第3讲 函数导数综合题中证明不等关系的探究(学案)

第3讲  函数导数综合题中证明不等关系的探究(学案)
第3讲  函数导数综合题中证明不等关系的探究(学案)

第3讲 函数导数综合题中证明不等关系的探究

近几年各地的高考卷中都有用函数导数证明不等式的试题,而这类题由于其形式多变,方法灵活,成为了近几年高考的一个热点与难点,具有考查数学思想方法以及代数推理能力的功能,要求学生要有较强的逻辑思维能力和综合运用导数知识进行代数推理的能力,利用导数作为工具证明不等式是证明函数不等式的一种常见方法,在不等式“改造”或证明的过程中,有时借助常用的不等式进行适当的放缩,再进行证明,有时会起到意想不到的效果,很快找到解题思路。

题型一 利用与x e x ln ,有关的常用不等关系证明不等式

【知识链接】

1、与x e x ln ,有关的常用不等式及其变式:

①1y x =+是e x y =在 处的切线,有 恒成

立,当且仅当x = 时,“=”成立;

②1y x =-是ln y x =在 处的切线,有 恒成

立,当且仅当x = 时,“=”成立. 2、从e 1x x +≥和ln 1x x -≤出发,可以有哪些变形呢?

①e 1x x +≥的变形: ②

)

()2( );(1)1(3R x ex e R x x e e x x x ∈≥∈+≥有关的常用不等式

、与

4、与x ln 有关的常用不等式 )1,0(1ln 1)1(时,等号成立当且仅当=>-≤≤-x x x x x

x )1,0(1ln 1)2(时,等号成立当且仅当=>≤≤-x x x e

x ex )1,10(1)1(2ln )3(时,等号成立当且仅当=≤<+-≤

x x x x x )1,1(1

)1(2ln )4(时,等号成立当且仅当=≥+-≥x x x x x )1,10)(1(21ln )5(时,等号成立当且仅当=≤<-≥x x x

x x )1,1)(1(21ln )6(时,等号成立当且仅当=≥-≤x x x

x x

1

x -x 1e x x

-≥e e x x ≥e 1x x --+≥1e (01)1x x x <<-≤e x x

>e 1ln(2)x x x ++≥≥

例1.求证:当0>x 时,不等式5212ln 0x e

x x

--+>恒成立.

跟踪训练1: 1.(2018年全国1 卷文科题)已知函数1ln )(--=x ae x f x .证明:当e a 1≥时,0)(≥x f .

2.(2016年全国卷)设函数()ln 1f x x x =-+.

(1)证明:当(1,)x ∈+∞时,11ln x x x

-<<; (2)设1c >,证明:当(0,1)x ∈时,1(1)x c x c +->.

导数之数列型不等式证明

函数与导数解答题之数列型不等式证明 例1.已知函数()()ln 3f x a x ax a R =--∈ (1)讨论函数)(x f 的单调性; (2)证明:*1111ln(1)()23n n N n + +++>+∈ (3)证明:()*ln 2ln 3ln 4ln 5ln 12,2345n n n N n n ???<≥∈ (4)证明:()*22222ln 2ln 3ln 4ln 5ln 112,23452n n n n n N n n +?????

例3.已知函数()x f x e ax a =--(其中,a R e ∈是自然对数的底数, 2.71828e =…). (1)当a e =时,求函数()f x 的极值;(II )当01a ≤≤时,求证()0f x ≥; (2)求证:对任意正整数n ,都有2111111222n e ??????+ +???+< ??? ???????. 例4.设函数()ln 1f x x px (1)求函数()f x 的极值点; (2)当p >0时,若对任意的x >0,恒有0)(≤x f ,求p 的取值范围; (3)证明:).2,()1(212ln 33ln 22ln 2222222≥∈+--<+++n N n n n n n n 例5.已知函数()ln 1f x x x =-+? (1)求()f x 的最大值; (2)证明不等式:()*121n n n n e n N n n n e ??????+++<∈ ? ? ?-???? ??

利用导数证明不等式的两种通法

利用导数证明不等式的两种通法 吉林省长春市东北师范大学附属实验学校 金钟植 岳海学 利用导数证明不等式是高考中的一个热点问题,利用导数证明不等式主要有两种通法,即函数类不等式证明和常数类不等式证明。下面就有关的两种通法用列举的方式归纳和总结。 一、函数类不等式证明 函数类不等式证明的通法可概括为:证明不等式()()f x g x >(()()f x g x <)的问 题转化为证明()()0f x g x ->(()()0f x g x -<),进而构造辅助函数 ()()()h x f x g x =-,然后利用导数证明函数()h x 的单调性或证明函数()h x 的最小值(最 大值)大于或等于零(小于或等于零)。 例1 已知(0, )2 x π ∈,求证:sin tan x x x << 分析:欲证sin tan x x x <<,只需证函数()sin f x x x =-和()tan g x x x =-在(0,)2 π 上 单调递减即可。 证明: 令()sin f x x x =- ,其中(0,)2 x π ∈ 则/ ()cos 1f x x =-,而(0,)cos 1cos 102 x x x π ∈?

高考数学导数与三角函数压轴题综合归纳总结教师版

导数与三角函数压轴题归纳总结 近几年的高考数学试题中频频出现含导数与三角函数零点问题,内容主要包括函数零点个数的确定、根据函数零点个数求参数范围、隐零点问题及零点存在性赋值理论.其形式逐渐多样化、综合化. 一、零点存在定理 例1.【2019全国Ⅰ理20】函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明: (1)()f x '在区间(1,)2 π -存在唯一极大值点; (2)()f x 有且仅有2个零点. 【解析】(1)设()()g x f x '=,则()()() 2 11 cos ,sin 11g x x g x x x x '=- =-+++. 当1,2x π??∈- ?? ?时,()g'x 单调递减,而()00,02g g π?? ''>< ???, 可得()g'x 在1,2π?? - ?? ?有唯一零点,设为α. 则当()1,x α∈-时,()0g x '>;当,2x πα?? ∈ ??? 时,()0g'x <. 所以()g x 在()1,α-单调递增,在,2πα?? ???单调递减,故()g x 在1,2π?? - ???存在唯一极大 值点,即()f x '在1,2π?? - ?? ?存在唯一极大值点. (2)()f x 的定义域为(1,)-+∞. (i )由(1)知, ()f x '在()1,0-单调递增,而()00f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点. (ii )当0,2x π?? ∈ ???时,由(1)知,()f 'x 在(0,)α单调递增,在,2απ?? ??? 单调递减,而

多元函数求导法则

多元函数求导法则

理论与实验课教案首页 第17 次课授课时间2016年12月23日第3~5节课教案完成时间2016年12月16日 课程名 称高等数学 教 员 职 称 副教 授 专业层 次药学四年制 本科 年 级 201 6 授课方 式 理 论 学 时 3 授课题目(章,节) 第七章多元函数及其微分法§3.全微分§4.多元复合函数与隐函数的偏导数 基本教材、主要参考书和相关网站基本教材:《高等数学》,顾作林主编,人民卫生出版社,2011年,第五版 主要参考书:《医科高等数学》,张选群主编,高教出版社,2009年,第二版 — 2 —

教学目标与要求: 了解:全微分存在的必要条件和充分条件;一阶全微分形式的不变性;全微分的概念掌握:全微分的求法;复合函数、隐函数的偏导数的求法 教学内容与时间分配: 复习5分钟全微分概念5分钟 可微与可导间的关系5分钟全微分的算法及应用25分钟 复合函数求导法则(推广及特例4种)40分钟 一阶全微分形式的不变性15分钟隐函数求导法20分钟 小结5分钟 — 3 —

教学重点与难点: 重点:全微分的概念;复合函数求导规则;隐函数求导法 难点:全微分的概念;全微分存在的充分条件;锁链法则的理解;函数结构图的分析 教学方法与手段: 教学方法:讲授式为主,启发式和讨论式相结合,借助示意图及实例分析,加深对抽象概念理解。 教学手段:传统教学手段(板书)与现代化教学手段(多媒体)相结合,既有演算推导过程,又提高单位时间授课信息量。 教学组长审阅意见: 签名:年月日教研室主任审阅意见: 签名:年月日 — 4 —

理论与实验课教案续页 基本内容教学方法手段和时间分配 — 5 —

含三角函数的导数问题

1.已知函数f (x )=-cos x +ln x ,则f ′(1)的值为( ) A .sin1-1 B .1-sin1 C .1+sin1 D .-1-sin1 答案 C 解析 ∵f (x )=-cos x +ln x ,∴f ′(x )=1 x +sin x ,∴f ′(1)=1+sin1. 2.曲线y =tan x 在x =-π 4处的切线方程为______ 答案 y =2x +π 2-1 解析 y ′=(sin x cos x )′=cos 2x +sin 2x cos 2x =1cos 2x ,所以在x =-π 4处的斜率为2,曲线 y = tan x 在x =-π4处的切线方程为y =2x +π 2-1. 3 .函数y =x -2sin x 在(0,2π)内的单调增区间为________. 答案 (π3,5π 3) : ∴函数y =x -2sin x 在(0,2π)内的 增区间为(π3,5π 3). 4. 函数()2sin f x x x =+的部分图象可能是 — A B C D 5.已知函数f (x )=x sin x ,x ∈R ,f (-4),f (4π3),f (-5π 4)的大小关系为______(用“<”连接). 答案 f (4π3)

含三角函数的导数问题复习整理

1.已知函数f(x)=-cos x+ln x,则f′(1)的值为( ) A .sin1-1 B.1-sin1 C.1+sin1 D .-1-sin1 答案 C 解析∵f(x)=-cos x+ln x,∴f′(x)=1 x +sin x,∴f ′(1)=1+sin1. 2.曲线y =tan x在x=- π 4 处的切线方程为______ 答案 y=2x+ π 2 -1 解析y′=( sin x cos x )′= cos2x+sin2x cos2x = 1 cos2x ,所以在x=- π 4 处的斜率为2,曲线y=tan x在x=- π 4 处的切线方程为y=2x+ π 2 -1. 3.函数y=x-2sin x在(0,2π)内的单调增区间为________.答案( π 3 , 5π 3 ) ∴函数y=x-2sin x在(0,2 π)内的增区间为( π 3 , 5π 3 ). 4. 函数()2sin f x x x =+的部分图象可能是 O y x O y x O y x O y x

A B C D 5.已知函数f (x )=x sin x ,x ∈R ,f (-4),f (4π3),f (-5π4 )的大小关系为______(用“<”连接). 答案 f (4π3)

导数--对数函数与指数函数的导数练习题

高三第三章导数--对数函数与指数函数的导数练习题 一、选择题(本大题共6小题,每小题3分,共18分) 1.下列求导数运算正确的是 A.(x +x 1)′=1+21x B.(log 2x )′=2ln 1x C.(3x )′=3x log 3e D.(x 2cos x )′=-2x sin x 2.函数y =ln(3-2x -x 2)的导数为 A.32+x B.2231x x -- C.32222-++x x x D.3 2222-+-x x x 3.函数y =lncos2x 的导数为 A.-tan2x B.-2tan2x C.2tan x D.2tan2x 4.函数y =x x a 22-(a >0且a ≠1),那么y ′为 A.x x a 22-ln a B.2(ln a ) x x a 22- C.2(x -1) x x a 22-·ln a D.(x -1) x x a 22-ln a 5.函数y =x ln 的导数为 A.2x x ln B.x x ln 2 C.x x ln 1 D.x x ln 21 6.函数y =sin32x 的导数为 A.2(cos32x )·32x ·ln3 B.(ln3)·32x ·cos32x C.cos32x D.32x ·cos32x 二、填空题(本大题共5小题,每小题3分,共15分) 7.设y =x x e e 2 )12(+,则y ′=___________. 8.在曲线y =5 9++x x 的切线中,经过原点的切线为 9.函数y =x 22的导数为y ′=___________. 10.函数y =log 3cos x 的导数为___________. 11.曲线y =e x -e ln x 在点(e ,1)处的切线方程为___________. 三、解答题(本大题共3小题,每小题9分,共27分) 12.求函数y =ln(21x +-x )的导数.

对数函数与指数函数的导数(1)

课 题: 3.5对数函数与指数函数的导数(1) 教学目的: 1.理解掌握对数函数的导数的两个求导公式. 2.在学习了函数四则运算的求导法则与复合函数求导法则的基础上,应用对数函数的求导公式,能求简单的初等函数的导数 教学重点:应用对数函数的求导公式求简单的初等函数的导数. 教学难点:对数函数的导数的记忆,对数函数求导公式的灵活运用. 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1. 常见函数的导数公式: 0'=C ;1)'(-=n n nx x ;x x cos )'(sin =;x x sin )'(cos -= 2.法则1 )()()]()([' ''x v x u x v x u ±=±. 法则2 [()()]'()()()'()u x v x u x v x u x v x '=+, [()]'(Cu x Cu x '= 法则3 ' 2 '' (0)u u v uv v v v -??=≠ ??? 3.复合函数的导数:设函数u =?(x )在点x 处有导数u ′x =?′(x ),函数y =f (u ) 在点x 的对应点u 处有导数y ′u =f ′(u ),则复合函数y =f (? (x ))在点x 处也有导数,且x u x u y y '''?= 或f ′x (? (x ))=f ′(u ) ?′(x ). 4.复合函数的求导法则 复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数 5.复合函数求导的基本步骤是:分解——求导——相乘——回代. 二、讲解新课: ⒈对数函数的导数(1): x x )'(ln = 证明:∵ x x f y ln )(==

函数导数三角函数

函数导数三角函数 函数、导数、三角函数回归基础与基本题型复习一、基础知识与基本方法 函数部分 221、二次函数?三种形式:一般式f(x)=ax+bx+c;顶点式f(x)=a(x- h)+k;零点式f(x)=a(x-x)(x-x);b=0偶函数;?区间最值:配方后一看开口方向,二讨论对称12 轴与区间的相对位置关系;?实根分布:先画图再研究?>0、轴与区间关系、区间 端点函数值符号; 2、值域(范围)常用分子常数法;分离;,分母整体换元;导数 3、周期:进退几 个单位,列举;画图;用周期定义逐个检验; 4、求定义域:使函数解析式有意义(如:分母?;偶次根式被开方数?;对数真数?,底数?;零指数幂的底数?);实际问题有意义; (定义域优先意识) 5、单调性:?定义法;?导数法?图像;奇偶性:?定义法?图像。函 数 2yxx,,,log(2)的单调递增区间是.(答:) (1,2)12 注意:(1)函数单调性与奇偶性的逆用(?比较大小;?解不等式;?求参数范围(注 意等号)); 依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题:(或fugxuhx()()()0,,, fa()0,,fa()0,,(或); ,,,,0)()aub,,fb()0,fb()0,,,2若存在?[1,3],使得 不等式,(-2)-2>0成立,则实数取值aaxaxx范围是 ( 22解:不等式即,设.研究“任意a?()220xxax,,,,faxxax()()22,,,, f(1)0,,2,,[1,3],恒有”.则,解得。则实数x的取值范围是 fa()0,x,,1,,,,f(3)0,3,,, 2,, ,,,,,,,1,,,,,3,, (2)复合函数由单调性判定:同增异减。

导数证明不等式的问题(练习答案)

“导数证明不等式问题”练习题答案 1.设L 为曲线C:ln x y x =在点(1,0)处的切线. (I)求L 的方程; (II)证明:除切点(1,0)之外,曲线C 在直线L 的下方. 解: (I)设ln ()x f x x =,则21ln ()x f x x -'=.所以(1)1f '=.所以L 的方程为1y x =-. (II)令()1()g x x f x =--,则除切点之外,曲线C 在直线l 的下方等价于()0 g x >(0,1)x x >≠. ()g x 满足(1)0g =,且221ln ()1()x x g x f x x -+''=-=. 当01x <<时,210x -<,ln 0x <,所以()0g x '<,故()g x 单调递减; 当1x >时,210x ->,ln 0x >,所以()0g x '>,故()g x 单调递增. 所以,()(1)0g x g >=(0,1x x >≠). 所以除切点之外,曲线C 在直线L 的下方. 又解:()0g x >即ln 10x x x -->变形为2ln 0x x x -->,记2()ln h x x x x =--,则2121(21)(1)()21x x x x h x x x x x --+-'=--==, 所以当01x <<时,()0h x '<,()h x 在(0,1)上单调递减; 当1x >时,()0h x '>,()h x 在(1,+∞)上单调递增. 所以()(1)0h x h >=.)

2.Ⅰ)讨论函数的单调性,并证明当时,; (Ⅱ)证明:当时,函数有最小值.设的最小值为,求函数的值域. 解⑴证明:()2e 2 x x f x x -=+ ()()()22224e e 222x x x x f x x x x ??-' ?=+= ?+++?? ∵当x ∈()()22,-∞--+∞,时,()0f x '> ∴()f x 在()()22,-∞--+∞,和上单调递增 ∴0x >时, ()2e 0=12x x f x ->-+, ∴()2e 20x x x -++> ⑵ ()()()24e 2e x x a x x ax a g x x ----'= () 4e 2e 2x x x x ax a x -++= ()322e 2x x x a x x -??+?+ ?+??= [)01a ∈, 由(1)知,当0x >时,()2e 2x x f x x -= ?+的值域为()1-+∞,,只有一解. 使得2e 2 t t a t -?=-+,(]02t ∈, 当(0,)x t ∈时()0g x '<,()g x 单调减;当(,)x t ∈+∞时()0g x '>,()g x 单调增 ()()()222e 1e e 1e 22 t t t t t t a t t h a t t t -++?-++===+ 记()e 2t k t t =+,在(]0,2t ∈时,()()() 2e 102t t k t t +'=>+,∴()k t 单调递增 ∴()()21e 24h a k t ??=∈ ??? ,. 3.设函数. x x 2f (x)x 2 -=+e 0x >(2)20x x e x -++>[0,1)a ∈2x =(0)x e ax a g x x -->()()g x ()h a ()h a ()1x f x e -=-

三角函数及其导数积分公式的六边形记忆法

从俞诗秋的文章修改而来,原来的口诀不太好记 原文:三角函数双曲函数及其导数积分公式的六边形记忆法 三角函数及其导数积分公式的六边形记忆法 2. 三角函数的定义 [三角函数的定义和符号变化] 名称 正弦 余弦 正切 余切 正割 余割 定 义 r y ==斜边对边αsin r x ==斜边邻边αcos x y == 邻边对边αtan y x ==对边邻边αcot x r ==邻边斜边αsec y r ==对边斜边αcsc 1 sinx cosx cscx cotx secx tanx + -

符号与 增 减 变 化 Ⅰ+↑+↓+↑+↓+↑+↓ Ⅱ+↓-↓-↑-↓-↑+↑ Ⅲ-↓-↑+↑+↓-↓-↑ Ⅳ-↑+↑-↑-↓+↓-↓1. 三角函数的记忆: 对角线倒数:对角线互为倒数sinx=1/cscx,指在三角函数六边形中,过中点且连接两个顶点的线段中,两端点处的函数乘积等于中间的数1,即sinxcscx=1, cosxsecx=1, tanxcotx=1. 倒三角形平方和:指在三角函数六边形中,每个有阴影的三角形下顶处函数的平方等于上面两个顶处函数平方的和.即sin2x+cos2x=1, tan2x+1=sec2x, cot2x+1=csc2x. 邻点积:指在三角函数六边形中,任何一个顶处的函数等于相邻两个顶处函数的乘积.即sinx=tanxcosx, cosx=sinxcotx, cotx=cosxcscx, cscx= cotxsecx, secx=cscxtanx, tanx=secxsinx. 2.三角函数求导数 图中左面“+”号表示六边形左面三个顶角处函数的导数为正值,右面“-”号表示六边形右面三个顶角处函数的导数为负值。 上互换:指在三角函数求导六边形中,上顶角处函数的导数为另一上顶角处函数的导数.即:(sinx)’=cosx, (cosx)’=-sinx。 中下2:指在三角函数求导六边形中,中间顶角处函数的导数为对应边下顶角处函数导数的平方.即:(tanx)’=sec2x,

高考素材复习素材:一题多解 专题三 利用导数证明不等式问题

一题多解专题三:利用导数证明不等式问题 1.构造函数证明不等式的方法 (1)对于(或可化为)左右两边结构相同的不等式,构造函数f(x),使原不等式成为形如 f(a)>f(b)的形式. (2)对形如f(x)>g(x),构造函数F(x)= f(x)-g(x). (3)对于(或可化为)A x x f ≥),(21的不等式,可选1x (或2x )为主元,构造函数),(2x x f (或 ),(1x x f ). 2.利用导数证明不等式的基本步骤 (1)作差或变形. (2)构造新的函数h(x). (3)对h(x)求导. (4)利用)(x h '判断h(x)的单调性或最值. (5)结论. 例:设b a R b a b ax x x x f ,,,(1)1ln()(∈++++ +=为常数),曲线)(x f y =与直线 x y 2 3 = 在(0,0)点相切. (1)求b a ,的值. (2)证明:当20<x 时,12 12111)1(2+< +?+=++

(完整版)利用导数证明不等式的常见题型

利用导数证明不等式的常见题型及解题技巧 技巧精髓 1、利用导数研究函数的单调性,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 一、利用题目所给函数证明 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有 x x x ≤+≤+-)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(-++ +=x x x g ,从其导数入手即可证明。 【绿色通道】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令11 1)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即011 1)1ln(≥-++ +x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ), 那么要证不等式,只要求函数的最大值不超过0就可得证. 2、直接作差构造函数证明 【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数33 2)(x x g =的图象的下方;

多元函数偏导数(第七讲)

第七讲 多元函数偏导数与最值问题 一、多元函数偏导数(抽象函数、隐函数、方程组) 例1.设函数(,,)f x y z 是k 次齐次函数,即(,,)(,,)k f tx ty tz t f x y z =,k 为某一常数,求证:(,,)f f f x y z kf x y z x y z ???++=???. 证明:令, ,u tx v ty w tz ===,则(,,)(,,)k f tx ty tz t f x y z =化为 (,,)(,,)k f u v w t f x y z =, 上式两边对t 求导得 1(,,)k f u f v f w kt f x y z u t v t w t -??????++=??????, 又 ,u v w x y z t t t ???===??? 有 1(,,)k f f f x y z kt f x y z u v w -???++=??? 上式两边同乘以t ,得 (,,)k f f f tx ty tz kt f x y z u v w ???++=??? 即有 (,,)f f f u v w kf u v w u v w ???++=??? 于是得 (,,)f f f x y z kf x y z x y z ???++=???. 例2.设(,,)u f x y z =,2(,,)0y x e z j =,sin y x =,其中,f j 具有一阶连续偏导数,且 0x j ?1?,求du dx . 解:这是有显函数,隐函数构成的复合函数的求导问题,见复合关系图: 有复合关系,有 x y z du u u dy u dz dy dz f f f dx x y dx z dx dx dx ???¢¢¢=++=++??? x y z x y x u U n R e g i s t e r e d

导数证明不等式(总题)

导数与函数不等式 考点1不等式的证明 考法1比较法 考向1求商比较法 1.(2014·福建卷·理科)已知函数()x f x e ax =-(a 为常数)的图像与y 轴交于点A ,曲线()y f x =在点A 处的切线斜率为1-. (Ⅰ)求a 的值及函数()f x 的极值; (Ⅱ)证明:当0x >时,x e x < 2. 解析:(Ⅰ)()x f x e a '=-,(0)11f a '=-=-,2a =.()2x f x e x =-,()2x f x e '=-,令()0f x '=,ln 2x =,极小值为(ln 2)22ln 2f =-,无极大值. (Ⅱ)2 x x e <,等价于21x x e <,令2()x x g x e =,22()x x x g x e -+'=,220x x -+=,0x =或2x =,当0x >时,24 ()(2)1g x g e ≤= <,所以,x e x <2. 2.(2018·全国卷Ⅱ·理科)已知函数2()x f x e ax =-. (Ⅰ)若1a =,证明:当0x ≥时;()1f x ≥; 解析:当1a =时,()1f x ≥等价于2 1x e x -≥,2110x x e +-≤.设函数21 ()1x x g x e +=-, 则222(1)(21) ()x x x x x x g x e e -+--+'==.当1x ≠时,()g x '0<,所以()g x 在(0,) +∞单调递减.而(0)0g =,当0x ≥时,()0g x ≤,即()1f x ≥. 考向2 求差比较法: 1.(2013·北京卷·理科)设l 为曲线C :ln x y x =在点(1,0)处的切线. (Ⅰ)求l 的方程; (Ⅱ)证明:除切点(1,0)之外,曲线C 在直线l 的下方. 解析:(Ⅰ)1y x =-.

高中数学导数与不等式

训练目标 (1)利用导数处理与不等式有关的题型;(2)解题步骤的规范训练. 训练题型 (1)利用导数证明不等式;(2)利用导数解决不等式恒成立问题及存在性问题; (3)利用导数证明与数列有关的不等式. 解题策略 (1)构造与所证不等式相关的函数;(2)利用导数求出函数的单调性或者最值再 证明不等式;(3)处理恒成立问题注意参变量分离. 1.已知函数f (x )=x 2 -ax -a ln x (a ∈R ). (1)若函数f (x )在x =1处取得极值,求a 的值; (2)在(1)的条件下,求证:f (x )≥-x 33+5x 2 2-4x +11 6. 2.(2016·烟台模拟)已知函数f (x )=x 2 -ax ,g (x )=ln x ,h (x )=f (x )+g (x ). (1)若函数y =h (x )的单调减区间是? ?? ??12,1,求实数a 的值; (2)若f (x )≥g (x )对于定义域内的任意x 恒成立,求实数a 的取值范围.

3.(2016·山西四校联考)已知f (x )=ln x -x +a +1. (1)若存在x ∈(0,+∞),使得f (x )≥0成立,求a 的取值范围; (2)求证:在(1)的条件下,当x >1时,12x 2+ax -a >x ln x +1 2成立. 4.已知函数f (x )=(2-a )ln x +1 x +2ax . (1)当a <0时,讨论f (x )的单调性; (2)若对任意的a ∈(-3,-2),x 1,x 2∈[1,3],恒有(m +ln 3)a -2ln 3>|f (x 1)-f (x 2)|成立,求实数m 的取值范围. 5.(2017·福州质检)设函数f (x )=e x -ax -1. (1)当a >0时,设函数f (x )的最小值为g (a ),求证:g (a )≤0; (2)求证:对任意的正整数n ,都有1n +1+2 n +1 +3 n +1 +…+n n +1 <(n +1) n +1 .

导数与不等式证明(绝对精华)

二轮专题 (十一) 导数与不等式证明 【学习目标】 1. 会利用导数证明不等式. 2. 掌握常用的证明方法. 【知识回顾】 一级排查:应知应会 1.利用导数证明不等式要考虑构造新的函数,利用新函数的单调性或最值解决不等式的证明问题.比如要证明对任意∈x [b a ,]都有)()(x g x f ≤,可设)()()(x g x f x h -=,只要利用导数说明)(x h 在[b a ,]上的最小值为0即可. 二级排查:知识积累 利用导数证明不等式,解题技巧总结如下: (1)利用给定函数的某些性质(一般第一问先让解决出来),如函数的单调性、最值等,服务于第二问要证明的不等式. (2)多用分析法思考. (3)对于给出的不等式直接证明无法下手,可考虑对不等式进行必要的等价变形后,再去证明.例如采用两边取对数(指数),移项通分等等.要注意变形的方向:因为要利用函数的性质,力求变形后不等式一边需要出现函数关系式. (4)常用方法还有隔离函数法,max min )()(x g x f ≥,放缩法(常与数列和基本不等式一起考查),换元法,主元法,消元法,数学归纳法等等,但无论何种方法,问题的精髓还是构造辅助函数,将不等式问题转化为利用导数研究函数的单调性和最值问题. (5)建议有能力同学可以了解一下罗必塔法则和泰勒展开式,有许多题都是利用泰勒展开式放缩得来. 三极排查:易错易混 用导数证明数列时注意定义域.

【课堂探究】 一、作差(商)法 例1、证明下列不等式: ①1+≥x e x ②1ln -≤x x ③x x 1-1ln ≥ ④1x 1)-2(x ln +≥ x )1(≥x ⑤)2 ,0(,2sin ππ∈>x x x 二、利用max min )()(x g x f ≥证明不等式 例2、已知函数.2 2)(),,(,ln )1(1)(e x e x g R b a x a b x ax x f +-=∈+-+-= (1)若函数2)(=x x f 在处取得极小值0,求b a ,的值; (2)在(1)的条件下,求证:对任意的],[,221e e x x ∈,总有)()(21x g x f >.

第十三讲:多元函数的偏导数与全微分的练习题答案

第十三讲:多元函数的偏导数与全微分的练习题答案 一、单项选择题(每小题4分,共24分) 1. 设2(,)f x y x y xy y +-=+ 则(,)f x y = (A ) A . ()2x x y - B .2xy y + C .()2 x x y + D .2x xy - 解: (,)()f x y x y x y y +-=+ []1()()()2 x y x y x y = ++-- (,)()2x f x y x y ∴=- 2. 22 1cos lim 1x x y o e y x y →→++= (D ) A . 0 B .1 C . 1e D . 2 e 解:22cos (,)1x e y f x y x y =++在点(1,0)连续 '221cos cos 0lim 11102x x y o e y e e x y →→∴==++++ 3.设(,) f x y 在点00(,)x y 处有偏导数存在,则0000(2,)(,)lim h o f x h y f x h y h →+--=(D ) A .0 B .'00(,)x f x y C .'002(,)x f x y D .'003(,)x f x y 解:原式=0000(2,)(,)lim 22h o f x h y f x y h →+-? 0000(,)(,)lim h o f x h y f x y h →--+- ='''0000002(,)(,)3(,)x x x f x y f x y f x y += 4.(,)z f x y =偏导数存在是(,)z f x y =可微的 (B ) A .充分条件 B .必要条件 C .充分必要条件 D .无关条件

构造函数法证明导数不等式的六种方法

构造函数法证明不等式的六种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的六种方法: 一、移项法构造函数 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有 x x x ≤+≤+-)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(-++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时, 0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证) , 现证左面,令11 1)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即011 1)1ln(≥-++ +x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1,1有时 【警示】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那 么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明

利用导数证明不等式

利用导数证明不等式 ……考点一 直接将不等式转化为函数的最值问题证明………|重点保分型|……… |研透典例| 【典例】 已知函数f (x )=ln x +ax 2+(2a +1)x . (1)讨论f (x )的单调性; (2)当a <0时,证明:f (x )≤- 3 4a -2. [解] (1)f (x )的定义域为(0,+∞),f ′(x )=1 x +2ax +2a +1=(x +1)(2ax +1)x .当a ≥0,则当x ∈(0,+∞)时,f ′(x )>0,故f (x )在(0,+∞)上单调递增. 当a <0,则当x ∈????0,-12a 时,f ′(x )>0;当x ∈????-12a ,+∞时,f ′(x )<0.故f (x )在????0,-12a 上单调递增,在??? ?-1 2a ,+∞上单调递减. (2)证明:由(1)知,当a <0时,f (x )在x =-1 2a 取得最大值,最大值为f ????-12a =ln ????-12a -1-1 4a . 所以f (x )≤-34a -2等价于ln ????-12a -1-14a ≤-34a -2,即ln ????-12a +1 2a +1≤0.设g (x )=ln x -x +1,则g ′(x )=1 x -1.当x ∈(0,1)时,g ′(x )>0;当x ∈(1,+∞)时,g ′(x )<0.所以g (x )在 (0,1)上单调递增,在(1,+∞)上单调递减.故当x =1时,g (x )取得最大值,最大值为g (1)=0.所以当x >0时,g (x )≤0.从而当a <0时,ln ????-12a +12a +1≤0,即f (x )≤-3 4a -2. 『名师点津』………………………………………………|品名师指点迷津| 将不等式转化为函数最值来证明不等式,其主要思想是依据函数在固定区间的单调性,直接求得函数的最值,然后由f (x )≤f (x )max 或f (x )≥f (x )min 直接证得不等式. ……考点二 将不等式转化为两个函数的最值进行比较证明……|重点保分型|…… |研透典例| 【典例】 已知f (x )=x ln x . (1)求函数f (x )在[t ,t +2](t >0)上的最小值; (2)证明:对一切x ∈(0,+∞),都有ln x >1e x -2 e x 成立. [解] (1)由f (x )=x ln x ,x >0,得f ′(x )=ln x +1,

相关文档
最新文档