基于51的NRF24L01的发送接收程序

基于51的NRF24L01的发送接收程序
基于51的NRF24L01的发送接收程序

此程序经过本人调试,确定无错,注意在通信前确定芯片好坏以及电压。

发送

#include

#include

typedef unsigned char uchar;

typedef unsigned intuint;

//****************************************NRF24L01端口定义***************************************

sbit MISO =P1^5;

sbit MOSI =P1^1;

sbit SCK =P1^6;

sbit CE =P1^7;

sbit CSN =P1^2;

sbit IRQ =P1^0;

//************************************按键***************************************************

sbit KEY1=P3^4;

//************************************蜂明器***************************************************

sbit LED=P3^5;

//***************************************************************************** **************

#define TX_ADR_WIDTH 5 // 5 uints TX address width

#define RX_ADR_WIDTH 5 // 5 uints RX address width

#define TX_PLOAD_WIDTH 32 // 20 uints TX payload

#define RX_PLOAD_WIDTH 32 // 20 uints TX payload

uintconst TX_ADDRESS[TX_ADR_WIDTH]= {0x34,0x43,0x10,0x10,0x01}; //本地地址uintconst RX_ADDRESS[RX_ADR_WIDTH]= {0x34,0x43,0x10,0x10,0x01}; //接收地址

//***************************************NRF24L01寄存器指令*******************************************************

#define READ_REG 0x00 // 读寄存器指令

#define WRITE_REG 0x20 // 写寄存器指令

#define RD_RX_PLOAD 0x61 // 读取接收数据指令

#define WR_TX_PLOAD 0xA0 // 写待发数据指令

#define FLUSH_TX 0xE1 // 冲洗发送FIFO指令

#define FLUSH_RX 0xE2 // 冲洗接收FIFO指令

#define REUSE_TX_PL 0xE3 // 定义重复装载数据指令

#define NOP 0xFF // 保留

//*************************************SPI(nRF24L01)寄存器地址****************************************************

#define CONFIG 0x00 // 配置收发状态,CRC校验模式以及收发状态响应方式#define EN_AA 0x01 // 自动应答功能设置

#define EN_RXADDR 0x02 // 可用信道设置

#define SETUP_AW 0x03 // 收发地址宽度设置

#define SETUP_RETR 0x04 // 自动重发功能设置

#define RF_CH 0x05 // 工作频率设置

#define RF_SETUP 0x06 // 发射速率、功耗功能设置

#define STATUS 0x07 // 状态寄存器

#define OBSERVE_TX 0x08 // 发送监测功能

#define CD 0x09 // 地址检测

#define RX_ADDR_P0 0x0A // 频道0接收数据地址

#define RX_ADDR_P1 0x0B // 频道1接收数据地址

#define RX_ADDR_P2 0x0C // 频道2接收数据地址

#define RX_ADDR_P3 0x0D // 频道3接收数据地址

#define RX_ADDR_P4 0x0E // 频道4接收数据地址

#define RX_ADDR_P5 0x0F // 频道5接收数据地址

#define TX_ADDR 0x10 // 发送地址寄存器

#define RX_PW_P0 0x11 // 接收频道0接收数据长度

#define RX_PW_P1 0x12 // 接收频道0接收数据长度

#define RX_PW_P2 0x13 // 接收频道0接收数据长度

#define RX_PW_P3 0x14 // 接收频道0接收数据长度

#define RX_PW_P4 0x15 // 接收频道0接收数据长度

#define RX_PW_P5 0x16 // 接收频道0接收数据长度

#define FIFO_STATUS 0x17 // FIFO栈入栈出状态寄存器设置

//***************************************************************************** *********

void Delay(unsigned int s);

voidinerDelay_us(unsigned char n);

void init_NRF24L01(void);

uint SPI_RW(uintuchar);

ucharSPI_Read(ucharreg);

voidSetRX_Mode(void);

uintSPI_RW_Reg(ucharreg, uchar value);

uintSPI_Read_Buf(ucharreg, uchar *pBuf, ucharuchars);

uintSPI_Write_Buf(ucharreg, uchar *pBuf, ucharuchars);

unsigned char nRF24L01_RxPacket(unsigned char* rx_buf);

void nRF24L01_TxPacket(unsigned char * tx_buf);

//*****************************************长延时*****************************************

void Delay(unsigned int s)

{

unsignedinti;

for(i=0; i

for(i=0; i

}

//***************************************************************************** *************

uint bdatasta; //状态标志

sbit RX_DR =sta^6;

sbit TX_DS =sta^5;

sbit MAX_RT =sta^4;

/****************************************************************************** ************

/*延时函数

/****************************************************************************** ************/

voidinerDelay_us(unsigned char n)

{

for(;n>0;n--)

_nop_();

}

//***************************************************************************** ***********

/*NRF24L01初始化

//***************************************************************************** **********/

void init_NRF24L01(void)

{

inerDelay_us(100);

CE=0; // chip enable

CSN=1; // Spi disable

SCK=0; // Spi clock line init high

SPI_Write_Buf(WRITE_REG + TX_ADDR, TX_ADDRESS, TX_ADR_WIDTH); // 写本地地址

SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, RX_ADDRESS, RX_ADR_WIDTH); // 写接收端地址

SPI_RW_Reg(WRITE_REG + EN_AA, 0x01); // 频道0自动ACK应答允许

SPI_RW_Reg(WRITE_REG + EN_RXADDR, 0x01); // 允许接收地址只有频道0,如果需要多频道可以参考Page21

SPI_RW_Reg(WRITE_REG + RF_CH, 0); // 设置信道工作为2.4GHZ,收发必须一致

SPI_RW_Reg(WRITE_REG + RX_PW_P0, RX_PLOAD_WIDTH); //设置接收数据长度,本次设置为32字节

SPI_RW_Reg(WRITE_REG + RF_SETUP, 0x07); //设置发射速率为1MHZ,发射功率为最大值0dB

SPI_RW_Reg(WRITE_REG + CONFIG, 0x0f); // IRQ收发完成中断响应,16位CRC ,主接收

}

/****************************************************************************** **********************

/*函数:uint SPI_RW(uintuchar)

/*功能:NRF24L01的SPI写时序

/****************************************************************************** **********************/

uint SPI_RW(uintuchar)

{

uintbit_ctr;

for(bit_ctr=0;bit_ctr<8;bit_ctr++) // output 8-bit

{

MOSI = (uchar& 0x80); // output 'uchar', MSB to MOSI

uchar = (uchar<< 1); // shift next bit into MSB..

SCK = 1; // Set SCK high..

uchar |= MISO; // capture current MISO bit

SCK = 0; // ..then set SCK low again

}

return(uchar); // return read uchar

}

/****************************************************************************** **********************

/*函数:ucharSPI_Read(ucharreg)

/*功能:NRF24L01的SPI时序

/****************************************************************************** **********************/

ucharSPI_Read(ucharreg)

{

ucharreg_val;

CSN = 0; // CSN low, initialize SPI communication...

SPI_RW(reg); // Select register to read from..

reg_val = SPI_RW(0); // ..then read registervalue

CSN = 1; // CSN high, terminate SPI communication

return(reg_val); // return register value

}

/****************************************************************************** **********************/

/*功能:NRF24L01读写寄存器函数

/****************************************************************************** **********************/

uintSPI_RW_Reg(ucharreg, uchar value)

{

uint status;

CSN = 0; // CSN low, init SPI transaction

status = SPI_RW(reg); // select register

SPI_RW(value); // ..and write value to it..

CSN = 1; // CSN high again

return(status); // return nRF24L01 status uchar

}

/****************************************************************************** **********************/

/*函数:uintSPI_Read_Buf(ucharreg, uchar *pBuf, ucharuchars)

/*功能: 用于读数据,reg:为寄存器地址,pBuf:为待读出数据地址,uchars:读出数据的个数

/****************************************************************************** **********************/

uintSPI_Read_Buf(ucharreg, uchar *pBuf, ucharuchars)

{

uintstatus,uchar_ctr;

CSN = 0; // Set CSN low, init SPI tranaction

status = SPI_RW(reg); // Select register to write to and read status uchar

for(uchar_ctr=0;uchar_ctr

pBuf[uchar_ctr] = SPI_RW(0); //

CSN = 1;

return(status); // return nRF24L01 status uchar

}

/****************************************************************************** ***************************

/*函数:uintSPI_Write_Buf(ucharreg, uchar *pBuf, ucharuchars)

/*功能: 用于写数据:为寄存器地址,pBuf:为待写入数据地址,uchars:写入数据的个数/****************************************************************************** ***************************/

uintSPI_Write_Buf(ucharreg, uchar *pBuf, ucharuchars)

{

uintstatus,uchar_ctr;

CSN = 0; //SPI使能

status = SPI_RW(reg);

for(uchar_ctr=0; uchar_ctr

SPI_RW(*pBuf++);

CSN = 1; //关闭SPI

return(status); //

}

/******************************************************************************

**********************/

/*函数:voidSetRX_Mode(void)

/*功能:数据接收配置

/****************************************************************************** **********************/

voidSetRX_Mode(void)

{

CE=0;

// SPI_RW_Reg(WRITE_REG + CONFIG, 0x0f); // IRQ收发完成中断响应,16位CRC ,主接收

CE = 1;

inerDelay_us(130);

}

/****************************************************************************** ************************/

/*函数:unsigned char nRF24L01_RxPacket(unsigned char* rx_buf)

/*功能:数据读取后放如rx_buf接收缓冲区中

/****************************************************************************** ************************/

unsigned char nRF24L01_RxPacket(unsigned char* rx_buf)

{

unsigned char revale=0;

while(IRQ!=0);

CE = 0; //SPI使能

SPI_Read_Buf(RD_RX_PLOAD,rx_buf,TX_PLOAD_WIDTH);// read receive payload from RX_FIFO buffer

revale =1; //读取数据完成标志

SPI_RW_Reg(WRITE_REG+STATUS,0XFF);

returnrevale;

}

/****************************************************************************** *****************************

/*函数:void nRF24L01_TxPacket(unsigned char * tx_buf)

/*功能:发送tx_buf中数据

/****************************************************************************** ****************************/

void nRF24L01_TxPacket(unsigned char * tx_buf)

{

CE=0; //StandBy I模式

SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, TX_ADDRESS, TX_ADR_WIDTH); // 装载接收端地址

SPI_Write_Buf(WR_TX_PLOAD, tx_buf, TX_PLOAD_WIDTH); // 装载数据

SPI_RW_Reg(WRITE_REG + CONFIG, 0x0e); // IRQ收发完成中断响应,16位CRC,

主发送

CE=1; //置高CE,激发数据发送

inerDelay_us(10);

}

//************************************串口初始化*********************************************************

voidStartUART( void )

{ //波特率4800

SCON = 0x50;

TMOD = 0x20;

TH1 = 0xFA;

TL1 = 0xFA;

PCON = 0x00;

TR1 = 1;

}

//************************************通过串口将接收到数据发送给PC端**************************************

voidR_S_Byte(ucharR_Byte)

{

SBUF = R_Byte;

while( TI == 0 ); //查询法

TI = 0;

}

//************************************主函数************************************************************

void main(void)

{

uchari,temp;

ucharRxBuf[32];

init_NRF24L01() ;

StartUART();

Delay(6000);

while(1)

{

SetRX_Mode();

if(nRF24L01_RxPacket(RxBuf))

{

LED=0;

temp++;

for(i=0;i<32;i++)

{

R_S_Byte(RxBuf[i]);

Delay(200);

}

}

LED=1;

Delay(6400);

}

}

接收

#include

#include

typedef unsigned char uchar;

typedef unsigned intuint;

//****************************************NRF24L01端口定义***************************************

sbit MISO =P1^5;

sbit MOSI =P1^1;

sbit SCK =P1^6;

sbit CE =P1^7;

sbit CSN =P1^2;

sbit IRQ =P1^0;

//************************************按键***************************************************

sbit KEY1=P3^4;

//************************************蜂明器***************************************************

sbit LED=P3^5;

//***********************************发送缓冲区*********************************************

ucharTxBuf[32]=

{

0x01,0x02,0x03,0x4,0x05,0x06,0x07,0x08,

0x09,0x10,0x11,0x12,0x13,0x14,0x15,0x16,

0x17,0x18,0x19,0x20,0x21,0x22,0x23,0x24,

0x25,0x26,0x27,0x28,0x29,0x30,0x31,0x32,

}; //

//*********************************************NRF24L01************************ *************

#define TX_ADR_WIDTH 5 // 5 uints TX address width

#define RX_ADR_WIDTH 5 // 5 uints RX address width

#define TX_PLOAD_WIDTH 32 // 20 uints TX payload

#define RX_PLOAD_WIDTH 32 // 20 uints TX payload

uintconst TX_ADDRESS[TX_ADR_WIDTH]= {0x34,0x43,0x10,0x10,0x01}; //本地地址uintconst RX_ADDRESS[RX_ADR_WIDTH]= {0x34,0x43,0x10,0x10,0x01}; //接收地址

//***************************************NRF24L01寄存器指令*******************************************************

#define READ_REG 0x00 // 读寄存器指令

#define WRITE_REG 0x20 // 写寄存器指令

#define RD_RX_PLOAD 0x61 // 读取接收数据指令

#define WR_TX_PLOAD 0xA0 // 写待发数据指令

#define FLUSH_TX 0xE1 // 冲洗发送FIFO指令

#define FLUSH_RX 0xE2 // 冲洗接收FIFO指令

#define REUSE_TX_PL 0xE3 // 定义重复装载数据指令

#define NOP 0xFF // 保留

//*************************************SPI(nRF24L01)寄存器地址****************************************************

#define CONFIG 0x00 // 配置收发状态,CRC校验模式以及收发状态响应方式#define EN_AA 0x01 // 自动应答功能设置

#define EN_RXADDR 0x02 // 可用信道设置

#define SETUP_AW 0x03 // 收发地址宽度设置

#define SETUP_RETR 0x04 // 自动重发功能设置

#define RF_CH 0x05 // 工作频率设置

#define RF_SETUP 0x06 // 发射速率、功耗功能设置

#define STATUS 0x07 // 状态寄存器

#define OBSERVE_TX 0x08 // 发送监测功能

#define CD 0x09 // 地址检测

#define RX_ADDR_P0 0x0A // 频道0接收数据地址

#define RX_ADDR_P1 0x0B // 频道1接收数据地址

#define RX_ADDR_P2 0x0C // 频道2接收数据地址

#define RX_ADDR_P3 0x0D // 频道3接收数据地址

#define RX_ADDR_P4 0x0E // 频道4接收数据地址

#define RX_ADDR_P5 0x0F // 频道5接收数据地址

#define TX_ADDR 0x10 // 发送地址寄存器

#define RX_PW_P0 0x11 // 接收频道0接收数据长度

#define RX_PW_P1 0x12 // 接收频道0接收数据长度

#define RX_PW_P2 0x13 // 接收频道0接收数据长度

#define RX_PW_P3 0x14 // 接收频道0接收数据长度

#define RX_PW_P4 0x15 // 接收频道0接收数据长度

#define RX_PW_P5 0x16 // 接收频道0接收数据长度

#define FIFO_STATUS 0x17 // FIFO栈入栈出状态寄存器设置

//***************************************************************************** *********

void Delay(unsigned int s);

voidinerDelay_us(unsigned char n);

void init_NRF24L01(void);

uint SPI_RW(uintuchar);

ucharSPI_Read(ucharreg);

voidSetRX_Mode(void);

uintSPI_RW_Reg(ucharreg, uchar value);

uintSPI_Read_Buf(ucharreg, uchar *pBuf, ucharuchars);

uintSPI_Write_Buf(ucharreg, uchar *pBuf, ucharuchars);

unsigned char nRF24L01_RxPacket(unsigned char* rx_buf);

void nRF24L01_TxPacket(unsigned char * tx_buf);

//*****************************************长延时*****************************************

void Delay(unsigned int s)

{

unsignedinti;

for(i=0; i

for(i=0; i

}

//***************************************************************************** *************

uint bdatasta; //状态标志

sbit RX_DR =sta^6;

sbit TX_DS =sta^5;

sbit MAX_RT =sta^4;

/****************************************************************************** ************

/*延时函数

/****************************************************************************** ************/

voidinerDelay_us(unsigned char n)

{

for(;n>0;n--)

_nop_();

}

//***************************************************************************** ***********

/*NRF24L01初始化

//***************************************************************************** **********/

void init_NRF24L01(void)

{

inerDelay_us(100);

CE=0; // chip enable

CSN=1; // Spi disable

SCK=0; // Spi clock line init high

SPI_Write_Buf(WRITE_REG + TX_ADDR, TX_ADDRESS, TX_ADR_WIDTH); // 写本地地址

SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, RX_ADDRESS, RX_ADR_WIDTH); // 写接收端地址

SPI_RW_Reg(WRITE_REG + EN_AA, 0x01); // 频道0自动ACK应答允许

SPI_RW_Reg(WRITE_REG + EN_RXADDR, 0x01); // 允许接收地址只有频道0,如果需要多频道可以参考Page21

SPI_RW_Reg(WRITE_REG + RF_CH, 0); // 设置信道工作为2.4GHZ,收发必须一致

SPI_RW_Reg(WRITE_REG + RX_PW_P0, RX_PLOAD_WIDTH); //设置接收数据长度,本次设置为32字节

SPI_RW_Reg(WRITE_REG + RF_SETUP, 0x07); //设置发射速率为1MHZ,发射功率为最大值0dB

SPI_RW_Reg(WRITE_REG + CONFIG, 0x0e); // IRQ收发完成中断响应,16位CRC,主发送

}

/****************************************************************************** **********************

/*函数:uint SPI_RW(uintuchar)

/*功能:NRF24L01的SPI写时序

/****************************************************************************** **********************/

uint SPI_RW(uintuchar)

{

uintbit_ctr;

for(bit_ctr=0;bit_ctr<8;bit_ctr++) // output 8-bit

{

MOSI = (uchar& 0x80); // output 'uchar', MSB to MOSI

uchar = (uchar<< 1); // shift next bit into MSB..

SCK = 1; // Set SCK high..

uchar |= MISO; // capture current MISO bit

SCK = 0; // ..then set SCK low again

}

return(uchar); // return read uchar

}

/****************************************************************************** **********************

/*函数:ucharSPI_Read(ucharreg)

/*功能:NRF24L01的SPI时序

/****************************************************************************** **********************/

ucharSPI_Read(ucharreg)

{

ucharreg_val;

CSN = 0; // CSN low, initialize SPI communication...

SPI_RW(reg); // Select register to read from..

reg_val = SPI_RW(0); // ..then read registervalue

CSN = 1; // CSN high, terminate SPI communication

return(reg_val); // return register value

}

/****************************************************************************** **********************/

/*功能:NRF24L01读写寄存器函数

/****************************************************************************** **********************/

uintSPI_RW_Reg(ucharreg, uchar value)

{

uint status;

CSN = 0; // CSN low, init SPI transaction

status = SPI_RW(reg); // select register

SPI_RW(value); // ..and write value to it..

CSN = 1; // CSN high again

return(status); // return nRF24L01 status uchar

}

/****************************************************************************** **********************/

/*函数:uintSPI_Read_Buf(ucharreg, uchar *pBuf, ucharuchars)

/*功能: 用于读数据,reg:为寄存器地址,pBuf:为待读出数据地址,uchars:读出数据的个数

/****************************************************************************** **********************/

uintSPI_Read_Buf(ucharreg, uchar *pBuf, ucharuchars)

{

uintstatus,uchar_ctr;

CSN = 0; // Set CSN low, init SPI tranaction

status = SPI_RW(reg); // Select register to write to and read status uchar

for(uchar_ctr=0;uchar_ctr

pBuf[uchar_ctr] = SPI_RW(0); //

CSN = 1;

return(status); // return nRF24L01 status uchar

}

/****************************************************************************** ***************************

/*函数:uintSPI_Write_Buf(ucharreg, uchar *pBuf, ucharuchars)

/*功能: 用于写数据:为寄存器地址,pBuf:为待写入数据地址,uchars:写入数据的个数/****************************************************************************** ***************************/

uintSPI_Write_Buf(ucharreg, uchar *pBuf, ucharuchars)

{

uintstatus,uchar_ctr;

CSN = 0; //SPI使能

status = SPI_RW(reg);

for(uchar_ctr=0; uchar_ctr

SPI_RW(*pBuf++);

CSN = 1; //关闭SPI

return(status); //

}

/****************************************************************************** **********************/

/*函数:voidSetRX_Mode(void)

/*功能:数据接收配置

/****************************************************************************** **********************/

voidSetRX_Mode(void)

{

CE=0;

SPI_RW_Reg(WRITE_REG + CONFIG, 0x0f); // IRQ收发完成中断响应,16位CRC ,主接收

CE = 1;

inerDelay_us(130); //延时不能太短

}

/****************************************************************************** ************************/

/*函数:unsigned char nRF24L01_RxPacket(unsigned char* rx_buf)

/*功能:数据读取后放如rx_buf接收缓冲区中

/****************************************************************************** ************************/

unsigned char nRF24L01_RxPacket(unsigned char* rx_buf)

{

unsigned char revale=0;

sta=SPI_Read(STATUS); // 读取状态寄存其来判断数据接收状况

if(RX_DR) // 判断是否接收到数据

{

CE = 0; //SPI使能

SPI_Read_Buf(RD_RX_PLOAD,rx_buf,TX_PLOAD_WIDTH);// read receive payload from RX_FIFO buffer

revale =1; //读取数据完成标志

}

SPI_RW_Reg(WRITE_REG+STATUS,sta); //接收到数据后RX_DR,TX_DS,MAX_PT都置高为1,通过写1来清楚中断标志

returnrevale;

}

/****************************************************************************** *****************************

/*函数:void nRF24L01_TxPacket(unsigned char * tx_buf)

/*功能:发送tx_buf中数据

/****************************************************************************** ****************************/

void nRF24L01_TxPacket(unsigned char * tx_buf)

{

CE=0; //StandBy I模式

SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, TX_ADDRESS, TX_ADR_WIDTH); // 装载接收端地址

SPI_Write_Buf(WR_TX_PLOAD, tx_buf, TX_PLOAD_WIDTH); // 装载数据

// SPI_RW_Reg(WRITE_REG + CONFIG, 0x0e); // IRQ收发完成中断响应,16位CRC,主发送

CE=1; //置高CE,激发数据发送

inerDelay_us(10);

}

//************************************主函数************************************************************

void main(void)

{

uchar temp =0;

init_NRF24L01() ;

nRF24L01_TxPacket(TxBuf); // Transmit Tx buffer data

Delay(6000);

while(1)

{

nRF24L01_TxPacket(TxBuf); // Transmit Tx buffer data

LED=0;

Delay(10000); //可变

SPI_RW_Reg(WRITE_REG+STATUS,0XFF);

LED=1;

Delay(8000);

}

}

基于51单片机课程设计

基于51单片机课程设计报告 院系:电子通信工程 团组:电子设计大赛1组 姓名: 指导老师:

目录 一、摘要 (3) 二、系统方案的设计 (3) 三、硬件资源 (5) 四、硬件总体电路搭建 (13) 五、程序流程图 (14) 六、设计感想 (14) 七、参考文献 (16) 附录 (17) 附录 1 程序代码 (17)

一、摘要 本设计以STC89C51单片机为核心的温度控制系统的工作原理和设计方法。温度信号由温度芯片DS18B20采集,并以数字信号的方式传送给单片机。文中介绍了该控制系统的硬件部分,包括:温度检测电路、温度控制电路。单片机通过对信号进行相应处理,从而实现温度控制的目的。文中还着重介绍了软件设计部分,在这里采用模块化结构,主要模块有:数码管显示程序、键盘扫描及按键处理程序、温度信号处理程序、led控制程序、超温报警程序。 关键词:STC89C51单片机 DS18B20温度芯片温度控制 ,LED报警提示. 二、系统方案的设计 1、设计要求 基本功能: 不加热时实时显示时间,并可手动设置时间; 设定加热水温功能。人工设定热水器烧水的温度,范围在20~70度之间,打开开关后,根据设定温度与水温确定是否加热,及何时停止加热,可实时显示温度; 设定加热时间功能。限定烧水时间,加热时间内超过温度上限或低于温度下限报警,并可实时显示温度。 2、系统设计的框架

本课题设计的是一种以STC89C51单片机为主控制单元,以DS18B20为温度传感器的温度控制系统。该控制系统可以实时存储相关的温度数据并记录当前的时间。其主要包括:电源模块、温度测量及调理电路、键盘、数码管显示、指示灯、报警、继电器及单片机最小系统。 图1 系统设计框架 3 工作原理 温度传感器 DS18B20 从设备环境的不同位置采集温度,单片机STC8951获取采集的温度值,经处理后得到当前环境中一个比较稳定的温度值,再根据当前设定的温度上下限值,通过加热和降温对当前温度进行调整。当采集的温度经处理后超过设定温度的上限时,单片机通过三极管驱动继电器开启降温设备(压缩制冷器) ,当采集的温度经处理后低于设定温度的下时 , 单片机通过三极管驱动继电器开启升温设备 (加热器) ,这里采用通过LED1和LED2取代!!! 当由于环境温度变化太剧烈或由于加热或降温设备出现故障,或者温度传感头出现故障导致在一段时间内不能将环境温度调整到规定的温度限内的时候,单片机通过三极管驱动扬声器发出警笛声,这里采用HLLED提示。

51单片机常用子程序汇总

目录 1、通过串口连续发送n个字节的数据 /*************************************************************** 模块功能:通过串口连续发送n个字节的数据 参数说明: s:待发送数据的首地址 n:要发送数据的字节数 ***************************************************************/ void SendD(unsigned char *s,unsigned char n) { unsigned char unX; if(n>0) { ES=0; // 关闭串口中断 for(unX=0;unX #include #define Nop() _nop_() //空指令

sbit SDA=P1^3; sbit SCL=P1^2; bit ACK; void Start_I2c() { SDA=1; Nop(); SCL=1; Nop(); Nop(); Nop(); Nop(); Nop(); SDA=0; Nop(); Nop(); Nop(); Nop(); Nop(); SCL=0; //钳住I2C总线,准备发送或接受数据Nop(); Nop(); } (2)结束总线函数 /*************************************************************** 模块功能:发送I2C总线结束条件 ***************************************************************/ void Stop_I2c() { SDA=0; Nop(); SCL=1; Nop(); Nop(); Nop(); Nop(); Nop(); SDA=1; Nop(); Nop(); Nop(); Nop();

51单片机超高精度6路舵机控制程序

51单片机超高精度6路舵机控制程序 #include //包含单片机寄存器的头文件 #define uchar unsigned char #define uint unsigned int P0M1=0X00; P0M0=0XFF;//设置P0 为强推挽输出 sbit servo0=P0^0; sbit servo1=P0^1; sbit servo2=P0^2; sbit servo3=P0^3; sbit servo4=P0^4; sbit servo5=P0^5; sbit servo6=P0^6; sbit servo7=P0^7; uchar serVal[2]; uint pwm[]={1382,1382,1382,1382,1382,1382,1382,1382}; //初始90度,(实际是1382.4,取整得1382) uchar pwm_flag=0; uint code ms0_5Con=461; //0.5ms计数(实际是460.8,取整得461) uint code ms2_5Con=2304; //2.5ms计数 /******************************************************************** * 功能: 串口初始化,晶振11.0592,波特率9600,使能了串口中断 ***********************************************************************/ void Com_Init() { TMOD |= 0x20; //用定时器设置串口波特率 TH1=0xFD; //256-11059200/(32*12*9600)=253 (FD) TL1=0xFD;//同上 TR1=1;//定时器1开关打开 REN=1; //开启允许串行接收位 SM0=0;//串口方式,8位数据 SM1=1;//同上 EA=1; //开启总中断 ES=1; //串行口中断允许位 } /******************************************************************** * 功能: 舵机PWM中断初始化 ***********************************************************************/ void Timer0Init()

基于51单片机的简易计算器制作

基于51单片机的简易计算器制作专业:电气信息班级:11级电类一班 姓名:王康胡松勇 时间:2012年7月12日 一:设计任务 本系统选用AT89C52单片机为主控机。通过扩展必要的外围接口电路,实现对计算器的设计,具体设计如下: (1)由于设计的计算器要进行四则运算,为了得到较好的显示效果,经综合分析后,最后采用LED 显示数据和结果。 (2)采用键盘输入方式,键盘包括数字键(0~9)、符号键(+、-、×、÷)、清除键(on\c)和等号键(=),故只需要16 个按键即可,设计中采用集成的计算键盘。 (3)在执行过程中,开机显示零,等待键入数值,当键入数字,通过LED显示出来,当键入+、-、*、/运算符,计算器在内部执行数值转换和存储,并等待再次键入数值,当再键入数值后将显示键入的数值,按等号就会在LED上输出运算结果。 (4)错误提示:当计算器执行过程中有错误时,会在LCD上显示相应的提示,如:当输入的数值或计算得到的结果大于计算器的表示范围时,计算器会在LED上提示八个0;当除数为0时,计算器会在LED上会提示八个负号。 设计要求:分别对键盘输入检测模块;LED显示模块;算术运算模块;错误处理及提示模块进行设计,并用Visio画系统方框图,keil与protues仿真 分析其设计结果。 二.硬件设计 单片机最小系统 CPU:A T89C52 显示模块:两个4位7段共阴极数码管 输入模块:4*4矩阵键盘 1.电路图

电路图说明 本电路图采用AT89C52作为中处理器,以4*4矩阵键盘扫描输入,用两个74HC573(锁存器)控制分别控制数码管的位于段,并以动态显示的方式显示键盘输入结果及运算结果。为编程方便,以一个一位共阴极数码管显示负号。 三,程序设计 #include #define Lint long int #define uint unsigned int #define uchar unsigned char sbit dula=P2^6; //锁存器段选sbit wela=P2^7; sbit display_g=P2^0; //负号段选 sbit display_w=P2^1; //负号位选uchar code table[]={0x3f,0x06,0x5b,0x4f, //0,1,2,3

基于51单片机简易电子琴的课程设计

基于51单片机简易电子琴 1 课题背景 单片微型计算机室大规模集成电路技术发展的产物,属于第四代电子计算机它具有高性能、高速度、体积小、价格低廉、稳定可靠、应用广泛的特点。他的应用必定导致传统的控制技术从根本上发生变革。因此,单片机的开发应用已成为高科技和工程领域的一项重大课题。 电子琴是现代电子科技与音乐结合的产物,是一种新型的键盘乐器。它在现代音乐扮演重要的角色,单片机具有强大的控制功能和灵活的编程实现特性,它已经溶入现代人们的生活中,成为不可替代的一部分。本文的主要内容是用AT89S52单片机为核心控制元件,设计一个电子琴。以单片机作为主控核心,与键盘扬声器等模块组成核心主控制模块,在主控模块上设有8个按键,和一个复位按键。 主要对使用单片机设计简易电子琴进行了分析,并介绍了基于单片机电子琴硬件的组成。利用单片机产生不同频率来获得我们要求的音阶,最终可随意弹奏要表达的音符。并且分别从原理图,主要芯片,个模块原理及各莫奎的程序的调试来详细阐述。 一首音乐是许多不同的音阶组成的,而每个音阶对应着不同的频率,这样我们就可以利用不同的频率的组合,构成我们想演奏的那首曲目。当然对于单片机来产生不同的频率非常方便,我们可以利用单片机的定时/计数器T0来产生这样的方波频率信号,因此,我们只要把一首歌曲的音阶对应频率关系编写正确就可以达到我们想要的曲目。 2 任务要求与总体设计方案 2.1 设计任务与要求 利用所给键盘的1,2,3,4,5,6,7,8八个键,能够发出7个不同的音调,而且有一个按键可以自动播放歌曲,要求按键按下时发声,松开延时一小段时间,中间再按别的键则发另外一音调的声音,当系统扫描到键盘按下,则快速检测出是哪一个按键被按下,然后单片机的定时器启动,发出一定频率的脉冲,该频率的脉冲经喇叭驱动电路放大滤波后,就会发出相应的音调。如果在前一个按下的键发声的同时有另一个按键被按下,则启动中断系统。前面的发音停止,转到后按的键的发音程序。发出后按的键的音调。 2.2 设计方案 2.2.1 播放模块 播放模块是由喇叭构成,它几乎不存在噪声,音响效果较好,而且由于所需驱动功率较小,且价格低廉,所以,被广泛应用。 2.2.2 按键控制模块

51单片机实用汇编程序库(word)

51 单片机实用程序库 4.1 流水灯 程序介绍:利用P1 口通过一定延时轮流产生低电平 输出,以达到发光二极管轮流亮的效果。实际应用中例如:广告灯箱彩灯、霓虹灯闪烁。 程序实例(LAMP.ASM) ORG 0000H AJMP MAIN ORG 0030H MAIN: 9 MOV A,#00H MOV P1,A ;灭所有的灯 MOV A,#11111110B MAIN1: MOV P1,A ;开最左边的灯 ACALL DELAY ;延时 RL A ;将开的灯向右边移 AJMP MAIN ;循环 DELAY: MOV 30H,#0FFH D1: MOV 31H,#0FFH D2: DJNZ 31H,D2 DJNZ 30H,D1 RET END 4.2 方波输出 程序介绍:P1.0 口输出高电平,延时后再输出低电 平,循环输出产生方波。实际应用中例如:波形发生器。 程序实例(FAN.ASM): ORG 0000H MAIN: ;直接利用P1.0 口产生高低电平地形成方波////////////// ACALL DELAY SETB P1.0 ACALL DELAY 10 CLR P1.0 AJMP MAIN ;////////////////////////////////////////////////// DELAY: MOV R1,#0FFH DJNZ R1,$ RET

五、定时器功能实例 5.1 定时1 秒报警 程序介绍:定时器1 每隔1 秒钟将p1.o 的输出状态改变1 次,以达到定时报警的目的。实际应用例如:定时报警器。程序实例(DIN1.ASM): ORG 0000H AJMP MAIN ORG 000BH AJMP DIN0 ;定时器0 入口 MAIN: TFLA G EQU 34H ;时间秒标志,判是否到50 个 0.2 秒,即50*0.2=1 秒 MOV TMOD,#00000001B;定时器0 工作于方式 1 MOV TL0,#0AFH MOV TH0,#3CH ;设定时时间为0.05 秒,定时 20 次则一秒 11 SETB EA ;开总中断 SETB ET0 ;开定时器0 中断允许 SETB TR0 ;开定时0 运行 SETB P1.0 LOOP: AJMP LOOP DIN0: ;是否到一秒//////////////////////////////////////// INCC: INC TFLAG MOV A,TFLAG CJNE A,#20,RE MOV TFLAG,#00H CPL P1.0 ;////////////////////////////////////////////////// RE: MOV TL0,#0AFH MOV TH0,#3CH ;设定时时间为0.05 秒,定时 20 次则一秒 RETI END 5.2 频率输出公式 介绍:f=1/t s51 使用12M 晶振,一个周期是1 微秒使用定时器1 工作于方式0,最大值为65535,以产生200HZ 的频率为例: 200=1/t:推出t=0.005 秒,即5000 微秒,即一个高电

51红外循迹小车报告(舵机版)最终版

简易教程

前言 往届全国大学生电子设计竞赛曾多次出现了集光、机、电于一体的简易智能小车题目,此次,笔者在通过多次论证、比较与实验之后,制作出了简易小车的寻迹电路系统。 整个系统基于普通玩具小车的机械结构,利用小车的底盘、前后轮电机及其自动复原装置,能够平稳跟踪路面黑色轨迹运行。系统分为检测、控制、驱动三个模块。首先利用光电对接收管和路面信号进行检测,然后经过比较器处理,对软件控制模块进行实时控制,输出相应的信号给驱动芯片驱动电机转动,从而控制整个小车的运动。 智能小车能在画有黑线的白纸“路面”上行驶,这是由于黑线和白纸对光线的反射系数不同,小车可根据接收到的反射光的强弱来判断“道路”---黑线,最终实现简单的循迹运动。 个人水平有限,有错误不足之处,还望各位前辈同学多多包含,指出修正,完善。谢谢! 李学云王维 2016年7月27号

目录 前言 (1) 第一部分硬件设计 (1) 1.1 车模选择 (1) 1.2传感器选择 (1) 1.3 控制模块选择 (2) 第二部分软件设计及调试 (3) 2.1 开发环境 (3) 2.2总体框架 (3) 2.3 舵机程序设计与调试 (3) 2.3.1 程序设计 (3) 2.3.2 调试 (3) 2.3.3 程序代码 (4) 2.4 传感器调试 (5) 2.4.1 传感器好坏的检测 (5) 2.4.2 单片机能否识别信号并输出信号 (5) 2.5 综合调试 (7) 附录1 (9) 第一篇舵机(舵机及转向控制原理) (9) 1.1概述 (9) 1.2舵机的组成 (10) 1.3舵机工作原理 (11) 1.4舵机使用中应注意的事项 (12) 1.5如何利用程序实现转向 (12) 1.6舵机测试程序 (13) 附录2 (14) 第二篇光电红外传感器 (14) 2.1传感器的原理 (14) 2.2红外光电传感器ST188 结构图 (15) 2.3传感器的选择 (15) 2.4传感器的安装 (16) 2.5使用方法 (16) 2.7红外传感器输入输出调试程序 (17)

基于51单片机的计算器设计

目录 第一章引言 (3) 1.1 简述简易计算器 (3) 1.2 本设计主要任务 (3) 1.3 系统主要功能 (4) 第二章系统主要硬件电路设计 (4) 2.1 系统的硬件构成及功能 (4) 2.2 键盘电路设计 (5) 2.3 显示电路设计 (6) 第三章系统软件设计 (7) 3.1 计算器的软件规划 (7) 3.2 键盘扫描的程序设计 (7) 3.3 显示模块的程序设计 (8) 3.4 主程序的设计 (9) 3.5 软件的可靠性设计 (9) 第四章调试 (9) 第五章结束语 (10) 参考文献 (11) 附录源程序 (11)

第一章引言 1.1 简述简易计算器 近几年单片机技术的发展很快,其中电子产品的更新速度迅猛。计算器是日常生活中比较的常见的电子产品之一。如何才能使计算器技术更加的成熟,充分利用已有的软件和硬件条件,设计出更出色的计算器呢? 本设计是以AT89S52单片机为核心的计算器模拟系统设计,输入采用4×6矩阵键盘,可以进行加、减、乘、除9位带符号数字运算,并在LCD1602上显示操作过程。 科技的进步告别了以前复杂的模拟电路,一块几厘米平方的单片机可以省去很多繁琐的电路。现在应用较广泛的是科学计算器,与我们日常所用的简单计算器有较大差别,除了能进行加减乘除,科学计算器还可以进行正数的四则运算和乘方、开方运算,具有指数、对数、三角函数、反三角函数及存储等计算功能。计算器的未来是小型化和轻便化,现在市面上出现的使用太阳能电池的计算器, 使用ASIC设计的计算器,如使用纯软件实现的计算器等,未来的智能化计算器将是我们的发展方向,更希望成为应用广泛的计算工具。 1.2 本设计主要任务 以下是初步设定的矩阵键盘简易计算器的功能: 1.扩展4*6键盘,其中10个数字,5个功能键,1个清零 2.强化对于电路的焊接 3.使用五位数码管接口电路 4. 完成十进制的四则运算(加、减、乘、除); 5. 实现结果低于五位的连续运算; 6. 使用keil 软件编写程序,使用汇编语言; 7. 最后用ptoteus模拟仿真; 8.学会对电路的调试

基于51单片机的电子琴设计课程设计

目录 前言 (2) 第1章基于51单片机的电子琴设计 (3) 1.1 电子琴的设计要求 (3) 1.2 电子琴设计所用设备及软件 (3) 1.3 总体设计方案 (3) 第2章系统硬件设计 (5) 2.1 琴键控制电路 (5) 2.2 音频功放电路 (6) 2.3 时钟-复位电路 (6) 2.4 LED显示电路 (6) 2.5 整体电路 (6) 第3章电子琴系统软件设计 (7) 3.1 系统硬件接口定义 (7) 3.2 主函数 (8) 3.2.1 主函数程序 (8) 3.3 按键扫描及LED显示函数 (9) 3.3.1 键盘去抖及LED显示子程序 (10) 3.4 中断函数 (11) 3.4.1 中断程序 (12) 第4章电子琴和调试 (12) 4.1 调试工具 (12) 4.2 调试结果 (13) 4.3 电子琴设计中的问题及解决方法 (14) 第5章电子琴设计总结 (15) 参考文献 (16) 附录 (17)

前言 音乐教育是学校美育的主要途径和最重要内容,它在陶冶情操、提高素养、开发智力,特别是在培养学生创新精神和实践能力方面发挥着独特的作用。近年来,我国音乐教育在理论与实践上都取得了有目共睹的成绩,探索并形成了具有中国特色的、较为完整的音乐教育教学体系。但我国音乐教育的改革力度离素质教育发展的要求还存在一定距离。如今,电子琴作为电子时代的新产物以其独特的功能和巨大的兼容性被人们广泛的接受和推崇。而在课堂教学方面,它拥有其它乐器无法比拟的两个瞬间:瞬间多元素思维的特殊的弹奏方法;瞬间多声部(包括多音色)展示的乐队音响效果的特点。结合电子琴自身强大的功能及独特的优点来进行音乐教育的实施,这样就应该大力推广电子琴进入音乐教室,让电子琴教学在音乐教育中发挥巨大的作用。现代乐器中,电子琴是高新科技在音乐领域的一个代表,体现了人类电子技术和艺术的完美结合。电子琴自动伴奏的稳定性、准确性,以及鲜明的强弱规律、随人设置的速度要求,都更便于人们由易到难、深入浅出的准确掌握歌曲节奏和乐曲风格,对其节奏的稳定性和准确性训练能起到非常大的作用。电子琴所包含的巨量的音乐信息和强大的音乐表现力可以帮助音乐教学更好地贯彻和落实素质教育,更有效地提高人们的音乐素质和能力。目前,市场上的电子琴可谓琳琅满目,功能也是越来越完备。以单片机作为主控核心,设计并制作的电子琴系统运行稳定,其优点是硬件电路简单、软件功能完善、控制系统可靠、性价比较高等,具有一定的实用与参考价值。这就为电子琴的普及提供了方便。 二、电子琴设计要求本设计主要是用AT89C51单片机为核心控制元件,设计一台电子琴。以单片机作为主控核心,与键盘、扬声器等模块组成核心主控制模块,在主控模块上设有7个按键和1个复位按键。本系统主要是完成2大功能:音乐自动播放、电子琴弹奏。关于声音的处理,使用单片机C语言,利用定时器来控制频率,而每个音符的符号只是存在自定义的表中。

51单片机实用子程序(汇编)

《MCS-51单片机实用子程序库(96年版)》 周航慈 目前已有若干版本的子程序库公开发表,它们各有特色。笔者在1988年也编制了两个子程序库(定点子程序库和浮点子程序库),并在相容性、透明性、容错性和算法优化方 面作了一些工作。本程序库中的开平方算法为笔者研究的快速逼近算法,它能达到牛顿迭代法同样的精度,而速度加快二十倍左右,超过双字节定点除法的速度。经过八年来全国广大用户的实际使用,反馈了不少信息,陆续扩充了一些新的子程序,纠正了一些隐含错误,成为现在这个最新版本。 本子程序库对《单片机应用程序设计技术》一书附录中的子程序库作了重大修订:(1)按当前流行的以 IBM PC 为主机的开发系统对汇编语言的规定,将原子程序库的标号和位地址进行了调整,读者不必再进行修改,便可直接使用。 (2)对浮点运算子程序库进行了进一步的测试和优化,对十进制浮点数和二进制浮点数的相互转换子程序进行了彻底改写,提高了运算精度和可靠性。 (3)新增添了若干个浮点子程序(传送、比较、清零、判零等),使编写数据处理 程序的工作变得更简单直观。 在使用说明中开列了最主要的几项:标号、入口条件、出口信息、影响资源、堆栈 需求,各项目的意义请参阅《单片机应用程序设计技术》第六章 6.3.7 节的内容。程序 清单中开列了四个栏目:标号、指令、操作数、注释。为方便读者理解,注释尽力详细。 子程序库的使用方法如下: 1.将子程序库全部内容链接在应用程序之后,统一编译即可。优点是简单方便,缺点是程序太长,大量无关子程序也包含在其中。 2.仅将子程序库中的有关部分内容链接在应用程序之后,统一编译即可。有些子程序需要调用一些低级子程序,这些低级子程序也应该包含在内。优点是程序紧凑,缺点是需要对子程序库进行仔细删节。 (一)MCS-51定点运算子程序库及其使用说明 定点运算子程序库文件名为DQ51.ASM,为便于使用,先将有关约定说明如下: 1.多字节定点操作数:用[R0]或[R1]来表示存放在由R0或R1指示的连续单元中的数据。地址小的单元存放数据的高字节。例如:[R0]=123456H,若(R0)=30H,则(30H)=12H,(31H)=34H,(32H)=56H。 2.运算精度:单次定点运算精度为结果最低位的当量值。 3.工作区:数据工作区固定在PSW、A、B、R2~R7,用户只要不在工作区中存放无 关的或非消耗性的信息,程序就具有较好的透明性。

51单片机程序:按键控制舵机角度

#include "reg52.h" unsigned char count; //0.5ms次数标识 sbit pwm =P2^7 ; //PWM信号输出 sbit jia =P2^4; //角度增加按键检测IO口 sbit jan =P2^5; //角度减少按键检测IO口 unsigned char jd=5; //角度标识 void delay(unsigned char i)//延时 { unsigned char j,k; for(j=i;j>0;j--) for(k=125;k>0;k--); } void Time0_Init() //定时器初始化 { TMOD = 0x01; //定时器0工作在方式1 IE = 0x82; TH0 = 0xfe; TL0 = 0x33; //11.0592MZ晶振,0.5ms TR0=1; //定时器开始 } void Time0_Int() interrupt 1 //中断程序 { TH0 = 0xfe; //重新赋值 TL0 = 0x33; if(count< jd) //判断0.5ms次数是否小于角度标识 pwm=1; //确实小于,PWM输出高电平 else pwm=0; //大于则输出低电平 count=(count+1); //0.5ms次数加1 count=count%40; //次数始终保持为40 即保持周期为20ms } void keyscan() //按键扫描 { if(jia==0) //角度增加按键是否按下 { delay(10); //按下延时,消抖 if(jia==0) //确实按下 { jd++; //角度标识加1 count=0; //按键按下则20ms周期从新开始 if(jd==6) jd=5; //已经是180度,则保持 while(jia==0); //等待按键放开

基于51单片机的计算器设计程序代码汇编

DBUF EQU 30H TEMP EQU 40H YJ EQU 50H ;结果存放 YJ1 EQU 51H ;中间结果存放GONG EQU 52H ;功能键存放 ORG 00H START: MOV R3,#0 ;初始化显示为空MOV GONG,#0 MOV 30H,#10H MOV 31H,#10H MOV 32H,#10H MOV 33H,#10H MOV 34H,#10H MLOOP: CALL DISP ;PAN调显示子程序WAIT: CALL TESTKEY ; 判断有无按键JZ WAIT CALL GETKEY ;读键 INC R3 ;按键个数 CJNE A,#0,NEXT1 ; 判断就是否数字键 LJMP E1 ; 转数字键处理NEXT1: CJNE A,#1,NEXT2 LJMP E1 NEXT2: CJNE A,#2,NEXT3 LJMP E1 NEXT3: CJNE A,#3,NEXT4 LJMP E1 NEXT4: CJNE A,#4,NEXT5 LJMP E1 NEXT5: CJNE A,#5,NEXT6 LJMP E1 NEXT6: CJNE A,#6,NEXT7 LJMP E1 NEXT7: CJNE A,#7,NEXT8 LJMP E1 NEXT8: CJNE A,#8,NEXT9 LJMP E1 NEXT9: CJNE A,#9,NEXT10 LJMP E1 NEXT10: CJNE A,#10,NEXT11 ;判断就是否功能键LJMP E2 ;转功能键处理NEXT11: CJNE A,#11,NEXT12 LJMP E2 NEXT12: CJNE A,#12, NEXT13 LJMP E2

单片机课程设计——基于51单片机的温度监控系统设计

单片机课程设计报告 题目:温度监控系统设计 学院:能源与动力工程学院 专业:测控技术与仪器专业 班级: 2班 成员:魏振杰 二〇一五年十二月

一、引言 温度是工业控制中主要的被控参数之一,特别是在冶金、化工、建材、食品、机械、石油等工业中,具有举足重轻的作用。对于不同场所、不同工艺、所需温度高低范围不同、精度不同,则采用的测温元件、测方法以及对温度的控制方法也将不同;产品工艺不同、控制温度的精度不同、时效不同,则对数据采集的精度和采用的控制算法也不同,因而,对温度的测控方法多种多样。 随着电子技术和微型计算机的迅速发展,微机测量和控制技术也得到了迅速的发展和广泛的应用。利用微机对温度进行测控的技术,也便随之而生,并得到日益发展和完善,越来越显示出其优越性。 作为获取信息的手段——传感器技术得到了显著的进步,其应用领域较广泛。传感器技术已成为衡量一个国家科学技术发展水平的重要标志之一。因此,了解并掌握各类传感器的基本结构、工作原理及特性是非常重要的。 为了提高对传感器的认识和了解,尤其是对温度传感器的深入研究以及其用法与用途,基于实用、广泛和典型的原则而设计了本系统。本系统利用传感器与单片机相结合,应用性比较强,本系统可以作为仓库温度监控系统,如果稍微改装可以做热水器温度调节系统、实验室温度监控系统,以及构成智能电饭煲等等。课题主要任务是完成环境温度监测,利用单片机实现温度监测并通过报警信号提示温度异常。本设计具有操作方便,控制灵活等优点。 本设计系统包括单片机,温度采集模块,显示模块,按键控制模块,报警和指示模块五个部分。文中对每个部分功能、实现过程作了详细介绍。整个系统的核心是进行温度监控,完成了课题所有要求。 二、实验目的和要求 2.1学习DS18B20温度传感芯片的结构和工作原理。 2.2掌握LED数码管显示的原理及编程方法。 2.3掌握独立式键盘的原理及使用方法。 2.4掌握51系列单片机数据采集及处理的方法。 三、方案设计

基于51单片机的数字计算器的设计

《单片机技术及其应用》课程设计报告 专业:通信工程 班级:09312班 姓名:某某某 学号:09031069 指导教师: 二0一二年六月十八日

目录 1设计目的 (1) 2 设计题目描述与要求 (1) 3 设计过程 (2) 4硬件总体方案及说明 (6) 5 软件总体方案及设计流程 (9) 6 调试与仿真 (13) 7 心得体会 (14) 8 指导老师意见 (15) 9 参考文献 (16) 附录一 (16) 附录二 (21)

基于51单片机的数字计算器的设计 1设计目的 简易计算器的原理与设计是单片机课程设计课题中的一个。在完成理论学习和必要的实验后,我们掌握了单片机的基本原理以及编程和各种基本功能的应用,但对单片机的硬件实际应用和单片机完整程序设计还不清楚,实际动手能力不够,因此对该课程进行一次课程设计是有必要的。单片机课程设计既巩固了课本学到的理论,还学到了单片机硬件电路和程序设计,简易计算器课程设计通过自己动手用计算机电路设计软件,编写和调试,最后仿真,来加深对单片机的认识,充分发挥我们的个人创新和动手能力,并提高我们对单片机的兴趣,同时学习查阅资料、参考资料的方法。 本设计是基于51系列的单片机进行的简易计算器系统设计,可以完成计算器的键盘输入,进行加、减、乘、除3位无符号数字的简单四则运算,并在LED 上相应的显示结果。 设计过程在硬件与软件方面进行同步设计。硬件选择AT89C51单片机和74ls164,输入用4×4矩阵键盘。显示用5位7段共阴极LED静态显示。软件从分析计算器功能、流程图设计,再到程序的编写进行系统设计。选用编译效率最高的Keil软件进行编程,并用proteus仿真。 2 设计题目描述与要求 基于AT89C51数字计算器设计的基本要求与基本思路: (1)扩展4*4键盘,其中10个数字,5个功能键,1个清零 (2)使用五位数码管接口电路

单片机课程设计——基于C51简易计算器

单片机双字节十六进制减法实验设计 摘要 本设计是基于51系列的单片机进行的双字节十六进制减法设计,可以完成计 算器的键盘输入,进行加、减、3位无符号数字的简单运算,并在LED上相应的显示结果。 设计过程在硬件与软件方面进行同步设计。硬件方面从功能考虑,首先选择内部存储资源丰富的AT89C51单片机,输入采用5个键盘。显示采用3位7段共阴极LED动态显示。软件方面从分析计算器功能、流程图设计,再到程序的编写进行系统设计。编程语言方面从程序总体设计以及高效性和功能性对C语言和汇编语言进行比较分析,针对计算器四则运算算法特别是乘法和除法运算的实现,最终选用KEIL公司的μVision3软件,采用汇编语言进行编程,并用proteus 仿真。 引言 十六进制减法计算器的原理与设计是单片机课程设计课题中的一个。在完成理论学习和必要的实验后,我们掌握了单片机的基本原理以及编程和各种基本功能的应用,但对单片机的硬件实际应用设计和单片机完整的用户程序设计还不清楚,实际动手能力不够,因此对该课程进行一次课程设计是有必要的。 单片机课程设计既要让学生巩固课本学到的理论,还要让学生学习单片机硬件电路设计和用户程序设计,使所学的知识更深一层的理解,十进制加法计算器原理与硬软件的课程设计主要是通过学生独立设计方案并自己动手用计算机电路设计软件,编写和调试,最后仿真用户程序,来加深对单片机的认识,充分发挥学生的个人创新能力,并提高学生对单片机的兴趣,同时学习查阅资料、参考资料的方法。 关键词:单片机、计算器、AT89C51芯片、汇编语言、数码管、加减

目录 摘要 (01) 引言 (01) 一、设计任务和要求............................. 1、1 设计要求 1、2 性能指标 1、3 设计方案的确定 二、单片机简要原理............................. 2、1 AT89C51的介绍 2、2 单片机最小系统 2、3 七段共阴极数码管 三、硬件设计................................... 3、1 键盘电路的设计 3、2 显示电路的设计 四、软件设计................................... 4、1 系统设计 4、2 显示电路的设计 五、调试与仿真................................. 5、1 Keil C51单片机软件开发系统 5、2 proteus的操作 六、心得体会.................................... 参考文献......................................... 附录1 系统硬件电路图............................ 附录2 程序清单.................................. 一、设计任务和要求

舵机控制程序

在机器人机电控制系统中,舵机控制效果是性能的重要影响因素。舵机可以在微机电系统和航模中作为基本的输出执行机构,其简单的控制和输出使得单片机系统非常容易与之接口。 舵机是一种位置伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。其工作原理是:控制信号由接收机的通道进入信号调制芯片,

获得直流偏置电压。它内部有一个基准电路,产生周期为20ms,宽度为1.5ms的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。最后,电压差的正负输出到电机驱动芯片决定电机的正反转。当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。舵机的控制信号是PWM信号,利用占

空比的变化改变舵机的位置。一般舵机的控制要求如图1所示。 图1 舵机的控制要求 单片机实现舵机转角控制可以使用FPGA、模拟电路、单片机来产生舵机的控制信号,但FPGA成本高且电路复杂。对于脉宽调制信号的脉宽变换,常用的一种方法是采用调制信号获取有源滤波后的直流电压,但是需要50Hz(周期是20ms)的信号,这对运放 器件的选择有较高要求,从电路体积和功耗考虑也不易采用。5mV 以上的控制电压的变化就会引起舵机的抖动,对于机载的测控系统而言,电源和其他器件的信号噪声都远大于5mV,所以滤波

电路的精度难以达到舵机的控制精度要求。 也可以用单片机作为舵机的控制单元,使PWM信号的脉冲宽度实现微秒级的变化,从而提高舵机的转角精度。单片机完成控制算法,再将计算结果转化为PWM信号输出到舵机,由于单片机系统是一个数字系统,其控制信号的变化完全依靠硬件计数,所以受外界干扰较小,整个系统工作可靠。 单片机系统实现对舵机输出转角的控制,必须首先完成两个任务:首先是产生基本的PWM周期信号,本设计是产生20ms的周期信号;其次是脉宽的调整,即单片机模拟PWM信号的输出,并且调整占空比。当系统中只需要实现一个舵机的控制,采用的控制方式是改变单片机的一个定时器中断的初值,将20ms分为两次中断执行,一次短定时中断和一次长定时中断。这样既节省了硬件电路,也减少了软件开销,控制系统工作效率和控制精度都很高。 具体的设计过程: 例如想让舵机转向左极限的角度,它的正脉冲为2ms,则负脉冲为 20ms-2ms=18ms,所以开始时在控制口发送高电平,然后设置定时器在

基于51单片机的简易计算器设计

河南##############学校 毕业设计(论文) 基于51单片机的简易计算器 系部: 自动控制系 专业: 电气自动化 班级: 自083 姓名: 崔 # # 学号: 091415302 指导老师: 许 # 二零一二年五月八日

基于51单片机的简易计算器 摘要 工程实践教学环节是为了学生能够更好地巩固和实践所学专业知识而设置的,在本次工程实践中,我以《智能化测量控制仪表原理与设计》、《MCS-51系列单片微型计算机及其应用》课程中所学知识为基础,设计了简易计算器。本系统以MCS-51系列中的8051单片机为核心,能够实现多位数的四则运算。该系统通过检测矩阵键盘扫描,判断是否按键,经数据转换把数值送入数码管动态显示。本系统的设计说明重点介绍了如下几方面的内容:基于单片机简易计算器的基本功能,同时对矩阵键盘及数码管动态显示原理进行了简单的阐述;介绍了系统的总体设计、给出了系统的整体流程框图,并对其进行了功能模块划分及所采用的元器件进行了详细说明;对系统各功能模块的软、硬件实现进行了详细的设计说明。 关键词:MCS-51;8051单片机;计算器;加减乘除

Based on the simple calculator 51 SCM Abstract The engineering practice teaching is to students better to consolidate and practice have set up by the professional knowledge, in this engineering practice, I to the intelligent measurement control instrument principle and design ", "the MCS-51 series single chip computer and its application" course knowledge as the foundation, the design the simple calculator. This system to MCS-51 of the 8051 series single chip microcomputer as the core, can realize the connection arithmetic. The system through the test matrix keyboard scan, judge whether key, the data transfer the numerical into digital tube dynamic display. This system mainly introduced the design that the following aspects of content: based on single chip microcomputer simple calculator basic functions, and the matrix keyboard and a digital tube dynamic display of the principle of a simple expatiated; introduced the design of the whole system, the whole process of the system are discussed, and its function module partition and the components for a detailed explanation; the functional modules of the system hardware and software of the implementation of the detailed design instructions. Key words: MCS-51;8051 single chip microcomputer;Calculator;Add, subtract, multiply and divide:

(完整版)基于51单片机的4人抢答器课程设计

基于51单片机的4人抢答器设计 设计要求: 以单片机为核心,设计一个4位竞赛抢答器:同时供4名选手或4个代表队比赛,分别用4个按钮S0~S3表示。 设置一个系统清除和抢答控制开关S,开关由主持人控制。 抢答器具有锁存与显示功能。即选手按按钮,锁存相应的编号,并在优先抢答选手的编号一直保持到主持人将系统清除为止。 抢答器具有定时抢答功能,且一次抢答的时间由主持人设定(如30秒)。 当主持人启动“开始”键后,定时器进行减计时,同时扬声器发出短暂的声响,声响持续的时间为0.5s左右。 参赛选手在设定的时间内进行抢答,抢答有效,定时器停止工作,显示器上显示选手的编号和抢答的时间,并保持到主持人将系统清除为止。 如果定时时间已到,无人抢答,本次抢答无效,系统报警并禁止抢答,定时显示器上显示00。 工作原理: 通过键盘改变抢答的时间,原理与闹钟时间的设定相同,将定时时间的变量置为全局变量后,通过键盘扫描程序使每按下一次按键,时间加1(超过30时置0)。同时单片机不断进行按键扫描,当参赛选手的按键按下时,用于产生时钟信号的定时计数器停止计数,同时将选手编号(按键号)和抢答时间分别显示在LED上。

#include #define uchar unsigned char #define uint unsigned int uchar num; //定义中断变量,num计满20表示1秒时间到uchar num1; //十秒倒计时显示初始值 uchar flag1,flag2; //清零键及开始键按下标志位 uchar flag3,flag4=0; //定义键盘按下标志位 uchar code table[]={ 0x3f,0x06,0x5b,0x4f, 0x66,0x6d,0x7d,0x07, 0x7f,0x6f}; //数码管编码

相关文档
最新文档