各类有机物的红外吸收峰

各类有机物的红外吸收峰
各类有机物的红外吸收峰

第四节各类有机化合物红外吸收光谱

σ伸缩振动,δ面内弯曲振动,γ面外弯曲振动

一、烷烃

饱和烷烃IR光谱主要由C-H键的骨架振动所引起,而其中以C-H键的伸缩振动最为有用。在确定分子结构时,也常借助于C-H键的变形振动和C-C 键骨架振动吸收。烷烃有下列四种振动吸收。

1、σC-H在2975—2845 cm-1范围,包括甲基、亚甲基和次甲基的对称与不对称伸缩振动

2、δC-H在1460 cm-1和1380 cm-1处有特征吸收,前者归因于甲基及亚甲基C-H的σas,后者归因于甲基C-H的σs。1380 cm-1峰对结构敏感,对于识别甲基很有用。共存基团的电负性对1380 cm-1峰位置有影响,相邻基团电负性愈强,愈移向高波数区,例如,在CH3F中此峰移至1475 cm-1。

异丙基1380 cm-1裂分为两个强度几乎相等的两个峰1385 cm-1、1375 cm-1叔丁基1380 cm-1裂分1395 cm-1、1370cm-1两个峰,后者强度差不多是前者的两倍,在1250 cm-1、1200 cm-1附近出现两个中等强度的骨架振动。

3、σC-C在1250—800 cm-1范围内,因特征性不强,用处不大。

4、γC-H分子中具有—(CH2)n—链节,n大于或等于4时,在722 cm-1有一个弱吸收峰,随着CH2个数的减少,吸收峰向高波数方向位移,由此可推断分子链的长短。

二、烯烃

烯烃中的特征峰由C=C-H键的伸缩振动以及C=C-H键的变形振动所引起。烯烃分子主要有三种特征吸收。

1、σC=C-H 烯烃双键上的C-H键伸缩振动波数在3000 cm-1以上,末端双键氢

C=CH2

在3075—3090 cm-1有强峰最易识别。

2、σC=C 吸收峰的位置在1670—1620 cm-1。随着取代基的不同,σC=C吸收峰的位置有所不同,强度也发生变化。

3、δC=C-H烯烃双键上的C-H键面内弯曲振动在1500—1000 cm-1,对结构不敏感,用途较少;而面外摇摆振动吸收最有用,在1000—700 cm-1范围内,该振动对结构敏感,其吸收峰特征性明显,强度也较大,易于识别,可借以判

断双键取代情况和构型。

RHC=CH 2 995~985cm -1(=CH ,S ) 915~905 cm -1(=CH 2,S )

R 1R 2C=CH 2 895~885 cm -1(S )

(顺)-R 1CH=CHR 2 ~690 cm -1 (反)-R 1CH=CHR 2 980~965 cm -1(S )

R 1R 2C=CHR 3 840~790cm -1 (m )

三、炔烃

在IR 光谱中,炔烃基团很容易识别,它主要有三种特征吸收。

1、σ 该振动吸收非常特征,吸收峰位置在3300—3310 cm -1,中等强度。σN-H 值与σC-H 值相同,但前者为宽峰、后者为尖峰,易于识别。

2、σ 一般 键的伸缩振动吸收都较弱。一元取代炔烃

σ 出现在2140—2100 cm -1,二元取代炔烃在2260—2190 cm -1,当两个

取代基的性质相差太大时,炔化物极性增强,吸收峰的强度增大。当 处于分子的对称中心时,σ 为红外非活性。

3、σ 炔烃变形振动发生在680—610 cm -1。

四、芳烃

芳烃的红外吸收主要为苯环上的C-H 键及环骨架中的C=C 键振动所引

起。芳族化合物主要有三种特征吸收。

1、σAr-H 芳环上C-H 吸收频率在3100~3000 cm -1附近,有较弱的三个峰,特

征性不强,与烯烃的σ

C=C-H 频率相近,但烯烃的吸收峰只有一个。 2、σC=C 芳环的骨架伸缩振动正常情况下有四条谱带,约为1600,1585,1500,1450 cm -1,这是鉴定有无苯环的重要标志之一。

3、δAr-H 芳烃的C-H 变形振动吸收出现在两处。1275—960 cm -1为δAr-H ,由

于吸收较弱,易受干扰,用处较小。另一处是900—650 cm -1的δAr-H 吸收较

强,是识别苯环上取代基位置和数目的极重要的特征峰。取代基越多,δ

Ar-H 频率越高,见表3-10。若在1600—2000 cm -1之间有锯齿壮倍频吸收(C-H 面

外和C=C 面内弯曲振动的倍频或组频吸收),是进一步确定取代苯的重要旁

证。

苯 670cm -1(S ) 单取代苯 770~730 cm -1(VS ),710~690 cm -1(S )

1,2-二取代苯 770~735 cm -1(VS )

C C H C C C C RC CH C C C C C C H

1,3-二取代苯810~750 cm-1(VS),725~680 cm-1(m~S)

1,4-二取代苯860~800 cm-1(VS)

五、卤化物

随着卤素原子的增加,σC-X降低。如C-F(1100~1000 cm-1);C-Cl(750~700 cm-1);C-Br(600~500 cm-1);C-I(500~200 cm-1)。此外,C-X吸收峰的频率容易受到邻近基团的影响,吸收峰位置变化较大,尤其是含氟、含氯的化合物变化更大,而且用溶液法或液膜法测定时,常出现不同构象引起的几个伸缩吸收带。因此IR光谱对含卤素有机化合物的鉴定受到一定限制。

六、醇和酚

醇和酚类化合物有相同的羟基,其特征吸收是O-H和C-O键的振动频率。1、σO-H一般在3670~3200 cm-1区域。游离羟基吸收出现在3640~3610 cm-1,峰形尖锐,无干扰,极易识别(溶剂中微量游离水吸收位于3710 cm-1)。OH 是个强极性基团,因此羟基化合物的缔合现象非常显著,羟基形成氢键的缔合峰一般出现在3550~3200 cm-1。

1,2-环戊二醇顺式异构体P47

0.005mol/L (CCl4) 3633 cm-1(游离),3572 cm-1(分子内氢键)。

0.04 mol/L (CCl4) 3633 cm-1(游离),3572 cm-1(分子内氢键)~3500cm-1(分子间氢键)。

2、σC-O和δO-H C-O键伸缩振动和O-H面内弯曲振动在1410—1100 cm-1处有强吸收,当无其它基团干扰时,可利用σC-O的频率来了解羟基的碳链取代情况(伯醇在1050cm-1,仲醇在1125cm-1,叔醇在1200cm-1,酚在1250cm-1)。

七、醚和其它化合物

醚的特征吸收带是C-O-C不对称伸缩振动,出现在1150~1060cm-1处,强度大,C-C骨架振动吸收也出现在此区域,但强度弱,易于识别。醇、酸、酯、内酯的σC-O吸收在此区域,故很难归属。

八、醛和酮

醛和酮的共同特点是分子结构中都含有(C=O),σC=O在1750~1680cm-1范围内,吸收强度很大,这是鉴别羰基的最明显的依据。临近基团的性质不

同,吸收峰的位置也有所不同。羰基化合物存在下列共振结构:

A B

C=O 键有着双键性 强的A 结构和单键性强的B 结构两种结构。共轭效应将使σC=O 吸收峰向低波数一端移动,

吸电子的诱导效应使σC=O 的吸收峰向高波数方向移动。α,β不饱和的羰基化合物,由于不饱和键与C=O 的共轭,因此C=O 键的吸收峰向低波数移动

σC=O 1685~1665cm -1 1745~1725cm -1

苯乙酮 对氨基苯乙酮 对硝基苯乙酮

σ

C=O 1691cm -1 1677cm -1 1700cm -1 σ 一般在

2700~2900cm -1 区域内,通常在~2820 cm -1、~2720 cm -1附近各有一个中等强度的吸收峰,可以用来区别醛和酮。

九、羧酸

1、σO-H 游离的O-H 在~3550 cm -1,缔合的O-H 在3300~2500 cm -1,峰形宽而散,强度很大。

2、σC=O 游离的C=O 一般在~1760 cm -1附近,吸收强度比酮羰基的吸收强度大,但由于羧酸分子中的双分子缔合,使得C=O 的吸收峰向低波数方向移动,一般在1725~1700 cm -1,如果发生共轭,则C=O 的吸收峰移到1690~1680 cm -1。

3、σ

C-O 一般在1440~1395 cm -1,吸收强度较弱。 4、δO-H 一般在1250 cm -1附近,是一强吸收峰,有时会和σC-O 重合。

十、酯和内酯

1、σC=O 1750~1735 cm -1处出现(饱和酯σC=O 位于1740cm -1处),受相邻基团的影响,吸收峰的位置会发生变化。

2、σC-O 一般有两个吸收峰,1300~1150 cm -1,1140~1030 cm -1

十一、酰卤

σC=O 由于卤素的吸电子作用,使C=O 双键性增强,从而出现在较高波O X Y C O X Y +-

RCH=CHCOR'RCHClCOR'C O H

数处,一般在~1800cm-1处,如果有乙烯基或苯环与C=O共轭,,会使σC=O 变小,一般在1780~1740cm-1处。

十二、酸酐

1、σC=O由于羰基的振动偶合,导致σC=O有两个吸收,分别处在1860~1800 cm-1和1800~1750 cm-1区域,两个峰相距60 cm-1。

2、σC-O为一强吸收峰,开链酸酐的σC-O在1175~1045 cm-1处,环状酸酐1310~1210 cm-1处。

十三、酰胺

1、σC=O酰胺的第ⅠⅡⅢ谱带,由于氨基的影响,使得σC=O向低波数位移,伯酰胺1690~1650 cm-1,仲酰胺1680~1655 cm-1,叔酰胺1670~1630 cm-1。

2、σN-H一般位于3500~3100 cm-1,伯酰胺游离位于~3520 cm-1和~3400 cm-1,形成氢键而缔合的位于~3350 cm-1和~3180 cm-1,均呈双峰;仲酰胺游离位于~3440 cm-1,形成氢键而缔合的位于~3100 cm-1,均呈单峰;叔酰胺无此吸收峰。

3、δN-H酰胺的第Ⅱ谱带,伯酰胺δN-H位于1640~1600 cm-1;仲酰胺1500~1530 cm-1,强度大,非常特征;叔酰胺无此吸收峰。

4、σC-N酰胺的第Ⅲ谱带,伯酰胺1420~1400 cm-1,仲酰胺1300~1260 cm-1,叔酰胺无此吸收峰。

十四、胺primary and secondary tertiary amines 1、σN-H游离位于3500~3300 cm-1处,缔合的位于3500~3100 cm-1处。含有氨基的化合物无论是游离的氨基或缔合的氨基,其峰强都比缔合的OH峰弱,且谱带稍尖锐一些,由于氨基形成的氢键没有羟基的氢键强,因此当氨基缔合时,吸收峰的位置的变化不如OH那样显著,引起向低波数方向位移一般不大于100cm-1。伯胺3500~3300 cm-1有两个中等强度的吸收峰(对称与不对称的伸缩振动吸收),仲胺在此区域只有一个吸收峰,叔胺在此区域内无吸收。

2、σC-N脂肪胺位于1230~1030 cm-1处,芳香胺位于1380~1250 cm-1处。

3、δN-H位于1650~1500 cm-1处,伯胺的δN-H吸收强度中等,仲胺的吸收强度较弱。

4、γN-H位于900~650 cm-1处,峰形较宽,强度中等(只有伯胺有此吸收峰)。

(完整版)红外各基团特征峰对照表

红外各基团特征峰对照表 一、红外吸收光谱中的重要区段: 1) O-H、N-H伸缩振动区(3750~3000 cm-1) 2) 不饱和碳上的C-H伸缩振动区(3300~3000 cm-1) 不饱和碳(三键和双键、苯环)上的C-H的伸缩振动在3300~3000 cm-1区域中出现不同的吸收峰。 3) C-H伸缩振动区(3000~2700 cm-1) 饱和碳上的C-H伸缩振动(包括醛基上的C-H) 4) 叁键和累积双键区(2400~2100 cm-1) 波数在2400~2100 cm-1区域内的谱带较少。 5) 羰基的伸缩振动区(1900~1650 cm-1) 羰基的吸收最常见出现的区域为1755~1670 cm-1。由于羰基的电偶极矩较大,一般吸收都很强烈,常成为IR光谱中的第一强峰。 6) 双键伸缩振动区(1690~1500 cm-1) 该区主要包括C=C,C=N,N=N,N=O等的伸缩振动以及苯环的骨架振动(σC=C)。 7) X-H面内弯曲振动及X-Y伸缩振动区(1475~1000 cm-1) 这个区域主要包括C-H面内弯曲振动, C-O、C-X(卤素)等伸缩振动, 以及C-C单键骨架振动等。该区域是指纹区的一部分。 8) C-H面外弯曲振动区(1000~650 cm-1) 烯烃、芳烃的C-H面外弯曲振动(σC-H)在1000~650 cm-1区。苯环邻二取代:770~735cm-1;苯环间二取代:710~690、810~750cm-1;苯环对二取代:830~810cm-1 具体对照表如下所示: (其中:VS:很强;W:弱;S:强;VW:很弱;m:中等;w:宽) 1、O-H、

主要基团的红外特征吸收峰

主要基团的红外特征吸收峰 基团振动类型波数(cm-1)波长(μm)强 度 备注 一、烷烃类CH伸 CH伸(反称) CH伸(对称) CH弯(面) C-C伸3000~2843 2972~2880 2882~2843 1490~1350 1250~1140 3.33~ 3.52 3.37~ 3.47 3.49~ 3.52 6.71~ 7.41 8.00~ 8.77 中、 强 中、 强 中、 强 分为反称与对 称 二、烯烃类CH伸 C=C伸 CH弯(面) CH弯(面外) 单取代 双取代 顺式 反式3100~3000 1695~1630 1430~1290 1010~650 995~985 910~905 730~650 980~965 3.23~ 3.33 5.90~ 6.13 7.00~ 7.75 9.90~ 15.4 10.05~10.15 10.99~11.05 13.70~15.38 10.20~10.36 中、 弱 中 强 强 强 强 强 C=C=C为 2000~1925 cm-1 三、炔烃类CH伸 C≡C 伸 CH弯(面) CH弯(面外) ~3300 2270~2100 1260~1245 645~615 ~3.03 4.41~ 4.76 7.94~ 8.03 15.50~16.25 中 中 强 四、取代苯类CH伸 泛频峰 骨架振动( C C= ν) CH弯(面) CH弯(面外)3100~3000 2000~1667 1600±20 1500±25 1580±10 1450±20 1250~1000 910~665 3.23~ 3.33 5.00~ 6.00 6.25± 0.08 6.67± 0.10 6.33± 0.04 变 弱 强 三、四个峰,特 征 确定取代位置

各类有机物的红外吸收峰

第四节各类有机化合物红外吸收光谱 σ伸缩振动,δ面内弯曲振动,γ面外弯曲振动 一、烷烃 饱和烷烃IR光谱主要由C-H键的骨架振动所引起,而其中以C-H键的伸缩振动最为有用。在确定分子结构时,也常借助于C-H键的变形振动和C-C 键骨架振动吸收。烷烃有下列四种振动吸收。 1、σC-H在2975—2845 cm-1范围,包括甲基、亚甲基和次甲基的对称与不对称伸缩振动 2、δC-H在1460 cm-1和1380 cm-1处有特征吸收,前者归因于甲基及亚甲基C-H的σas,后者归因于甲基C-H的σs。1380 cm-1峰对结构敏感,对于识别甲基很有用。共存基团的电负性对1380 cm-1峰位置有影响,相邻基团电负性愈强,愈移向高波数区,例如,在CH3F中此峰移至1475 cm-1。 异丙基1380 cm-1裂分为两个强度几乎相等的两个峰1385 cm-1、1375 cm-1叔丁基1380 cm-1裂分1395 cm-1、1370cm-1两个峰,后者强度差不多是前者的两倍,在1250 cm-1、1200 cm-1附近出现两个中等强度的骨架振动。 3、σC-C在1250—800 cm-1范围内,因特征性不强,用处不大。 4、γC-H分子中具有—(CH2)n—链节,n大于或等于4时,在722 cm-1有一个弱吸收峰,随着CH2个数的减少,吸收峰向高波数方向位移,由此可推断分子链的长短。 二、烯烃 烯烃中的特征峰由C=C-H键的伸缩振动以及C=C-H键的变形振动所引起。烯烃分子主要有三种特征吸收。 1、σC=C-H 烯烃双键上的C-H键伸缩振动波数在3000 cm-1以上,末端双键氢 C=CH2 在3075—3090 cm-1有强峰最易识别。 2、σC=C 吸收峰的位置在1670—1620 cm-1。随着取代基的不同,σC=C吸收峰的位置有所不同,强度也发生变化。 3、δC=C-H烯烃双键上的C-H键面内弯曲振动在1500—1000 cm-1,对结构不敏感,用途较少;而面外摇摆振动吸收最有用,在1000—700 cm-1范围内,该振动对结构敏感,其吸收峰特征性明显,强度也较大,易于识别,可借以判

红外谱图峰位分析方法

红外谱图分析(一) 基团频率和特征吸收峰 物质的红外光谱,是其分子结构的反映,谱图中的吸收峰,与分子中各基团的振动形式相对应。多原子分子的红外光谱与其结构的关系,一般是通过实验手段得到的。这就是通过比较大量已知化合物的红外光谱,从中总结出各种基团的吸收规律来。实验表明,组成分子的各种基团,如O—H、N—H、C—H、C═C、C≡C、C═O等,都有自己特定的红外吸收区域,分子其它部分对其吸收位置影响较小。通常把这种能代表基团存在、并有较高强度的吸收谱带称为基团频率,其所在的位置一般又称为特征吸收峰。 根据化学键的性质,结合波数与力常数、折合质量之间的关系,可将红外4 000~400 cm-1划分为四个区:4 000~2 500 cm-1 氢键区 2 500~2 000 cm-1 产生吸收基团有O—H、C—H、N—H; 叁键区 2 000~1 500 cm-1 C≡C、C≡N、C═C═C 双键区 1 500~1 000 cm-1 C═C、C═O等 单键区 按吸收的特征,又可划分为官能团区和指纹区。 一、官能团区和指纹区 红外光谱的整个围可分成4 000~1 300 cm-1与1 300~600 cm-1两个区域。 4 000~1 300 cm-1区域的峰是由伸缩振动产生的吸收带。由于基团的特征吸收峰一般位于高频围,并且在 该区域,吸收峰比较稀疏,因此,它是基团鉴定工作最有价值的区域,称为官能团区。 在1 300~600 cm-1区域中,除单键的伸缩振动外,还有因变形振动产生的复杂光谱。当分子结构稍有不同时,该区的吸收就有细微的差异。这种情况就像每个人都有不同的指纹一样,因而称为指纹区。指纹区 对于区别结构类似的化合物很有帮助。 指纹区可分为两个波段 (1)1 300~900 cm-1这一区域包括C—O,C—N,C—F,C—P,C—S,P—O,Si—O等键的伸缩振 动和C═S,S═O,P═O等双键的伸缩振动吸收。

红外光谱特征吸收峰

物质的红外光谱是其分子结构的反映,谱图中的吸收峰与分子中各基团的振动形式相对应。多原子分子的红外光谱与其结构的关系,一般是通过实验手段得到。这就是通过比较大量已知化合物的红外光谱,从中总结出各种基团的吸收规律。实验表明,组成分子的各种基团,如O-H、N-H、C-H、C=C、C=OH和C C 等,都有自己的特定的红外吸收区域,分子的其它部分对其吸收位置影响较小。通常把这种能代表及存在、并有较高强度的吸收谱带称为基团频率,其所在的位置一般又称为特征吸收峰。 一、基团频率区和指纹区 (一)基团频率区 中红外光谱区可分成4000 cm-1 ~1300 cm-1和1800cm-1 (1300 cm-1 )~ 600 cm-1两个区域。最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1 之 间,这一区域称为基团频率区、官能团区或特征区。区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。在1800 cm-1 (1300 cm-1 )~600 cm-1 区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。这种振动与整个分子的结构有关。当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。这种情况就像人的指纹一样,因此称为指纹区。指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。基团频率区可分为三个区域: (1)4000 ~2500 cm-1 X-H伸缩振动区,X可以是O、H、C或S等原子。 O-H基的伸缩振动出现在3650 ~3200 cm-1 范围内,它可以作为判断有无醇类、酚类和有机酸类的重要依据。当醇和酚溶于非极性溶剂(如CCl4),浓度于0.01mol. dm-3时,在3650 ~3580 cm-1处出现游离O-H基的伸缩振动吸收,峰形尖锐,且没有其它吸收峰干扰,易于识别。当试样浓度增加时,羟基化合物产生缔合现象,O-H基的伸缩振动吸收峰向低波数方向位移,在3400 ~3200 cm-1 出现一个宽而强的吸收峰。胺和酰胺的N-H伸缩振动也出现在3500~3100 cm-1 因此,可能会对O-H伸缩振动有干扰C-H的伸缩振动可分为饱和和不饱和的两种。饱和的C-H伸缩振动出现在3000 cm-1以下,约3000~2800 cm-1 ,取代基对它们影响很小。如-CH3 基的伸缩吸收出现在2960 cm-1和2876 cm-1附近;-

仪器分析实验有机化合物的红外光谱分析解读

仪器分析实验有机化合物的红外光谱分析 2015年4月21日 有机化合物的红外光谱分析 开课实验室:环境资源楼312 【实验目的】 1、初步掌握两种基本样品制备技术及傅里叶变换光谱仪器的简单操作; 2、通过谱图解析及网上标准谱图的检索,了解由红外光谱鉴定未知物的一般过程; 3、掌握有机化合物红外光谱测定的制样方法,回顾基础有机化学光谱的相关知识。 【基本原理】 ? 原理概述:物质分子中的各种不同基团,在有选择地吸收不同频率的红外辐射后,发生振动能级之间的跃迁,形成各自独特的红外吸收光谱。据此,可对物质进行定性和定量分析。特别是对化合物结构的鉴定,应用更为广泛。 ? 红外吸收法: 类型:吸收光谱法; 原理:电子的跃迁:电子由于受到光、热、电等的激发,从一个能级转移到另一个能级的现象。这是因为分 子中的电子总是处在某一种运动状态中,每一种状态都具有一定的能量,属于一定的能级。当这些电子有选择地吸收了不同频率的红外辐射的能量,发生振动能级之间的跃迁,形成各自独特的红外吸收光谱。据此,可对化合物进行定性和定量分析; 条件:分子具有偶极矩。 【仪器与试剂】 1、仪器: 傅里叶变换红外光谱仪(德国Bruker公司,TENSOR 27型; 美国Thermo Fisher 公司, Nicolet 6700型);压片机; 玛瑙研钵; 红外灯。 2、试剂:NaCl窗片、KBr晶体,待分析试样液体及固体。 【实验步骤】 1、样品制备 (1)固体样品:KBr压片法 在玛瑙研钵将KBr晶体充分研磨后加入其量5%左右的待测固体样品,混合研磨直至均匀。在一个具有抛光面的金属模具上放一个圆形纸环,用刮勺将研磨好的

红外光谱特征峰解析常识

红外光谱特征峰解析常识 编写李炎平 红外特征光谱峰存在一定特征规律,正确的记录了化学结 构和特征,识记特征波谱峰有助于我们解析红外光谱。下面我将一些特征波谱峰简要罗列如下,如有疏漏之处还望批评指出。 ●羟基:特征峰范围(3650~3200)c mˉ1,一般在 3600cmˉ1处有较强峰。 ●羧基:特征峰范围(3500~2500)cmˉ1,一般峰波 数小于羟基。 ●饱和烷烃—C—H :特征峰小于3000cmˉ1,一般在 (2950~2850)cm处,如有峰在(1390~1360)cmˉ1 处,则说明有— CH,如有峰在1450cmˉ1处,则说 3 明有— CH—, 2 ●不抱和烷烃:特征峰大于3000cmˉ1,对于烯烃 = C- _在3050 cmˉ1处和(1600~1330)cmˉ1 H C 处有峰,对于炔烃H ≡ -在(3360~3250)cmˉ1 C- C 处有峰,在(700~600)cmˉ1处有枪宽峰。 ●对于C C=:在(1700~1645)cmˉ1处有特征峰,不过不太明显,只具有指示作用。 ●对于- COC ,在(1900~1600)cm处有强峰。 -COOC CHO, - - - ●指纹区:- C N O C C , -C ,等,在 C, O C O - - - - - - - - - - - -

(1330~900)cm ˉ1处有中强峰, ● 对于)(2CH n :在(900~400)cm ˉ1处有中强或弱峰。 ● 对于醛类:特征范围为羰基峰+(2900~2700)cm ˉ1。 ● 对于----C O C :在(1300~900)cm ˉ1处有两强峰(可能有一个弱峰)。 ● 特征区范围(4400~1330)cm ˉ1,指纹区范围(1330~400)cm ˉ1。 ● 通常将中红外光谱区域划分为四个部分。 1)4000~2500cm-1,为含氢基团的伸缩振动区,通常称为“氢键区”。 2)2500~2000cm-1叁键和累积双键区。 3)2000~1500cm-1,双键区。 4)小于1500cm-1,单键区。

红外吸收光谱特征峰特别整理版.doc

表典型有机化合物的重要基团频率(/cm-1 ) 化合物基团X-H 伸缩振动区叁键区双键伸缩振动区烷烃-CH3 asCH:2962±10(s) sCH:2872±10(s) -CH2- asCH:2926±10(s) sCH:2853±10(s) CH:2890 ± 10(s) 烯烃 CH:3040~3010(m)C=C:1695~1540(m) CH:3040 ~ 3010(m) :1695 ~ 1540(w) C=C 炔烃-C≡C-H :2270~ 2100(w) CH: ≈ 3300(m) C≡C 芳烃泛频 :2000 ~ 1667(w) CH:3100~3000(变) :1650 ~ 1430(m) C=C 2~4 个峰 醇类R-OH OH:3700~3200(变) 部分单键振动和指纹区asCH:1450±10(m) sCH:1375±5(s) CH:1465±20(m) CH:~ 1340(w) CH:1310~1295(m) CH:770 ~ 665(s) CH:970 ~ 960(s) CH:1250~1000(w) CH:910~665 单取代: 770 ~ 730(vs) ≈700(s) 邻双取代 :770 ~ 735(vs) 间双取代 :810 ~ 750(vs) 725 ~ 680(m) 900 ~ 860(m) ~对双取代 :860 ~ 790(vs) OH:1410~1260(w) CO:1250~1000(s) OH:750 ~ 650(s)

酚类Ar-OH OH: 3705 ~ 3125(s) 脂肪醚R-O-R' 酮 醛 CH:≈2820, ≈2720(w) 双峰 羧酸 OH: 3400 ~ 2500(m) 酸酐 酯 泛频C=O:≈3450(w) 胺-NH2 NH2:3500~3300(m) 双峰 -NH NH:3500~3300(m) 酰胺 asNH: ≈ 3350(s) sNH: ≈ 3180(s) NH:≈3270(s) 酰卤 :1650 ~ 1430(m) OH:1390 ~ 1315(m) C=C CO:1335~1165(s) CO:1230~1010(s) C=O:≈1715(vs) C=O:≈1725(vs) C=O:1740~1690(m) OH:1450~1410(w) CO:1266~1205(m) C=O:1850~1880(s) CO:1170~1050(s) C=O:1780~1740(s) C=O:1770~1720(s) COC:1300~1000(s) NH:1650~1590(s,m) CN(脂肪):1220 ~ 1020(m,w) CN(芳香 ):1340 ~ 1250(s) NH:1650~1550(vw) CN(脂肪):1220 ~ 1020(m,w) CN(芳香 ):1350 ~ 1280(s) C=O:1680~1650(s) :1420~ 1400(m) CN NH:1650 ~ 1250(s) NH2:750 ~ 600(m) C=O:1680~1630(s) + :1310~1200(m) CN NH NH+CN:1750~ 1515(m) C=O:1670~1630 C=O:1810~1790(s)

最新总结-红外光谱频率与官能团特征吸收峰分析

红外波谱 分子被激发后,分子中各个原子或基团(化学键)都会产生特征的振动,从而在特点的位置会出现吸收。相同类型的化学键的振动都是非常接近的,总是在某一范围内出现。 整个红外谱图可以分为两个区,4000~1350区是由伸缩振动所产生的吸收带,光谱比较简单但具有强烈的特征性,1350~650处指纹区。

通常,4000~2500 处高波数端,有与折合质量小的氢原子相结合的官能团O-H, N-H, C-H, S-H 键的伸缩振动吸收带,在2500-1900 波数范围内常常出现力常数大的三件、累积双键如:- y, - gN, -C=C=C-,-C=C=O,-N=C=O等的伸缩振动吸收带。在1900以下的波数端有 -C=C-, -C=O, -C=N-, -C=O 等的伸缩振动以及芳环的骨架振动。 1350~650指纹区处,有C-O, C-X的伸缩振动以及C-C的骨架振动,还有力常数较小的弯曲振动产生的吸收峰, 因此光谱非常复杂。该区域各峰的吸收位置受整体分子结构的影响较大, 分子结构稍有不同, 吸收也会有细微的差别, 所以指纹区对于用已知物来鉴别未知物十分重要。

有机化学有机化合物红外吸收光谱 C伸缩振动,S面内弯曲振动,丫面外弯曲振动 一、烷烃 饱和烷烃IR光谱主要由C-H键的骨架振动所引起,而其中以C-H键的伸缩振动最为有用。在确定分子结构时,也常借助于C-H键的变形振动和C-C键骨架振动吸收。烷烃有下列四种振动吸收。 1、(T C-H在2975—2845 cm-1范围,包括甲基、亚甲基和次甲基的对称与不对称 伸缩振动 2、S C-H在1460 cm-1和1380 cm-1处有特征吸收,前者归因于甲基及亚甲基C-H 的(T as,后者归因于甲基C-H的(T s。1380 cm-1峰对结构敏感,对于识别甲基很有用。共存基团的电负性对1380 cm-1峰位置有影响,相邻基团电负性愈强,愈移向高波数区,例如,在CH3F中此峰移至1475 cm-1。 异丙基1380 cm-1裂分为两个强度几乎相等的两个峰1385 cm-1、1375 cm-1 1 1 1 叔丁基1380 cm 裂分1395 cm 、1370cm两个峰,后者强度差不多是前者 的两倍,在1250 cm-1、1200 cm-1附近出现两个中等强度的骨架振动。 3、(T C-C在1250—800 cm-1范围内,因特征性不强,用处不大。 4、丫C-H分子中具有一(CH2)n—链节,n大于或等于4时,在722 cm-1有一个弱吸收峰,随着CH2个数的减少,吸收峰向高波数方向位移,由此可推断分子链的长短。 二、烯烃 烯烃中的特征峰由C=C-H键的伸缩振动以及C=C-H键的变形振动所引起。烯烃分子主要有三种特征吸收。 1、(T C=C-H烯烃双键上的C-H键伸缩振动波数在3000 cm-1以上,末端双键氢 \ 1 zC=CH 2 在3075—3090 cm 有强峰最易识别。 2、(T C=C吸收峰的位置在1670—1620 cm-1。随着取代基的不同,c C=C吸收峰的位置有所不同,强度也发生变化。 3、S C=C-H烯烃双键上的C-H键面内弯曲振动在1500—1000 cm-1,对结构不敏感,用途较少;而面外摇摆振动吸收最有用,在1000- 700 cm-1范围内,该振动对结构敏感,其吸收

有机化合物的红外光谱分析

有机化合物的红外光谱分析 系别:化学物理系 学号:PB09206108 姓名:倪宇飞

有机化合物的红外光谱分析 一、实验目的 (1)初步掌握两种基本样品制备技术及傅立叶变换红外光谱仪的简单操作。 (2)通过谱图解析及标准谱图的检索,了解由红外光谱鉴定未知物的一般过程。 二、实验原理 (1)原理概述 物质分子中的各种不同基团,在有选择的吸收不同频率的红外辐射后,发生振动能级之间的跃迁,形成各自独特的红外吸收光谱。据此,可对物质进行定性和定量的分析。特别是对化合物结构的分析,应用更为广泛。 (2)对试样的要求 A.试样应该是单一组分的纯物质,纯度应大于98%,便于与纯化合物的标准进行 对照,多组分试样应尽量在测试前预先用分馏、萃取、重结晶、区域熔融和色谱法进行分离提纯; B.试样中不应含有游离水。本身水有红外吸收,会严重干扰样品的谱图,而且会 侵蚀吸收池的盐窗,游离水的吸收为止约为3400cm-1以及1630cm-1; C.试样的浓度和测试厚度应该选择适当,以使光谱图中的大多数吸收峰透射比处 于10%~80%范围内。 (3)制样方法 本次实验中的提供了固体和液体两种未知待测样品,因此有针对性的采用了两种制样方法 A.液膜法 对于沸点较高的的液体,直接将样品滴在两块NaCl盐窗之间,形成没有气泡的毛细厚度液膜,之后用夹具固定,放入仪器的光路中进行测试。本实验中由于液体的流动性较差,故只用一片盐窗即可; B.KBr压片法,将1~2mg固体试样与200mg纯KBr研细混合,研磨至粒径小 于2微米,在油压机上压成透明薄片即可用于测定。 (4)仪器工作原理 傅立叶变换红外光谱仪主要由光源(硅碳棒、高压汞灯)、Michelson干涉仪、检测器、计算机和记录仪组成

红外光谱吸收峰

红外光谱吸收峰 物质的红外光谱是其分子结构的反映,谱图中的吸收峰与分子中各基团的振动形式相对应。多原子分子的红外光谱与其结构的关系,一般是通过实验手段得到。这就是通过比较大量已知化合物的红外光谱,从中总结出各种基团的吸收规律。实验表明,组成分子的各种基团,如O-H、N-H、C-H、C=C、C=OH和C C等,都有自己的特定的红外吸收区域,分子的其它部分对其吸收位置影响较小。通常把这种能代表及存在、并有较高强度的吸收谱带称为基团频率,其所在的位置一般又称为特征吸收峰。≡物质的红外光谱是其分子结构的反映,谱图中的吸收峰与分子中各基团的振动形式相对应。多原子分子的红外光谱与其结构的关系,一般是通过实验手段得到。这就是通过比较大量已知化合物的红外光谱,从中总结出各种基团的吸收规律。实验表明,组成分子的各种基团,如O-H、N-H、C-H、C=C、C=OH和C 一、基团频率区和指纹区 (一)基团频率区 中红外光谱区可分成4000 cm-1 ~1300 cm-1和1800cm-1 (1300 cm-1 )~ 600 cm-1两个区域。最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1 之 间,这一区域称为基团频率区、官能团区或特征区。区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。在1800 cm-1 (1300 cm-1 )~600 cm-1 区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。这种振动与整个分子的结构有关。当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。这种情况就像人的指纹一样,因此称为指纹区。指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。基团频率区可分为三个区域: (1)4000 ~2500 cm-1 X-H伸缩振动区,X可以是O、H、C或S等原子。 O-H基的伸缩振动出现在3650 ~3200 cm-1 范围内,它可以作为判断有无醇类、酚类和有机酸类的重要依据。当醇和酚溶于非极性溶剂(如CCl4),浓度于0.01mol. dm-3时,在3650 ~3580 cm-1处出现游离O-H基的伸缩振动吸收,峰形尖锐,且没有其它吸收峰干扰,易于识别。当试样浓度增加时,羟基化合物产生缔合现象,O-H基的伸缩振动吸收峰向低波数方向位移,在3400 ~3200 cm-1 出现一个宽而强的吸收峰。胺和酰胺的N-H伸缩振动也出现在3500~3100 cm-1 CH(不是炔烃)基的吸收基出现在2890 cm-1 附近,但强度很弱。不饱和的C-H伸缩振动出现在3000 cm-1以上,以此来判别化合物中是否含有不饱和的C-H键。苯环的C-H键伸缩振动出现在3030 cm-1附近,它的特征是强度比饱和的C-H浆稍弱,但谱带比较尖锐。≡因此,可能会对O-H伸缩振动有干扰C-H的伸缩振动可分为饱和和不饱和的两种。饱和的C-H伸缩振动出现在3000 cm-1以下,约3000~2800 cm-1,取代基对它们影响很小。如-CH3 基的伸缩吸收出现在2960 cm-1和2876 cm-1附近;- CH2基的吸收在2930 cm-1 和2850 cm-1附近; 不饱和的双键=C-H的吸收出现在3010~3040 cm-1范围内,末端= CH2的吸收出 现在3085 cm-1附近。 CH上的C-H伸缩振动出现在更高的区域(3300 cm-1 )附近。≡叁键 (2)2500~1900 为叁键和累积双键区。 N基的吸收越弱,甚至观察不到。≡N基越近,-C ≡N基吸收比较强而尖锐。若分子中含有O原子,且O原子离-C ≡N基的缩振动在非共轭的情况下出现在2240~2260 cm-1附近。当与不饱和键或芳香核共轭时,该峰位移到2220~2230 cm-1附近。若分子中含有C、H、N原子,-C ≡C-R,因为分子是对称,则为非红外活性。-C ≡C-R出现在2190~2260 cm-1附近。如果是R-C ≡-C 'CH的伸缩振动出现在 2100~2140 cm-1附近,R≡C-R两种类型,R-C≡-C 'CH和R≡N等等叁键的伸缩振动,以及-C =C=C、-C=C=O等累积双键的不对称性伸缩振动。对于炔烃类化合物,可以分成R-C≡C、-C≡主要包括-C

红外吸收光谱峰位的影响因素

光谱峰位的影响因素 分子内基团的红外吸收会受到邻近基团及整个分子其他部分的影响,也会因测定条件及样品的物理状态而改变。所以同一基团的特征吸收会在一定范围内波动。影响因素有: 1. 化学键的强度 一般地说化学键越强,则力常数K 越大,红外吸收频率 ν 越大。如碳碳三键,双键和单键的伸缩振动吸收频率随键强度的减弱而减小。 伸缩振动频率 (cm -1) 2150 1715 1200 2. 诱导效应 诱导效应可以改变吸收频率。如羰基连有拉电子基团可增强碳氧双键,加大C=O 键的力常数K ,使C=O 吸收向高频方向移动。 C=O 伸缩振动频率(cm -1 ) 1715 1815 ~ 1785 3. 共轭效应 共轭效应常使C =O 双键的极性增强,双键性降低,减弱键的强度使吸收向低频方向移动。例如羰基与α、β不饱和双键共轭,从而削弱了碳氧双键,使羰基伸缩振动吸收频率向低波数位移。 C=O 伸缩振动频率(cm -1) 1715 1685 ~ 1670 4. 成键碳原子的杂化状态 一般化学键的原子轨道s 成分越多,化学键力常数K 越大,吸收频率越高。 sp sp 2 sp 3

C?H伸缩振动频率(cm-1)3300 3100 2900 5. 键张力的影响 主要是环状化合物环的大小不同影响键的力常数,使环内或环上基团的振动频率发生变化。具体变化在不同体系也有不同。例如:环丙烷的C-H伸缩频率在3030 cm-1,而开链烷烃的C-H伸缩频率在3000 cm-1以下。 6.氢键的影响 氢键的形成使电子云密度平均化,从而使伸缩振动频率降低。形成氢键后基团的伸缩频率都会下降。游离羧酸的C=O键频率出现在1760 cm-1 左右,在固体或液体中,由于羧酸形成二聚体,C=O键频率出现在1700 cm-1 。分子内氢键不受浓度影响,分子间氢键受浓度影响较大。 例如:乙醇的自由羟基的伸缩振动频率是3640 cm-1,而其缔合物的振动频率是3350 cm-1。形成氢键还使伸缩振动谱带变宽。 7. 振动的耦合 若分子内的两个基团位置很近,振动频率也相近,就可能发生振动耦合,使谱带分成两个,在原谱带高频和低频一侧各出现一个谱带。例如乙酸酐的两个羰基间隔一个氧原子,它们发生耦合。羰基的频率分裂为1818和1750 cm-1。(预期如果没有耦合其羰基振动将出现在约1760 cm-1)。弯曲振动也能发生耦合。 8. 物态变化的影响 通常同种物质气态的特征频率较高,液态和固态较低。如丙酮v C=O(气)=1738 cm-1, v C=O(液)=1715 cm-1。溶剂也会影响吸收频率。 七. 定量分析 定量依据是Lambert-Beer定律:吸光度(A) A=ε*C * L 其中:ε为摩尔吸光系数,A= -lgT = -lg(I t/I o)= lg(I o/I t) 定量时吸光度的测定常用基线法。如图所示,图中I 与I0之比就是透射比。 思考:如何按图从坐标T%计算A? 如何做标准曲线?

红外吸收光谱特征峰,史上最全

表15.1 典型有机化合物的重要基团频率(/cm-1) asCH asCH sCH sCH asCH CH sCH CH CH CH C=C CH CH CH C=C CH CH C≡C CH CH C=C CH OH OH

CO OH OH C=C OH CO CO C=O CH C=O OH C=O OH CO CO C=O C=O 泛频C=O C=O COC NH2NH CN CN NH NH CN CN asNH C=O CN

sNH NH NH2 NH CN+NH C=O NH+CN C=O C=O C≡N NO2NO2 CN NO2NO2 CN 吡啶类 CH C=C及C=N CH CH 嘧啶类 CH C=C及C=N CH CH * 表中vs,s,m,w,vw用于定性地表示吸收强度很强,强,中,弱,很弱。

中红外光谱区一般划分为官能团区和指纹区两个区域,而每个区域又可以分为若干个波段。 官能团区 官能团区(或称基团频率区)波数范围为4000~1300cm -1 , 又可以分为四个波段。 ★ 4000~2500cm -1 为含氢基团x —H (x 为O 、N 、C )的伸缩振动区,因为折合质量小,所以波数高,主要有以下五种基团吸收 ● 醇、酚中O —H :3700~3200cm -1 , 无缔合的O —H 在高 一侧,峰形尖锐, 强度为s 缔合的O —H 在低 一侧, 峰形宽钝, 强度为s ● 羧基中O —H : 3600~2500 cm -1 , 无缔合的O —H 在高 一侧,峰形尖锐, 强度为s 缔合可延伸至2500 cm -1 ,峰非常宽钝, 强度为s ● N —H : 3500~3300 cm -1 , 伯胺有两个H ,有对称和非对称两个峰, 强度为s—m 叔胺无H ,故无吸收峰 ● C —H : <3000 cm -1 为饱和C : ~2960 cm -1 ( ),~2870 cm -1 ( ) 强度为m-s ~2925 cm -1 ( ),~2850 cm -1 ( ) 强度为m-s ~2890 cm -1 强度为w >3000 cm -1 为不饱和 C : (及苯环上C-H)3090~3030 cm -1 强度为m ~3300 cm -1 强度为m ● 醛基中C —H :~2820及~2720两个峰 强度为m-s

红外吸收光谱解析

红外吸收光谱法 第一节概述 一、红外光谱测定的优点 20世纪50年代初期,红外光谱仪问世,揭开了有机物结构鉴定的新篇章。到了50年代末期,已经积累了大量的红外光谱数据,到70年代中期,红外光谱法成为了有机结构鉴定的重要方法。红外光谱测定的优点: 1、任何气态、液态、固态样品都可以进行红外光谱的测定,这是核磁、质谱、紫外等仪器所不及的。 2、每种化合物均有红外吸收,又有机化合物的红外光谱可以获得丰富的信息。 3、常规红外光谱仪价格低廉,易于购置。 4、样品用量小。 二、红外波段的划分 σ=104/λ(λnm σcm-1) 红外波段范围又可以进一步分为远红外、中红外、近红外 波段波长nm 波数cm-1 近红外0.75~2.5 13300~4000 中红外 2.5~15.4 4000~650 远红外15.4~830 650~12 三、红外光谱的表示方法 红外光谱图多以波长λ(nm)或波数σ(cm-1)为横坐标,表示吸收峰的位置,多以透光率T%为纵坐标,表示吸收强度,此时图谱中的吸收“峰”,其实是向下的“谷”。一般吸收峰的强弱均以很强(ε大于200)、强(ε在75-200)、中(ε在25-75)、弱(ε在5-25)、很弱(ε小于5),这里的ε为表观摩尔吸收系数 红外光谱中吸收峰的强度可以用吸光度(A)或透过率T%表示。峰的强度遵守朗伯-比耳定律。吸光度与透过率关系为 A=lg( ) T1 所以在红外光谱中“谷”越深(T%小),吸光度越大,吸收强度越强。第二节红外吸收光谱的基本原理

一、分子的振动与红外吸收 任何物质的分子都是由原子通过化学键联结起来而组成的。分子中的原 子与化学键都处于不断的运动中。它们的运动,除了原子外层价电子跃迁以 外,还有分子中原子的振动和分子本身的转动。这些运动形式都可能吸收外 界能量而引起能级的跃迁,每一个振动能级常包含有很多转动分能级,因此 在分子发生振动能级跃迁时,不可避免的发生转动能级的跃迁,因此无法测 得纯振动光谱,故通常所测得的光谱实际上是振动-转动光谱,简称振转光谱。 1、双原子分子的振动 分子的振动运动可近似地看成一些用弹簧连接着的小球的运动。以双原子 分子为例,若把两原子间的化学键看成质量可以忽略不计的弹簧,长度为r (键 长),两个原子分子量为m 1、m 2。如果把两个原子看成两个小球,则它们之 间的伸缩振动可以近似的看成沿轴线方向的简谐振动,如图3—2。因此可以 把双原子分子称为谐振子。这个体系的振动频率υ(以波数表示),由经典力 学(虎克定律)可导出: C ——光速(3×108 m/s ) υ= K ——化学键的力常数(N/m ) μ——折合质量(kg ) μ= 如果力常数以N/m 为单位,折合质量μ以原子质量为单位,则上式可简 化为 υ=130.2 双原子分子的振动频率取决于化学键的力常数和原子的质量,化学键越强,相对原子质量越小,振动频率越高。 H-Cl 2892.4 cm -1 C=C 1683 cm -1 C-H 2911.4 cm -1 C-C 1190 cm -1 同类原子组成的化学键(折合质量相同),力常数大的,基本振动频率就 大。由于氢的原子质量最小,故含氢原子单键的基本振动频率都出现在中红 外的高频率区。 2、多原子分子的振动 (1)、基本振动的类型 1πμ2c K m 1m 2m 1m2+ K μ

实验课题 红外光谱法测定固体有机化合物的结构

实验课题红外光谱法测定固体有机化合物的结构 一、实验目的 1、学习塑料薄膜的透射法测试方法和油脂ATR法测试方法;了解溴化钾压片法测试红外光谱。 2、了解红外光谱在化合物及混合物样品测试中的作用。 3、熟悉各种油脂及塑料薄膜的红外光谱并通过查阅相关资料初步解析所得的红外光谱。 二、方法原理 红外光谱又称为分析振动转动光谱,也是一种分子吸收光谱,当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射,并由其振动或转动运动引起偶极距的净变化,产生分子振动或转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱,记录红外光的百分透射比T%与波数σ(或波长λ)关系的曲线,就得到红外光谱,谱图中的吸收峰数目及所对应的波数是由吸光物质的分子结构所决定的,是分子结构的特征反映。因此可根据红外光谱图的特征吸收峰对吸光物质进行定性和结构分析。 红外光谱分析试样的制备技术又直接影响到谱带的波数、数目和强度。物质的不同存在状态(气、固、液三种状态),测定时试样的制备方法是不同的,其吸收谱图也有差异,应加以注意。对于固体试样的制备,压片法是实际工作中应用最多的方法,所以本实验主要掌握KBr压片制样法。 红外光谱法压片法是将固体试样与稀释剂KBr混合(试样含量范围一般为0.1-2%)并研细,取80mg左右压成透明薄片,置试样薄片于光路中进行测定。根据绘制的谱图,查出各特征吸收峰的波数并推断其官能团的归属,从而进行定性和结构分析。 三、仪器与试剂 1、仪器:IR100型及Frontier型红外光谱仪,玛瑙研钵、药匙、磨具及衰减全反射(ATR)附件、红外灯。 1、试剂:KBr、无水乙醇。 2、试样(需自备):1、成品植物油或含油植物种子;2、透明塑料薄膜(可取

各类化合物红外光谱特征

各类化合物的红外光谱特征 有机化合物的数目非常大,但组成有机化合物的常见元素只有10种左右,组成有机化合物的结构单元即称为基团的原子组合数目约有几十种。根据上述讨论,基团的振动频率主要取决于组成基团原子质量(即原子种类)和化学键力常数(即化学键的种类)。一般来说,组成分子的各种基团如C-H、C-N 、C=C、C=O 、C-X等都有特定的红外吸收区域(特征吸收峰),根据特征吸收峰可以推断物质的结构。所以,有必要对各类有机化合物的光谱特征加以总结。 一、烷烃 1. νC-H 3000~2840 C-H伸缩振动频率 2. δC-H 1460 和1380 C-H弯曲振动频率 3.C-C 1250-800 当化合物具有四个以上邻接的CH2基团时,几乎总是在(715-725,通常在720cm-1处)有谱带(CH2以内摇摆),它在鉴别上是有用的。 二、烯烃 1. ν=C-H 3010-3100 2.νC=C1680-1600 3. δC-H1000-700 三、炔烃 1. ν≡C-H 3300-3250 峰形较窄,易于OH和NH区别开。 2. δ≡C-H 900-610 宽的谱带 3. ν C≡C2140-2100 一元取代炔烃RC≡CH|| 2260-2190 二元取代炔烃 四、芳香烃 1.νC-H 3080-3010 2.νC-C 1650-1450 2~4个吸收峰 3. 面外弯曲振动(g=C-H ) 900-650 五、醇和酚羟基化合物 1. νO-H 3700-3500(游离的醇和酚,峰尖、强)|| 3500-3200(缔和的羟基,峰形强而宽) 2. δO-H 1500~1300 3. νC-O 1250~1000 六、醚 1.脂肪醚1150-1060 2.芳香醚1270 ~ 1230(为Ar-O 伸缩)1050 ~ 1000 cm-1(为R-O 伸缩) 3.乙烯醚:1225-1200 5、在环氧乙烷类中有三条特征谱带可作为这种基团的存在的标志: 1280-1240 环的不对称伸缩振动|| 950-810cm-1 环的对称伸缩振动|| 840-750cm-1 七、羰基化合物(包括醛、酮、羧酸、酯、酸酐和酰胺等) 1.酮1725-1705 2.醛1740-1720 2820-2720出现两个强度相等的吸收峰 3.羧酸 (1)νO-H 3200-2500(液体及固体羧酸)|| 3550(在气相或极稀的非极性溶剂溶液中) (2)nC=O 1730-1700 (2)νC-O 1250附近(强峰) (3)δO-H 1400cm-1和920cm-1区域有两个强而宽的吸收峰 (4)羧酸盐1580cm-1 和1400cm-1 之间的两个谱带 4.酯 (1) νC=O1750-1735 (2) νC-O-C 1330-1030 5.酸酐 (1)n C=O 在1860-1800cm-1和1800-1750cm-1出现两个强的吸收峰 (2) n C-O-C 开链的在1180-1045cm-1,而环状酸酐在1310-1200cm-1 6.酰胺: 兼有胺和羰基化合物的特点 (1)νN-H 稀溶液中伯酰胺出现两个中等强度的峰,分别在3500cm-1和3400cm-1附近,浓溶液和固体中由于有氢键发生,将移向3350-3180cm-1低频区

红外--各类有机物的红外吸收峰

各类有机化合物红外吸收光谱 σ伸缩振动,δ面内弯曲振动,γ面外弯曲振动 一、烷烃 饱和烷烃IR光谱主要由C-H键的骨架振动所引起,而其中以C-H键的伸缩振动最为有用。在确定分子结构时,也常借助于C-H键的变形振动和C-C 键骨架振动吸收。烷烃有下列四种振动吸收。 1、σ C-H 在2975—2845 cm-1范围,包括甲基、亚甲基和次甲基的对称与不对称伸缩振动 2、δ C-H 在1460 cm-1和1380 cm-1处有特征吸收,前者归因于甲基及亚甲基C-H 的σas,后者归因于甲基 C-H的σs。1380 cm-1峰对结构敏感,对于识别甲基很有用。共存基团的电负性对1380 cm-1峰位置有影响,相邻基团电负性愈强, 愈移向高波数区,例如,在CH 3 F中此峰移至1475 cm-1。 异丙基 1380 cm-1裂分为两个强度几乎相等的两个峰 1385 cm-1、1375 cm-1 叔丁基 1380 cm-1裂分1395 cm-1、1370cm-1两个峰,后者强度差不多是前者的两倍,在1250 cm-1、1200 cm-1附近出现两个中等强度的骨架振动。 3、σ C-C 在1250—800 cm-1范围内,因特征性不强,用处不大。 4、γ C-H 分子中具有—(CH 2 )n—链节,n大于或等于4时,在722 cm-1有一个 弱吸收峰,随着CH 2 个数的减少,吸收峰向高波数方向位移,由此可推断分子链的长短。 二、烯烃 烯烃中的特征峰由C=C-H键的伸缩振动以及C=C-H键的变形振动所引起。烯烃分子主要有三种特征吸收。 1、σ C=C-H 烯烃双键上的C-H键伸缩振动波数在3000 cm-1以上,末端双键氢在3075—3090 cm-1有强峰最易识别。 2、σ C=C 吸收峰的位置在1670—1620 cm-1。随着取代基的不同,σ C=C 吸收峰的 位置有所不同,强度也发生变化。 3、δ C=C-H 烯烃双键上的C-H键面内弯曲振动在1500—1000 cm-1,对结构不敏感,用途较少;而面外摇摆振动吸收最有用,在1000—700 cm-1范围内,该振动对结构敏感,其吸收峰特征性明显,强度也较大,易于识别,可借以判断C=CH2

实验四 有机化合物红外光谱的测绘及结构分析

实验四有机化合物红外光谱的测定及结构分析 一、目的要求 1.学会溴化钾压片法制备固体样品的方法; 2.了解美国PE公司BX-Ⅱ型红外光谱仪的使用方法; 3.初步学会红外光谱图的解析方法。 二、实验原理 当物质的分子对红外线进行选择性吸收时,其结构若使得振动能级及转动能级发生跃迁,就会形成具有特征性的红外吸收光谱。 红外吸收光谱是物质分子结构的客观反映,谱图中吸收峰都对应着分子中各基团的振动形式,其位置和形状也是分子结构的特征性数据。因此,根据红外吸收光谱中各吸收峰的位置、强度、形状及数目的多少,可以判断物质中可能存在的某些官能团,进而对未知物的结构进行鉴定。即首先对红外吸收光谱进行谱图解析,然后推断未知物的结构。最后还需将未知物的红外吸收光谱通过与未知物相同条件下得到的标准样品的谱图或标准谱图集中的标准光谱进行对照,以进一步证实其分析结果。 三、仪器与试剂 1.仪器 美国PE公司BX-Ⅱ型红外光谱仪 压片机 玛瑙研钵 2. 试剂 无水乙醇(A.R) 苯甲酸(A.R) 溴化钾(光谱纯或分析纯)130℃下干燥24h,存于干燥器中,备用。 四、实验步骤 1. 溴化钾压片法制样 取1-2 mg苯甲酸(已在80℃下干燥),在玛瑙研钵中充分研磨后,在加入100 mg 溴化钾粉末,继续磨细至颗粒大小约为2 μm直径,并使之完全混合均匀。然后将粉末状的混合物移入压模内摊铺均匀,置压模于压片机上,慢慢施加压力至约15 MPa左右并维持30秒,再逐渐减压,即得一透明薄片。

2. 标准红外光谱的测定 将1中制得的薄片装于样品架上,并插入BX-Ⅱ型红外光谱仪的试样安放处,通过Spectrum软件进行扫描。 五、结果处理 解析红外光谱图,指出主要吸收峰。 六、思考题 1.红外光谱仪对样品有哪些要求?为什么要有这些要求?

相关文档
最新文档