夏普46LX620电源板电路分析

夏普46LX620电源板电路分析
夏普46LX620电源板电路分析

夏普46LX620电源板电路分析

电源板的组成:PFC芯片是IC4701,型号是R2A20113。待机电源是IC721,型号是TNY174DG。主开关电源是IC4731,型号是L6598。

一、待机电源电路:见下图中右下角的IC721、T721。

220V交流电经过DS4701全桥整流------C4701\C4702滤波高频干扰--------PFC储能电感L4702--------PFC续流二极管D4704------大电解C4707滤波-------得到320V(待机时PFC电路不工作,交流220V整流后是320V非稳压直流电。在开机状态时PFC电路工作,此处得到400V稳压直流电)------经过2A保险F721为待机开关电源供电。

T721是待机开关电源变压器,有一个初级,3个次级。

待机电源芯片是IC721,型号是TNY174DG,8脚帖片封装,芯片内大功率MOS管的S极通过5、6、7、8脚接地。来自PFC大电解上的电压通过T721初级,加到IC721芯片4脚内大功率MOS管的D极,4脚内有开关电源启动、振荡电路。芯片内大功率MOS开关管周期性的导通与截止,在T721初级内流过周期性的脉冲电流,在T721的3个次级线圈同时产生感应电压,经过各自所接的整流管,整流输出3路电源电压:

22V电源:T721第一个次级的电压,经过D759整流、C731滤波,得到22V电源电压,经过Q721稳压,输出16V 供电,为PFC芯片IC4701的8脚VCC端供电。同时,经过ZD4732降压后,得到12V供电,加到L6598的12脚VCC端。

5V电源:T721的第二个次级电压,经过D741整流、C742滤波,得到5V电源电压,送到主板,为主板内的微处理器供电。5V电源同时作为待机开关电源的稳压反馈。5V电源电压经过L741-------R741\R743分压取样-------加到误差放大IC741(型号KIA431)的控制极--------从K极输出误差电压--------带动稳压隔离光耦PC721内的发光管发光--------光敏管导通--------控制IC721的1脚到地电流随误差电压变化--------保持T721的3个次级输出电压的稳定。

待机电源的过压保护:待机开关变压器T721的次级,由D721、C723整流产生16.9V电压,该电压的高低正比于待机电源的输出电压,当待机电源输出电压异常升高时,16.9V电压同比升高,就会击穿ZD721,这肯定使IC721的2脚电压突然升高,引发IC721内部的过压保护,IC721停止工作。

PFC输出过压保护:PFC电路的输出电压,加到R714----R715-----R716----R717-----ZD728-----R718-----R719-----地。当PFC输出电压正常时,该路电压不足以使ZD728导通------Q725截止------不影响IC721的正常工作。

当PFC输出电压异常升高时,ZD728导通------Q725导通--------把IC721的2脚接低到0V------IC721内部的开关电路停止工作。

IC721的型号是TNY174,内部电路及引脚名称见下图。

TNY174内含有700V高压MOS开关管、电源控制器。该芯片的稳压原理不是传统的脉宽调制型PWM,它采用的是简单的开、关控制开关电源的工作,来达到稳定输出电压的目的。PWM控制技术是逐个脉冲进行宽度调节来稳定输出电压,而TNY174是当输出电压达到标准值时,让开关电源短暂的停止工作,随着负载的耗电引起输出电压降低时再开启开关电源的工作,使输出电压回升到标准值。这两者是采用的是不同的设计思路,以前大量的CRT 开关电源,都属于PWM型。

该芯片内含:开关电源振荡器、使能电路(检测电路、逻辑控制电路)、电流限制状态机、5.85V稳压电源。

下图中的DRAIN即芯片内MOS开关管的漏极D,引脚号是:4 。下图中SOURCE是芯片内MOS开关管的源极:S,引脚号是5、6、7、8。下图中的ENABLE(EN)是芯片的使能脚,外接稳压控制用光耦,引脚号是1 。下图中BYPASS MULTI-FUNCTION(BP/M),是旁路/多功能引脚,引脚号是2。

IC721各脚电压:1 2 3 4 5 6 7 8

0.9V 6.36V 空接D极 0V 0V 0V 0V

从上图可见:300V----400V的供电通过开关变压器的初级,加到上图中的D极(4脚),4脚内部一方面连接芯片内部的MOS开关管D极,另一方面也加到5.85V稳压电路,输出稳定的5.85V电压,供本芯片内部的控制电路供电:一是给启动电路供电,二是给长期稳态工作的振荡电路、脉宽调制电路供电。

本芯片1脚EN:外接稳压控制用的光耦PC721的4脚,芯片内部的电流源,从1脚由内向外流出电

流,经1脚外接光耦内的光敏三极管到地构成通路。因此光耦PC721就可以控制芯片1脚流出电流的

大小,从而控制芯片内MOS功率开关管的导通与截止。当从该脚流出的电流大于门限值时,芯片内MOS开关管的工作被停止。当该脚流出的电流小于门限值时,开关管的工作恢复。

本芯片的2脚功能最多:称为多功能脚。以下分别介绍各个功能:

1、2脚到地间接一个旁路电容,为芯片内部的5.85V电源滤除干扰。

2、改变2脚外接的电容器容量,可以改变芯片内部的限流值,当外接电容是0.1uf时,限流值是标准值。外接1uf的电容器时,限流值缩小一档。当外接电容是10uf时,限流值增大一档。

3、提供一个故障时关断功能。当该脚电压高于5V时,内部有过压保护电路,关闭芯片的工作。下降到5V以下时,自动恢复工作。

4、2脚内部有欠压保护、过压保护、电流限制值大小的选择电路、过热保护、电流限制电路、脉冲前沿消隐电路。

芯片内包含有自动重启电路、自适应开关转换周期导通宽度延长电路、频率抖动器,

芯片内振荡器的频率是由内部零件设定的,典型频率是132K,振荡器产生输出两个信号:最大占空比信号、指示每个脉冲周期开始的时钟信号。

芯片1脚内部是两个源极跟随器,具有低阻抗特性,把1脚设定在1.2V,源极跟随器上方有使能电路:ENABLE,流过源极跟随器的电流被限制在115uA,当流出该脚的电流超过这个门限值时,在该脚产生一个低电平:令芯片内部电路停止工作,直到该脚流出的电流小于这个门限值时,开关电源再次工作。在每个周期的一开始,时钟信号的上升沿时刻,使能电路对1脚进行采样,用这个采样结果控制开关电源的输出电压保持稳定。如果采样结果得到的是高电平,在本时钟周期内则打开芯片内功率MOS开关管。如果是低电平,则维持功率MOS开关管的关断状态。因为采样是在每个时钟周期的开始处进行,因此,1脚以后的电压变化或本周期剩余的时间段输入电压被忽略。

电流限制状态机:可以降低在重负载时的电流限制,以避免工作在可听见的频率范围。低的电流限制提高有效的开关频率在音频以上,降低变压器的电流密度、相关的可听噪声。

二、PFC电路:PFC电路的控制芯片是R2A20113,位号是IC4701。PFC储能电感是L4702,外形看就是一个开关电源变压器。只不过没有次级。

IC4701的8脚是供电脚,供电来自于待机电源变压器T721。见下图:

T721次级感应电压,经过D759整流,C731滤波,得到22V的直流电压,经过Q721的稳定和开关控制,从E极输出16.5V,再经过D4707降压后,加到IC4701:8脚的供电是16V。16V供电的控制在后面再做介绍。

R2A20113这个PFC控制芯片很少见。帖片8脚封装。芯片内有振荡电路、误差放大器、控制保护电路。从7脚输出驱动脉冲,加到PFC开关管Q4701的G极,S极接地。

220V交流电经全桥DS4701整流后------经C4701\C4702滤除高频噪声-------通过PFC贮能电感L4702---------加到PFC 大功率开关管Q4701的D极。

芯片从7脚输出驱动脉冲,经过R4707后加到开关管Q4701的G极。在此驱动脉冲的控制下,Q4701周期性的导通与截止,来回转换。当导通时,整流桥DS4701的正极输出的电流--------L4702-------消噪小电感FB4707------Q4701:D极------S极-------到地-------经四个并联的0.1欧电阻R4701-------R4705返回到整流桥DS4701的负极,电流构成回路。该电流流过大电感L4702时,把电网的电能转化成磁能的形式贮存在L4702内。因为L4702的电感量很大,因此感抗也很大,在此感抗作用下流过L4702的电流是从零逐渐增大的,按斜坡线性增大。

在驱动脉冲的作用下,当PFC开关管Q4701截止时,L4702因为有很大的电感量,因此产生很高的感生电压,其极性是右正左负,该电压的正极加到续流二极管D4704的正极,因此,该二极管导通,电流如下:L4702的右端-----D4704------C4707正极-------负极--------地--------四个并联的0.1欧电阻------整流桥DS4701负极-------正极-------L4702的左端-------电流构成回路。该电流给PFC大电解电容C4707充电到390V。在PFC开关管截止期间,L4702把内部的磁能转化成电能,充电给C4707,为PFC后面的负载供电。控制PFC开关管的导通时间宽度,就可以控制L4702内储存磁能的多少,在开关管截止时,就可以在C4707上得到不同的PFC输出电压,达到PFC输出电压保持恒定的目的。

R4701----R4705四个并联的0.1欧电阻,用于检测PFC电流大小及PFC大电感L4702内电流的零点出现时刻。检测值是一个负压,经R4723加到IC4701的CS端5脚。

芯片5脚的功能就是PFC过流检测和PFC大电感电流的零点时刻检测。当PFC电流过大时,5脚的负压升压,为保护开关管不受损坏,关断PFC电路的工作。

从上述的分析可看到:当PFC开关管关断时,L4702内有电流流动向负载供电。只有当L4702内贮能的能量全部提供给负载,L4702的电流刚好下降到零时,此时再次接通开关管进入下一个工作周期才是最好的时机,如果L4702向负载放电的电流还比较大时接通开关管进入下一个工作周期,开关管就会因为过流而损坏。为此在所有的PFC电路都设置有电流零点的检测。5脚的电流零点检测正是如此。

IC4701内部有一个5V稳压电路,得到的5V电压一方面为内部电路供电。同时也从4脚输出,为外部电路供电。这给电路设计提供了方便。

IC4701的3脚到地接一个电阻,用于设定PFC电路的工作频率。1脚是PFC输出电压取样输入端。光耦PC723是开机控制光耦,当主板发出开机的高电平指令时,经三极管倒相成低电平后加到PC723的2脚:发光管负极,发光管发光,引起光耦内4---3脚间光敏管导通,光耦光敏管发射极输出高电平,经D4738------R4720-----加到Q4702的G极-------该管导通。

PFC电路输出的390V电压,加到取样电路,取样电路由:R4713------R4714------R4715------导通的Q4702:D极-------S 极--------R4712/R4718-------R4716/R4717--------加到IC4701的1脚:反馈输入端。当PFC的输出电压升高时,1脚的反馈电压同比升高-------在芯片内部经误差放大------脉宽调解--------减小7脚输出的脉冲宽度-------让开关管Q4701导通宽度变窄--------PFC输出电压回落到标准值。

PFC输出过压保护:PFC输出电压正常时,经上述的分压取样电路,在Q4702的S极得到8.8V,此时低于ZD4704的击穿电压,对PFC电路的工作没有影响。当PFC输出电压异常升高时,Q4702的S极电压远高于8.8V,ZD4704过压而击穿-------经过电阻R4719-------0欧电阻-------加到Q722的G极-------该管导通-------Q722与Q723构成模拟可控硅-------一旦Q722导通-------Q723马上随之导通------两者强烈正反馈构成导通自锁-------Q722导通后通过D725关断Q721-------切断了16V电源的供电--------IC4701:8脚没有供电而不工作。

电源板的开、关机控制电路:主板发出的开机高电平指令,通过PD插排的10脚进入电源板--------通过R798------D755---------R768-------Q755导通---------开机控制光耦PC723:1----2脚内的发光管导通-------3----4脚管内的光敏管导通--------通过R723/R724给Q721:G极提供高电平-------Q721发射极输出16.5V的电源电压------为PFC 芯片8脚供电-------同时为主开关电源芯片L6598的12脚供电。

印刷电路板的过热保护:在LED背光驱动功率管的旁边,放置了一个外形很小的帖片热敏电阻TH5701,在室温下是500欧姆。当电源板上的大功率管有过热时,电源板相应的部位的温度就会明显升高,热敏电阻TH5701的阻值就会明显增大。主板发出的开机高电平指令加到电源板PD插排的10脚时-----通过R798-----D755-----R768------Q755导通--------通过R766------D752导通--------Q752导通--------E极输出5V--------由R5815(18K)和TH5701分压-------在室温下因为TH5701阻值远小于18K--------TH5701分得的电压很低于2V-------TL431截止--------Q5712截止-------Q5711截止--------不影响开机光耦PC723正常工作--------当电路板上功率管发热严重时-------电路板相应部位的温度升高--------TH5701阻值明显增大--------分得的电压高于2.5V--------TL431导通--------Q5712导通-------C极输出高电平--------通过R5812-------R5813-------Q5711导通---------把开机光耦PC723的1脚拉低--------该光耦截止--------Q721截止--------切断PFC芯片IC4701和主开关电源L67598的供电--------电源板停止工作。

R2A20113的外形图:

IC4701各脚电压:

1 2 3 4 5 6 7 8

2.68V 1V 2.8V 5V 0V 0V 0.27V 16V

三、主开关电源电路:

主开关电源控制芯片是L6598,开关电源变压器是T4731。L6598驱动串联连接的两个MOS功率管,专业上称之为功率输出的半桥电路,以后简称为半桥。这是一个LLC串联谐振开关电源。与常见的脉宽调制型PWM开关电源工作原理不同,该电路的效率更高,输出功率更大。功率管发热很小,不用散热片。采用调频原理来实现稳压。采用的是大功率电感L、大电流的电容C两个零件串联构成L、C串联谐振电路。在电工学中讲过:当外加在L C串联电路两端的交流电压频率与LC串联电路本身固有的频率相等时,就会发生串联谐振。L C串联谐振的特点是:流过L C的电流最大,当外加的交流电压频率逐渐升高离开L C串联电路的谐振频率时,L C串联电路失谐,流过L C的电流随频率的偏离逐渐增大而同步变小。我们可以控制加在LC串联电路两端的交流电频率来达到实现调节输出电压的目的。注意:在这里讲到的电感L,并非是典型的电感,因为典型的电感只是一个具有两个引线头的单一线圈,没有次级。我们在L C串联谐振开关电源中,为了得到合适的电压变比输出、为了使开关电源的输出电压是冷地,不带热电,为了同时能输出几路电压不等的电压,必须采用变压器代替L C串联电路的中的L,变压器是实现初级热地与次级冷地隔离的最理想器件,变压器多绕几个次级线圈,可以同时输出几路不同电压的输出。在这里,变压器的初级作为L C串联谐振电路的电感。

主开关电源电路见下图:

上图中,T4731是开关电源变压器,初级线圈的电感作为L C串联谐振电路的电感,C4733是串联谐振的电容,两者串联,构成串联谐振电路的核心。大功率MOS管Q4731、Q4732构成半桥式功率输出电路,两管串联,串联的中点是半桥的输出端,输出的交流高频电压,加在L C串联电路的上端,L C串联电路的下端接地。PFC电路输出的390V稳定的直流电压,加在半桥上管Q4731的D极,半桥上管Q4731的S极与半桥下管Q4732的D极相连,半桥下管Q4732的S极,经过电流取样电阻R4731后接地。R4731把开关管的电流转化成电压,送到保护电路。在前面已进过:待机电源变压器次级输出的22V直流电压,加到开关及稳压作用的Q721的C极,从该管的E极输出16.5V的电压,经过ZD4732的降压,在正极得到12.5V的电压,经过0欧电阻FB4704------D4736-------加到L6598的供电脚:12。

L6598的11脚输出半桥下管驱动脉冲,经R4737加到半桥下管G极,L6598的15脚输出半桥上管驱动脉冲,经R4733加到半桥上管的G极,11脚输出的驱动脉冲与15脚输出的驱动脉冲频率相同,相位相反。这样可以保证半桥上管导通时,半桥下管截止,半桥下管导通时,半桥上管截止。形成一推一拉的驱动。如果这两个脉冲相位同相了,即同时出现高电平,则半桥的上管与下管同时导通,这实际上把PFC电压到地短路了,产生极大的短路电流,肯定瞬间把半桥Q4731、Q4732烧坏。

开关电源变压器T4731有两个次级,见上图中顶部所示:两个次级采用双二极管,即一个管壳内有两个整流二极管,对两个次级的感应电压进行全波整流,D5702整流输出的电压,经C5719、C5720滤波,得到13.5V的低压供电,给主板供电。D5702全波整流输出的电压,经C5701、C5711滤波,得到+B(82V)的输出,给LED背光电路供电。

主开关电源的稳压控制电路:+B输出电压,加到上图中最左侧的取样电路-------R4775------R4776-------R4794--------R4777/R4793----------地,在R4777/R4793上端到地的取样电压,加到误差放大器IC4771的控制极K。

+B的取样电压,加到误差放大IC4771(KIR431)的控制极,当+B输出升高时,该取样电压也同比升高,KIR431的

K极电流变大,K极所接的稳压光耦PC5702内发光管发光变强--------光耦内光敏三极管的内阻变小--------其C极到地电压降低------通过D4741拉低L6598:4脚到地的电压--------L6598:11和15脚输出的驱动脉冲频率升高--------经Q4731、Q4732放大---------加在L C串联谐振电路上的交流电压频率升高-------远离L C电路固有的谐振频率--------L C串联电路流过的交流电流变小--------T4731次级输出的感应电压降低-------+B输出回落到标准值。

L6598的8脚是保护锁定脚,9脚是保护解锁脚。两脚都是高电平有效。正常工作时应当是低电平0V。当8脚输入高电平时,芯片将进入保护锁定状态。当9脚输入高电平时,将解除8脚的保护锁定状态,进入软启动状态。

13.5V取样电路:主开关电源变压器T4731次级感应电压,经双二极管D5702全波整流--------得到13.5V电压-------加到下述的取样电路:R4795--------R4778--------R4777/R4793---------地,在R4777/R4793上分得的取样电压,加到误差放大器IC4771的控制极,稳压原理同+B取样相同。

从上述的分析可看出:当+B电压和13.5V电压正常时,+B取样电路和13.5V取样电路获得的采样电压加到IC4771的控制极K,导致IC4771导通---------PC5702导通--------通过R4784--------Q4736导通-------通过小阻值电阻R4782(150欧)--------把ZD4734的负极拉到低电平-------确保L6598的8脚为0V,不会进入保护锁定状态。

开关管Q4732过流保护:主开关电源由功率MOS管Q4731-----Q4732组成功率输出级,流过这两个功率管的电流,在Q4732的E极R4731上转化成电压,因为R4731的阻值很小,在电流正常时,R4731的产生的电压也很小,不足以启动保护电路。当负载很重,可电路有故障时,流过R4731的电流比较大,产生的电压突然升高--------经过R4761-------双三极管Q4738右半管导通---------通过R4751-------Q4739导通---------通过R4741-------Q4741导通--------通过R4740---------把L6598的1脚电压拉低到0V---------L6598进入到软启动状态----------开关电源重新启动。

L6598无驱动输出时的重启电路:见下图。

在开关电源正常工作时,L6598:11脚输出连续不断的正脉冲,一方面通过R4737加到半桥下管Q4732的G极,半桥电路正常工作。另一方面通过R4759-------加到Q4733的B极-------该管周期性的导通-------通过R4754:39欧电阻周期性的把C4748上的电压进行放电---------把C4748上的电压钳位在0V-------Q4734截止-------不影响L6598:9脚电压。

当因为欠压保护、过压保护、过流保护时,下图中的L6598:11脚就会没有驱动输出变成0V---------Q4733截止------12V 电压通过390K电阻给C4748充电--------C4748上升到高电平--------Q4734导通--------把 L6598的9脚加上高电平------L6598内部解除保护锁定状态--------进入正常工作状态从来11、15脚输出驱动脉冲------开关电源正常工作。

上述Q4734:E极输出的因导通输出的高电平--------通过R4755---------加到Q4735的B极---------该管导通-------通过R4785(150欧)把ZD4734的负极拉到低电平--------确保L6598的8脚为低电平-------不会在9脚解锁的同时再次进入保护锁定。

AC检测电路:在大屏幕彩电中,整机的耗电量很大,主LLC电源中半桥电路的上管与下管的电流很大。LLC串联谐振电源起稳压作用,当电网电压高于220V时,L C串联电源为维持输出电压稳定不变,就势必要减小半桥上管与下管的电流。同理,当电网电压低于220V时,LC串联电源为维持输出电压的稳定不变,就要增大半桥上管与下管的电流。电网电压越低,半桥上管与下管的电流就越大,当电网电压很低时,半桥功率管的电流增加到很大,会烧坏半桥的上管与下管。为此,在大屏幕平板电视机的电源板上,都有电网电压检测电路,也称为AC电压检测电路。主要要检测电视机输入220V交流电源的高低,当220V交流电源降到90V以下时,为了防止出现过流烧坏半桥的两个功率MOS管,就要停止电源板的工作。

在上图中:输入电视机电源板的220V交流电高于90V时,经D723---R740/D724---R735整流------R736-----R737-----R738-----ZD725导通------Q724导通-----Q726导通-------双二极管D727右管导通-------光耦PC722内部发光二极管发光------光敏三极管导通------通过R764-----R763------Q754导通-------C极高电平5V------D751导通------R780/R781分压得到3V--------通过R797------PD插排的9脚得到AC检测输出电压3V------送往主板微处理器-----主板微处理器据此得知电网电压正常。

当电网电压低于90V时,经D723/D724整流后的电压,不足以让Q724/Q726导通------双二极管D727右管截止------PC722截止-------Q754截止-----PD插排:9脚为0V------主板微处理器检测到电网电压过低----发出保护关机指令到电源板------电源板停止工作。

12V过压保护:L6598的12脚加有12V供电,如果该电压过高,将会损坏L6598,为此增设了12V过压保护电路。12V电源在加到L6598:12脚供电的同时,也加到Q4737的E极,前面已经分析过,当电网电压正常时,Q724/Q726导通-----通过D4740------R4772----Q4737导通,如果此时Q4737的E 极12供电升高过压-------通地通的Q4737-----R4739------ZD4734导通------通过R4769-----加到L6598的8脚高电平-----L6598内部进入保护锁定状态-------芯片内部电路停止工作。

上图中,前面讲过的电网电压检测电路:在电网电压正常时,Q724/Q726导通,通过D729------R729-------把ZD728的负极拉低到0V-------ZD728截止-------Q725截止-------不影响待机电源芯片2脚的原有电压-------待机电源电路正常工作。

当电网电压过低时,Q724/R726截止------PFC电路输出的390V电压------加到分压电压:R714------R715------R716-----ZD729------到地由ZD729获得12V电压--------ZD728导通------通过R718------R719分压-------Q725导通-------把待机电源芯片的2脚拉低到0V------待机电源停振、整机停止工作。

L6598内部电路图:

L6598各脚名称、功能:

1脚:CSS 外接软启动定时电容,通电后内部基准电压通过恒流源给该电容慢慢充电,该脚电压慢慢升高,随之同步:芯片内进入软启动阶段,此时芯片输出到外接功率MOS对管的驱动脉冲频率,称为最大频率,远高于开关电源大功率L C串联电路的固有谐振频率,因为不谐振,流过L C串联电路的电流较小,在L的次级输出的电压低,因此,此时开关电源处于轻载状态,开关电源功率MOS管功耗很小,称之为软启动。而当该脚电压达到5V以后,开关电源结束软启动,把开关电源的振荡频率切换到谐振频率附近(最小频率),此时L C串联电路因为发生了串联谐振,流过L C串联电路的电流最大,在L的次级输出电压达到最高,给负载提供很大的功率,带动LED屏幕发光,显示图像和伴时。

2脚:Rfstart 该脚到地接有一个电阻,与3脚到地外接的电容,共同用于设定软启动期间开关电源的工作频率,因为软启动期间开关电源的工作频率最高:120KHZ,因此又称为最大振荡频率设定端。

3脚:Cf 振荡频率设定脚,与2脚和4脚外接的电阻共同设定软启动期间最大振荡频率和正常工作期间最小振荡频率。

4脚:Rfmin 最小频率设定脚,与3脚外接的电容,共同设定开关电源正常工作期间的最小振荡频率:60KHZ。

5脚:OPout 检测用运算放大器输出端,该运算放大器用于发生过流、过压时,关断稳压环路的控制,进行保护。6脚:OPon- 运算放大器反相输入端。

7脚:OPon+ 运算放大器同相输入端。

8脚:EN1 半桥锁定使能输入端。当该脚为0V时,芯片从11和15脚输出半桥上管与下管的驱动脉冲,当该脚上升到0.6V以上时,启动芯片内部的半桥驱动闭锁功能,此时11和15脚输出端同时闭锁到0V,无输出。

9脚:EN2 半桥解锁输入端。该脚与8脚的功能正好相反,芯片正常工作时,该脚电压为0V,对芯片当前状态没有影响,当该脚电压上升到超过1.2V时,可以解除半桥驱动的闭锁,从11和15脚正常输出半桥上下脚的驱动脉冲。

10脚:GND 接地脚。

11脚:LVG,半桥下管的驱动脉冲输出端。

12脚:供电脚,内部到地有齐纳稳压二极管,当该脚的供电高于16V时,为保护芯片不因过压供电而损坏,内部的齐纳稳压二极管导通,对该脚的供电电压进行钳位。

13脚:NC 空脚。是为了加大芯片高压电路与低压电路的间隔距离。

14脚:OUT。半桥上管驱动的基准电压。

15脚:HVG。半桥上管驱动输出端。

16脚:Bboot 。半桥上管驱动的自举升压端。

L6598的8脚和9脚对驱动输出的控制时序说明:见下图。

上图中,HVG是L6598:15脚半桥上管驱动的脚出。LVG是半桥下管的驱动输出,EN1是8脚输入的驱动输出锁定电压,EN2是9脚输入的解锁电压。当8脚输入一个高电平信号时,11和15脚就停止了半桥驱动的输出。当9脚输入一个高电平信号时,11和15脚又恢复了半桥的驱动输出。

上图说明了9脚输入的解锁电压,是怎样控制1脚的软启动电压和半桥驱动振荡器频率的。从上图可看见:当9脚输入高电平信号时,把1脚的软启动电压VCss复位到0V,把振荡频率Fout恢复到软启动频率---------最高频率。9脚的高电平消失后,芯片内部的恒流源给1脚外接的软启动定时电容充电,1脚电压逐渐升高,振荡频率逐渐降低,软启动阶段结束后,进入到正常振荡频率------Fmin。

芯片的3脚到地接有用于振荡的充放电电容,3脚的振荡波形是三角波,在三角波的下降沿,经过内部电路加工处理,得到半桥上管的驱动输出正脉冲HVG,从芯片的15脚输出。在三角波的上升沿,经过内部电路的加工处理,得到半桥下管驱动输出的正脉冲LVG,从芯片的11脚输出。从上图可见:上管的驱动脉冲与下管的驱动脉冲正好是反相180度,这就从逻辑上保证了上管与下管的交替导通,而不会出现上管与下管的同时导通。

从上图看出:上管截止的同时,下管导通:这样做从逻辑上是正确的,但实际上这样做会出现烧坏半桥上管与下管的可能。这是因为当给上管的正脉冲驱动变为低电平时,因为大功率MOS管G-S极间有较大的分布电容,D---S 极间也有较大的分布电容,功率MOS管并不会随着G极正脉冲电压的消失而立即截止,而是在分布电容的作用下,还要继续导通一短暂的时间,如果此时给下管G极加上正脉冲驱动,就会出现半桥上管与下管的同时导通,在此瞬间390V的PFC电压被同时导通的上管与下管短路,产生极大的短路电流,瞬间烧坏上管与下管。因此,要在上管与下管正驱动脉冲之间插入一短暂的低电平,称为死区时间td,td时间内可保证上管与下管同时保持截止,待当前导通的管子可靠的截止后,再启动另一个管子的导通。这是任何半桥驱动电路的常识。

下图给出了td的时间图,T1是半桥驱动脉冲周期,Tperiod是上管或下管单路驱动脉冲周期。

IC4731:L6598各脚电压:

1 2 3 4 5 6 7 8

5V 2V 2.56V 0.1V 2V 2V 2V 0V

9 10 11 12 13 14 15 16

0V 0V 5.4V 12V 空204V 208V 213V

故障实例:通上交流电源220V后,电源板待机电源工作正常,有待机5V输出,但PFC电路和主开关电源不工作。PFC电路输出端大电解电容C4707 (120uf 450V)上只有310V输出。主开关电源的13.5V电源和82V电源,输出为0V。

分析与检修:PFC输出大电解上电只有310V,说明PFC电路没有工作,输出的310V电压是由交流220V电压直接整流而得。只有PFC电路工作正常时,才会把310V升压到390V输出。结合主开关电源的13.5V和82V两路电源都没有输出,即PFC电路和主开关电源同时没有工作,应当从这两个芯片的供电入手进行检测。

下图中,Q721是为PFC芯片和主开关电源芯片供电的开关管,测量该脚的C极有22V电压,但E极没有16.5V输出,再测量B极也没有电压输入,向前查PC723没有导通--------PC723的1脚(光耦内发光管正极)为0V------测R769上端有5V电压-------检测Q5711已导通------Q5712已导通-------IC5711(TL431)已导通---------G极升高到了2.56V-------检测发现TH5701内部已开路。更换TH5701,开机,OK。

音响灯光汽车功放电源电路分析

音响灯光汽车功放电源电路分析 时间:2010-09-20 10:13来源:unknown 作者:admin 点击:5次 汽车功放电源电路分析2010-06-10 18:43一。电源电路采用开关电源方式,将蓄电池的+12V直流电变换成为±22V供功放电路使用。它由一片集成电路TL494CN和几只大功率场效应管以及一只开关变压器等组成了比较典型的并联型开关稳压电路。为了提高输出功率。两路开关管均采用双管并联的方式,即Q1和Q2并联,Q3和Q4并联。在电路中,B+端接蓄电池的正极,REMOTE为开机控制端。开机时,控制电压+12V通过D4加到TL494的电源脚12脚,其14脚输出基准电压5V,13脚为输出状态控制端,当13脚接地时,两路输出晶体管同时导通或截止,形成单端工作状态。在图中,13脚与14脚相连,形成双端工作状态,其内部两路输出晶体管交替导通。TL494的⑤脚和⑥脚上外接的电阻R9和电容c4及内部电路组成振荡电路,可输出约几十千赫的振荡信号。该信号经片内处理后,从⑨脚和⑩脚输出两路相位差180度、宽度可变的调制脉冲,加到Q1、Q2和Q3、Q4的基极,使两路开关管轮流处于饱和与截止状态。在变压器B1初级得到的交流脉冲电压感应到次级绕组,经高频整流滤波后获得末级功放所需的±22V直流电压;再经过7815、7915稳压后得到±15V的直流电压作为功放前级的电源。从次级输出电压反馈回来的电压分别经R15与R13和R14与R12分压送到TL494的误差放大器的同相输入端①脚和反相输入端②脚。当输出的±22V电压不稳时,反馈到①脚和②脚的电压经片内误差放大器放大后,调整振荡脉

开关电源电路详解图

开关电源电路详解图 一、开关电源的电路组成 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路 1、AC 输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。

2、DC 输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4 为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖

相关开关电源原理及电路图

相关开关电源原理及电路图 2012-06-03 17:39:37 来源:21IC 关键字:开关电源电路图 什么是开关电源?所谓开关电源,故名思议,就是这里有一扇门,一开门电源就通过,一关门电源就停止通过,那么什么是门呢,开关电源里有的采用可控硅,有的采用开关管,这两个元器件性能差不多,都是靠基极、(开关管)控制极(可控硅)上加上脉冲信号来完成导通和截止的,脉冲信号正半周到来,控制极上电压升高,开关管或可控硅就导通,由220V整流、滤波后输出的300V电压就导通,通过开关变压器传到次级,再通过变压比将电压升高或降低,供各个电路工作。振荡脉冲负半周到来,电源调整管的基极、或可控硅的控制极电压低于原来的设置电压,电源调整管截止,300V电源被关断,开关变压器次级没电压,这时各电路所需的工作电压,就靠次级本路整流后的滤波电容放电来维持。待到下一个脉冲的周期正半周信号到来时,重复上一个过程。这个开关变压器就叫高频变压器,因为他的工作频率高于50HZ低频。那么推动开关管或可控硅的脉冲如何获得呢,这就需要有个振荡电路产生,我们知道,晶体三极管有个特性,就是基极对发射极电压是0.65-0.7V是放大状态,0.7V以上就是饱和导通状态,-0.1V- -0.3V就工作在振荡状态,那么其工作点调好后,就靠较深的负反馈来产生负压,使振荡管起振,振荡管的频率由基极上的电容充放电的时间长短来决定,振荡频率高输出脉冲幅度就大,反之就小,这就决定了电源调整管的输出电压的大小。那么变压器次级输出的工作电压如何稳压呢,一般是在开关变压器上,单绕一组线圈,在其上端获得的电压经过整流滤波后,作为基准电压,然后通过光电耦合器,将这个基准电压返回振荡管的基极,来调整震荡频率的高低,如果变压器次级电压升高,本取样线圈输出的电压也升高,通过光电耦合器获得的正反馈电压也升高,这个电压加到振荡管基极上,就使振荡频率降低,起到了稳定次级输出电压的稳定,太细的工作情况就不必细讲了,也没必要了解的那么细的,这样大功率的电压由开关变压器传递,并与后级隔开,返回的取样电压由光耦传递也与后级隔开,所以前级的市电电压,是与后级分离的,这就叫冷板,是安全的,变压器前的电源是独立的,这就叫开关电源。 图开关电源原理图1

开关电源各模块原理实图讲解

开关电源原理 一、开关电源的电路组成: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值 降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及 杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。 当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪 涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是 负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5 容量变小,输出的交流纹波将增大。

时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增 大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路: 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导 体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断。 R1和Q1中的结电容C GS、C GD一起组成RC网络,电容的充放电直接影响着开关管的开关速度。R1过小,易引起振荡,电磁干扰也会很大;R1过大,会降低开关管的开关速度。Z1通常将MOS管的GS电压限制在18V以下,从而保护了MOS管。 Q1的栅极受控电压为锯形波,当其占空比越大时,Q1导通时间越长,变压器所储存的能量

常见几种开关电源工作原理及电路图

一、开关式稳压电源的基本工作原理 开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。因此下面就主要介绍调宽式开关稳压电源。 调宽式开关稳压电源的基本原理可参见下图。 对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。直流平均电压U。可由公式计算, 即Uo=Um×T1/T 式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。 从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。 二、开关式稳压电源的原理电路 1、基本电路

图二开关电源基本电路框图 开关式稳压电源的基本电路框图如图二所示。 交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。 控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。这部分电路目前已集成化,制成了各种开关电源用集成电路。控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。 2.单端反激式开关电源 单端反激式开关电源的典型电路如图三所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

液晶电视电源板常见的故障判断和检修方法

液晶电视电源板常见的故障判断和检修方法 液晶电视的电源板在整机上故障率是相当高的,也是我们修理液晶电视的重点和难点之一,容易给人以迷惑。他的相当一部分能量供给灯板驱动电路(根据发光源不同分为高压板和LED灯板两类)和主板上,一旦电视出现不开机、黑屏、纹波干扰、不定时关机等现象时,我们往往搞不清楚故障是出在电源板、主板、灯管(条)还是灯驱动板上,给维修造成很多弯路。借此根据本人多年来维修经验,结合众多网友维修过程中遇到的典型的事例,抛砖引玉,用简单易解的方法,来分析一下电源板的故障原因和排除技巧,解开液晶电源并不“神秘”的面纱。 下面以TCL-PWL37C电源电路图纸为例,简单介绍一下液晶电视电源的工作原理(修过CRT彩电电源的师傅应该都知道,液晶电视的电源跟CRT大部分地方都是差不多的,仅仅多了个PFC电路而已)。 1:待机电路。 接通电源后,电源输出插座P3的③、④脚就应有+5V电压输出,给主板CPU 电路供电。另外,在热地一侧,副开关电源变压器T2的④-⑤绕组还会输出一组电压,整流滤波后输出+20V,供给主电源的PFC振荡电路和PWM振荡电路。(见图2)如果输出电压不稳定,则检查以IC9(TL431)为中心组成的稳压控制电路。正常工作时,TL431的①脚电压为2.5V,如果该脚电压异常,则说明 TL431损坏或其外围元件有问题。 故障现象1:无+5V电压输出。 分析检修:检查待机电源电路,发现IC1的⑤-⑧脚电压为0V,经查限流电阻RB 13端头焊接部分已脱焊。建议将RB1、RB2、RB13这3只限流电阻换成功率为1W或2W的同阻值电阻,以免再次损坏。 故障现象2:+5V电压在3V左右波动。

汽车电子电路图

汽车电子电路图

一、汽车整车电路的组成 汽车整车电路通常有电源电路、起动电路、点火电路、照明与灯光信号装置电路、仪表信息系统电路、辅助装置电路和电子控制系统电路组成。 ⒈电源电路:也称充电电路,是由蓄电池、发电机、调节器及充电指示装置等组成的电路,电能分配(配电)及电路保护器件也可归入这一电路。 ⒉起动电路 是由起动机、起动继电器、起动开关及起动保护电路组成的电路。也可将低温条件下起动预热的装置及其控制电路列入这一电路内。 ⒊点火电路 是汽油发动机汽车特有的电路。它由点火线圈、分电器、电子点火控制器、火花塞及点火开关组成。微机控制的电子点火控制系统一般列入发动机电子控制系统中。 ⒋照明与灯光信号装置电路 是由前照灯、雾灯、示廓灯、转向灯、制动灯、倒车灯、车内照明灯及有关控制继电器和开关组成的电路。 ⒌仪表信息系统电路 是由仪表及其传感器、各种报警指示灯及控制器组成的电路。

⒍辅助装置电路 是由为提高车辆安全安性、舒适性等而设置的各种电器装置组成的电路。辅助电器装置的种类随车型不同而有所差异,汽车档次越高,辅助电器装置越完善。一般包括风窗刮水及清洗装置、风窗除霜(防雾)装置、空调装置、音响装置等。较高级车型上还装有车窗电动举升装置、电控门锁、电动座椅调节装置和电动遥控后视镜等。电子控制安全气囊归入电子控制系统。 ⒎电子控制系统电路 主要有发动机控制系统(包括燃油喷射、点火、排放等控制)、自动变速器及恒速行驶控制系统、制动防抱死系统、安全气囊控制系统等电路组成。 二、三种电路图 1.布线图 布线图识按照汽车电器在车身上的大体位置来进行布线的,如图8-6所示。 其特点是:全车的电器(即电器设备)数量明显且准确,电线的走向清楚,有始有终,便于循线跟踪,查找起来比较方便。它按线束编制将电线分配到各条线束中去与各个插件的位置严格对号。在各开关附近用表格法表示了开关的接线与挡位控制关系,表示了熔断器与电线的连接关系,表明了电线的颜色与截面积。

开关电源入门必读:开关电源工作原理超详细解析

开关电源入门必读:开关电源工作原理超详细解析 第1页:前言:PC电源知多少 个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人PC电源称之为——开关电源(Sw itching Mode P ow er Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(sw itching)。线性电源的工作原理是首先将127 V或者220V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的“3”);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的“4”);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的“5”) 配图1:标准的线性电源设计图

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/W ii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所以说个人PC用户并不适合用线性电源。 ●开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的“开关电源”其实是“高频开关电源”的缩写形式,和电源本身的关闭和开启式没有任何关系的。 事实上,终端用户的PC的电源采用的是一种更为优化的方案:闭回路系统(closed loop system)——负责控制开关管的电路,从电源的输出获得反馈信号,然后根据PC的功耗来增加或者降低某一周期内的电压的频率以便能够适应电源的变压器(这个方法称作PW M,Pulse W idth Modulation,脉冲宽度调制)。所以说,开关电源可以根据与之相连的耗电设备的功耗的大小来自我调整,从而可以让变压器以及其他的元器件带走更少量的能量,而且降低发热量。 反观线性电源,它的设计理念就是功率至上,即便负载电路并不需要很大电流。这样做的后果就是所有元件即便非必要的时候也工作在满负荷下,结果产生高很多的热量。 第2页:看图说话:图解开关电源 下图3和4描述的是开关电源的PW M反馈机制。图3描述的是没有PFC(P ow er Factor Correction,功率因素校正)电路的廉价电源,图4描述的是采用主动式PFC设计的中高端电源。 图3:没有PFC电路的电源 图4:有PFC电路的电源 通过图3和图4的对比我们可以看出两者的不同之处:一个具备主动式PFC电路而另一个不具备,前者没有110/220V转换器,而且也没有电压倍压电路。下文我们的重点将会是主动式PFC电源的讲解。

详解大功率可调稳压电源电路图

详解大功率可调稳压电源电路图 无论检修电脑还是电子制作都离不开稳压电源,下面介绍一款直流电压从 3V到15V连续可调的稳压电源,最大电流可达10A,该电路用了具有温度补偿特性的,高精度的标准电压源集成电路TL431,使稳压精度更高,如果没有特殊要求,基本能满足正常维修使用,电路见下图。 如图1所示大功率可调稳压电源电路图 大功率可调稳压电源电路图 图1 大功率可调稳压电源电路图 其工作原理分两部分,第一部分是一路固定的5V1.5A稳压电源电路。第二部分是另一路由3至15V连续可调的高精度大电流稳压电路。第一路的电路非常简单,由变压器次级8V交流电压通过硅桥QL1整流后的直流电压经C1电解电容滤波后,再由5V三端稳压块LM7805不用作任何调整就可在输出端产生固定的 5V1A稳压电源,这个电源在检修电脑板时完全可以当作内部电源使用。第二部分与普通串联型稳压电源基本相同,所不同的是使用了具有温度补偿特性的,高精度的标准电压源集成电路TL431,所以使电路简化,成本降低,而稳压性能却很高。图中电阻R4,稳压管TL431,电位器R3组成一个连续可调得恒压源,为BG2基极提供基准电压,稳压管TL431的稳压值连续可调,这个稳压值决定了稳压电源的最大输出电压,如果你想把可调电压范围扩大,可以改变R4和R3的电阻值,当然变压器的次级电压也要提高。变压器的功率可根据输出电流灵活掌握,次级电压15V左右。桥式整流用的整流管QL用15-20A硅桥,结构紧凑,中间有固定螺丝,可以直接固定在机壳的铝板上,有利散热。调整管用的是大电流

NPN型金属壳硅管,由于它的发热量很大,如果机箱允许,尽量购买大的散热片,扩大散热面积,如果不需要大电流,也可以换用功率小一点的硅管,这样可以做的体积小一些。滤波用50V4700uF电解电容C5和C7分别用三只并联,使大电流输出更稳定,另外这个电容要买体积相对大一点的,那些体积较小的同样标注50V4700uF尽量不用,当遇到电压波动频繁,或长时间不用,容易失效。最后再说一下电源变压器,如果没有能力自己绕制,有买不到现成的,可以买一块现成的200W以上的开关电源代替变压器,这样稳压性能还可进一步提高,制作成本却差不太多,其它电子元件无特殊要求,安装完成后不用太大调整就可正常工作。

明伟12V开关电源电路原理分析

明伟12V开关电源电路原理分析 来源:大比特商务网 摘要:该开关电源属于小功率开关电源,输入220V交流市电,输出12V直流电,最大输出电流1.3A,主要应用于小型设备的供电,比如楼宇监控设备等。其电原理图如图1所示。 关键字:开关电源,脉宽调制集成电路,振荡器 该开关电源属于小功率开关电源,输入220V交流市电,输出12V直流电,最大输出电流1.3A,主要应用于小型设备的供电,比如楼宇监控设备等。其电原理图如图1所示。其控制核心器件为脉宽调制集成电路TL3843P(内含振荡器、脉宽调制比较器、逻辑控制器,具有过流、欠压等保护控制功能,最高工作频率可达500MHz.启动电流仅需ImA)。各引脚功能如下:(1)脚是内部误差放大器的输出端,通常与(2)脚之间有反馈网络,确定误差放大器的增益。(2)脚是反馈电压输入端,作为内部误差放大器的反相输入端,与同相输入端的基准电压(+2.5V)进行比较,产生误差控制电压,控制脉冲宽度。(6)脚过流检测输入端,当接人的电压高于1V时,禁止驱动脉冲的输出。(4)脚为RT/RC定时电阻和电容的公共接人端,用于产生锯齿振荡波。(5)脚为接地端。(6)脚为脉宽可调脉冲输出端。(7)脚为工作电压输入端(10V>Vi≤30V)。(8)脚为内部基准电压(VREF=5v)输出端。

图1开关电源原理图 一、输入与整流电路 220V交流市电经O.IA保险管Fl及正温度系数热敏电阻PT1进入交流输入电路,交流输入电路由Cl和L构成,为一低通滤波器。其主要作用是抗干扰、抑制杂波。它既阻止市电网中高频干扰脉冲进入开关电源电路,叉阻止开关电源产生的高频干扰谐波进入市电网。 经过低通滤波器滤除了高频杂波的220V交流电,由ED1全桥整流。C2滤波后,在C2两端得到约300V的直流电压。该电压经开关变压器初级线圈后作为功率开关管Ql的工作电源;经R2到电容C4作为脉宽调制集成电路TL3843P的启动电源。 二、启动与稳压电路 经整流滤波的300V电压:一路经开关变压器Tl的1~2绕组加到功率开关管Ql(K3326)的漏极,另一路经启动电阻R2加到U1(TL3843)的(7)脚,作为主控制芯片TL3843P的启动电源。在电路加电的瞬间300V通过R2对C4进行充电,当Ul 的(7)脚电压达到10V以上时,Ul的(8)脚输出5v基准电压,同时TL3843P内部的振荡电路开始工作,(6)脚输出工作脉冲,通过R4驱动开关管01工作,这时开关管工作于开关状态。工作频率主要由R8和C6决定,本电路R8为15kΩ。C6为lOOOpF,其振荡频率约llOkHz.在工作期间,开关变压器Tl的(1)一(2)绕组有高频脉冲电流流过。由于交流互感的作用,变压器其他绕组也产生不同电压的交流电,其中(3)一(4)绕组经R5限流,D2整流,C4滤波后得到约12V以上的直流电压加到Ul的(7)脚,保证Ul稳定可靠地工作。Tl的(5)一(6)绕组经D3整流,C12、Ll和Cll组成滤波网络,输出作为负载的直流电压12V. 稳压电路由精密可调基准电压集成器件U3(TLA31)、电阻R16、R18、R17、电位器R13、电容C13以及光电耦合器U2(PC817)组成。 输出的12V电压经R16与电位器R13及电阻R18分压后加到U3的(1)脚。当由于某种原因导致输出12V电压升高时。U3的(1)脚电压升高,(3)脚的电压降低,导致光耦合器U2内部发光二极管的亮度增强,内部光电三极管导通或饱和导通,将Ul内误差放大器的输出电压拉低(甚至为Ov),经内部自动控制电路的作用,自动将(6)脚输出的脉冲宽度调窄,使开关管01的导通时间缩短,从而使电源输出的电压自动降低。当输出12V电压变低时,其稳压过程与上述正好相反。 与一般电路不同,该电路中由Rll、C8、R7、02、R8、C6组成的RT/CT振荡频率控制电路,可以在负载加重的情况下,使振荡频率降低,直至停振。当负载加重到过载时。UI的(1)脚平均电位增高,进而使C8正极电位升高,当C8正极

超详细的反激式开关电源电路图讲解

反激式开关电源电路图讲解 一,先分类 开关电源的拓扑结构按照功率大小的分类如下: 10W以内常用RCC(自激振荡)拓扑方式 10W-100W以内常用反激式拓扑(75W以上电源有PF值要求) 100W-300W 正激、双管反激、准谐振 300W-500W 准谐振、双管正激、半桥等 500W-2000W 双管正激、半桥、全桥 2000W以上全桥 二,重点 在开关电源市场中,400W以下的电源大约占了市场的70-80%,而其中反激式电源又占大部分,几乎常见的消费类产品全是反激式电源。 优点:成本低,外围元件少,低耗能,适用于宽电压范围输入,可多组输出. 缺点:输出纹波比较大。(输出加低内阻滤波电容或加LC噪声滤波器可以改善) 今天以最常用的反激开关电源的设计流程及元器件的选择方法为例。给大家讲解如何读懂反激开关电源电路图! 三,画框图 一般来说,总的来分按变压器初测部分和次侧部分来说明。开关电源的电路包括以下几个主要组成部分,如图1

图1,反激开关电源框图 四,原理图 图2是反激式开关电源的原理图,就是在图1框图的基础上,对各个部分进行详细的设计,当然,这些设计都是按照一定步骤进行的。下面会根据这个原理图进行各个部分的设计说明。 图2 典型反激开关电源原理图

五,保险管 图3 保险管 先认识一下电源的安规元件—保险管如图3。 作用:安全防护。在电源出现异常时,为了保护核心器件不受到损坏。 技术参数:额定电压 ,额定电流 ,熔断时间。 分类:快断、慢断、常规 计算公式:其中:Po:输出功率 η效率:(设计的评估值) Vinmin :最小的输入电压 2:为经验值,在实际应用中,保险管的取值范围是理论值的1.5~3倍。 0.98: PF值 六,NTC和MOV NTC 热敏电阻的位置如图4。 图4 NTC热敏电阻 图4中的RT为NTC,电阻值随温度升高而降低,抑制开机时产生的浪涌电压形成的浪涌电流。

电脑开关电源电路大全详解

电脑开关电源详解 计算机电源是根据计算机相应的电源标准设计和生产的,在计算机高速发展的这十多年间,计算机电源标准也跟着在不断地发生变化,以适应计算机高速发展的要求,计算机电源主要采用了以下几个标准: PC/XT标准: 是由IBM最先推出个人PC/XT计算机时制定的标准; AT标准: 也是由IBM早期推出PC/AT机时所提出的标准,当时能够提供大约190W的电力供应; ATX标准: 是由Intel公司于1995年提出的工业标准,从最初的ATX1.0开始,ATX标准又经过了多次的变化和完善,目前国内市场上流行的是ATX2.03和ATX12V这两个标准,其中ATX12V 又可分为ATX12V1.2、ATX12V1.3、ATX12V2.0等多个版本。 ATX与AT标准比较:

1、ATX标准取消了AT电源上必备的电源开关而交由主板进行电源开关的控制,增加了一个待机电路为电源主电路和主板提供电压来实现电源唤醒等功能; 2、ATX电源首次引进了+3.3V的电压输出端,与主板的连接接口上也有了明显的改进。 ATX12V与ATX2.03标准比较: 1、ATX2.03是1999年以前PII、PIII时代的电源产品,没有P4 4PIN接口; 2、ATX12V加强了+12VDC端的电流输出能力,对+12V的电流输出、涌浪电流峰值、滤波电容的容量、保护等做出了新的规定; 3、ATX12V增加的4芯电源连接器为P4处理器供电,供电电压为+12V; 4、ATX12V加强了+5VSB的电流输出能力,改善主板对即插即用和电源唤醒功能的支持。 ATX12V标准之间的比较: ATX 12V是支持P4的ATX标准,是目前的主流标准,该标准又分为如下几个版本: ATX12V_1.0:2000年2月颁布,P4 时代电源的最早版本,增加P4 4PIN接口;

电路图识别详解

电路图识别详解——简化电路图先看口诀,就两部分,很简单:标号和画图: 1、?标号:电路每个节点编号,标号遵循以下原则 (1)?从正极开始标1 (2)?导线连通的节点标同样的数字 (3)?沿着导线过一个用电器,数字+1 (4)?到遇到电源负极为止 (5)?要求所有点的标号要大于等于1,小于等于负极的标号 2、画图 (1)?在平面上画出节点号 (2)?根据原图画出节点之间的用电器或电表

⑶?整理,美化 3、注意事项 (1)?当用电器两端标号不等时,电流从小标号点到大标号点,因为小标号更接近正极 (2)?当用电器两端标号相等时,相当于一根导线接在用电器两端,因此用电器短路没有电流。介绍完毕,谢谢大家。什么,你没懂?啊~不要扔西红柿!下面还有。我们看几道例题 如图,这道题太典型了,估计每个老师都要讲。答案估计大家都知道,同学甲说这个是串联;同学乙说,不对!R1应该被短路了,没看见上面的”天线”么;这时候老师蹦出来,说你们都错了,实际上是标准的并联电路。倒~,确实不好理解,很多同学老师讲过一遍还是搞不 清楚为啥,最后背下结论了事。现在轮到我们的标号大法上场了,为了说明方便,先用字母 对每个点进行标记下 首先进行标号,我们的标号用红色数字表示,从电源正极出来a点标1同样在一条导线上 的b、d点也标1;检查所有该标1的都标了,那就过一个电阻吧!例如从b点过到c点, 这样c点标2。同一导线上的e、f、g点都标2,这样我们惊奇的发现已经到电源负极了!标号结束!轻松~

进入第二步画图阶段,先画出节点号1,2,其中1节点电源正极,2节点接电源负极,如下图;

然后再原图中查找每个电阻两端的节点标号,放到简化图中对应标号之间,我们看到 R2、R3都在1、2点之间,所以把它们仨依次连接在1、2点之间,就形成了右图, 纯的并联电路,不是么?R1、?清

开关电源原理图精讲.pdf

开关电源原理(希望能帮到同行的你更加深入的了解开关电源,温故而知新吗!!) 一、开关电源的电路组成[/b]:: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路[/b]:: 1、AC输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防

止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。 2、 DC输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路[/b]:: 1、 MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图:

开关电源电路详解

FS1: 由变压器计算得到Iin值,以此Iin值可知使用公司共享料2A/250V,设计时亦须考虑Pin(max)时的Iin是否会超过保险丝的额定值。 TR1(热敏电阻):

电源启动的瞬间,由于C1(一次侧滤波电容)短路,导致Iin电流很大,虽然时间很短暂,但亦可能对Power产生伤害,所以必须在滤波电容之前加装一个热敏电阻,以限制开机瞬间Iin在Spec之内(115V/30A,230V/60A),但因热敏电阻亦会消耗功率,所以不可放太大的阻值(否则会影响效率),一般使用SCK053(3A/5Ω),若C1电容使用较大的值,则必须考虑将热敏电阻的阻值变大(一般使用在大瓦数的Power上)。 VDR1(突波吸收器): 当雷极发生时,可能会损坏零件,进而影响Power的正常动作,所以必须在靠AC输入端(Fuse之后),加上突波吸收器来保护Power(一般常用07D471K),但若有价格上的考虑,可先忽略不装。 CY1,CY2(Y-Cap): Y-Cap一般可分为Y1及Y2电容,若AC Input有FG(3 Pin)一般使用Y2- Cap ,AC Input若为2Pin(只有L,N)一般使用Y1-Cap,Y1与Y2的差异,除了价格外(Y1较昂贵),绝缘等级及耐压亦不同(Y1称为双重绝缘,绝缘耐压约为Y2的两倍,且在电容的本体上会有“回”符号或注明Y1),此电路蛭蠪G所以使用Y2-Cap,Y-Cap 会影响EMI特性,一般而言越大越好,但须考虑漏电及价格问题,漏电(Leakage Current )必须符合安规须求(3Pin公司标准为750uA max)。 CX1(X-Cap)、RX1: X-Cap为防制EMI零件,EMI可分为Conduction及Radiation两部分,Conduction 规范一般可分为: FCC Part 15J Class B 、CISPR 22(EN55022) Class B 两种,FCC 测试频率在450K~30MHz,CISPR 22测试频率在150K~30MHz,Conduction可在厂内以频谱分析仪验证,Radiation 则必须到实验室验证,X-Cap 一般对低频段(150K ~ 数M之间)的EMI防制有效,一般而言X-Cap愈大,EMI防制效果愈好(但

车载电源逆变器电路原理图

车载电源逆变器电路原理图 一市场上常见款式车载逆变器产品的主要指标 输入电压:DC 10V~14.5V;输出电压:AC 200V~220V±10%;输出频率:50Hz±5%;输出功率:70W ~150W;转换效率:大于85%;逆 变工作频率:30kHz~50kHz。 二常见车载逆变器产品的电路图及工作原理 目前市场上销售量最大、最常见的车载逆变器的输出功率为70W-150W,逆变器电路中主要采用TL494或KA7500芯片为主的脉宽调制电路。 一款最常见的车载逆变器电路原理图见图1。 车载逆变器的整个电路大体上可分为两大部分,每部分各采用一只TL494或KA7500芯片组成控制电路,其中第一部分电路的作用是将汽车电瓶等提供的12V直流电,通过高频PWM (脉宽调制)开关电源技术转换成30kHz-50kHz、220V左右的交流电;第二部分电路的作用则是利用桥式整流、滤波、脉宽调制及开关功率输出等技术,将30kHz~50kHz、220V左右的交流电转换成50Hz、220V的交流电。 图1电路中,由芯片IC1及其外围电路、三极管VT1、VT3、MOS功率管VT2、VT4以及变压器T1组成12V直流变换为220V/50kHz交流的逆变电路。由芯片IC2及其外围电路、三极管VT5、VT8、MOS功率管VT6、VT7、VT9、VT10以及220V/50kHz整流、滤波电路VD5-VD8、C12等共同组成220V/50kHz高频交流电变换为220V/50Hz工频交流电的转换电路,最后通过XAC插座输出220V/50Hz交流电供各种便携式电器使用。 图1中IC1、IC2采用了TL494CN(或KA7500C)芯片,构成车载逆变器的核心控制电路。TL494CN是专用的双端式开关电源控制芯片,其尾缀字母CN表示芯片的封装外形为双列直插式塑封结构,工作温度范围为0℃-70℃,极限工作电源电压为7V~40V,最高工作频率为300kHz。

1500W开关电源半桥电路原理图(SG3525) 开关电源12V开关电源24V开关电源

1500W开关电源半桥电路原理图(SG3525) 开关电源12V 开关电源24V开关电源 1500W开关电源半桥电路原理图(SG3525) 2014年09月02日||浏览:4,458 |暂无评论 这是一张完整的15OOW开关电源半桥电路原理图,由于图纸比较大无法上传,需要的朋友可以点击下面的网址到百度网盘去下载,不能下载的找博主索取吧。 https://www.360docs.net/doc/4d8448020.html,/s/1o6NWJUU 这个电路在很多电源生产厂家中已经生产使用,有些电路部分被各个厂家进行了优化,但是大同小异。 电路介绍: 1、电路主要芯片:SG3525和普通的集成运放LM324,此电路开关频率35 KHZ。

2、供电电路:LM7812和LM7912做为正负12V给电路供电,两组7805是给数显表头供电的。 3、整流电路:市电直接进来经KBC15A整流,C1、C2、C3、C 4、C 5、C66为滤波电容,C、C*为隔直电容,两只630V225的电容。 4、电路主要开关器件采用的是两只80N60 IGPT,目前好像停产了,可以用IXYS 60N60替代,600V60A的管子(TO247封装)。 5、输出整流部分:低压的就可以采用图中的全波整流电路,如果输出电压比较高,可以采用全桥整流输出,这根据实际电源电压高低来变动。 例如:低压的30V30A输出可以全波整流,用两只 MBR60200的肖特基二极管(60V200A的);30V50A的可以全波整流用DSEI 2×101-06A一只模块就可以了,你要想

省钱,那只有采用MBR60200并联使用了。 高压的220V5A开关电源可以采用全桥整流,输出整流管可以采用:DSEI 30-06A(600V30A),还有DSEI12-12A (1200V11A)等等。变压器:图中脉冲变压器采用GU22的瓷罐,初级24匝,次级两组28匝,线径0.21的漆包线就可以了,绕制时请大家做好初次级绝缘。 主变压器和电感需要根据实际电源来设计了,这里不详细叙述,电路中如有没有标明的器件,可以询问博主。 ? 5KW大功率开关电源驱动电路图(UCC3895) DC 12V/5V双路输出UC3845开关电源电路图?

电源拓扑电路详解

拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。拓扑学是几何学的一个分支,但是这种几何学又和通常的平面几何、立体几何不同。通常的平面几何或立体几何研究的对象是点、线、面之间的位置关系以及它们的度量性质。拓扑学对于研究对象的长短、大小面积、体积等度量性质和数量关系都无关。即不考虑图形的大小形状,仅考虑点和线的个数。 实质上拓扑学(TOPOLOGY)是一种研究与大小、距离无关的几何图形特性的方法。 电路的拓扑结构就是指电路中节点、支路、回路的数量,这些都反映了电路中各部分连接的实质状况。同一个拓扑结构可以画成几何形状不同的电路图 拓扑电路非常适用于DC-DC变换器。每种拓扑都有其自身的特点和适用场合。因此,要恰当选择拓扑,熟悉各种不同拓扑的优缺点及适用范围是非常重要的。 DC/DC电源变换器的拓扑类型主要有以下13种: (1)Buck Converter降压式变换器; (2)Boost Conyerter升压式变换器; (3)Buck—Boost Converter降压/升压式变换器,含极性反转(Inverting)式变换器; (4)Cuk Converter升压,升压串联式变换器; (5)SEPIC(Single Endcd Pdimary Inductor Converter)单端一次侧电感式变换器; (6)F1yback Converter反激式(亦称回扫式)变换器; (7)Eorward Converter正激式变换器: (8)Double Switches Forward Converter双开关正激式变换器; (9)Active Clamp Forward Converter有源箝位 (0)Half Bridge Converter半桥式变换器; (11)Full Bridge Converter全桥式变换器; (12)Push—pall Convener推挽式变换器: (13)Phase Shift Switching ZVT(Phase Shift Switching Zero Voltage Transition)移相式零电压开关变换器。 开关电源(直流变换器)的类型很多,在研究开发或者维修电源系统时,全面了解开关电源主回路的各种基本类型,以及工作原理,具有极其重要的意义。 开关电源拓扑主回路的组成:主回路(开关电源中,功率电流流经的通路)一般包含了开关电源中的开关器件、储能器件、脉冲变压器、滤波器、输出整流器、等所有功率器件,以及供电输入端和负载端。 一、常见电源拓扑介绍。 1、Buck Converter降压式变换器。如图1 图1 BUCK 降压拓扑 特点:a、把输入降至一较低电压。 b、输出总是小于或等于输入。

汽车电路分析试卷A

朱明工作室zhubob 《汽车电路分析》期末考试试卷(A卷) 1.汽车电路主要由电源、用电设备及导线组成。 2.电控单元的电源电路一般分为和两大类。 3.电压型继电器的特点是电磁线圈通过的电流;而经过触点的电流。 4.汽车仪表一般由指示表和组成。指示表有和电热式两种。 5.安全气囊系统有两个电源,一个是另一个是。 6.继电器电路分为电路和电路。 7.现代汽车中央配电盒上一般标有线束和导线插接位置的及接点的,主线束从背面插接后通往各用电设备。 8.汽车空调系统的基本电路一般包括、和电源电路。 9.通用车型电路图通常由四类电路图组成,分别是、熔断丝详图、、搭铁线路图。 10.点火开关用于控制电路、发电机励磁电路、仪表的电源电路和电路。 二、选择题(每小题2分,共28分) 1.在控制件与用电部件之间使用()的电路称间接控制电路。 (A)手动开关(B)电路断路器 (C)继电器(D)保险丝 2.为保证电控单元可靠搭铁,电控单元与车身间()搭铁线。 (A)有一条(B)无有 (C)有多条(D)可有可无 3.易熔线用于对()电路的保护。 (A)容易过载(B)总体线路或较重要 (C)局部(D)任意 4.下面哪种装置不属于汽车电路的保护装置()。 (A)易熔线(B)熔断丝 (C)电路断路器(D)开关 5.汽车仪表与报警系统受()开关控制。 (A)点火(B)危险 (C)起动(D)空调 6.电热式仪表有()接线端子。 (A)1 (B)3 (C)2 (D)4 7.熔断丝能承受长时间的额定电流负载。在过载25%的情况下,约在()分钟内熔断。 (A)1 (B)2 (C)3 (D)4 9.前照灯单侧搭铁不良时,会()。 (A)两侧前照灯均不亮 (B)一侧较亮、一侧较暗 (C)两侧前照灯同样明亮 (D) 无反应 10.电气原理图反映了汽车电气系统()。 (A)各设备的实际位置 (B)各部件连接关系和电路原理 (C)整车的电器及线路连接 (D)线束与用电器接线端子的标记 11.负温度系数的热敏电阻随温度的增加而()。 (A)升高 (B)无影响 (C)不变 (D)下降 12.危险警告信号装置用于汽车出现故障或其它紧急情况时向()报警。 (A)车内乘客 (B)公安机关 (C)上级领导 (D)车外其它车辆和行人

相关文档
最新文档