺服曲柄压力机工作机构设计 0 引言 金属的锻压加工大量采用曲柄压力机,也称为冲床,据不完全统计,我国在用的曲柄压力机冲床数量高达数百万台。目前,锻压生产所用曲柄压力机由高转差率的电动机驱动,由刚性离合器和摩擦离合器控制,存在安全性差、能耗高、故障率高的缺陷。 高转差率电动机的效率低于GB18613-2012《中小型三相异步电动机能效限定值及能效等级》,从2012年9月1日起被强制淘汰,选用高能效的电动机成为压力机换代升级的首要目标。 “开关磁阻电机系统是一种机电一体化节能型调速电机系统。它由开关磁阻电动机、功率变换器及控制器组成。同传统的直流及交流电机调速系统比较,具有以下优点:电机结构坚固、制造成本低;效率高,不仅在额定输出状态下,而且在宽广的调

速范围内也能保持高效率运行;一般系统效率达80%以上;启动转矩大、启动电流小;制动性能好,能实现再生制动,节约电能效果显著;系统调控性能好,四象限控制灵活;具有无刷结构,适合于在高粉尘、高速、易燃易爆等恶劣环境下运行;可以在各行各业应用。”(摘自《中华人民共和国国家发展和改革委员会中华人民共和国科学技术部国家环境保护总局公告2005年第65号》)采用节能的开关磁阻电机替代高耗能的传统电机成为企业节能的发展方向。 目前,国外的伺服压力机技术采用永磁伺服技术,抗冲击性能不好,可靠性低、成本高,没有形成对传统压力机的全面替代。 1999年以来,由山东科汇电力自动化有限公司研发生产的开关磁阻伺服系统,在压力机领域获得广泛应用。在山东理工大学赵婷婷教授的技术支持下,开关磁阻伺服压力机分别在青岛益友锻压机械有限公司、扬力集团等单位进行了研制,各吨位系列的开关磁阻伺服压力机相继诞生,并开始投入批量生产。实际应用证明,与现有压力机比较,开关磁阻伺服压力机的优势明显、特点突出,特别是高效节能、智能数控自动化与高可靠性的独特优势,受到广大用户的积极响应,并获得一致好评。 淄博市能源监测部门的监测,给出了开关磁阻伺服螺旋压力机比摩擦式螺旋压力机节能67.86%的结果(引自《淄博市能源监测中心检测报告》编号J1010138),由此,当地政府颁布文件,用节能数控压力机强制淘汰摩擦压力机(引自淄经信节字

课程设计任务书

电子技术课程设计任务书 项目1交通灯控制设计 一、设计目的 根据常用的电子技术知识,以及可获得技术书籍与电子文档,初步形成电子设计过程中收集、阅读及应用技术资料的能力;熟悉电子系统设计的一般流程;掌握分析电路原理、工程计算及对主要技术性能进行测试的常见方法;使学生学会使用电路仿真分析软件(Multisim)在计算机上进行电路设计与分析的方法。要求学生所选课题必须在计算机上通过虚拟设计确定设计方案,通过虚拟仿真建立系统,完成设计要求。 二、任务与要求 设计一个十字路口控制交通秩序的交通灯,满足以下条件: 显示顺序为其中一组方向是绿、黄、红;另一方向是红、绿、黄。设臵一组数码管以倒计时的方式显示语序通行或禁止通行时间,其中支通道绿灯的时间是20s,另一个方向上主通道的绿灯亮的时间是30s,黄灯亮的时间都是5s. 选做:当任何一个方向出现特殊情况,按下手动开关,其中一个方向通行,倒计时停止,当特殊情况结束后,按下自动控制开关恢复正常状态。 三、课程设计报告要求 1、任务说明 2、目录 3、正文 (1)总体方案框图设计 (2)单元电路具体设计 (3)计算器件参数值 (4)选择相关元器件 (5)画出总体设计电路图 (6)利用Multisim软件调试,对调试过程中出现的问题给出定性的的分析,最终能实现预计的效果。 4、课程设计的收获及体会 5、参考文献 四、评分标准

五、任务安排 六、所需调试工具 Multisim软件。

项目2用移位寄存器实现彩灯控制 一、设计目的 根据常用的电子技术知识,以及可获得技术书籍与电子文档,初步形成电子设计过程中收集、阅读及应用技术资料的能力;熟悉电子系统设计的一般流程;掌握分析电路原理、工程计算及对主要技术性能进行测试的常见方法;使学生学会使用电路仿真分析软件(Multisim)在计算机上进行电路设计与分析的方法。要求学生所选课题必须在计算机上通过虚拟设计确定设计方案,通过虚拟仿真建立系统,完成设计要求。 二、任务与要求 采用移位寄存器设计一个彩灯循环控制器,要求有两种变化花样。 三、课程设计报告要求 1、任务说明 2、目录 3、正文 (1)总体方案框图设计 (2)单元电路具体设计 (3)计算器件参数值 (4)选择相关元器件 (5)画出总体设计电路图 (6)利用Multisim软件调试,对调试过程中出现的问题给出定性的的分析,最终能实现预计的效果。 4、课程设计的收获及体会 5、参考文献 四、评分标准 五、任务安排

压力机操作说明

压力机操作说明 一、概述 移动按钮站按钮: 压力机有两个移动按钮站,插座分别位于压力机的左前、左后、右前、右后立柱,用户根据实际需要同时操作或只用其中的一个,不用的移动按钮站必须插上短路插头。 光电保护: 光电保护器是一种光线式安全保护装置,利用光幕形成保护区域,当光电保护器的光幕被遮挡时,控制器输出继电器接点信号,控制机械设备停止或报警,以避免伤亡事故的发生。开动单次或连续行程,在滑块下降时遮断光幕,滑块行程应立刻停止。 二、润滑 压力机的润滑十分重要。只有润滑系统工作正常,压力机才能正常运行。按下“油泵电机启动”按钮,“油泵电机启动”指示灯闪烁,待油压正常时油压开关通,油压指示灯灭,“油泵电机启动”指示灯亮,表明润滑系统工作正常。三、液压保护 压力机停气、停电之后,如果液压保护系统的压力低于规定值,压力机就处于过载状态。当合上电源时,“保护油压不足”指示灯亮,“滑块负荷正常”指示灯灭。此时,如果滑块处于上死点,首先将“滑块超负荷”选择开关旋到“复位”位置,气动泵动作,给液压垫加压,当压力达到规定值后,液压保护压力机开关通,“保护油压不足”指示灯灭,而“滑块负荷正常”指示灯闪烁,液压保护系统恢复,将“滑块超负荷”选择开关旋至“正常”位置,即可正常工作。如果滑块位于下死点区,则要依照以下“复位”内容进行调整。 过载: 压力机在运行中过载时,液压保护迅速卸荷,超负荷压力开关动作(断开),切断离合器控制线路,压力机停止运行,此时“滑块负荷正常”指示灯灭,“保护油压不足”指示灯亮,液压保护系统处于卸荷状态。 复位: 压力机卸荷以后,要将“滑块超负荷”选择开关旋至“复位”位置。因为压力机的超载是在下死点区,此时应通过微调行程将滑块调整到上死点。如果此时滑块行程已超过1800,将“工作状态选择”开关选择到“微调正转”位置,操作“微调开动”按钮;如果此时滑块行程未超过1800,则将“工作状态选择”开关选择到“微调反转”位置,操作“微调开动”按钮,使滑块至上死点区,气动泵动作,对液压垫补充压力,直至规定压力,“保护油压不足”指示灯灭,“滑块负荷正常”指示灯闪烁。液压保护系统恢复正常。最后还应将“滑块超负荷”选择开关选择到“正常”位置,“滑块负荷正常”指示灯常亮,压力机又可正常工作。 四、主电机控制 按下主电机启动按钮,待主电机完全启动时指示灯亮。 五、微调控制 压机微调由专用的微调电机实现。在微调方式下电机可作正、反向运行,在液压保护正常的情况下,使用“工作状态选择”开关选择“微调正转”、“微调反转”进行方向选择。若液压保护不正常时,则要视滑块位置选择微调电机的运行方向。如果滑块位于下死点以前,则必须选择“微调反转”;若滑块已过下死点,

J31-250型曲柄压力机设计

毕业设计说明书毕业设计题目: J31-250型曲柄压力机设计

摘要 锻压机械在工业中占有极其重要的地位,广泛应用于几乎所有的工业部门,如机械、电子、国防等。然而,在锻压机械中,又以曲柄压力机最多,占一半以上。 曲柄压力机是以曲柄滑块机构作为运动机构,依靠机械传动将电动机的运动和能量传给工作机构,通过滑块给模具施加力,从而使毛坯产生变形。 本次设计为J31-250型闭式单点压力机,参照国内现有相关型号压力机,进行了2500KN机械压力机主要工作系统设计。设计分三步进行:首先,拟定总传动方案;其次,设计主要零部件;最后,进行经济评估。 本设计中主要包括以下设计部分:曲柄滑块机构的设计计算、传动系统的设计计算、离合器和制动器的设计计算、电动机的选择和飞轮的设计以及支撑附属装置的设计。 本次设计方案均采用同类设计中最新的零件类型及布置方式。通过离合器和制动器进行气动连锁控制。用电动机调节连杆的长度来达到调节装模高度的目的,以适应不同高度的模具。采用四面调节导轨,提高了压力机的精度,并装有过载保护装置、滑块平衡装置等,使机器更加安全、可靠。 关键词:锻压机械;曲柄滑块机构;闭式单点压力机

Abstract Forge and press machine is very important in industry,it is used in almost any induetry department,such as machine,electron,national defense and so on.It is crank forge and press machine that is most important in forge and press machine. Crank press machine uses crank slide block mechanism as working mechanism,machine driving system passes the movement and energy of electromotor to working mechanism, bringing forge to the die by slide block,in order to let roughcast engender transmutation. In this paper,the subject is the J31-250 closed-single punching machine,it is designed in accordance with the related machine now and designed the working system of 2500KN punching machine.The design has been done through three steps: firstly,draw up total transmission; secondly, design each part; at last, economy estimation. In this paper, the design mainly consists of some parts: crank slide mechanism, gear deriving system, clutch and detent, electromotor and flywheel, supporting and appertain equipment. The design program used the new parts type and arrangement. The machine works by the control of the frictional clutch and detent. Electromotor drives the link screw to fit the diffent height of die. Using four-side regulative guider, improves the precision of the punching machine. The machine has installed over loading protector, slide block balance equipment, pledging the machine work safety and dependable. Keyword: forge and press machine ;crank slide block mechanism ;closed-single press machine

相关文档
最新文档