Mechanical property characterization and simulation of fused deposition modeling Polycarbonate parts

Mechanical property characterization and simulation of fused deposition modeling Polycarbonate parts
Mechanical property characterization and simulation of fused deposition modeling Polycarbonate parts

Mechanical property characterization and simulation of fused deposition modeling Polycarbonate

parts

Miquel Domingo-Espin a ,Josep M.Puigoriol-Forcada a ,Andres-Amador Garcia-Granada a ,Jordi Llumàc ,Salvador Borros b ,Guillermo Reyes a ,?

a

Grup d’Enginyeria de Productes Industrials,IQS,Universitat Ramon Llull,Spain b

Grup d’Enginyeria de Materials,IQS,Universitat Ramon Llull,Spain c

Dept.de Ciencia de Materials i Enginyeria Metal.lurgica,EUETIB,Universitat Politècnica de Catalunya,Spain

a r t i c l e i n f o Article history:

Received 26February 2015Revised 1April 2015Accepted 8June 2015

Available online 19June 2015Keywords:

Fused deposition modeling Mechanical behaviour Stiffness matrix Constitutive model Finite element analysis

a b s t r a c t

Building end-use functional parts with additive manufacturing (AM)technologies is a challenging task.Several factors in?uence their surface ?nish,dimensional accuracy,mechanical properties and cost.Their orientation inside the building chamber is one of the most signi?cant factors in AM processes.When using Fused Deposition Modeling (FDM)to build such parts,additional factors must be considered.This paper aims to accomplish two purposes:?nding a good model to simulate FDM parts and corre-lating a ?nite element analysis (FEA)simulation with physical testing.

The ?rst objective was achieved by experimental tensile test of specimens to determine the nine mechanical constants that de?nes the stiffness matrix of an orthotropic material.Three Young’s modulus,three Poisson’s ratio and three shear modulus were experimentally obtained as well as yield tensile and ultimate strength of each specimen.

A simple part was designed and manufactured in different orientations to be physically tested and sim-ulated to achieve the second objective.Polycarbonate (PC)was used as part https://www.360docs.net/doc/4717463246.html,bined loading including bending and torsion was used.Differences on mechanical response were observed during the physical test of the parts depending on the building direction.Conclusions comment results and the con-venience of using a different constitutive model depending on the design and use speci?cations.

ó2015Elsevier Ltd.All rights reserved.

1.Introduction

Nowadays additive manufacturing (AM)technologies are becoming useful techniques to produce parts due to the advan-tages they present in front of traditional manufacturing tech-niques.Some of them are:decrease in production cycle,high complexity and personalized parts [1].On the other hand using these technologies in order to achieve certain product speci?ca-tions is not a simple task.Some AM technologies have their own software that helps users to set few building parameters,with any or little quantitative information,according to cost and surface ?nish.Also,manufacturers often avoid information data about mechanical behaviour of AM processed materials.In order to build functional end-use parts using these technologies it is needed to know how different building parameters affect the mechanical behaviour of parts.The common practice among engineers when designing functional parts is to use ?nite element analysis (FEA)

to simulate a part under real loads and ?xtures.FEA materials data-base include isotropic materials,processed by traditional manufac-turing processes,but cannot model properly layered manufactured anisotropic materials.AM users need tools to evaluate virtual mod-els of a part with more precise and quantitative data to decide effectively prior to manufacturing the best building parameters.It is important for them to reduce manufacturing cost reaching geometrical and mechanical requirements when setting process parameters.

The manufacturing principle behind all those technologies is to slice a part and to build it layer by layer.Part orientation plays an important role in the surface ?nish [2–5],dimensional accuracy [6–10],cost [11,12]and mechanical behaviour.It has been reported a dependence of the mechanical behaviour of AM parts on its orientation in the building chamber.It indicates that its mechanical behaviour is not isotropic [13–20].Results may vary depending on the technology since bonding between layers depends on the material and the process [21].

Fused Deposition Modeling (FDM)presents also a great amount of other building parameters that affects parts features.It has been

https://www.360docs.net/doc/4717463246.html,/10.1016/j.matdes.2015.06.074

0264-1275/ó2015Elsevier Ltd.All rights reserved.

Corresponding author.

observed that the distance between extruded ?laments [9,10,19,20],its width [9,10,19,20,22],the pattern which the ?la-ments follow to ?ll each layer [9,10,19,20]and layer thickness [9,10,20,22],among others,have a great effect on quality and per-formance of a part.This implies that building strategy election has a signi?cant effect on the properties and the performance of a part.It is really important to characterize AM materials in order to sim-ulate properly end-use parts before manufacturing them.Some attempts to mechanically characterize FDM materials have been reported.The characterization of Acrylonitrile Butadiene Styrene (ABS)[23,24]and Ultem 9085[25]FDM materials has been per-formed in order to be able to simulate them with FEA.They all con-cluded that FDM parts presented different mechanical response depending on how the layers were placed regarding the direction of the load.Hence the building direction of the parts should be cho-sen according to boundary conditions.Physical models were also manufactured to compare simulation and real test data [24,25].The correlation presented was good under elastic deformation but not when the yield point was exceeded.

In this paper the mechanical characterization of Polycarbonate (PC)FDM material is performed assuming orthotropic behaviour in order to obtain the stiffness matrix.The mechanical response of a geometrically simple part is physically tested and FEA simu-lated.Conclusions from this work are useful for de?ning what is the best approach to simulate such parts.2.Constitutive orthotropic model

In order to use FEA simulations to predict the behaviour of FDM parts it is necessary to de?ne the constitutive model that govern its mechanical behaviour.The constitutive model presented here is assumed true under linear elastic deformations.

Linear elasticity is described by the Hooke’s law,which deter-mines that the relationship between stress and small strains is lin-early proportional.For orthotropic materials,de?ned as a material with three mutually perpendicular planes of symmetry,the com-pliance matrix has only nine unknown components (Eq.(1)).

e x e y e z c yz c xz c xy 0

B B

B

B B

B B B

@1C C C C C C C C A ?S 11S 12S 13000

S 22S 23000S 33000S 4400sym S 550S 66

0B B B B B B B

B @1

C C C C C C C C A ár x r y r z s yz s xz s xy 0B B B B B B B B @1

C C C C

C C C C A e1T

where e i is for unit elongation,c ij for unit shearing strain,r i for nor-mal stresses and s ij for shearing stresses.

Considering the conventional engineering constants in the three directions,Eq.(1)can be written in terms of Young’s modulus,Poisson’s ratio and shear modulus (Eq.(2)).

e x e y e z c yz c xz c xy 0

B B B B B B B B @1

C C C C C C C C A ?1=E x àm xy =E x àm xz =E x 0001=E y àm yz =E y 0001=E z

0001=G yz 00sym 1=G xz 01=G xy 0B B

B

B B

B B

B

@1C C C C C C C C A ár x r y r z s yz s xz s xy 0B B B B B B B B @1

C C C C C C C C A e2T

The equation used commonly in engineering is the product between the general stiffness matrix and the strain tensor (Eqs.(3)and (4)).

r ?áe

e3T

r x r y r z s yz s xz s xy 0

B B

B

B B

B B B

@1C C C C C C C C A ?C 11C 12C 13000C 22C 23000C 33000C 4400sym C 550C 66

0B B B B B B B

B @1

C C C C C C C C A áe x e y e z c yz c xz c xy 0B B B B B B B B @1

C C C C

C C C C A

e4T

where

C 11?eS 22áS 33àS 223TS ;C 22?eS 11áS 33àS 213TS ;

C 33?

eS 11áS 22àS 212TS ;C 12?eS 23áS 13àS 12áS 33TS ;C 13?

eS 12áS 23àS 22áS 13T;C 23?eS 12áS 13àS 11áS 23T

;C 44?1S 44;C 55?1S 55;C 66?1S 66

;

S ?S 11áS 22áS 33t2áS 12áS 23áS 13àS 213áS 22àS 223áS 11àS 2

13áS 33

e5T

To de?ne the mechanical behaviour of an orthotropic material,nine independent constants:three Young’s modulus (E i ),three Poisson’s ratios (m ij )and three shear modulus (G ij ),must be found.Five specimens built in six different orientations were tested to know those constants.According to Hooke’s law,Young’s modulus and Poisson’s ratio can be obtained from the tensile strength test as:

E 1?

D r 1e 1

e6Tm 12?à

e 2e 1

e7T

where 1is the pulling direction and 2perpendicular to the load.The in-plane shear modulus can be obtained from the test of a 45°-oriented unidirectional test specimen,according to the follow-ing equation:

G 12?E 1=2áe1tm 12T

e8T

where 1is the direction the load is applied and 2is the perpendic-ular direction.

3.Experimental procedure

The experimental procedure is divided in three parts.First,the

FDM Polycarbonate (PC)parts,printed under speci?c building parameters,are mechanically characterized in order to obtain the stiffness matrix.Then,a geometrically simple part is fabricated in different orientations and tested.Finally,using the previously obtained stiffness matrix,a FEA simulation is performed to model part behaviour.

3.1.Mechanical characterization

In order to obtain the nine independent constants values of the stiffness matrix,a total of thirty PC samples were built and tested in six different orientations (Fig.1).It corresponds to 5samples for each orientation.Since there are no standard tests for AM parts,the samples have been built and tested according to ASTMD638:Standard Test Method for Tensile Properties of Plastics.ASTM stan-dard was preferred instead of ISO because it is the standard used by the manufacturer of the specimen material and also for most of the authors studying the mechanical behaviour of AM part [14,17,21,24,26–34].

After orienting parts as shown in Fig.1,they were built using a Stratasys Fortus 400mc using the following building parameters:

M.Domingo-Espin et al./Materials &Design 83(2015)670–677671

Diameter nozzle:0.254mm;since it has been proved to give better results in dimensional accuracy,surface?nish and mechanical behaviour than the other possible diameters [6,9,20,35,36].The actual size of the extruded?lament is larger than the diameter of the tip due to swelling but it can be con-trolled[37].The size is set to0.508mm(in the control software) and is automatically regulated by the head speed and the drive wheels that adjust the material?ow rate[26,38].

Part interior style:Solid–Normal;which?lls the interior part completely with fully dense raster toolpaths.The extruded angle?laments in the XY plane are+45°/à45°alternating in each layer since it has been proved that parts with this interior style bear better combined loads[9,20,36,39].

Visible surface style:Enhanced;which uses independent con-trols for the visible surface rasters and the non-visible,internal rasters.The width of the visible raster is smaller than normal in order to improve the surface roughness and the visible appearance.

Support style:Breakaway;the removal is easier with this type of support and it is the most used when the parts present com-plex geometry.

Number of contours(1contour),visible surface style and sup-port style parameters have been selected to emulate what a user would set to manufacture a common part.

The tensile test has been performed using a Microtest EM2/20 equipped with an optical extensometer used to preform bi-dimensional measurement of specimen strain.Area reduction due to elongation was considered to measure real strains.

During the tensile stress test of the dog-bone samples,per-formed at1mm/min,the strain and axial and longitudinal elonga-tion were collected along with the stress.Elastic modulus,tensile stress and strain and ultimate stress and strain are presented in Table1according to the direction shown in Fig.1.

The results show that samples1and3present similar tensile strength but the fracture of the last one is fragile since there is not much plastic deformation observed(Fig.2).Specimens1and 2present a signi?cant plastic behaviour because the deposited?l-aments are arranged in the same direction that the sample is being pulled.Therefore,contour and raster are pulled longitudinally in those specimens.Sample3has a fragile fracture because it is pulled perpendicular to the layers,where the bonding strength is weaker than the strength of pulled contours.Samples2shows the highest value of both elastic modulus and tensile strength since there are more layers being pulled longitudinally.Consequently there are more contours that act as reinforcement?bers[36].

It is also noticeable that samples3present a wider variability (Fig.3)in Young’s modulus and tensile strength due to the fragile behaviour presented.

Data was processed using a MATLABòfunction to perform a least square interpolation in the linear part of the stress–strain curve.Young’s modulus,Poisson’s ratio and Shear modulus(Eqs.

(5)–(7))were calculated from a linear modeling of the curve in the domain of study.

The nine engineering constants obtained(Table2)de?ne the stiffness matrix in MPa(Eq.(9))using Eqs.(3)–(5).

C?

3:04á1032:13á1032:00á103000

3:45á1032:11á103000

3:16á103000

5:91á10200

sym6:33á1020

5:06á102 0

B B

B B

B B

B B

B@

1

C C

C C

C C

C C

C A

MPa

e9T

3.2.Physical testing of FDM parts

A geometrically simple part(Fig.4)was designed in order to present a complex stress state when tested.The design also consid-ered to?x the part during testing using a plate without holes for an easier simulation of constraints in FEA Analysis[24].The3D model was created using SolidWorksò.

The sample was designed in order to produce a stress in several directions,below the yield stress,with an acceptable deformation.

The designed part has six possible building orientations(Fig.4) because any of the six exterior surfaces can be used as building bases.Orientations using surfaces1or3,2or4and5or6are mechanically equivalents because the slicing process produces the same slices.Consequently,only three?nal building bases were considered(1,2and5).

The coordinate system of the building chamber sets the coordi-nate system of the part.As elastic modulus in X and Y are different, it was decided to build two different orientations for each building base:one of them with the cantilever aligned with the X-axis and the other one with the Y axis(Fig.5).A total of18parts of the model were printed.There are three parts for each

possible Fig.1.Orientations for tensile test samples.

orientation,using the same FDM technology and building parame-ters used for the tensile test parts.

During physical testing parts were?xed as shown in Fig.6left. All parts were tested in the same conditions:a vertical displace-ment of35mm was applied at1mm/min(same as the tensile test) at15mm from the end of the cantilever.The test was performed using:

MTS insight.

Load cell10kN.

Three point bending grip.

Parts were inspected after the test and all of them recovered its initial form due to the elastic material behaviour.Displacement and reaction force data was collected.Results also showed that the relation between force and displacement was linear.A least square interpolation MATLABòfunction was used to obtain the experimental data of the samples using the same building base were merged.Consequently only three different parts were consid-ered:1,2and5.

The same MATLABòfunction was used but now just considering building bases.The results are presented in Table4and Fig.7.They show that part orientation and building base election affects its mechanical response.Between building base1and2there is a dif-ference of5.77%and between1and5of2.15%.

The section that most in?uences the mechanical response(in

Table1

Average elastic modulus,tensile strength and strain and ultimate strength and strain for each orientation.

Fig.2.Average stress–strain curves for samples1,2and3.

Fig.3.Values of Young’s modulus and tensile strength for directions XY,YZ and XZ.

M.Domingo-Espin et al./Materials&Design83(2015)670–677673

Orientation2was the weakest because of the way that the con-tours were placed(Fig.8b).They did not act as reinforcement?bers and layers were moving relatively one above the other although being bonded.Orientation5presented the top and the bottom part of the end of the cantilever?lled with contours(Fig.8c).In this case,they acted as reinforcement?bers.This con?guration strengthened the end section,as it was proved.Slices are placed in a transverse direction with respect to the central axis form the end of the cantilever in orientation1.It results in the toughest ori-entation,stiffer than orientation5.The cantilever section is not square,so it can be said that the effect of bonding between slices stiffens more than that of contours acting as reinforcement?bers.

3.3.Simulation

The stiffness matrix for the orthotropic constitutive model was used to simulate the mechanical response of the same parts phys-ically tested.Data for that matrix was obtained from the mechan-ical characterization.Seven different simulations were made,one for each orientation physically tested and one considering the material isotropic,since it is the easiest way to carry out FEA sim-ulations of a part.The mechanical constants used in the isotropic simulation were obtained using the mean values of elastic modu-lus,Poisson’s ratio and shear in directions1,2and3.

ANSYSòMechanical15.0software was used to simulate the deformation of a part considering the building orientation.The boundary conditions for the FEA simulation were established according to the physical test conditions(Fig.6a).Since the load is not always applied in the same position due to bending,a con-tact was set for this area.The mechanical constants used in each simulation were set according to how the part was built.Linear and static cases were assumed in the?nite element model.The same hexahedral mesh(Solid185)was used for all the loading cases.Total element number of10476and total node number of 14008were used in the model.

The same?exural stiffness coef?cient(F/d)was calculated.The results for each orientation are presented in Table5and show that the differences between orientations using the same building base are small(maximum2.1%difference for building base2).This con-?rm that there is no important difference between orientations using the same building base,as it happened with the physical testing.

The simulated and the physical testing results were compared (Table6).The orthotropic simulation results similarity to the phys-ical test results depends on the building base orientation.Building

4.Dimensions of the sample for physical and FEA simulation test with possible building bases numbered.

Fig.5.Parts printed for physical testing sharing the same coordinate system.

base orientation 1was the most accurate.It has to be noted that FEA simulation is a simpli?ed model.It considers a part completely solid but it is made of joined plastic wires (contours and rasters)

with different bonding among ?laments in the same layer com-pared with bonding between layers.Then,a 7.30%average differ-ence (Table 6)can be considered a good approximation.

The results from isotropic mean simulations also presented ferent accuracy depending on the building bases,being the overall difference 7.12%(Table 6).It is very similar to the orthotropic model.Since the isotropic model is easier to use because there is no need to orientate the material properties,it should be used to simulate FDM parts under elastic stress conditions (like the studied case).On the other hand,if a part reaches the yield tension,the

for the physical test (left)and ANSYS òschematics of the simulation (right).Small displacement (a and b),and pictures Fig.7.Graphic results of force and displacement for each building base.

standard deviation (std),and standard deviation in %from experiment results.F /d std %std 1.410.036 2.551.430.019 1.351.360.014 1.031.330.039 2.961.410.0110.751.37

0.015

1.07

standard deviation (std),and standard deviation in %F /d std %std 1.420.028 1.991.340.027 2.031.39

0.022

1.58

Fig.8.Diagram of the different slices disposition in the cantilever for each building orientation (a)is orientation 1,(b)is orientation 2and (c)is orientation 5.

orthotropic model is more realistic.Therefore,depending of the building direction,a part could fail due to fragile rupture or could plasticize(Fig.2).

4.Conclusions

Anisotropic material properties should be considered when using FEA simulation of FDM parts exceeding the elastic region limit.However,regarding elastic deformations,the material can be considered isotropic using the mean values of the mechanical properties since the results are equivalent.An isotropic model is easier to use as there is no need to modify constitutive equations in the materials database of FEA software and to choose the right material orientation in the model.

When the yield strength is exceeded,it is important to choose the proper orientation to build a part.Parts should be oriented so that the greater tensile stresses are aligned with the direction of the longest contours to increase their strength.To avoid fragile fracture tensile stresses should not be aligned with the building direction,perpendicular to the layer’s planes.

FDM parts anisotropy depends not only on the building direc-tion.Manufacturing process such as nozzle diameter,slice height, and diameter of the extruded?laments can signi?cantly affect results so the mechanical properties reported in this article should be used carefully.

Acknowledgment

Miquel Domingo-Espin was supported by an IQS fellowship. Appendix A.Supplementary material

Supplementary data associated with this article can be found,in the online version,at https://www.360docs.net/doc/4717463246.html,/10.1016/j.matdes.2015.06. 074.

References

[1]R.Hague,Unlocking the design potential of rapid manufacturing,in:Rapid

Manufacturing:An Industrial Revolution for the Digital Age,2005.

[2]S.O.Onuh,K.K.B.Hon,Optimising build parameters for improved surface?nish

in stereolithography,Int.J.Mach.Tools Manuf.38(4)(1998)329–342,http:// https://www.360docs.net/doc/4717463246.html,/10.1016/S0890-6955(97)00068-0.

[3]I.Vijay,K.Chockalingam, C.Kailasanathan,et al.,Optimization of surface

roughness in selective laser sintered stainless steel parts,Int.J.ChemTech Res.

6(5)(2014)2993–2999.

[4]P.Vijay,P.Danaiah,K.V.D.Rajesh,Critical parameters effecting the rapid

prototyping surface?nish,J.Mech.Eng.Autom.1(1)(2012)17–20,http:// https://www.360docs.net/doc/4717463246.html,/10.5923/j.jmea.20110101.03.

[5]A.Armillotta,Assessment of surface quality on textured FDM prototypes,

Rapid Prototyp.J.12(1)(2006)35–41,https://www.360docs.net/doc/4717463246.html,/10.1108/ 13552540610637255.

[6]A.K.Sood,R.K.Ohdar,S.S.Mahapatra,Improving dimensional accuracy of fused

deposition modelling processed part using grey Taguchi method,Mater.Des.

30(10)(2009)4243–4252,https://www.360docs.net/doc/4717463246.html,/10.1016/j.matdes.2009.

04.030.

[7]S.Saqib,J.Urbanic,An experimental study to determine geometric and

dimensional accuracy impact factors for fused deposition modelled parts,in:

H.A.ElMaraghy(Ed.),Enabling Manufacturing Competitiveness and

Economic Sustainability,Springer,Berlin Heidelberg,2012,pp.293–298, https://www.360docs.net/doc/4717463246.html,/10.1007/978-3-642-23860-4_48.

[8]N.Volpato,J.A.Foggiatto,D.C.Schwarz,The in?uence of support base on FDM

accuracy in Z,Rapid Prototyp.J.20(2014)2,https://www.360docs.net/doc/4717463246.html,/10.1108/RPJ-12-2012-0116.

[9]A.K.Sood,R.K.Ohdar,S.S.Mahapatra,Parametric appraisal of mechanical

property of fused deposition modelling processed parts,Mater.Des.31(1) (2010)287–295,https://www.360docs.net/doc/4717463246.html,/10.1016/j.matdes.2009.06.016.

[10]A.Equbal,R.K.Ohdar,S.S.Mahapatra,Prediction of dimensional accuracy in

fused deposition modelling:a fuzzy logic approach,Int.J.Prod.Quality Manage.7(1)(2011)22–43..(accessed24.10.13).

[11]G.P.Kumar,S.P.Regalla,Optimization of support material and build time in

fused deposition modeling(FDM),Appl.Mech.Mater.110–116(2011)2245–2251,https://www.360docs.net/doc/4717463246.html,/10.4028/www.scienti?https://www.360docs.net/doc/4717463246.html,/AMM.110-116.2245. [12]I.Durgun,R.Ertan,Experimental investigation of FDM process for

improvement of mechanical properties and production cost,Rapid Prototyp.

J.20(2014)228–235,https://www.360docs.net/doc/4717463246.html,/10.1108/RPJ-10-2012-0091.

[13]I.Gibson,D.Shi,Material properties and fabrication parameters in selective

laser sintering process,Rapid Prototyp.J.3(1997)129–136,https://www.360docs.net/doc/4717463246.html,/

10.1108/13552549710191836.

[14]K.Chockalingam,N.Jawahar,K.N.Ramanathan,et al.,Optimization of

stereolithography process parameters for part strength using design of experiments,Int.J.Adv.Manuf.Technol.29(1–2)(2005)79–88,http:// https://www.360docs.net/doc/4717463246.html,/10.1007/s00170-004-2307-0.

[15]U.Ajoku,N.Saleh,N.Hopkinson,et al.,Investigating mechanical anisotropy

and end-of-vector effect in laser-sintered nylon parts,Proc.Inst.Mech.Eng.

Part B J.Eng.Manuf.220(7)(2006)1077–1086,https://www.360docs.net/doc/4717463246.html,/10.1243/ 09544054JEM537.

[16]C.S.Lee,S.G.Kim,H.J.Kim,et al.,Measurement of anisotropic compressive

strength of rapid prototyping parts,J.Mater.Process.Technol.187–188(2007) 627–630,https://www.360docs.net/doc/4717463246.html,/10.1016/j.jmatprotec.2006.11.095.

[17]R.Quintana,J.W.Choi,K.Puebla,et al.,Effects of build orientation on tensile

strength for stereolithography-manufactured ASTM D-638type i specimens, Int.J.Adv.Manuf.Technol.46(2010)201–215,https://www.360docs.net/doc/4717463246.html,/10.1007/ s00170-009-2066-z.

[18]C.Majewski,N.Hopkinson,Effect of section thickness and build orientation on

tensile properties and material characteristics of laser sintered nylon-12parts, Rapid Prototyp.J.17(3)(2011)176–180,https://www.360docs.net/doc/4717463246.html,/10.1108/ 13552541111124743.

[19]K.C.Ang,K.F.Leong,C.K.Chua,et al.,Investigation of the mechanical properties

and porosity relationships in fused deposition modelling-fabricated porous structures,Rapid Prototyp.J.12(2)(2006)100–105,https://www.360docs.net/doc/4717463246.html,/10.1108/ 13552540610652447.

[20]A.K.Sood,R.K.Ohdar,S.S.Mahapatra,Experimental investigation and

empirical modelling of FDM process for compressive strength improvement, J.Adv.Res.3(1)(2012)81–90,https://www.360docs.net/doc/4717463246.html,/10.1016/j.jare.2011.

05.001.

[21]J.Kotliniski,Mechanical properties of commercial rapid prototyping materials,

Rapid Prototyp.J.20(6)(2014)499–510,https://www.360docs.net/doc/4717463246.html,/10.1108/RPJ-06-2012-0052.

[22]R.Anitha,S.Arunachalam,P.Radhakrishnan,Critical parameters in?uencing

the quality of prototypes in fused deposition modelling,J.Mater.Process.

Technol.118(2001)2–5..(accessed24.10.13).

[23]A.Bellini,S.Gü?eri,Mechanical characterization of parts fabricated using

fused deposition modeling,Rapid Prototyp.J.9(4)(2003)252–264,http:// https://www.360docs.net/doc/4717463246.html,/10.1108/13552540310489631.

[24]R.H.Hambali,H.K.Celik,P.C.Smith,et al.,Effect of build orientation on FDM

parts:a case study for validation of deformation behaviour by FEA,in: International Conference on Design and Concurrent Engineering(iDECON 2010):Manufacturing Challenges Towards Global Sustainability,2010,pp.20–

21..(accessed24.10.13).

[25]A.S.El-Gizawy,S.Corl, B.Graybill,Process-induced properties of FDM

products,in:Proceedings of the ICMET,International Conference on Mechanical Engineering’s and Technology Congress&Exposition,2011. [26]S.H.Ahn,M.Montero,D.Odell,et al.,Anisotropic material properties of fused

deposition modeling ABS,Rapid Prototyp.J.8(4)(2002)248–257,http:// https://www.360docs.net/doc/4717463246.html,/10.1108/13552540210441166.

[27]K.Puebla,K.Arcaute,R.Quintana,et al.,Effects of environmental conditions,

aging,and build orientations on the mechanical properties of ASTM type I specimens manufactured via stereolithography,Rapid Prototyp.J.18(5) (2012)374–388,https://www.360docs.net/doc/4717463246.html,/10.1108/13552541211250373.

Table5

Flexural stiffness coef?cient(F/d)for each simulated orientation.

Orientation F/d

1.01 1.35

1.02 1.32

2.01 1.26

2.02 1.29

5.01 1.38

5.02 1.39

Iso Mean 1.33

Table6

Comparison between physical test and simulated results for each orientation(the

orthotropic results are the mean value of the two simulations for each orientation).

Model type Test-simulation deviation for

orientations(%)

Mean deviation(%)

125

Orthotropic 4.22 6.6111.17.30

Iso mean 4.2210.61 6.527.12

676M.Domingo-Espin et al./Materials&Design83(2015)670–677

[28]P.K.Jain,P.M.Pandey,P.V.M.Rao,Experimental investigations for improving

part strength in selective laser sintering,Virtual Phys.Prototyp.2008(3) (2015)177–188,https://www.360docs.net/doc/4717463246.html,/10.1080/17452750802065893.

[29]E.Fodran,M.Koch,U.Menon,et al.,Mechanical and dimensional

characteristics of fused deposition modeling build styles,in:Solid Freeform Fabrication Symposium,University of Texas,Austin,1996,pp.419–442.

Manuscripts/1996/1996-51-Fodran.pdf>.(accessed24.10.13).

[30]A.Bagsik,V.Sch?oppner,Mechanical properties of fused deposition modeling

parts manufactured with ULTEM9085.ANTEC2011Plast Annu Tech Conf Proc, 2011.

[31]Stratasys,PC(Polycarbonate),2014.

[32]Stratasys,PC-ABS,2014.

[33]P.K.Jain,P.M.Pandey,P.V.M.Rao,Effect of delay time on part strength in

selective laser sintering,Int.J.Adv.Manuf.Technol.43(2009)117–126,http:// https://www.360docs.net/doc/4717463246.html,/10.1007/s00170-008-1682-3.

[34]Stratasys,Characterization of Material Properties for Fortus Polycarbonate

(PC),2014.[35]A.Boschetto,V.Giordano,F.Veniali,Modelling micro geometrical pro?les in

fused deposition process,Int.J.Adv.Manuf.Technol.61(9–12)(2011)945–956,https://www.360docs.net/doc/4717463246.html,/10.1007/s00170-011-3744-1.

[36]M.Domingo-Espin,S.Borros,N.Agulló,et al.,In?uence of building parameters

on the dynamic mechanical properties of polycarbonate fused deposition modeling parts,3D Print Addit.Manuf.1(2)(2014)70–77,https://www.360docs.net/doc/4717463246.html,/

10.1089/3dp.2013.0007.

[37]Q.Sun,G.M.Rizvi,C.T.Bellehumeur,et al.,Effect of processing conditions on

the bonding quality of FDM polymer?laments,Rapid Prototyp.J.14(2)(2008) 72–80,https://www.360docs.net/doc/4717463246.html,/10.1108/13552540810862028.

[38]Joe Hiemenz,3D Printing With Fdm,2011,pp.1–5,

https://www.360docs.net/doc/4717463246.html,/~/media/Main/Files/WhitePapers/SSYS-WP-3DP-HowItWorks-09-11.ashx>.

[39]C.Ziemian,M.Sharma,S.Ziemian,Anisotropic mechanical properties of abs

parts fabricated by fused deposition modelling,in:M.Gokcek(Ed.), Mechanical Engineering,InTech,2012.

M.Domingo-Espin et al./Materials&Design83(2015)670–677677

史上最全2000个写材料常用词语集锦 (1)

史上最全2000个写材料常用词语集锦 按用途分类 4个字素材 关于学习 静心沉潜,目标专一,洗礼心灵,涤荡灵魂,内正其心,外正其行,学以修身,学以增智,学以提能,学以致用,入脑如心,意解情通,嵌入灵魂,学思践悟,融入血液,铸入灵魂,日积月累,勤学不倦,学在深处,谋在新处,干在实处,引向深入,推向持久,见到实效 关于成果 稳步提升稳中有进稳步提高全面加强全面提升全面深化全面进步全面推进持续 改善持续壮大持续向好持续发展扎实推进成效显著成效明显不断深入不断优化不断增强不断改善不断巩固不断涌现不断扩大明显提升明显增强明显加强明显好转显著增强更加完善更加凸显更加巩固更加彰显更加坚定得到增强得到提高 取得突破加速形成初步形成基本形成初具规模日益规范日益健全扎实推进纵深推进进展顺利深刻转型成果丰硕逐步完善健全完善更趋协调空前释放极大提振 步伐加快均衡普惠殷实安康卓有成效多点开花亮点纷呈硕果累累切实加强富有成效普遍提高活力增强丰富多彩频繁活跃健康发展形成品牌优化提升有序推进蔚然成形大幅提升同频共振合拍共鸣力度空前举世瞩目作用明显空前高涨竞相迸发

1、更加完善更加凸显更加巩固更加彰显更加坚定更加强劲更加响亮更加广泛更加坚强更加鲜明。 2、不断深入不断优化不断增强不断改善不断巩固不断涌现不断扩大不断发展不断提升不断健全。 3、全面加强全面提升全面深化全面进步全面推进全面展开。 4、持续改善持续壮大持续向好持续发展持续完善持续繁荣。 5、明显提升明显增强明显加强明显好转。 6、稳步提升稳中有进稳步提高。 7、得到增强得到提高得到改善。 8、基本建立基本实现基本形成。 9、更趋完备更趋协调逐步完善逐步扭转日益规范日益健全初步形成初步构建加速形成加快完备成效显著成效明显成果丰硕深入推进深入人心大幅提升大力实施相继问世相互促进多点开花亮点纷呈点上出彩线上结果面上开花扎实推进显著增强取得突破初具规模扎实推进纵深推进进展顺利深刻转型健全完善空前释放极大提振步伐加快均衡普惠殷实安康卓有成效硕果累累切实加强富有成效普遍提高活力增强丰富多彩频繁活跃健康发展形成品牌优化提升有序推进蔚然成形同频共振合拍共鸣同步实施力度空前举世瞩目作用明显空前高涨 竞相迸发,名列前茅蓬勃发展创新推进有效实施广泛弘扬普遍增加胜利完成顺利实施焕然一新为之一振巩固发展落地实施 关于领导

2018届高考文言文翻译之典型例题:2016年高考真题

2018届高考文言文翻译之典型例题:2016年高考真题 2018届高考文言文翻译之典型例题:2016年高考真题 2018届高考文言文翻译之典型例题:2016年高考真题 一、(2016年高考新课标I卷)阅读下面的文言文,完成4~7题。 曾公亮,字明仲,泉州晋江人。举进士甲科,知会稽县。民田镜湖旁,每患湖溢。公亮立斗门,泄水入曹娥江,民受其利。以端明殿学士知郑州,为政有能声盗悉窜他境至夜户不闭尝有使客亡橐中物移书诘盗公亮报吾境不藏盗殆从之者度耳索之果然 公亮明练文法,更践久,习知朝廷台阁典宪,首相韩琦每咨访焉。仁宗末年,琦请建储,与公亮等共定大议。密州民田产银,或盗取之,大理当以强。公亮日:此禁物也,取之虽强,与盗物民家有间矣。固争之,遂下有司议,比劫禁物法,盗得不死。契丹纵人渔界河,又数通盐舟,吏不敢禁,皆谓:与之校,且生事。公亮言:萌芽不禁,后将奈何?雄州赵滋勇而有谋,可任也。使谕以指意,边害讫息。英宗即位,加中书侍郎兼礼部尚书,寻加户部尚书。帝不豫,辽使至不能见,命公亮宴于馆,使者不肯赴。公亮质之曰:锡宴不赴,是不虔君命也。人主有疾,而必使亲临,处之安乎?使者即就席。熙宁三年,拜司空兼侍中、河阳三城节度使。明年,起判永兴军。居一岁,还京师。旋以太傅致仕。元丰元年卒,年八十。帝临哭,辍朝三日。公亮方厚庄重,沉深周密,平居谨绳墨,蹈规矩;然性吝啬,殖货至巨万。初荐王安石,及同辅政,知上方向之,阴为子孙计,凡更张庶事,一切听顺,而外若不与之者。常遣子孝宽参其谋,至上前略无所异,于是帝益信任安石。安石德其助己,故引擢孝宽至枢密以报之。苏轼尝从容责公亮不能救正,世讥其持禄固宠云。 (节选自《宋史曾公亮传》) 7.把文中画横线的句子翻译成现代汉语。 (1)锡宴不赴,是不虔君命也。人主有疾,而必使亲临,处之安乎? 译文:________________________________________________________________ ______________________________________________________________________ (2)苏轼尝从容责公亮不能救正,世讥其持禄固宠云。 译文:________________________________________________________________ ______________________________________________________________________ 二、(2016年高考新课标卷)阅读下面的文言文,完成4~7题。 陈登云,字从龙,唐山人。万历五年进士。除鄢陵知县,征授御史。出按辽东,疏陈安攘十策,又请速首功之赏。改巡山西。还朝,会廷臣方争建储。登云谓议不早决,由贵妃家阴沮之。十六年六月遂因灾异抗疏,劾妃父郑承宪,言:承宪怀祸藏奸窥觊储贰且广结术士之流曩陛下重惩科场冒籍承宪妻每扬言事由己发用以恐喝勋贵簧鼓朝绅 不但惠安遭其虐焰,即中宫与太后家亦谨避其锋矣。陛下享国久长,自由敬德所致,而承宪每对人言,以为不立东宫之效。干挠盛典,蓄隐邪谋,他日何所不至?疏入,贵妃、承宪皆怒,同列亦为登云危,帝竟留中不下。久之,疏论吏部尚书陆光祖,又论贬四川提学副使冯时可,论罢应天巡抚李涞、顺天巡抚王致祥,又论礼部侍郎韩世能、尚书罗万化、南京太仆卿徐用检。朝右皆惮之。时方考选科道,登云因疏言:近岁言官,壬午以前怵于威,则摧刚为柔;壬午以后昵于情,则化直为佞。其间岂无刚直之人,而弗胜龃龉,多不能安其身。二十年来,以刚直擢京卿者百止一二耳。背公植党,逐嗜乞怜,如所谓‘七豺’‘八狗’者,言路顾居其半。夫台谏为天下持是非,而使人贱辱至此,安望其抗颜直绳,为国家锄大奸、歼巨蠹哉!与其误用而斥之,不若慎于始进。因条数事以献。出按河南。岁大饥,人相食。

材料学资料大全

贝氏体:渗碳体分布在碳过饱和的铁素体基体上的两相混合物。马氏体:碳在 -Fe中的过饱和固溶体称马氏体,用M表示。奥氏体:碳溶于γ-Fe中所形成的间隙固溶体,用A 或γ表示。 过冷奥氏体:处于临界点A1以下的奥氏体称为过冷奥氏体.残余奥氏体:马氏体转变是不完全的,即使冷却到Mf点,也总有部分奥氏体未能转变而残留下来。 时效处理:合金工件经固熔热处理后在室温或稍高于室温保温,以达到沉淀硬化的目的。 淬火临界冷却温度(Vk):过冷奥氏体连续转变时,共析钢以大于该冷却速度冷却时,将只发生马氏体转变得到马氏体组织。淬透性:淬透性是指钢在淬火时获得淬硬层深度的能力。是钢在规定条件下的一种工艺性能。淬硬性:淬硬性是指钢淬火后所能达到的最高硬度,即硬化能力. 再结晶:指经冷塑性变形的金属,当淬火我恶毒足够高,时间足够长时,通过形核长大形成等轴无畸变新晶粒的过程。重结晶:固态金属及合金在加热(或冷却)通过相变点时,从一种晶体结构转变成另一种晶体结构的过程。 变质处理:向金属液体中加入一些细小的形核剂,使它在金属液形成大量分散的人工制造的飞自发晶核,从而获得细小的铸造晶粒,达到提高材料性能的目的。调制处理:淬火加高温回火的热处理,简称调制。 1.奥氏体、过冷奥氏体、残余奥氏体有何异同? 2.画出共析碳钢过冷奥氏体等温转变 C 曲线,标明各点、线、区的意义;并指出影响C曲线形状和位置的主要因素;说明合金元素对 C 曲线位置及形状的影响。答:在C曲线的下面还有两条水平线;M s线和M f线,它们为过冷奥氏体发生低温转变的开始温度和终了温度。所以C曲线表明,在A1以上,奥氏体是稳定的,不发生转变,能长期存在;在A1以下,奥氏体不稳定,要发生转变,转变之前处于过冷状态,过冷奥氏体的稳定性取决于其转变的孕育期,在曲线的“鼻尖”处(约550℃时)孕育期最短,过冷奥氏体的稳定性最小。“鼻尖”将曲线分成两部分,在上面随温度下降(即过冷度增大)孕育期变短,转变速度加快;在下面,随着温度下降孕育期增长,转变速度变慢。C曲线的位置和形状与奥氏体的稳定性及分解转变的特性有关,而后二者是决于化学成分和加热时的状态等,所以影响C曲线的因素主要是奥氏体的成分和加热条件。合金元素对 C 曲线位置及形状的影响:除铝钴以外,几乎所有溶入奥氏体中的合金元素,都能增加过冷奥氏体的稳定性,使C曲线右移。

高中文言文精短翻译练习100道题

高中文言文精短翻译练习100篇 1、范仲淹有志于天下 原文:范仲淹二岁而孤,母贫无靠,再适常山朱氏。既长,知其世家,感泣辞母,去之南都入学舍。昼夜苦学,五年未尝解衣就寝。或夜昏怠,辄以水沃面。往往糜粥不充,日昃始食,遂大通六经之旨,慨然有志于天下。常自诵曰:当先天下之忧而忧,后天下之乐而乐。 翻译:范仲淹二岁的时候死了父亲。母亲很穷,没有依靠。就改嫁到了常山的朱家。(范仲淹)长大以后,知道了自己的生世,含着眼泪告别母亲,离开去应天府的南都学舍读书。(他)白天、深夜都认真读书。五年中,竟然没有曾经脱去衣服上床睡觉。有时夜里感到昏昏欲睡,往往把水浇在脸上。(范仲淹)常常是白天苦读,什么也不吃,直到日头偏西才吃一点东西。就这样,他领悟了六经的主旨,后来又立下了造福天下的志向。他常常自己讲道:“当先天下之忧而忧,后天下之乐而乐。” 2、陈蕃愿扫除天下 原文:藩年十五,尝闲处一室,而庭宇芜岁。父友同郡薛勤来候之,谓藩曰:“孺子何不洒扫以待宾客?”藩曰:“大丈夫处世,当扫除天下,安事一室乎?”勤知其有清世志,甚奇之。 译文:陈藩十五岁的时候,曾经独自住在一处,庭院以及屋舍十分杂乱。他父亲同城的朋友薛勤来拜访他,对他说:“小伙子你为什么不整理打扫房间来迎接客人?”陈藩说:“大丈夫处理事情,应当以扫除天下的坏事为己任。不能在乎一间屋子的事情。”薛勤认为他有让世道澄清的志向,与众不同。 3、班超投笔从戎 原文:班超字仲升,扶风平陵人,徐令彪之少子也。为人有大志,不修细节。然内孝谨,居家常执勤苦,不耻劳辱。有口辩,而涉猎书传。永平五年。兄固被召诣校书郎,超与母随至洛阳。家贫,常为官佣书以供养。久劳苦,尝辍业投笔叹曰:“大丈夫无它志略,犹当效傅介子、张骞立功异域,以取封侯,安能久事笔研间乎?”左右皆笑之。超曰:“小子安知壮士志哉!” 翻译:班超为人有远大的志向,不计较一些小事情。然而在家中孝顺勤谨,过日子常常辛苦操劳,不以劳动为耻辱。他能言善辩,粗览了许多历史典籍。公元62年(永平五年),哥哥班固被征召做校书郎,班超和母亲也随同班罟到了洛阳。因为家庭贫穷,班超常为官府抄书挣钱来养家。他长期抄写,劳苦不堪,有一次,他停下的手中的活儿,扔了笔感叹道:“大丈夫如果没有更好的志向谋略,也应像昭帝时期的傅介子、武帝时期的张骞那样,在异地他乡立下大功,以得到封侯,怎么能长期地在笔、砚之间忙忙碌碌呢?”旁边的人都嘲笑他,班超说:“小子怎么能了解壮士的志向呢!” 4、宗悫(què)乘风破浪 原文:宗悫字元干,南阳涅阳人也。叔父炳高尚不仕。悫年少时,炳问其志。悫曰:“愿乘长风破万里浪。”炳曰:“汝若不富贵,必破我门户。”兄泌娶妻,始入门,夜被劫,悫年十四,挺身与拒贼,十余人皆披散,不得入室。时天下无事,士人并以文艺为业,炳素高节,诸子群从皆好学,而悫任气好武,故不为乡曲所称。 翻译:宗悫,字元干,是南阳涅阳人。他的叔父宗炳,学问很好但不肯做官。宗悫小的时候,宗炳问他长大后志向是什么?他回答:“希望驾着大风刮散绵延万里的巨浪。”(宗炳说:“就算你不能大富大贵,也必然会光宗耀祖。”)有一次宗悫的哥哥宗泌结婚,结婚的当晚就遭到强盗打劫。当时宗悫才14岁,却挺身而出与强盗打斗,把十几个强盗打得四下溃散,根本进不了正屋。当时天下太平,有点名望的人都认为习文考取功名是正业。宗炳因为学问高,大家都喜欢跟着他读儒家经典。而宗悫因为任性而且爱好武艺,因此不被同乡称赞。 5、祖逖闻鸡起舞 原文:范阳祖逖,少有大志,与刘琨俱为司州主簿,同寝,中夜闻鸡鸣,蹴琨觉曰:“此非恶声也!”因起舞。及渡江,左丞相睿以为军谘祭酒。逖居京口,纠合骁健,言于睿曰:“晋室之乱,非上无道而下怨叛也,由宗室争权,自相鱼肉,遂使戎狄乘隙,毒流中土。今遗民既遭残贼,人思自奋,大王诚能命将出师,使如逖者统之以复中原,郡国豪杰,必有望风响应者矣!”睿素无北伐之志,以逖为奋威将军、豫州刺史,给千人廪,布三千匹,不给铠仗,使自召募。逖将其部曲百余家渡江,中流,击楫而誓曰:“祖逖不能清中原而复济者,有如大江!”遂屯淮阴,起冶铸兵,募得二千余人而后进。 翻译:当初,范阳人祖逖,年轻时就有大志向,曾与刘琨一起担任司州的主簿,与刘琨同寝,夜半时听到鸡鸣,他踢醒刘琨,说:“这不是令人厌恶的声音。”就起床舞剑。渡江以后,左丞相司马睿让他担任军咨祭酒。祖逖住在京口,聚集起骁勇强健的壮士,对司马睿说:“晋朝的变乱,不是因为君主无道而使臣下怨恨叛乱,而是皇亲宗室之间争夺权力,自相残杀,这样就使戎狄之人钻了空子,祸害遍及中原。现在晋朝的遗民遭到摧残伤害后,大家都想着自强奋发,大王您确实能够派遣将领率兵出师,使像我一样的人统领军队来光复中原,各地的英雄豪杰,一定会有闻风响应的人!”司马睿一直没有北伐的志向,他听了祖逖的话以后,就任命祖逖为奋威将军、豫州刺史,仅仅拨给他千人的口粮,三千匹布,不供给兵器,让祖逖自己想办法募集。祖逖带领自己私家的军队共一百多户人家渡过长江,在江中敲打着船桨说:“祖逖如果不能使中原清明而光复成功,就像大江一样有去无回!”于是到淮阴驻扎,建造熔炉冶炼浇铸兵器,又招募了二千多人然后继续前进。 6、画家赵广不屈 原文:赵广,合肥人。本李伯时家小史,伯时作画,每使侍左右。久之遂善画。尤工画马。几能乱真,建炎中陷贼,贼闻其善画,使图所虏妇人,广毅然辞以实不能画,胁以白刃,不从遂断右手拇指遣去,而广平生适用左手。乱定,惟画观音大士而已。又数年,乃死,今士大夫所藏伯时观音,多广笔也。 翻译:赵广是合肥人,本来是李伯时家里的书童。李伯时作画的时候就侍奉在左右,时间长了就擅长画画了,尤其擅长画马,几乎和李伯时所作的一样。建炎年间,他落在金兵手里。金兵听说他擅长画画,就让他画掳来的妇人。赵广毅然推辞作画,金兵用刀子威胁,没得逞,就将他的右手拇指砍去。而赵广其实是用左手作画的。局势平定以后,赵广只画观音大士。又过了几年,赵广死了,如今有地位的知识分子所藏的李伯时的观音画,大多是赵广的手笔。 7、苏武牧羊北海上

建筑材料知识大全分类(超全)

建筑材料知识大全分类(超全)

一个设计师不了解家装的各种材料,就如同一个老师不了解自己的课程,将无从谈起。一个对家装材料一知半解的设计师,就如同一个对知识一知半解的老师,将会误人子弟! 家装材料知识包括: 一、吊顶材料知识二、门窗材料知识三、五金材料知识四、墙面材料知识 五、地面材料知识六、胶粘材料知识七、油漆材料知识八、水电材料知识 九、玻璃材料知识 第一节吊顶材料知识 吊顶是现代家庭装修常见的装饰手法。 吊顶既具有美化空间的作用,也是区分室内空间一种方法。很多情况下,室内空间不能通过墙体、隔断来划分,那样就会让空间显得很拥挤,很局促。设计上可以通过天花与地面来对室内空间进

行区分,而天花所占的比例又很大。吊顶材料可以分为面板和架构龙骨。吊顶面板分为普通石膏板和防水防潮类面板。龙骨分为金属龙骨与木龙骨。 吊顶材料包括:面板和龙骨 面板分为普通石膏板和防水石膏板; 龙骨分为木龙骨和金属龙骨。 面板: 一、普通石膏板 普通石膏板是由双面帖纸内压石膏而形成,目前市场普通石膏板的常用规格有1200*3000和1200*2440两种,厚度一般为9㎜。其特点是价格便宜,但遇水遇潮容易软化或分解。 普通石膏板一般用于大面积吊顶和室内客厅、餐厅、过道、卧室等对防水要求不高的地方,可以做隔墙面板,也可做吊顶面板。

二、防水面板 1、硅钙板: 硅钙板又称石膏复合板,它是一种多孔材料,具有良好的隔音、隔热性能,在室内空气潮湿的情况下能吸引空气中水分子、空气干燥时,又能释放水分子,可以适当调节室内干、湿度、增加舒适感。石膏制品又是特级防火材料,在火焰中能产生吸热反应,同时,释放出水分子阻止火势蔓延,而且不会分解产生任何有毒的、侵蚀性的、令人窒息的气体,也不会产生任何助燃物或烟气。 硅钙板与石膏板比较,在外观上保留了石膏板的美观;重量方面大大低于石膏板,强度方面远高于石膏板;彻底改变了石膏板因受潮而变形的致命弱点,数倍地延长了材料的使用寿命;在消声息音及保温隔热等功能方面,也比石膏板有所提高。 硅钙板一般规格为600*600,主要用于办公室、

中考文言文翻译实用方法经典讲解(带试题实例!)

一.增就是增补,在翻译时增补文言文省略句中的省略成分。 注意:补出省略的成分或语句,要加括号。 1、增补原文省略的主语、谓语或宾语 例1:“一鼓作气,再而衰,三而竭。”“再”“三”后省略了谓语“鼓”,翻译时要补上。 例2:“见渔人,乃大惊,问所从来。”译句:“(桃源中人)一见渔人,大为惊奇,问他是从哪里来的。” 例3:“君与具来。”“与”后省略了宾语“之”。 2、增补使语义明了的关联词 例:“不治将益深”是一个假设句,译句:“(如果)不治疗就会更加深入”。 二 .删就是删除,凡是古汉语中的发语词、在句子结构上起标志作用的助词和凑足音节的助词等虚词,因在现代汉语中是没有词能代替,故翻译时无须译出,可删去。 例1:“师道之不传也久矣。”译句:“从师学习的风尚已经很久不存在 了。”“也”为句中语气助词,起到舒缓语气的作用,没有实在意义。在翻译时,完全可以去掉。 例2:“孔子云:何陋之有?”译句:“孔子说:有什么简陋的呢?”“之”为宾语前置的标志,删去不译。 例3:“夫战,勇气也。”译句:“战斗,靠的是勇气”。“夫”为发语词,删去不译。 三.调就是调整,在翻译文言文倒装句时,应把古汉语倒装句式调整为现代汉语句式,使之符合现代汉语的表达习惯、译句通顺。这就需要调整语句语序, 大体有三种情况:

1、后置定语前移例:“群臣吏民,能面刺寡人之过者,受上赏。”可调成“能面刺寡人之过群臣吏民,受上赏。” 2、前置谓语后移例:“甚矣!汝之不惠。”可调成“汝之不惠甚矣。” 3、介宾短语前移。例:“还自扬州”可调成“自扬州还”。 4、前置宾语后移例:“何以战?”可调成“以何战?” 四.留就是保留,凡是古今意义相同的词、专有名词、国号、年号、人名、物名、人名、官职、地名等,在翻译时可保留不变。 例:“庆历四年春,滕子京谪守巴陵郡。”译句:“庆历四年的春天,滕子京被贬到巴陵郡做太守。”“庆历四年”为年号,“巴陵郡”是地名,可直接保留。 五.扩就是扩展。 1、言简义丰的句子,根据句义扩展其内容。 例:“怀敌附远,何招而不至?”译句:“使敌人降服,让远方的人归附,招抚谁,谁会不来呢?” 2、单音节词扩为同义的双音节词或多音节词。 例:“更若役,复若赋,则如何?”译句:“变更你的差役,恢复你的赋税,那么怎么样呢?”“役”“赋”扩展为双音节词。 六.缩就是凝缩,文言文中的有些句子,为了增强气势,故意实用繁笔,在翻译时应将其意思凝缩。 例:“有席卷天下,包举宇内,囊括四海之意,并吞八荒之心。”译句:“(秦)有吞并天下,统一四海的雄心。” 七.直即直译,就是指紧扣原文,按原文的词句进行对等翻译的今译方法。对于文言文的实词、大部分虚词、活用词和通假字,一般是要直接翻译的,否则, 在考查过程中是不能算作准取得翻译。 例:“清荣峻茂,良多趣味。”译句:“水清,树茂,山高,草盛,实在是趣味无穷。”

幕墙所有材料详细介绍大全

幕墙所有材料详细介绍大 全 Last revision date: 13 December 2020.

一幕墙材料分类及基本要求 1.幕墙材料分类 材料是保证幕墙质量和安全的物质基础。幕墙所使用的材料,概括起来,基本上可有四大类型。即:骨架材料、板材、结构粘结及密封填缝材料、五金配件等。 n骨架材料主要有铝型材和钢材两种。 n板材主要有玻璃、铝板、石材、不锈钢板、陶板、千思板、彩钢板、阳光板等。 n结构粘结及密封填缝材料主要包括硅酮结构胶、耐候密封胶、间隔双面胶带、密封胶条、泡沫棒、保温岩 棉等。 n五金配件主要包括开启附件、预埋件、转接件、连接件等。 2.对幕墙材料的基本要求 2.1?符合相应规范及标准 幕墙材料绝大部分国内都能生产,而且大部分都有国家标准或行业标准,但是,由于生产技术和管理水平的差别,市上同种类材料质量,由于生产厂家不同质量差别也很大。作为建筑外围护结构的幕墙,虽然不承受主体结构的荷载,但处于建筑物的外表面,除承受本身的自重外,还是承受风荷载、地震作用和温度作用的影响。因此,要求幕墙必须安全可靠,要求幕墙使用的材料都应该符合国

家或行业标准规定的质量指标,少量暂时还没有国家或行业标准的材料,可按国外先进国家同类产品标准要求,生产企业制订企业标准作为产品质量控制的依据。总之,不合格的材料严禁使用,必须具有出厂合格证。 2.2?具有耐候性和耐久性 幕墙处于建筑物的外表面,经常受自然环境不利因素的影响,如日晒、雨淋、风沙等不利因素的侵蚀,因此,要求幕墙材料要有足够的耐候性和耐久性。具备防风雨、防日晒、防盗、防撞击、保温隔热等功能,因此,所用金属材料和金属零配件除不锈钢和耐候钢外,钢材应进行热浸镀锌处理、无机富锌涂料处理或采取其他有效的防腐措施,铝合金材料应进行表面阳极氧化、电泳涂漆、粉末喷涂或氟碳漆喷涂处理,以保证幕墙的耐久性。 2.3?具有不燃性和难燃性能 幕墙无论是在加工制作还是在安装施工中,还是在交付使用后,防火都十分重要,因此,应尽量采用不燃材料和难燃材料,但目前国内外都有不少材料还是不防火的,如双面胶带、填充棒等都是易燃材料,因此,在安装施工中应倍加注意,并要有防火措施。 二骨架材料 幕墙所采用的骨架材料主要有两大类,一种是铝合金型材,一种是钢材。主要用于制作幕墙框架(也称幕墙龙

2019年高三语文一轮总复习(文言文阅读+翻译)第02课 典型例题(含解析)

2019年高三语文一轮总复习(文言文阅读+翻译)第02课典型例题 (含解析) 一、(2016年高考新课标I卷)阅读下面的文言文,完成4~7题。 曾公亮,字明仲,泉州晋江人。举进士甲科,知会稽县。民田镜湖旁,每患湖溢。公亮立斗门,泄水入曹娥江,民受其利。以端明殿学士知郑州,为政有能声盗悉窜他境至夜户不闭尝有使客亡橐中物移书诘盗公亮报吾境不藏盗殆从之者度耳索之果然公亮明练文法,更践 久,习知朝廷台阁典宪,首相 ..,与公亮等共定大议。密 ..韩琦每咨访焉。仁宗末年,琦请建储 州民田产银,或盗取之,大理当以强。公亮日:“此禁物也,取之虽强,与盗物民家有间矣。” 固争之,遂下有司 ..纵人渔界河,又数通盐舟,吏不敢禁,..议,比劫禁物法,盗得不死。契丹 皆谓:与之校,且生事。公亮言:“萌芽不禁,后将奈何?雄州赵滋勇而有谋,可任也。”使谕以指意,边害讫息。英宗即位,加中书侍郎兼礼部尚书,寻加户部尚书。帝不豫,辽使至不能见,命公亮宴于馆,使者不肯赴。公亮质之曰:“锡宴不赴,是不虔君命也。人主有疾,而必使亲临,处之安乎?”使者即就席。熙宁三年,拜司空兼侍中、河阳三城节度使。明年,起判永兴军。居一岁,还京师。旋以太傅致仕。元丰元年卒,年八十。帝临哭,辍朝三日。公亮方厚庄重,沉深周密,平居谨绳墨,蹈规矩;然性吝啬,殖货至巨万。初荐王安石,及同辅政,知上方向之,阴为子孙计,凡更张庶事,一切听顺,而外若不与之者。常遣子孝宽参其谋,至上前略无所异,于是帝益信任安石。安石德其助己,故引擢孝宽至枢密以报之。苏轼尝从容责公亮不能救正,世讥其持禄固宠云。 (节选自《宋史·曾公亮传》) 7.把文中画横线的句子翻译成现代汉语。 (1)锡宴不赴,是不虔君命也。人主有疾,而必使亲临,处之安乎? 译文:________________________________________________________________ ______________________________________________________________________ (2)苏轼尝从容责公亮不能救正,世讥其持禄固宠云。 译文:________________________________________________________________ ______________________________________________________________________ 【答案】(1)赐宴不到场,这是对君主命令的不敬。君主有病,却一定要他亲临宴会,做这样的事能心安吗?(2)苏轼曾从容地责备公亮不能纠正弊病,世人讥讽他保持禄位加固宠幸。

精典文言文翻译

译文:有一天,晋平公同著名的音乐家师旷闲谈。晋平公叹了口气说:“我今年已经七十岁了,很想学习,但恐怕太晚了。” “说:“哪有身为臣子而取笑君主的呢?” 师旷连忙起身下拜,谢罪道:“臣下怎敢取笑大王?我听人家说,少年时好学,如同初升的太阳一样阳气充沛;壮年时好学,如同中午的阳光,还很强烈;老年时好学,只像蜡烛照明一样。但是,点亮蜡烛走路,与摸黑行走相比,那一个(更好)呢?” 说得好。” 秦穆公对伯乐说:“您的年纪大了,您的子孙中间有没有可以派去寻找好马的呢” 伯乐回答说:“我的子孙都是些下等之才,有个叫九方皋的人,他识别好马的本领,决不在我以下,可以告诉他识别天下最好的马的方法。请让我引见他” 秦穆公接见了九方皋,派他去寻找好马。过了三个月,九方皋回来报告说:“我已经在沙丘 找到好马了。”秦穆公问道:“是匹什么样的马呢”九方皋回答说:“是匹黄色的母马。” 秦穆公派人去把那匹马牵来,一看,却是匹纯黑色的公马。报知秦穆公,秦穆公很不高兴,把伯乐找来对他说:“您所推荐的那个找好马的人,毛色公母都不知道,又怎么能懂得什么是天下最好的马呢?”伯乐说道:“九方皋他所观察的是马的天赋的内在素质,深得它的精妙,而忘记了它的粗糙之处;明悉它的内部,而忘记了它的外表。九方皋只看见所需要看见的,看不见他所不需要看见的;只视察他所需要视察的,而遗漏了他所不需要观察的。”等到把那匹马牵回驯养使用,它果然是一匹天下难得的好马。 魏郑公(魏征)进谏劝阻唐太宗前往泰山封禅,说:“如今有一个人,患病十年,经过治疗将要痊愈。此人瘦得皮包骨头,却想要让他背着一石米,一天走上一百里路,肯定做不到。隋朝末年社会动乱,不止是十年的时间,陛下作为天下良医,百姓的疾苦虽然已经解除,但还不很富裕。要祭祀天地(向它)报告大功完成,我心里还是有疑虑。”唐太宗无言反驳。 当初,范文正公(范仲淹)被贬到饶州,朝廷正纠治朋党,士大夫都不敢前去告别,只有待制顾质独自抱病在国都城门(为范仲淹)饯行,大臣们责怪他说:“你,是长者,为什么要把自己搅进朋党里面去?”顾质说:“范先生是天下的贤人,我哪敢和他比,如果让我做了范先生的朋党,那我感到太荣幸了。”听到的人都惭愧得缩脖子。 陈寔,字仲弓,为太丘县令。一天,有一个小偷伏在屋梁上准备行窃,陈寔见到后,把自己的儿子喊过来,教训说:“不好的人,并不一定是生性如此,乃是习惯所养成的,屋梁上那一位就是这样的人。”一会儿,屋梁上的小偷跳下来,跪在地上认罪。陈寔说:“从你的外貌上看,您并不是恶人,应该是由贫困造成的。”于是,赠给他两匹布,教他一定要改正。此后,这人再没有做过小偷。 刘瞻的父亲是个贫寒的读书人,十多岁的时候,他就在郑纟因身旁管理笔墨砚台等书房用具。十八九岁的时候,郑纟因当上了御史,前往荆部商山巡视,中途在亭子里休息,俯瞰山水。当时刚刚雨过天晴,山峦秀美岩石奇丽,泉水山石分外好看。郑纟因坐了很久,起来走了五六里地,说:“如此美景,却没有作诗,就是观赏到天黑又有什么关系?”于是又返回亭子,想要往亭子上题一首诗。他忽然发现亭子上已经题了一首绝句,墨迹还没有干。郑纟因惊讶于这首诗作得出色。而当时南北方向又都没有行人。随行的人对郑纟因说:“刚才只有刘景落在后面二三里地。”郑纟因同刘景开玩笑说:“莫非是你题的吗?”刘景拜了拜说:

dnf材料大全

周一、周三晚上8-9点:开启南部溪谷。需要等级:Lv20以上。需要道具:神秘邀请函(每天早上6点有系统给。上限为两个,不可交易) 周二、周五晚上9-10点:开启战场活动。需要等级:至少Lv18。(战场随着级别划分)需要道具:30000金币。进入次数:上限为3ci 周六、周日下午1-2点:守护者祭坛。要求等级:Lv50以上。需要道具:克雷泽的龟甲(每天早上6点有系统给。上限为三个,不可交易)。 下午2:30-3:00:怪物攻城。需要等级:Lv3以上。(3级以上可以去城镇,城镇才有怪物。怪物范围是赫尔马顿大街至西海岸)。注意:怪物等级是当前队伍里等级最高的人的等级。 下午4:10-4:40:领主之塔。需要等级:Lv60以上。需要道具:领主的邀请函(每天早上6点有系统给。上限为三个,不可交易) 晚上7-8点:守护者祭坛。要求同上。 晚上8-9点:挑战金、银角大王。需要等级:Lv1以上···需要道具:传说之密匙(Lv18以上在福胖胖那里有每日任务。 打符合自己等级的地下城有几率打出任务物品:传说之灵符。凑齐五个后给你四个传说之密钥,5个传说之密钥可以去福胖胖那里换一个传说之密匙)在天界(神之都根特)以下的图只能挑战银角大王,在天界(神之都根特)以上的图可以挑战金角大王。 煤尘6个可以换最xià级砥石(达芙妮)(可重复)哥布林法师类掉落 胶duì 6个就够le,修补魔法阵任务yòng 哥布林,牛类guài物掉落 清凉的罗荆guǒ10个换啤酒zài月光酒馆找索西亚(可重复)格兰之森和洛兰的树shàng 掉落 熟透的山葡萄10个换葡萄酒zài月光酒馆找索西亚(可重复)格兰之森和洛兰的树shàng 掉落 银锭4个可以zài辛达处接20级紫武器任务 转职物品:剑魂需要2个 罗莉安的任务给 十夫长的标记10个换生锈的铁片10个(达芙妮)(可重复) 夏洛克复仇的徽章任务yòng品,7个 哥布林十夫长和投掷十夫长掉落 哥布林毛皮夏洛克任务“哥布林yòng品的材料”

高考文言文翻译十年试题例析(一)

高考文言文翻译难点实词十年试题总结(一)你在读书上花的任何时间,都会在某一个时刻给你回报。——董卿《中国诗词大会》 你在学习上花的任何努力,都会在高考时刻给你回报。----寄同学们 声明:部分内容来源网络,版权归原作者。 1【谙】①熟悉,知晓。例1、江南好,风景旧曾谙。例2、二人久居江东,谙习水性。(《三国演义·群英会蒋干中计》)②熟记,记诵。虽复一览便谙。(《南齐书·陆澄传》)2【按】①查看,察看。按西域书,阿罗汉诺矩罗居震旦东南大海际雁荡山……(《雁荡山》) ②审查,核查。例1、以吴民之乱请于朝,按诛五人。(《五人墓碑记》) 例2、安到郡,不入府,先往按狱,理其无明验者,条上出之。(《后汉书·袁张韩周列传》袁安到郡后,不进官府,先去审查案件,查出那些没有明确证据的犯人,上奏要求放他们出狱。) ③巡查,巡行。例1、部使者臧,新贵,将按郡至袁。(2007福建卷,高启《书博鸡者事》江西湖东道肃政廉访司有一个姓臧的,新近做了高官,将要巡查所管各州郡,来到袁地。)例2、曩胡公按部,令所过毋供张。(《明史·海瑞转》刚才胡公巡查所部地区,命令经过的地区不要办礼物准备招待。) ④压抑,止住。按助强弱。⑤于是,就。 3【案】①通“按”,察看,查看。召有司案图,指从此以往十五都予赵。(《廉颇蔺相如列传》) ②通“按”,考察,核实。案贤圣之言,上下多相违(互相矛盾)。 ③通“按”,巡行,巡查。宣王案行其营垒,曰:“天下奇才也。” ④通“按”,用手压或按。例1、案灌夫项令谢(道歉)。 例2、(高进之)案腰间刀伺道济,有异言,则杀之。道济趋下阶,叩头曰:“武皇帝在上,臣道济如有异心,速殛之。”(2007广东卷,高进之此时用手按住腰间的刀窥探檀道济,如果他有异言,就杀掉他。檀道济快步走下台阶,叩头说:“武皇帝在上,我檀道济如有异心,就赶快诛杀我。”) ⑤文书,案卷。无丝竹之乱耳,无案牍之劳形。 4【暗】①愚昧,糊涂。例1、水府幽深,寡人暗昧,夫子不远千里,将有为乎?(《柳毅传》) 例2、刘璋暗弱。(《三国志·隆中对》,昏庸无能,胆小懦弱。)例3、兼听则明,偏信则暗。 ②悄悄地,默默地。寻声暗问弹者谁?(《琵琶行》)群书万卷常暗诵。(杜甫《可叹》) ③私下里,不公开的;隐蔽地,隐藏不露的。例1、明察暗访例2、龙门水尤湍急,多暗石。 5【媪】①对老年妇女的尊称。老臣以媪为长安君计短也。(《触龙说赵太后》)②泛指妇女。其父郑季,为吏,给事平阳侯家,与侯妾卫媪通,生青。(《史记·卫将军骠骑列传》) B 6【拔】①攻取,攻下。例1、其后秦伐赵,拔石城。(《廉颇蔺相如列传》)例2、汉乃进军攻广都,拔之。(2008江苏卷,吴汉挥师直攻广都,迅速攻克。) ②突出,超出。例1、天姥连天向天横,势拔五岳掩赤城。出类拔萃。例2、吾读严子祺先之文,深叹其能矫然拔俗也。(2011湖南卷,) ③提拔。山涛作冀州(的长官),甄(审查)拔三十余人。 7【罢】①停止,结束。例1、于是罢酒,侯生遂为上客。(《史记·信陵君窃符救赵》)例 2、曲罢曾教善才服,妆成每被秋娘妒。例 3、语罢暮天钟。 ②散,散集。罢市。

中考语文文言文阅读专题训练试题经典

中考语文文言文阅读专题训练试题经典 一、中考语文文言文阅读 1.阅读下文,完成下列小题 吾始困时,尝与鲍叔贾,分财利多自与,鲍叔不以我为贪,知我贫也。吾尝为鲍叔谋事而更穷困,鲍叔不以我为愚,知时有利不利也。吾尝三仕三见逐于君,鲍叔不以我为不肖,知我不遭时。吾尝三战三走,鲍叔不以我怯,知我有老母也。公子纠败,召忽①死之,吾幽囚受辱,鲍叔不以我为无耻,知我不羞小节而耻功名不显于天下也。生我者父母,知我者鲍子也。 (注释)吾:即管仲,春秋时期齐国的著名政治家。贾:gǔ做买卖。穷困:困厄,窘迫。公子纠:齐国公子,当时与另一位公子小白(即后来的齐桓公)争夺王位。其时,管仲与后文的“召忽”同为其辅臣。死之:为公子纠而死。 (1)解释划线的词 ①鲍叔不以我为贪________ ②三战三走 ________ (2)文中划线句翻译,正确的一项是() A. 我尝试多次做官又多次被国君罢免 B. 我曾经三次做官三次看见有人追逐国君 C. 我曾经多次做官又多次被国君罢免 D. 我尝试三次做官三次看见有人追逐国君(3)管仲早年的所作所为,在别人看来是“贪”、“________”、“不肖”、“________”和“________”,而鲍叔则用不同的眼光看到管仲的另一面。 (4)鲍叔是一个________的人,文章表达了管仲对鲍叔“知遇之恩”的感激之情 【答案】(1)是;跑 (2)C (3)愚;怯;无耻 (4)识人大体(或察人准确) 【解析】【分析】(1)考查重点词语。①鲍叔不以我为贪:鲍叔并不认为我是贪财。为:是。②三战三走:我曾经多次打仗多次逃跑。走:跑。 (2)吾尝三仕三见逐于君:我曾经多次作官多次都被国君驱逐。尝:曾经。三:多次。逐:驱逐。见:免职。于:被。故选C。 (3)考查内容理解。结合原文“鲍叔不以我为愚……鲍叔不以我怯……鲍叔不以我为无耻……”归纳答案:愚、怯、无耻。 (4)朋友相交,贵在知心。“管鲍之交”之所以被传为佳话,就是因为在管鲍之间存在着一种真诚的宽容和谅解。朋友之间相互理解、帮助和支持是非常重要的,如果没有鲍叔牙的胸怀,管仲可能很难在历史上留名;如果没有管仲的雄才大略,鲍叔牙也许永远只是一个商人。所以,天下人都赞扬管仲的才能,但更赞扬鲍叔牙能够了解举荐贤人。 故答案为:⑴是;跑; ⑵ C; ⑶愚;怯;无耻; ⑷识人大体(或察人准确)。 【点评】⑴作答本题,重点在于文言实词的积累,同时也可以借助整个句子的意思来判

(整理)21幕墙所有材料详细介绍大全.

幕墙所有材料详细介绍大全 一幕墙材料分类及基本要求 1.幕墙材料分类 材料是保证幕墙质量和安全的物质基础。幕墙所使用的材料,概括起来,基本上可有四大类型。即:骨架材料、板材、结构粘结及密封填缝材料、五金配件等。 骨架材料主要有铝型材和钢材两种。 板材主要有玻璃、铝板、石材、不锈钢板、陶板、千思板、彩钢板、阳光板等。 结构粘结及密封填缝材料主要包括硅酮结构胶、耐候密封胶、间隔双面胶带、密封胶条、泡沫棒、保温岩棉等。 五金配件主要包括开启附件、预埋件、转接件、连接件等。 2.对幕墙材料的基本要求 2.1符合相应规范及标准 幕墙材料绝大部分国内都能生产,而且大部分都有国家标准或行业标准,但是,由于生产技术和管理水平的差别,市上同种类材料质量,由于生产厂家不同质量差别也很大。作为建筑外围护结构的幕墙,虽然不承受主体结构的荷载,但处于建筑物的外表面,除承受本身的自重外,还是承受风荷载、地震作用和温度作用的影响。因此,要求幕墙必须安全可靠,要求幕墙使用的材料都应该符合国家或行业标准规定的质量指标,少量暂时还没有国家或行业标准的材料,可按国外

先进国家同类产品标准要求,生产企业制订企业标准作为产品质量控制的依据。总之,不合格的材料严禁使用,必须具有出厂合格证。2.2具有耐候性和耐久性 幕墙处于建筑物的外表面,经常受自然环境不利因素的影响,如日晒、雨淋、风沙等不利因素的侵蚀,因此,要求幕墙材料要有足够的耐候性和耐久性。具备防风雨、防日晒、防盗、防撞击、保温隔热等功能,因此,所用金属材料和金属零配件除不锈钢和耐候钢外,钢材应进行热浸镀锌处理、无机富锌涂料处理或采取其他有效的防腐措施,铝合金材料应进行表面阳极氧化、电泳涂漆、粉末喷涂或氟碳漆喷涂处理,以保证幕墙的耐久性。 2.3具有不燃性和难燃性能 幕墙无论是在加工制作还是在安装施工中,还是在交付使用后,防火都十分重要,因此,应尽量采用不燃材料和难燃材料,但目前国内外都有不少材料还是不防火的,如双面胶带、填充棒等都是易燃材料,因此,在安装施工中应倍加注意,并要有防火措施。 二骨架材料 幕墙所采用的骨架材料主要有两大类,一种是铝合金型材,一种是钢材。主要用于制作幕墙框架(也称幕墙龙骨)和面材板块的副框。一般来讲,铝合金型材用做玻璃、铝板幕墙的龙骨和副框,钢材则用做石材幕墙的龙骨。

(完整版)高考真题文言文翻译

请翻译下列划线句子 【解析】本题考查考生理解和翻译文中句子的能力。 【方法点拨】翻译句子要以直译为主,意译为辅,字字落实,达到“信、达、雅”的标准。同时要注意实词:一词多义、词类活用、古今异义、通假字的翻译;还要注意一些虚词,一些虚词,也有意义;再就是注意一些特殊句式的翻译也要到位。 二、节选自《宋史郭浩传》(全国大纲卷10 (5分) (设置守备)。 4 4 三、节选自《后汉书阴兴传》(山东卷10分) 5 (4分) (5 6、帝后召兴,欲封之,置印绶于前,兴固让曰:“臣未有先登陷阵之功,而一家数人并蒙爵士,令天下觖望,诚为盈溢。臣蒙陛下、贵人恩泽至厚,富贵已极,不可复加,至诚不 愿。(4分) (6。 7、明年夏,帝风眩疾甚,后以兴领侍中,受顾命于云台广室。会疾廖,召见兴,欲以代 吴汉为大司马。兴叩头流涕,固让曰:“臣不敢惜身,诚亏损圣德,不可苟冒。 分) (7) 要求)。 四、节选自《元史?彻里》(江西卷12分) 8、时行省理财方急,卖所在学田以价输官。彻里曰: (4分) 8?(关键词:所以、

安、鬻) 9、彻里乃于帝前具陈桑哥奸贪误国害民状, (4分) 9(关键词:毁诋、左右、批其颊。) 10、汀、漳剧盗欧狗久不平,遂引兵征之,号令严肃,所过秋毫无犯。有降者,则劳以 酒食而慰遣之,曰:的确:“古人秉烛夜游,~有以也”2.一年的收成,年景:~凶(年成歉收)。歉~(收成不好的年份)。】由官吏污暴 其返汝耕桑,安汝田里,毋恐。” (4分) 10(关键词:岂、良、所致。) 五、节选自《清史稿?陶澍传》(广东卷10分) 11、各县设丰备仓于乡村,令民秋收后量力分捐,不经吏役,不减粜,不出易,不假贷, 。歉~(收成不好的年份)。 分) 【注】②社仓法:用义积谷备荒的方法。 (11 “社仓法” 12(3分) (12 来劝励(好的)风气习俗。 13(3分) 【注】③风痹:手足麻木不仁之症。 (13

初中课外文言文7篇(原文+题目+答案+译文)

哄堂大笑 故老能言五代时事者云,冯相、和相同在中书。一日,和问冯曰:“公靴新买,其直几何?冯举左足示和曰:“九百。”和性褊急,遽回顾小吏曰:“吾靴何得用一千八百?”因垢责小吏久之。冯徐举其右足,曰:“此亦九百。”于是哄堂大笑。时谓宰相如此,何以镇服百 僚。 1.解释下列句中加点的词。 (1)公.靴新买()(3)冯徐.举其右足()2.翻译句子。 其直几何译文:遽回顾小吏曰译文:2)因.垢责小吏()4)时谓.宰相如此() 3.试对冯相这个人物的性格作分析点评。 答: 译文:能够讲述五代时事的年老阅历多的人说,宰相冯道与宰相和凝一同在宰相办公的官署。一天,和凝问冯道:“您新买的靴子值多少钱?”冯道举起左脚给和凝看后说:“九百。”和凝性情急躁,急忙回头对小吏说:“我的靴子为什么用了一千八百?” 因而责骂小吏很长时间。冯道这时又慢腾腾 1、您、于是、慢慢、说 2、您新买的靴子值多少钱急忙回头对小吏说 3、性格急躁,做事情不假思索,随便责备下属

戴震难师 先生①少时就傅②读书,过目成诵,日数千言不肯休。授《大学章句》③,至“右经一章”以下,问塾师:“此何以知为孔子之言而曾子记之?又何以知为曾子之意而门人记之?” 师应之曰:“此朱文公④所说。”即问:“朱文公何时人?”曰:“宋朝人。”“孔子、曾子何时人?”曰:“周朝人。”“周朝、宋朝相去几何时矣?曰:“几二千年矣。”“然则朱文公何以知然?” 师无以应,曰:“此非常⑤儿也。” 【注释】①先生:即戴震,清朝著名的思想家、语言文字学家。②就傅:跟随老师。③《大学章句》:儒家经典之一。④朱文公:朱熹。⑤非常:不寻常。 1.解释下列句中加点的词。 (1)先生少.时就傅读书()(2)相去.几何时矣() 2.画线句子“然则朱文公何以知然” ,理解正确的一项是 ______ A. 可是,朱熹为何可以知道自然现象呢 B. 既然这样,那么朱熹为何可以知道自然现象呢 C. 可是,朱喜凭什么知道是这样的 D.既然这样,那么朱熹凭什么知道是这样的 3.读了上文,你认为戴震日后成为著名的思想家、语言文字学家的原因是(1) ______ ;(2)___________ ;(3)___________ 。 译文:戴震这年才会说话,大概是聪明积累的时间太长,跟随老师读书,看一遍就能背下来,每天背几千字不肯停下来,老师教《大学章句》至《右径一章》以下。问老师:“这凭什么知道是孔子的话,而曾子记述,又怎么知道是曾子的意思,而是学生记下来的呢?”老师回答他说:“这是朱文公说的。”(他)马上问:“朱文公是什么时候的人。”(老师)回答他说:“宋朝人。”“曾子,孔子是什么时候的人。”说:“周朝人。”“周朝和宋朝相隔多少年。”(老师)说:“差不多两千年了。”“既然这样朱文公怎么知道这些?”老师无法回答,说:“这是一个不寻常的孩子。” 1.(1)(年纪)小,年少(2)距: 距离(4 分,各2 分) 2.D (2 分) 3. (1)热爱学习(勤学) (2)敢于质疑,善于质疑(好问)

所有材质资料集锦

所有材质资料集锦 金属RGB颜色色彩亮度漫射镜面光泽度反射凹凸(%)铝箔180.180.180 有32 90 中65 8 铝箔(钝)180.180.180 有50 45 低35 15 铝220.223.227 有35 25 低40 15 磨亮的铝220.223.227 有35 65 中50 12 黄铜191.173.111 有40 40 中40 20 磨亮的黄铜191.173.111 有40 65 中50 10 镀铬合金150.150.150 无40 40 低25 35 镀铬合金2 220.230.240 有25 30 低50 20 镀铬铝220.230.240 有15 60 中65 10 镀铬塑胶220.230.240 有15 60 低50 10 镀铬钢220.230.240 有15 60 中70 5 纯铬220.230.240 有15 60 低85 5 铜186.110.64 有45 40 中40 10 18K金234.199.135 有45 40 中65 10 24K金218.178.115 有45 40 中65 10 未精练的金255.180.66 有35 40 中45 25 黄金242.192.86 有45 40 中65 10 石墨87.33.77 无42 90 中15 10 铁118.119.120 有35 50 低25 20 铅锡锑合金250.250.250 有30 40 低15 10 银233.233.216 有15 90 中45 15

钠250.250.250 有50 90 低25 10 废白铁罐229.223.206 有30 40 低45 30 不锈钢128.128.126 有40 50 中35 20 磨亮的不锈钢220.220.220 有35 50 低25 35 锡220.223.227 有50 90 低35 20 净化瓶27.108.131 无90 60 低 5 20 泡沫塑胶54.53.53 无95 30 低 3 90 合成材料20.20.20 无80 30 低 5 20 合成材料(粗糙)25.25.25 无60 40 低 5 20 合成材料(光滑)38.38.38 无60 30 低0 10 合成材料(钝)25.25.25 有92 40 低15 30 塑胶20.20.20 无80 30 低 5 10 塑胶(高光泽)20.20.20 无70 90 高15 5 塑胶(硬儿亮)20.20.20 无80 80 中10 10 塑胶(糖果衣)200.10.10 无80 30 低 5 15 塑胶(巧克力色)67.40.18 无90 30 低 5 5 橡胶30.30.30 有30 20 低0 50 橡胶纽扣150.150.150 无60 20 低0 30 乙烯树脂45.45.45 无60 40 低15 30

相关文档
最新文档