离心泵、伯努利、传热、精馏实验数据及图表

离心泵、伯努利、传热、精馏实验数据及图表
离心泵、伯努利、传热、精馏实验数据及图表

图2 H-Q、N-Q、η-Q数据图

图2 伯努利试验h-V变化图

图2 lgNu-lgRe回归分析图

图2 10℃下乙醇-水溶液密度拟合

图3 组分平衡图

化工原理 传热综合实验报告 数据处理

化工原理 传热综合实验报告 数据处理 七、实验数据处理 1.蒸汽冷凝与冷空气之间总传热系数K 的测定,并比较冷空气以不同流速u 流过圆形直管时,总传热系数K 的变化。 实验时蒸汽压力:0.04MPa (表压力),查表得蒸汽温度T=109.4℃。实验装置所用紫铜管的规格162mm mm φ?、 1.2l m =,求得紫铜管的外表面积 200.010.060318576281.o S d l m m m ππ=??=??=。 根据2 4s s V V u A d π= =、0.012d m =,得到流速u ,见下表2: 表2 流速数据 取冷空气进、出口温度的算术平均值作为冷空气的平均温度,查得冷空气在不同温度下的比热容p c 、黏度μ、热传导系数λ、密度ρ,如下表3所示: 表3 查得的数据 t 进/℃ t 出/℃ t 平均/℃ ()p c J kg ????? ℃ Pa s μ? ()W m λ?????℃ ()3 kg m ρ-? 22.1 77.3 49.7 1005 0.0000196 0.0283 1.093 24.3 80.9 52.6 1005 0.0000197 0.02851 1.0831 26.3 82.7 54.5 1005 0.0000198 0.02865 1.0765 27.8 83 55.4 1005 0.0000198 0.02872 1.0765 29.9 83.6 56.75 1005 0.0000199 0.02879 1.0699 31.8 83.7 57.75 1005 0.00002 0.02886 1.0666 33.7 83.8 58.75 1005 0.0000200 0.02893 1.0633 35.6 84 59.8 1005 0.0000201 0.029 1.06 根据公式()()=V s p s p Q m c t t c t t ρ=--出进出进、 ()()ln m T t T t t T t T t ---?=--进出进出 , 求出Q 序号 ()31s V m h -? ()1u m s -? 1 2.5 6.140237107 2 5 12.28047421 3 7.5 18.42071132 4 10 24.56094843 5 12.5 30.70118553 6 15 36.84142264 7 17.5 42.98165975 8 20 49.12189685

伯努利方程实验

一,实验目的及要求 1.通过定性分析实验,提高动态水力学中许多水力现象的实验分析能力; 2.通过定量测量实验,可以进一步掌握增压管中流体力学的能量转换特性,验证流体总流量恒定的伯努利方程,掌握测压管头线的实验测量技巧和绘制方法。 二,实验内容与方法 1.定性分析实验 (1)确认相同静态液体的测压管的头线是水平线。 实验表明,在阀门完全关闭并稳定后,每个压力计管液位的连接线均为水平线。此时,滑动标尺的读数值为水在流动前的总能量头。 (2)观察不同流量下某段液压元件的变化规律。 (3)验证动态水压力是否根据均匀流段上的静水压力规则分布。 (4)遵守过程中总能量斜率线的变化规律。

(5)观察压力计头线的变化规律。 (6)沿管道的压力分布是通过使用压力计的头线来判断的。 2.定量分析实验-伯努利方程验证和测压管头线测量分析实验 实验方法和步骤:在恒定流量的情况下,改变流量两次,一次打开阀门很大,以至于1号测量管的液位接近可读范围内的最低点。流量稳定后,测量并记录每个压力测量管的液位读数,并同时测量并记录实验流量。 三,数据处理及结果要求 1.记录相关信息,实验常数,实验数据记录和结果计算:有关详细信息,请参见实验报告书 2.结果要求 (1)定性分析实验中回答有关问题 (2)计算速度头和总头 (3)在上述结果的最大流量下绘制总压头线和压强计压头线

四,注意事项 1.应注意每次循环供水实验:必须将测得的水倒回到原始实验设备的水桶中,以保持自循环供水(在以下实验中不会提示此注意事项)。 2.稳压缸内的气腔越大,稳压效果越好。但是,稳压缸的水位必须淹没连接管的入口,以避免连接管的进气口,否则,有必要拧松稳压缸的排气螺钉以提高水位。圆筒;如果调压罐的水位高于排气螺钉的开口,则表明存在空气泄漏,需要进行检查和处理。 3.传感器与压力稳定缸之间的连接管应确保通气畅通,并且水不能进入连接管和进气口,否则应将其清除。 4.智能数显流量计启动后需要预热3?5分钟。

能量方程伯努利方程实验

能量方程(伯努利方程)实验

————————————————————————————————作者:————————————————————————————————日期: ?

第3章 能量方程(伯努利方程)实验 3.1 实验目的 1) 掌握用测压管测量流体静压强的技能。 2) 验证不可压缩流体静力学基本方程, 通过对诸多流体静力学现象的实验分析,进一步加深对基本概念的理解,提高解决静力学实际问题的能力。 3) 掌握流速、流量等动水力学水力要素的实验量测技能。 3.2 实验装置 能量方程(伯努利方程)实验装置见图3.1。 图3.1 能量方程(伯努利方程)实验装置图 说明:本实验装置由供水水箱及恒压水箱、实验管道(共有三种不同内径的管道)、测压计、实验台等组成,流体在管道内流动时通过分布在实验管道各处的7根皮托管测压管测量总水头或12根普通测压管测量测压管水头,其中测点1、6、8、12、14、16和18均为皮托管测压管(示意 图见图3.2),用于测量皮托管探头对准点的总水头H’(=2g u 2 ++r p Z ),其余为普通测压管(示意图 见图3.3),用于测量测压管水头。 图3.2 安装在管道中的皮托管测压管示意图 图3.3安装在管道中的普通测压管示意图

3.3 实验原理 当流量调节阀旋到一定位置后,实验管道内的水流以恒定流速流动,在实验管道中沿管内水流方向取n 个过水断面,从进口断面(1)至另一个断面(i )的能量方程式为: 2g v 2111++r p Z =f i i h r p Z +++2g v 2 i =常数 (3.1) 式中:i=2,3,······ ,n; Z ──位置水头; r p ──压强水头; 2g v 2 ──速度水头; f h ──进口断面(1)至另一个断面(i )的损失水头。 从测压计中读出各断面的测压管水头(r p Z + ),通过体积时间法或重量时间法测出管道流量,计算不同管道内径时过水断面平均速度v 及速度水头2g v 2 ,从而得到各断面的测压管水头和总水头。 3.4 实验方法与步骤 1) 观察实验管道上分布的19根测压管,哪些是普通测压管,哪些是皮托管测压管。观察管道内径的大小,并记录各测点管径至表3.1。 2) 打开供水水箱开关,当实验管道充满水时反复开或关流量调节阀,排除管内气体或测压管内的气泡,并观察流量调节阀全部关闭时所有测压管水面是否平齐(水箱溢流时)。如不平,则用吸气球将测压管中气泡排出或检查连通管内是否有异物堵塞。确保所有测压管水面平齐后才能进行实验,否则实验数据不准确。 3) 打开流量调节阀并观察测压管液面变化,当最后一根测压管液面下降幅度超过50%时停止调节阀门。待测压管液面保持不变后,观察皮托管测点1、6、8、12、14、16和18的读数(即总水头,取标尺零点为基准面,下同)变化趋势:沿管道流动方向,总水头只降不升。而普通测压管2、3、4、5、7、9、10、11、13、15、17、19的读数(即测压管水头)沿程可升可降。观察直管均匀流同一断面上两个测点2、3测压管水头是否相同?验证均匀流断面上静水压强按动水压强规律分布。弯管急变流断面上两个测点10、11测压管水头是否相同?分析急变流断面是否满足能力方程应用条件?记录测压管液面读数,并测记实验流量至表3.2、表3.3。 4) 继续增大流量,待流量稳定后测记第二组数据(普通测压管液面读数和测记实验流量)。 5) 重复第4步骤,测记第三组数据,要求19号测压管液面接近标尺零点。 6) 实验结束。关闭水箱开关,使实验管道水流逐渐排出。 7) 根据表3.1和表3.2数据计算各管道断面速度水头2g v 2和总水头(2g v 2 ++r p Z ) (分别记录于表3.4和表3.5)。 ★操作要领与注意事项:①、实验前必须排除管道内及连通管中气体。②、流量调节阀不能完全打开,要保证第7根和第8根测压管液面在标尺刻度范围内。 3.5 实验成果与分析 1) 记录有关常数 表3.1 各测点断面管径数据表(单位:cm ) 测点 编号 1 2、3 4 5 6、7 8、9 10、1 1 12、13 14、15 16、17 18、19 管径 均匀段1D 缩管段2D 均匀段1D 扩管段3D 均匀段1D 1.39 cm 1.02 cm 1.39 cm 2.00 cm 1.39cm

实验四气汽对流传热综合实验报告

化学实验教学中心 实验报告 化学测量与计算实验Ⅱ 实验名称:气-汽对流传热综合实验报告 学生姓名:学号: 院(系):年级:级班 指导教师:研究生助教: 实验日期: 2017.05.26 交报告日期: 2017.06.02

(二)强化管换热器传热系数、准数关联式及强化比的测定 强化传热又被学术界称为第二代传热技术,它能减小初设计的传热面积,以减小换热器的体积和重量;提高现有换热器的换热能力;使换热器能在较低温差下工作;并且能够减少换热器的阻力以减少换热器的动力消耗,更有效地利用能源和资金。强化传热的方法有多种,本实验装置是采用在换热器内管插入螺旋线圈的方法来强化传热的。 螺旋线圈的结构图如图1所示,螺旋线圈由直径 3mm以下的铜丝和钢丝按一定节距绕成。将金属螺旋 线圈插入并固定在管内,即可构成一种强化传热管。 在近壁区域,流体一面由于螺旋线圈的作用而发生旋 转,一面还周期性地受到线圈的螺旋金属丝的扰动,因而可以使传热强化。由于绕制线圈的金属丝直径很细,流体旋流强度也较弱,所以阻力较小,有利于节省能源。螺旋线圈是以线圈节距H与管内径d的比值技术参数,且长径比是影响传热效果和阻力系数的重要因素。科学家通过实验研究总结了形式为αα=Bααα的经验公式,其中B和m的值因螺旋丝尺寸不同而不同。 采用和光滑套管同样的实验方法确定不同流量下得Rei和αα,用线性回归方法可确定B和m的值。 单纯研究强化手段的强化效果(不考虑阻力的影响),可以用强化比的概念作为评 ?,其中αα是强化管的努塞尔准数,αα0是普通管判准则,它的形式是:αααα0 ?>1,而且它的值越大,强化效果越好。 的努塞尔准数,显然,强化比αααα0

伯努利方程实验

伯努利方程实验 一、目的和要求 1、 熟悉流体流动中各种能量和压头的概念及其相互转换关系,在此基础上,掌握柏努利方程; 2、 观察流速变化的规律; 3、观察各项压头变化的规律。 二、实验原理 1、流体在流动中具有三种机械能:位能、动能、静压能。当管路条件如管道位置高低、管径大小等发生变化时,这三种机械能就会相应改变以及相互转换。 2、如图所示,不可压缩流体在导管中做稳态流动,由界面1-1’流入,经粗细不同或位置高低不同的管道,由截面2-2’流出:以单位质量流体为基准,机械能衡算式为: 式中:u l 、u 2一分别为液体管道上游的某截面和下游某截面处的流速,m /s ; P 1、P 2一分别为流体在管道上游截面和下游截面处的压强,Pa ; z l 、z 2一分别为流体在管道上游截面和下游截面中心至基准水平的垂直距离,m; ρ一流体密度,Kg /m 3 ; g 一重力加速度,m /s 2 ; ∑h f 一流体两截面之间消耗的能量,J /Kg 。 3、∑h f 是流体在流动过程中损失的机械能,对于实际流体,由于存在内摩擦,流体在流动中总有一部分机械能随摩擦和碰撞转化为热能损耗(不能恢复),因此各截面上的机械能总和不相等,两者之差就是流体在这两截面之间流动时损失的机械能。 4、对于理想流体(实际上并不存在真正的理想流体,而是一种假设,对解决工程实际问题有重要意义),不存在因摩擦而产生的机械能损失,因此在管内稳定流动时,若无外加能量,得伯努利方程: 22112212 22u p u p z g z g ρρ ++=++式② 表示1kg 理想流体在各截面上所具有的总机械能相等,但各截面上每一种形式的机械能并不一定相等,各种形式的机械能可以相互转换。式①时伯努利方程的引伸,习惯上也称为伯努利方程(工程伯努利方程)。 5、流体静止,此时得到静力学方程式: 1 2 1221 () p p z g z g P P gh ρρ ρ + =+ =+或式③ 所以流体静止状态仅为流动状态一种特殊形式。 6、将式①中每项除以g ,可得以单位重量流体为基准的机械能守恒方程: 22 112212 22f u p u p z g z g h ρρ ++=+++∑式① 22112212 f u p u p z z H ++=+++式④

伯努利方程实验报告

不可压缩流体定常流能量方程(伯努利方程)实验 一、实验目的要求: 1、掌握流速、流量、压强等动水力学水力要素的实验量测技术; 2、验证流体定常流的能量方程; 3、通过对动水力学诸多水力现象的实验分析研究,进一步掌握有压管流中动水力学的能量转换特性。 自循环 伯努利方程实验装置图 本实验的装置如图所示,图中: 1.自循环供水器; 2.实验台; 3.可控硅无级调速器; 4.溢流板; 5.稳水孔板; 6.恒压水箱; 7.测压计; 8.滑动测量尺; 9.测压管;10.实验管道;11.测压点;12.毕托管13.实验流量调节阀。 1

2 三、实验原理: 在实验管路中沿水流方向取n 个过水截面。可以列出进口截面(1)至截面(i)的能量方程式(i=2,3,.....,,n) W i h g g p Z g g p Z i i i -+++=++1222 2111νρν ρ 选好基准面,从已设置的各截面的测压管中读出g p Z ρ+ 值,测出通过管路的流量,即可计 算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 四、实验方法与步骤: 1、熟悉实验设备,分清各测压管与各测压点,毕托管测点的对应关系。 2、打开开关供水,使水箱充水,待水箱溢流后,检查泄水阀关闭时所有测压管水面是否齐平,若不平则进行排气调平(开关几次)。 3、打开阀13,观察测压管水头线和总水头线的变化趋势及位置水头、压强水头之间的相互关系,观察当流量增加或减少时测压管水头的变化情况。 4、调节阀13开度,待流量稳定后,测记各测压管液面读数,同时测记实验流量(与毕托管相连通的是演示用,不必测记读数)。 5、再调节阀13开度1~2次,其中一次阀门开度大到使液面降到标尺最低点为限,按第4步重复测量。 五、实验结果及要求: 1、把有关常数记入表2.1。 2、量测( g p Z ρ+ )并记入表2.2。 3、计算流速水头和总水头。 4、绘制上述结果中最大流量下的总水头线和测压管水头线(轴向尺寸参见图2.2,总水头线和测压管水头线可以绘在图2.2上)。 六、结果分析及讨论: 1、测压管水头线和总水头线的变化趋势有何不同?为什么? 2、流量增加,测压管水头线有何变化?为什么? 3、测点2、3和测点10 、11的测压管读数分别说明了什么问题? 4、试问避免喉管(测点7)处形成真空有哪几种技术措施?分析改变作用水头(如抬高或降低水箱的水位)对喉管压强的影响情况。 5、由毕托管测量显示的总水头线与实测绘制的总水头线一般都有差异,试分析其原因。

伯努利方程-实验报告

伯努利方程仪实验报告 实验人 XXX 合作者 XXX 合作者 XXX XX年X月XX日 一、实验目的 1.观察流体流经能量方程试验管的能量转化情况,对实验中出现的现象进行分析,加深对能量方程的理解; 2.掌握一种测量流体流速的原理; 3.验证静压原理。 二、实验设备 本实验台由压差板、实验管道、水泵、实验桌和计量水箱等组成。 图- 1伯努利方程实验台 1.水箱及潜水泵 2.上水管 3.电源 4.溢流管 5.整流栅 6.溢流板 7.定压水箱 8.实验细管 9. 实验粗管10.测压管11.调节阀12.接水箱14回水管15.实验桌 1

三、 实验前的准备工作: 1.全开溢流水阀门 2.稍开给水阀门 3.将回水管放于计量水箱的回水侧 4.接好各导压胶管 5.检验压差板是否与水平线垂直 6. 启动电泵,使水作冲出性循环,检查各处是否有漏水的现象。 四、 几种实验方法和要求: 1. 验证静压原理: 启动电泵,关闭给水阀,此时能量方程试验管上各个测压管的液柱高度相同,因管内的水不流动没有流动损失,因此静水头的连线为一平行基准线的水平线,即在静止不可压缩均匀重力流体中,任意点单位重量的位势能和压力势能之和(总势能)保持不变,测点的高度和测点位置的前后无关,记下四组数据于表-2的最下方格中。从表-2中可以看出,当水没有流动时,测得的的静水压头基本上都是35.5cm ,验证了同一水平面上静压相等。 2. 测速: 能量方程试验管上的四组测压管的任一组都相当于一个毕托管,可测得管内任一点的流体点速度,本试验已将测压管开口位置在能量方程试验管的轴心,故所测得的动压为轴心处的,即最大速度。 毕托管求点速度公式: gh V B 2= 利用这一公式和求平均流速公式(F Q V /=)计算某一工况(如表中工况2平均速度栏)各测点处的轴心速度和平均流速得到表-1 表- 1 注:该表中数据由表-2中第一行数据计算得到 从表-1中我可以看到在细管测得的速度大,在粗管测得的速度小;在细管中测得的点速度比平均速度小,这可能是比托管的管嘴没有放在玻璃管管中心,或者比托管管嘴没有正对液体流向,使得总压与静压的差值小于实际值;在粗管测得的点速度比平均速度大,可能是因为在粗管,比托管更容易放在玻璃管中心,测得的点速度比平均速度大是正常的,因为如果是层流的话,流速沿半径方向呈抛物线分布。

恒定总流伯努利方程综合性实验

恒定总流伯努利方程综合性实验 一、实验目的和要求 1. 通过定性分析实验,提高对动水力学诸多水力现象的实验分析能力; 2. 通过定量测量实验,进一步掌握有压管流中动水力学的能量转换特性, 验证流体恒定总流的伯努利方程,掌握测压管水头线的实验测量技能与绘制方法; 3. 通过设计性实验,训练理论分析与实验研究相结合的科研能力。 二、实验原理 1.伯努利方程。在实验管路中沿管内水流方向取n 个过水断面,在恒定流动时,可以列出进口断面(1)至另一断面(i )的伯努利方程式(i =2,3…,n ) 22 1111w122i i i i i p p z z h g g g g ααρρ-++=+++v v 取1=2=n …=1,选好基准面,从已设置的各断面的测压管中读出p z g ρ+ 值,测出通过管路的流量,即可计算出断面平均流速v 及2 2g αv ,从而可得到各断 面测管水头和总水头。 2.过流断面性质。均匀流或渐变流断面流体动压强符合静压强的分布规律,即在同一断面上p z C g ρ+ =,但在不同过流断面上的测压管水头不同,1212p p z z g g ρρ+ ≠+;急变流断面上p z C g ρ+≠。 三、实验内容与方法 1.定性分析实验 (1) 验证同一静止液体的测压管水头线是根水平线。

(2) 观察不同流速下,某一断面上水力要素变化规律。 (3) 验证均匀流断面上,动水压强按静水压强规律分布。 (4) 观察沿流程总能坡线的变化规律。 (5) 观察测压管水头线的变化规律。 (6) 利用测压管水头线判断管道沿程压力分布。 2. 定量分析实验——伯努利方程验证与测压管水头线测量分析实验 实验方法与步骤:在恒定流条件下改变流量2次,其中一次阀门开度大到使○19号测管液面接近可读数范围的最低点,待流量稳定后,测记各测压管液面读数,同时测记实验流量(毕托管测点供演示用,不必测记读数)。实验数据处理与分析参考第五部分内容。 四、数据处理及成果要求 1.记录有关信息及实验常数 实验设备名称:伯努利方程实验仪实验台号: 实验者:___________A1组7人_____ 实验日期:_5月10日_ 均匀段d1= 10-2m 喉管段d2=10-2m 扩管段d3=10-2m 水箱液面高程 0= 10-2m 上管道轴线高程 z = 10-2m (基准面选在标尺的零点上) 2.实验数据记录及计算结果表1 管径记录表 测点编号①*② ③ ④⑤ ⑥* ⑦ ⑧* ⑨ ⑩ ○11 ○12* ○13 ○14* ○15 ○16* ○17 ○18* ○19 管径d /10-2m

气—气传热综合实验操作讲义

深对其概念和影响因素的理解,并应用线性回归分析方法,确定关联式 Nu = A * Re * Pr 实验研究,测定其准数关联式 Nu = B * Re 中常数 B 、m 的值和强化比 Nu / Nu 0 ,了解强化 ② 对α i 的实验数据进行线性回归,求关联式 Nu=ARe Pr 中常数 A 、m 的值。 ② 对α i 的实验数据进行线性回归,求关联式 Nu=BRe 中常数 B 、m 的值。 气—气传热综合实验讲义 一、 实验目的: 1. 通过对空气—水蒸气简单套管换热器的实验研究,掌握对流传热系数 α i 的测定方法,加 m 0.4 中常数 A 、m 的值; 2. 通过对管程内部插有螺旋线圈和采用螺旋扁管为内管的空气—水蒸气强化套管换热器的 m 传热的基本理论和基本方式; 3. 了解套管换热器的管内压降 ?p 和 Nu 之间的关系; 二、 实验内容: 实验一: ① 测定 5~6 个不同流速下简单套管换热器的对流传热系数α i 。 m 0.4 ③ 测定 5~6 个不同流速下简单套管换热器的管内压降 ?p 1。 实验二: ① 测定 5~6 个不同流速下强化套管换热器的对流传热系数α i 。 m ③ 测定 5~6 个不同流速下强化套管换热器的管内压降 ?p 2 。并在同一坐标系下绘制普通管 ?p 1 ~Nu 与强化管 ?p 2 ~Nu 的关系曲线。比较实验结果。 ④ 同一流量下,按实验一所得准数关联式求得 Nu 0,计算传热强化比 Nu/Nu 0。 三、 实验原理 实验一 普通套管换热器传热系数及其准数关联式的测定 1. 对流传热系数α i 的测定 对流传热系数α i 可以根据牛顿冷却定律,用实验来测定。

伯努利方程实验 答案

伯努利方程实验 一、实验目的 1、观察流体流经伯努利方程试验管的能量转化情况,对实验中出现的现象进行分析,加深对伯努利方程的理解; 2、掌握一种测量流体流速的原理; 3、验证静压原理。 二、实验仪器 装置如图1所示 图1 伯努利方程仪 1.水箱及潜水泵 2.上水管 3.溢流管 4.整流栅 5.溢流板 6.定压水箱 7.实验细管 8. 实验粗管 9.测压管10. 调节阀11.接水箱12.量杯13.回水管14.实验桌 三、实验步骤 1、关闭调节阀,打开进水阀门,启动水泵,待定压水箱接近放满时,适度打开调节阀,排净管路和测压管中的空气; 2、关闭调节阀,调节进水阀门,使定压水箱溢流板有一定溢流; 3、测出位置水头,并记录位置水头和试验管测试截面的内径; 4、打开调节阀至一定开度,待液流稳定,且检查定压水箱的水位恒定后,测读伯努利方程试验管四个截面上测压管的液柱高度; 5、改变调节阀的开度,在新工况下重复步骤4; 6、关闭调节阀,测读伯努利方程试验管上各个测压管的液柱高度,记下数据。可以观察到各测压管中的水面与定压水箱的水面相平,以此验证静压原理; 7、实验结束,关闭水泵。 四、数据处理 实验数据填入表1

1、计算出伯努利方程试验管各测试截面的相应能量损失水头和压强水头,填写在表中。 速度水头: 2 2g V =总水头-测压管水头 压强水头:P γ =测压管水头-位置水头 能量损失水头: w h=静水头-总水头 图2 伯努利方程试验管水头线图 五、思考题 1、为什么能量损失是沿着流动的方向增大的? 2、为什么在实验过程中要保持定压水箱中有溢流? 3、测压管工作前为什么要排尽管路中的空气?其测量的是绝对压力还是表压力? 1、沿着流动方向,阻力损失有沿程阻力损失和局部阻力损失,故沿着流动方向能量损失是增大的。 2、当流体高度差为溢流板高度时,水会流到水箱中,溢流板作用是保持水箱中水位恒定,从而保持压力恒定,压力恒定,则流体流进伯努利试验管时未稳定流动。 3如果不排尽气泡会臧成读取压力值不准确,测得压力为表压力。

伯努利方程实验报告

不可压缩流体能量方程(伯努利方程)实验 一、实验目的要求: 1、掌握流速、流量、压强等动水力学水力要素的实验量测技术; 2、验证流体定常流的能量方程; 3、通过对动水力学诸多水力现象的实验分析研究,进一步掌握有压管流中动水力学的能量转换特性。 本实验的装置如图所示,图中: 1.自循环供水器; 2.实验台; 3.可控硅无级调速器; 4.溢流板; 5.稳水孔板; 6.恒压水箱; 7.测压计; 8.滑动测量尺; 9.测压管;10.实验管道;11.测压点;12.毕托管;13.实验流量调节阀 三、实验原理: 在实验管路中沿水流方向取n个过水截面。可以列出进口截面(1)至截面(i)的能量方程式 1

2 (i=2,3,.....,,n) W i h g g p Z g g p Z i i i -+++=++1222 2111νρν ρ 选好基准面,从已设置的各截面的测压管中读出 g p Z ρ+ 值,测出通过管路的流量,即可计 算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 四、实验方法与步骤: 1、熟悉实验设备,分清各测压管与各测压点,毕托管测点的对应关系。 2、打开开关供水,使水箱充水,待水箱溢流后,检查泄水阀关闭时所有测压管水面是否齐平,若不平则进行排气调平(开关几次)。 3、打开阀13,观察测压管水头线和总水头线的变化趋势及位置水头、压强水头之间的 相互关系,观察当流量增加或减少时测压管水头的变化情况。 4、调节阀13开度,待流量稳定后,测记各测压管液面读数,同时测记实验流量(与毕托管相连通的是演示用,不必测记读数)。 5、再调节阀13开度1~2次,其中一次阀门开度大到使液面降到标尺最低点为限,按第4步重复测量。 五、实验结果及要求: 1、把有关常数记入表2.1。 2、量测( g p Z ρ+ )并记入表2.2。 3、计算流速水头和总水头。 表2.1 有关常数计录表水箱液面高程0?___cm ,上管道轴线高程z ?_____cm .

【20170424】传热综合实验讲义(学生版)-jidx要点

7.4 传热综合实验(20170424版本) 7.4.1实验目的与要求 1.通过实验,加深对传热理论的理解,提高研究和解决传热实际问题的能力; 2.通过对空气—水蒸气简单套管换热器的实验研究,掌握对流传热系数i α的测定方法,加深对其概念和影响因素的理解。 3.通过对管程内部插有螺旋线圈的空气—水蒸气强化套管换热器的实验研究, 掌握对流传热系数i α的测定方法,加深对其概念和影响因素的理解。 4.学会并应用线性回归分析方法,确定传热管关联式4 .0Pr Re m A Nu =中的常数A 和m 的数值,强化管关联式4.00Pr Re m B Nu =中B 和m 数值。 5.根据计算出的Nu 、Nu 0求出强化比Nu/Nu 0,比较强化传热的效果,加深理解强化传热的基本理论和方式。 6.通过变换列管换热器换热面积实验测取数据计算总传热系数K ,加深对其概念和影响因素的理解。 7.认识套管换热器(光滑、强化)、列管换热器的结构及操作方法,测定并比较不同换热器的性能。 7.4.2实验原理 在工业生产中,间壁换热是经常使用的换热方式。热流体借助于传热壁面,将热量传递给冷热体,以满足生产工艺的要求。影响换热器传热速率的参数有传热面积、平均温度差和传热系数三要素。为了合理选用或设计换热器,应对其性能有充分的了解。除了查阅文献外,换热器性能实测是重要的途径之一。传热系数是度量换热器性能的重要指标。为了提高能量的利用率,提高换热器的传热系数以强化传热过程,在生产实践中是经常遇到的问题。 冷热液体间的传热过程是由热流体对壁面的对流传热、间壁的热传导、以及壁面对冷流体的对流传热这三个传热子过程组成。如7.4-1所示。在忽略了换热 管内外两侧的污垢热阻后,以冷流体一侧传热面积为基准的传热系数计算式为: o o i m i i A A A A K αλδα+ += 11 (7.4-1) 式中:K ——以冷流体一侧传热面积为基准的总传热系数,)/(2℃?m W ; 图7.4-1 间壁式传热过程示意图

流体力学-伯努利方程实验报告

中国石油大学(华东)工程流体力学实验报告 实验日期:2014.12.11成绩: 班级:石工12-09学号:12021409姓名:陈相君教师:李成华 同组者:魏晓彤,刘海飞 实验二、能量方程(伯诺利方程)实验 一、实验目的 1.验证实际流体稳定流的能量方程; 2.通过对诸多动水水力现象的实验分析,理解能量转换特性; 3.掌握流速、流量、压强等水力要素的实验量测技能。 二、实验装置 本实验的装置如图2-1所示。 图2-1 自循环伯诺利方程实验装置 1.自循环供水器; 2.实验台; 3.可控硅无极调速器;4溢流板;5.稳水孔板; 6.恒压水箱; 7.测压机;8滑动测量尺;9.测压管;10.试验管道; 11.测压点;12皮托管;13.试验流量调节阀 说明 本仪器测压管有两种: (1)皮托管测压管(表2-1中标﹡的测压管),用以测读皮托管探头对准点的总水头; (2)普通测压管(表2-1未标﹡者),用以定量量测测压管水头。 实验流量用阀13调节,流量由调节阀13测量。

三、实验原理 在实验管路中沿管内水流方向取n 个过水断面。可以列出进口断面(1)至另一断面(i )的能量方程式(i =2,3,…,n ) i w i i i i h g v p z g p z -++ + =+ + 1222 2 111 1αγυαγ 取12n 1a a a ==???==,选好基准面,从已设置的各断面的测压管中读出 z+p/r 值,测 出透过管路的流量,即可计算出断面平均流速,从而即可得到各断面测压管水头和总水头。 四、实验要求 1.记录有关常数实验装置编号 No._4____ 均匀段1d = 1.40-210m ?;缩管段2d =1.01-210m ?;扩管段3d =2.00-2 10m ?; 水箱液面高程0?= 47.6-2 10m ?;上管道轴线高程z ?=19 -2 10m ? (基准面选在标尺的零点上) 2.量测(p z γ + )并记入表2-2。 注:i i i p h z γ =+ 为测压管水头,单位:-2 10m ,i 为测点编号。 3.计算流速水头和总水头。

(_伯努利方程)实验

实验四 伯努利方程实验 一、实验目的 1.熟悉流动流体中各种能量和压头的概念及其相互转换关系,在此基础上掌握柏努利方程; 2.观察不可压缩流体在管内流动时流速的变化规律,并验证伯努利方程; 3.观察各项压头的变化规律; 4.加深对流体流动过程基本原理的理解。 二、实验原理 对于不可压缩流体,在导管内作定常流动,系统与环境又无功的交换时,若以单位质量流体为衡算基准,则对确定的系统即可列出机械能衡算方程: 若以单位重量流体为衡算基准时,则又可表达为 不可压缩流体的机械能衡算方程,应用于各种具体情况下的作适当的简化,例如: (1) 当流体为理想液体时,于是式(1)和(2)可简化为 (2) 当液体流经的系统为一水平装置的管道时,则(1)和(2)式又可简化为 (3) 当流体处于静止状态时,则(1)和(2)式又可简化为 (1) 222 2221211∑+++=++f h p u gZ p u gZ ρρ(2) 2222221211f H g p g u Z g p g u Z +++=++(3) 22222 21211ρρp u gZ p u gZ ++=++(4) 2222221211g p g u Z g p g u Z ρρ++=++(5) 2222 2121f h p u p u ∑++=+ρ ρ(6) 2222 221211f h g p g u Z g p g u Z ∑+++=++ρρ(7) 2 211ρρ/p gZ /p gZ +=+(8) 2211g /p Z g /p Z ρρ+=+

三、实验装置及流程 1.稳压水槽 2.试验导管 3.出口调节阀 4.静压头测量管 5.冲压头测量管 四、实验步骤 实验前,先缓慢开启进水阀,将水充满稳压溢流水槽,并保持有适量流水流出,使槽内液面平稳不变,最后,设法排尽设备内的气泡。 1.关闭实验导管出口调节阀,观察和测量液体处于静止状态下个测试点(a、b 和c三点)的压强。 2.开启实验导管出口调节阀,观察比较液体在流动情况下测试点的压头变化。3.缓慢开启实验导管的出口条件阀,测量流体在不同流量下的各测试点的静压头、动压头和损失压头。 实验过程中必须注意如下几点: (1)实验前一定要将实验导管和测压管中的空气泡排除干净,否则会影响准确性。 (2)开启进水阀或调节阀时,一定要缓慢,并随时注意设备内的变化。 (3)实验过程中需根据测压管量程范围,确定最小和最大流量。 (4)为观察测压管的液柱高度,可在临实验测定前,向各测压管滴入几滴红墨水。 五、实验记录 1.测量并记录实验基本参数 实验导管内径:d A=16mm;d B=25mm;d C=16mm; 实验系统的总压头:h= 450mmH2O

伯努利方程实验

实验四伯努利方程实验 一、实验目的 1、观察流体流经伯努利方程试验管的能量转化情况,对实验中出现的现象进行分析,加深对伯努利方程的理解; 2、掌握一种测量流体流速的原理; 3、验证静压原理。 二、实验仪器 装置如图1所示 图1 伯努利方程仪 1.水箱及潜水泵 2.上水管 3.溢流管 4.整流栅 5.溢流板 6.定压水箱 7.实验细管 8. 实验粗管 9.测压管10. 调节阀11.接水箱12.量杯13.回水管14.实验桌 三、实验步骤 1、关闭调节阀,打开进水阀门,启动水泵,待定压水箱接近放满时,适度打开调节阀,排净管路和测压管中的空气; 2、关闭调节阀,调节进水阀门,使定压水箱溢流板有一定溢流; 3、测出位置水头,并记录位置水头和试验管测试截面的内径; 4、打开调节阀至一定开度,待液流稳定,且检查定压水箱的水位恒定后,测读伯努利方程试验管四个截面上测压管的液柱高度; 5、改变调节阀的开度,在新工况下重复步骤4; 6、关闭调节阀,测读伯努利方程试验管上各个测压管的液柱高度,记下数据。可以观察到各测压管中的水面与定压水箱的水面相平,以此验证静压原理; 7、实验结束,关闭水泵。 四、数据处理 实验数据填入表1

1、计算出伯努利方程试验管各测试截面的相应能量损失水头和压强水头,填写在表中。 速度水头: 2 2g V =总水头-测压管水头 压强水头:P =测压管水头-位置水头 能量损失水头: w h=静水头-总水头 五、思考题 1、为什么能量损失是沿着流动的方向增大的? 2、为什么在实验过程中要保持定压水箱中有溢流? 3、测压管工作前为什么要排尽管路中的空气?其测量的是绝对压力还是表压力?

伯努利方程实验实验报告

伯努利方程实验 一、实验目的: 1.通过实验,加深对伯努利方程式及能量之间转换的了解。 2.观察水流沿程的能量变化,并了解其几何意义。 3.了解压头损失大小的影响因素。 二、实验原理: 在流体流动过程中,用带小孔的测压管测量管路中流体流动过程中各点的能量变化。当测压管的小孔正对着流体的流动方向时,此时测得的是管路中各点的 动压头和静压头的总和,即 以单位质量流体为衡算基来研究流体流动的能量守恒与转化规律。对于不可压缩流体,在导管内作稳态流动时,则对确定的系统即可列出机械能衡算方程: ∑+++=+++f e h p gZ p u Z ρ ωρ22 2212112u 2g 当测压管的小孔垂直于流体的流动方向时,此时测得的是管路中各点的静压 头的值,即 。 将在同一流量下测得的hA 、hB 值描在 坐标上,可以直观看出流速与管径的关系。 比较不同流量下的hA 值,可以直观看出沿程的能量损失,以及总能量损失与流量、流速的关系。通过hB 的关系曲线,可以得出在突然扩大、突然缩小处动能与静压能的转换。 三.实验装置

四.实验步骤 1.将低位槽灌有一定数量的蒸馏水,关闭离心泵出口上水阀及实验测试导管出口流量调节阀和排气阀、排水阀,打开回水阀和循环水阀而后启动离心泵。 2.逐步开大离心泵出口上水阀当高位槽溢流管有液体溢流后,利用流量调节阀出水的流量。 3.流体稳定后读取并记录各点数据。 4.关小流量调节阀重复步骤。 5.分析讨论流体流过不同位置处的能量转换关系并得出结果。 6.关闭离心泵,实验结束。 五.实验注意事项: 1.测记压头读数时,必须保持水位恒定。 2.注意测压管内无气泡时,方可开始读数。 3.测压管液面有波动时,读数取平均值为宜。 4.阀门开关要缓慢,否则影响实验结果。 六.数据处理

传热综合实验实验说课材料

传热综合实验实验

传热综合实验实验数据记录与处理 1.原始数据记录表格 以下计算以次序1作为计算实例: 空气进口密度52310 4.510 1.2916t t ρ--=-?+=10-5*48.4 2 -4.5*10-3 *48.4+1.2916=1.053 kg/m 3; 空气质量流量m s2 =ρV=1.053*46.286/3600=0.0135kg/s ; 空气流速u=4V/(πd 2)=4*46.286/(3.14*0.02*0.02*3600)=40.95 m/s ; 空气定性温度(t 1+t 2)/2=(48.4+82.7)/2=65.55℃; 换热面积22A d l π== 3.14*0.016*1=0.0502m 2; 空气的比热 C p2=1005 J / (kg ?℃); 对数平均温度 ()()1 2211221ln t T t T t T t T t m -----= ?=33.001℃;

总给热系数 ()m p t A t t c m K ?-= 1222=0.25933 W/(m 2·℃); 2.计算结果列表 密度52310 4.510 1.2916t t ρ--=-?+=10-5*50.252 -4.5*10-3 *50.25+1.2916=1.09kg/m 3 流体粘度6235(210510 1.716910t t μ---=-?+?+?) =6235(210*50.25510*50.25 1.716910----?+?+?) =1.96E-05 Pa ·s ; t=定性温度; 流体导热系数8252108100.0244t t λ--=-?+?+ =825210*50.25810*50.250.0244---?+?+= 0.0284 W/(m ·℃); 雷诺准数μ ρ du =Re =0.016*7.19*1.09/1.96E-05=6397.63; 普兰特数 λ μ 2Pr p c = =(1005*1.96E-05)/ 0.0284=0.694; 理论值 α=4.08.0Pr Re 023.0d λ =0.80.40.0284 0.023*6397.630.6940.016 =39.11 W/(m 2·℃); 努赛尔数λ αd Nu = = 39.11*0.016/0.0284=22.03。

伯努利实验

1 柏努利实验 一、实验目的 l 、研究流体各种形式能量之间关系及转换,加深对能量转化概念的理解; 2、深入了解柏努利方程的意义。 二、实验原理 l 、不可压缩的实验液体在导管中作稳定流动时,其机械能守恒方程式为: ∑+ + + =++ + f e h p u g z W p u g z ρ ρ 2 2 221 2 112 2 (1) 式中:u l 、u 2一分别为液体管道上游的某截面和下游某截面处的流速,m /s ; P 1、P 2一分别为流体在管道上游截面和下游截面处的压强,Pa ; z l 、z 2一分别为流体在管道上游截面和下游截面中心至基准水平的垂直距离,m; ρ一流体密度,Kg /m ; We —液体两截面之间获得的能量,J /Kg; g 一重力加速度,m /s 2 ; ∑h f 一流体两截面之间消耗的能量,J /Kg 。 2、理想流体在管内稳定流动,若无外加能量和损失,则可得到: ρ ρ 2 2 221 2 112 2 p u g z p u g z + + =+ + (2) 表示1kg 理想流体在各截面上所具有的总机械能相等,但各截面上每一种形式的机械能并不一定相等,但各种形式的机械能之和为常数,能量可以相互转换。 3、 流体静止,此时得到静力学方程式: ρ ρ 2 21 1p g z p g z + =+ (3) 所以流体静止状态仅为流动状态一种特殊形式。 三、实验装置及流程 试验前,先关闭试验导管出口调节阀,并将水灌满流水糟,然后开启调节阀,水由进水管送入流水槽,流经水平安装的试验导管后,试验导管排出水和溢流出来的水直接排入下水道。流体流量由试验导管出口阀控制。进水管调节阀控制溢流水槽内的溢流量,以保持槽内液面稳定,保证流动系统在整个试验过程中维持稳定流动。

传热综合实验实验修订稿

传热综合实验实验内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

传热综合实验实验数据记录与处理 1.原始数据记录表格 以下计算以次序1作为计算实例: 空气进口密度52310 4.510 1.2916t t ρ--=-?+=10-5*48.4 2 -4.5*10-3 *48.4+1.2916=1.053 kg/m 3; 空气质量流量m s2 =ρV=1.053*46.286/3600=0.0135kg/s ; 空气流速u=4V/(πd 2)=4*46.286/(3.14*0.02*0.02*3600)=40.95 m/s ; 空气定性温度(t 1+t 2)/2=(48.4+82.7)/2=65.55℃;

换热面积22A d l π== 3.14*0.016*1=0.0502m 2; 空气的比热 C p2=1005 J / (kg ℃); 对数平均温度 ()()1 2211221ln t T t T t T t T t m -----= ?=33.001℃; 总给热系数 ()m p t A t t c m K ?-=1222=0.25933 W/(m 2·℃); 2.计算结果列表 密度52310 4.510 1.2916t t ρ--=-?+=10-5 *50.252 -4.5*10-3 *50.25+1.2916=1.09kg/m 3 流体粘度6235(210510 1.716910t t μ---=-?+?+?) =6235(210*50.25510*50.25 1.716910----?+?+?) =1.96E-05 Pa ·s ; t=定性温度;

伯努利方程实验

化工原理实验(2010年国防工业出版社出版的图书): 本书为化工原理实验教材,内容包括化工实验数据的测量及处理、化工实验常用参数测量技术、化工原理基础实验、演示实验、计算机处理实验数据及实验仿真、化工原理实验常用仪器仪表这六部分。其中,化工原理基础实验包括流体阻力测定实验、流量计标定实验、离心泵性能测定实验、过滤实验、传热实验、精馏实验、气体的吸收与解析实验、干燥实验。演示实验包括伯努利方程实验、雷诺实验、旋风分离器性能演示实验、边界层演示实验和筛板塔流体力学性能演示实验。计算机处理实验数据及实验仿真,包括应用Excel 进行数据和图表处。 目录: 绪论1 第一章化工实验数据误差分析及数据处理3 1. 1实验数据的误差分析3 1. 1. 1测量误差的基本概念3 1. 1. 2间接测量值的误差传递6 1. 1. 3实验数据的有效数字与记数法10 1. 2实验数据处理11 1. 2. 1列表法12 1. 2. 2图示(解)法13 1. 2. 3数学模型法15 第二章化工参数测量及常用仪器仪表29

2. 1温度测量29 2. 1. 1热膨胀式温度计29 2. 1. 2热电偶式温度计33 2. 1. 3热电阻式温度计35 2. 1. 4温度计的校验和标定36 2. 2压力测量37 2. 2. 1液柱压力计38 2. 2. 2弹性压力计40 2. 2. 3压强(或压强差)的电测方法42 2. 2. 4压力计的校验和标定43 2. 3流量测量43 2. 3. 1差压式流量计43 2. 3. 2转子流量计46 2. 3. 3涡轮流量计48 2. 3. 4流量计的校验和标定50 第三章化工原理基础实验51 实验一流体阻力测定实验51 实验二流量计标定实验60 实验三离心泵性能测定实验65 实验四过滤实验71 实验五传热实验77 实验六精馏实验86

相关文档
最新文档