生日悖论

生日悖论
生日悖论

生日悖论

生日悖论(Birthday paradox)

什么是生日悖论

生日悖论(Birthday paradox)是指,如果一个房间里有23个或23个以上的人,那么至少有两个人的生日相同的概率要大于50%。这就意味着在一个典型的标准小学班级(30人)中,存在两人生日相同的可能性更高。对于60或者更多的人,这种概率要大于99%。从引起逻辑矛盾的角度来说生日悖论并不是一种悖论,从这个数学事实与一般直觉相抵触的意义上,它才称得上是一个悖论。大多数人会认为,23人中有2人生日相同的概率应该远远小于50%。计算与此相关的概率被称为生日问题,在这个问题之后的数学理论已被用于设计著名的密码攻击方法:生日攻击。

生日悖论的理解

理解生日悖论的关键在于领会相同生日的搭配可以是相当多的。如在前面所提到的例子,

23个人可以产生种不同的搭配,而这每一种搭配都有成功相等的可能。从这样的角度看,在253种搭配中产生一对成功的配对也并不是那样的不可思议。

换一个角度,如果你进入了一个有着22个人的房间,房间里的人中会和你有相同生日的概率便不是50:50了,而是变得非常低。原因是这时候只能产生22种不同的搭配。生日问题实际上是在问任何23个人中会有两人生日相同的概率是多少。

概率估计

假设有n个人在同一房间内,如果要计算有两个人在同一日出生的机率,在不考虑特殊因素的前提下,例如闰年、双胞胎,假设一年365日出生概率是平均分布的(现实生活中,出生机率不是平均分布的)。

计算机率的方法是,首先找出p(n)表示n个人中,每个人的生日日期都不同的概率。假如n > 365,根据鸽巢原理其概率为0,假设n≤ 365,则概率为:

因为第二个人不能跟第一个人有相同的生日(概率是364/365),第三个人不能跟前两个人生日相同(概率为363/365),依此类推。用阶乘可以写成如下形式:

p(n)表示n个人中至少2人生日相同的概率:

n≤365,根据鸽巢原理,n大于365时概率为1。

当n=23发生的概率大约是0.507。其他数字的概率用上面的算法可以近似的得出来:

注意所有人都是随机选出的:作为对比,q(n)表示房间中n个其他人中与特定人(比如你)有相同生日的概率:

当n = 22时概率只有大约0.059,约高于十七分之一。如果n个人中有50%概率存在某人跟

你有相同生日,n至少要达到253 。注意这个数字大大高于.究其原因是因为房间内可能有些人生日相同。==数学论证(非数字方法)==

数学论证(非数字方法)

在Paul Halmos的自传中,他认为生日悖论仅通过数值上的计算来解释是一种悲哀。为此,Paul Halmos给出了一种概念数学方法的解释,下面就是这种方法(尽管这个方法包含一定的误差)。

乘积:

等于1-p(n), 因此我们关注第一个n,使得乘积小于1/2,这样我们得到:

由平均数不等式得:

(我们首先利用已知的1到n-1所有整数和等于n(n-1)/2, 然后利用不等式不等式1-

x < e?x.)

如果仅当:

最后一个表达式的值会小于0.5。

其中"log e"表示自然对数。这个数略微小于506,运气稍微好一点点就可以达到506,等于n2-n,我们就得到n=23。

在推导中,Halmos写道:

这个推导是基于一些数学系学生必须掌握的重要工具。生日问题曾经是一个绝妙的例子,用来演示纯思维是如何胜过机械计算:一两分钟就可以写出这些不等式,而乘法运算则需要更多时间,并更易出错,无论使用的工具是一只铅笔还是一台老式电脑。计算器不能提供的是理解力,或数学才能,或产生更高级、普适化理论的坚实基础。[1]。

然而Halmos的推导只显示至少需要23人保证平等机会下的生日匹配;因为我们不知道给出的不等式有多清晰,因此n=22能够正切的可能也无法确定。

泛化和逼近

生日悖论可以推广一下:假设有n个,每一个人都随机地从1和特定的N个数中选择出来一个数(N可能是365或者其他的大于0的整数)。

p(n)表示有两个人选择了同样的数字,这个概率有多大?

下面的逼近公式可以回答这个问题

N=365的结果

泛化

下面我们泛化生日问题: 给定从符合离散均匀分布的区间[1,d]随机取出n个整数, 至少2个数字相同的概率p(n;d) 有多大?

类似的结果可以根据上面的推导得出。

反算问题

反算问题可能是:

对于确定的概率p ...

... 找出最大的n(p)满足所有的概率p(n)都小于

给出的p,或者

... 找出最小的n(p) 满足所有的概率p(n)都大于

给定的p。

对这个问题有如下逼近公式:

[编辑]

举例

0.99 3.03485 √N57.98081 57 0.99012 58 0.99166

注意:某些值被着色,说明逼近不总是正确。

经验性测试

生日悖论可以用计算机代码经验性模拟

days := 365;

numPeople := 1;

prob := 0.0;

while prob < 0.5 begin

numPeople := numPeople + 1;

prob := 1 - ((1-prob) * (days-(numPeople-1)) / days);

print "Number of people: " + numPeople;

print "Prob. of same birthday: " + prob;

end;

应用

生日悖论普遍的应用于检测哈希函数:N-位长度的哈希表可能发生碰撞测试次数不是2N次而是只有2N/2次。这一结论被应用到破解密码学散列函数的生日攻击中。

生日问题所隐含的理论已经在(Schnabel 1938)名字叫做capture-recapture的统计试验得到应用,来估计湖里鱼的数量。

近似匹配

此问题另外一个范化就是求得要在随机选取多少人中才能找到2个人生日相同,相差1天,2天等的概率大于50%。这是个更难的问题需要用到容斥原理。结果(假设生日依然按照平均分布)正像在标准生日问题中那样令人吃惊:

2人生日相差k天#需要的人数

0 23

只需要随机抽取6个人,找到两个人生日相差一周以内的概率就会超过50%。

参考文献

1. ↑原文:The reasoning is based on important tools

that all students of mathematics should have ready

access to. The birthday problem used to be a

splendid illustration of the advantages of pure

thought over mechanical manipulation; the

inequalities can be obtained in a minute or two,

whereas the multiplications would take much longer,

and be much more subject to error, whether the

instrument is a pencil or an old-fashioned desk

computer. What calculators do not yield is

understanding, or mathematical facility, or a solid

basis for more advanced, generalized theories

2.Zoe Emily Schnabel: "The estimation of the total fish population of a lake"(某湖中鱼类总量估计), 美国数学月刊45 (1938年), 348-352页

3.M. Klamkin,D. Newman: "Extensions of the birthday surprise"(生日惊喜的扩充), Journal of Combinatorial Theory 3 (1967年),279-282页。

4.D. Blom: "a birthday problem"生日问题, 美国数学月刊80 (1973年),1141-1142页。{这一论文证明了当生日按照平均分布,两个生日相同的概率最小。)

相关主题
相关文档
最新文档