两点之间的最快路径

两点之间的最快路径
两点之间的最快路径

【奇思妙想】两点之间最快的路径是?

2014.04.22 星期二

【“奇思妙想”是什么?】

“奇思妙想”是知道君为大家带来全新互动子栏目!

在这里,才华横溢的网友为你带来脑力风暴!再神奇的问题都能找到科学的解释!

在“评论”中提出你自己的“奇思妙想”吧!只要问题足够有“创意”和“深度”,并且可以通过已有知识来解答,知道君帮你找专家来解答!

————————————

Junius(via datagenetics)答:

掉节操的星期一又来了,所以呢我又滚出来给大家补补,一起来观赏一下数学之美。

这事儿和17世纪的一道谜题有关,直到后来微积分被建立起来以后才得正解。虽然问题不难,但结果惊艳。

我先来问一个比较“二”的问题:两点时间最短的路径是什么?

喏,别猜疑我是在逗你们,或拿非欧几何抖机灵,真心希望你们两手一摊就说是一条直线。

【铁线上的珠子】

现在我们来看一下这次节目我们要探讨的问题:如果AB两点是在空间中垂直放置的,那么这两点之间的最快路径是什么?

举几个图,如果我们将两点之间用铁线连接,上面穿一颗圆润的珠子,那么一下哪种姿势的路径可以让珠子以最快的速度从A点滑降到B点?

注意,此问题中要加上重力加速度(但是不考虑摩擦力和空气阻力)的情况下,考察那条铁线上的珠子最快降落到B点,给你两分钟时间……

会不会是第一种直线的方式呢?无论如何,我们都知道这是两点之间最短的路径。所以珠子需要移动的距离是最短的,而且珠子不需要改变运行方向跑偏,严格按照起始的方向埋头滑到底。

会不会是第二种抛物线形式的路径最快?抛物线是种水平位移与垂直运动成平方关系的运动路径,更符合物体在自然界重力作用下的坠落轨迹(事实上,那些讹你钱让你吐一地的“失

重体验”飞行,飞的就是这种路径。)

还有第三种跳台滑雪式的路径,它会是最快的一个么?走这种路径有个优势,就是在一开始会获得较高的加速度,当加速度达到最大的时候,把这种优势转化为较短的时间滑过后半程的水平位移上。

是不是还有种可能,实际上对于下坠来说,其实路径根本就无所谓?你看,反正是能量守恒的事情,同等高度的情况下,珠子具有的势能也是一样的,那么最后获得的动能也是一样的,那么我们能不能说其实路径的选择对速度是没有影响的?

最后,会不会这些路径都不是最快的?其实还有其他的可能?比如一个完美的圆弧?

诶?听上去貌似都有点道理!您觉得呢?鼠标别撒手,跟我继续看下去……

牛顿、贝努里、惠更斯、莱布尼茨、钦豪申、罗比达(反正都是些远古学霸)

在17世纪末,扎堆出现了一大批杰出的数学家:牛顿、贝努里、惠更斯、莱布尼茨、钦豪申、罗比达……他们都在做这道题,出题的人是雅各布·伯努利他弟,约翰·伯努利:

“我,约翰·伯努利,想找到世界上最棒的数学家。没有比出道难题为难人更能公平公正地爽到我了,能解决这个问题的人必能扬名立万,千古流芳。成为能与帕斯卡,费马等牛人齐名的大V。请允许我代表整个数学界提出这个尤其能在今天考研大家的数学技巧和思维耐力的问题。如果有人能把答案递交与我,我会将其公开,并授予其应得的奖赏。”

史载是牛顿第一个找到了正确解法和答案。比伽利略早了几十年,伽利略由于手里没有微积分,得出了错误的答案,所以咱也别自惭愧,不知道也很正常。

【最速曲线(Brachistochrone Curve)】

这个问题存在一个最优解,这条曲线有一个拗口的名字,叫Brachistonchrone 曲线(词源来自希腊语,brachistos是最短的意思,chronos 意思是时间)。这的确念起来累舌头,但先别皱眉,莱布尼茨还想更佶屈聱牙地叫它Tachystop ote ……

最速曲线的形状接近那个“跳台滑雪”(上图第三个),起始近乎的垂直加速让珠子获得了快速通过后半程水平位移的能力,平均速度最快。上图的动画里,红色的就是那条“最速曲线”。(伽利略的结论错在认为完美的圆弧才是最快的路径。)

【关于变量的计算】

在这里要得到的最优解的计算,不是要将一个函数里的某个变量最小化,而是需要一个函数来把其他变量最小化。这就是“变分法”。

计算的基本思路是“能量守恒”。坠落的珠子把势能变成动能。如果我们把这条弯曲的路径长度记做s,每一段无线小的路径记做ds,得:

不同的路径都会有不同的函数,在这里,我们的目标是找到那个最小的y的函数表达式。

我们知道路径是连续的(没有坑洼和突然的起伏),而且我们知道只有一个变量就是加速度,所以得到一个二阶导数d2y/dx2,而且我们知道起点和终点的值。

抄个近道直接给你们答案吧,下面是关于夹角θ切线的参数方程

等式中K是一个保证曲线经过终点(xB,yB)的系数。

【摆线(Cycloid)】

上式所得到的图像,就是下图我们所看到的“摆线”,美不胜收……

描述的是某个圆上的一点,在圆沿直线运动时候的滑过的轨迹。

想象你的车跑在这样形状的一个坡上,轱辘就是那个黑点,那它运动速度最快的区间就是在这条摆线的0≤θ≤π 的范围里,从垂直下降到回归水平位置的这段路径上。

【这到底有毛用?】

最速曲线对于建造过山车有巨大的指导意义,那些造过山车的工程师总要绞尽脑汁在有限的垂降距离里,尽快达到最高速爽到你。如我们刚才所证的,“最速曲线(Brachistochrone Curve)”是两点之间最快的路径。

这在竞技体育上也大有用处。如果你是一个滑雪运动员,目标是最短时间冲线,你根本就不在乎两点间的最短路径,而是最快路径。如果你沿着最速曲线的路径下滑,你会获得更多的加速度优势。

【能看到这里的都是好同学】

这事儿还能更带劲。

在均一力场的框架下,“最速曲线(Brachistochrone Curve)”有时候也被称之为“等时曲线(tautochrone)”(依旧感谢希腊人,taut的意思是「相等」)。

你可以把物体放在“等时曲线”的任何位置上,它们都将以相同的时间滑落到同一个位置。

位置越高的物体,将以更快的速度,和位置较低的物体一起通过最低点。(具体时长是π乘以圆弧的半径除以g的平方根)。

你可以在威武犀利吊炸天的Wolfram玩到更精彩的例子

我们回忆一下高中的物理知识,老师讲过钟摆的运动周期取决于摆臂的长度,但这个说法只是理想状态下的近似结果。当钟摆真甩起来的时候,其实摆臂的长度是有细微微的变化的:

当摆臂很长,而摆幅很小的时候,这个误差也很小,但这个误差是躲不掉的。最早发现这个问题的是数学家惠更斯,他用一个叫做“翻转摆线的渐开线(involute of an inverted cycloid)”的特别方法纠正了这个误差(后面讲到),制造出了完美的钟摆(惠更斯钟摆),他是历史上第一个研究钟摆在摆线顶端出现误差的人。

如果摆臂的长度是摆线周长的一半,那么钟锤运行的轨迹是沿着一条摆线以固定的时长运动,且时长与摆动的高点位置无关。渐开线指的是一条描述摆臂上一动点沿着曲线运动,与所选切线上的交点的轨迹。(如果每个字都认识,这不真是我的错……,下图蓝色那段就是所谓“渐开线”)。

下图就是惠更斯设计的钟摆,钟摆顶部有两片金属簧片,现在被称之为Huygen's Chops。

当钟摆摆动时,吊绳就贴上了簧片,簧片的形状就是摆线的渐开线,钟摆因此就沿着完美的摆线运行了。

【摆线,最速曲线和等时曲线】

摆线的特性在名著《白鲸记》中也有描述:

“炼鲸油锅”也包含着数学的光辉。Pequod号捕鲸船的左舷的锅子里,当我用滑石打磨锅壁的时候,注意到了这个神奇的现象,所有的东西都按照摆线的规则,无论从哪儿开始,都以同样的时间滑落到锅底。

如果你还在玩四驱模型车,那么你可以告诉孩子们,如果是在一个最速曲线形状的滑道上比赛,无论赛车从哪儿起跑,比赛都是公平的。

(当然机灵的小家伙们会告诉你,红色的车子会跑的最快)。

一个符合数学要求的滑板溜碗赛场,应该两边是符合“等时曲线”的形状。如果你在这种赛场和人较劲,那么你可以放心,无论他们踩着什么器材,大家在坡底的耗时都是一样的。如果形状不如意,那么你最好别沿着坡度直接下去,最好滑出一道最速曲线的轨迹来。

(再说一次渐开线)

我觉得最后值得说一说渐开线,它和摆线一样有趣,而且在工作中更能发挥实际作用。比如齿轮。早期的齿轮都是按照摆线的轮廓制作的。

这种齿轮一般具有更宽的齿牙截面,因此也更强更有力,但在现代工业制造中已经很少见了。如上图所示,摆线齿轮是由两条摆线为轮廓构成的,这个样子的齿轮现在在自行车上比较常见。在动画最后,你会看到齿牙根部又被切掉了一块,这是在钟表齿轮上常见的做法(为了减少重量,更重要的是减少碰撞和摩擦。)

而如今,更常见的齿轮是以渐开线为轮廓的(想象成好多Huygen's Chops组成的齿轮就是了)。

当这种齿轮咬合的时候,两齿之间的接触点稳定,摩擦更少,运转更平稳。没有其他形状的齿轮会发生的抖动和噪音。而且这种齿轮还有一个优点就是两个齿轮之间的圆心距离可以随意改变,而不需要改变轮子的传动比(而摆线齿轮必须固定两个齿轮之间的圆心距离)。

最后,渐开线齿轮顶部和底部是平的,只有弧度的两侧,所以比较易于加工。

摆线齿轮现在仍旧在自行车、手表、钟表上常见,但除此以外,基本上都是渐开线齿轮的天下了。

【滚石】

下次,如果你再看到山坡上寂寞翻滚的大石,请记起17世纪的那些大学霸们!

最短路径流程图及算法详解

:算法的设计思想 本算法采用分支定界算法实现。构造解空间树为:第一个城市为根结点,与第一个城市相邻的城市为根节点的第一层子节点,依此类推;每个父节点的子节点均是和它相邻的城市;并且从第一个根节点到当前节点的路径上不能出现重复的城市。 本算法将具有最佳路线下界的节点作为最有希望的节点来展开解空间树,用优先队列实现。算法的流程如下:从第一个城市出发,找出和它相邻的所有城市,计算它们的路线下界和费用,若路线下界或费用不满足要求,将该节点代表的子树剪去,否则将它们保存到优先队列中,并选择具有最短路线下界的节点作为最有希望的节点,并保证路径上没有回路。当找到一个可行解时,就和以前的可行解比较,选择一个较小的解作为当前的较优解,当优先队列为空时,当前的较优解就是最优解。算法中首先用Dijkstra算法算出所有点到代表乙城市的点的最短距离。算法采用的下界一个是关于路径长度的下界,它的值为从甲城市到当前城市的路线的长度与用Dijkstra算法算出的当前城市到乙城市的最短路线长度的和;另一个是总耗费要小于1500。 伪代码 算法AlgBB() 读文件m1和m2中的数据到矩阵length和cost中 Dijkstra(length) Dijkstra(cost) while true do for i←1 to 50 do //选择和node节点相邻的城市节点 if shortestlength>optimal or mincost>1500 pruning else if i=50 optimal=min(optimal,tmpopt)//选当前可行解和最优解的 较小值做最优解 else if looped //如果出现回路 pruning //剪枝 else 将城市i插入到优先队列中 end for while true do if 优先队列为空 输出结果 else 取优先队列中的最小节点 if 这个最小节点node的路径下界大于当前的较优解 continue

关键路径法--计算方法

关键路径法--计算方法 关键路径法定义 关键路径法(Critical Path Method, CPM)是一种基于数学计算的项目计划管理方法,是网络图计划方法的一种,属于肯定型的网络图。关键路径法将项目分解成为多个独立的活动并确定每个活动的工期,然后用逻辑关系(结束-开始、结束-结束、开始-开始和开始结束)将活动连接,从而能够计算项目的工期、各个活动时间特点(最早最晚时间、时差)等。在关键路径法的活动上加载资源后,还能够对项目的资源需求和分配进行分析。关键路径法是现代项目管理中最重要的一种分析工具。 关键路径法的分类 根据绘制方法的不同,关键路径法可以分为两种,即箭线图(ADM)和前导图(PDM)。 箭线图(ADM)法又称为双代号网络图法,它是以横线表示活动而以带编号的节点连接活动,活动间可以有一种逻辑关系,结束-开始型逻辑关系。 在箭线图中,有一些实际的逻辑关系无法表示,所以在箭线图中需要引入虚工作的概念。 绘制箭线图时主要有以下一些规则: 1、在箭线图(ADM)中不能出现回路。如上文所述,回路是逻辑上的错误,不符合实际的情况,而且会导致计算的死循环,所以这条规则是必须的要求。 2、箭线图(ADM)一般要求从左向右绘制。这虽然不是必须的要求,但是符合人们阅读习惯,可以增加箭线图(ADM)的可读性。 3、每一个节点都要编号,号码不一定要连续,但是不能重复,且按照前后顺序不断增大。这条规则有多方面的考虑,在手工绘图时,它能够增加图形的可读性和清晰性,另外,在使用计算机运行箭线图(ADM)这一条就非常重要,因为在计算机中一般通过计算节点的时间来确定各个活动的时间,所以节点编号不重复是必须的。

关键路径[自己整理,理解简单易掌握]

关键路径法 CPM(CriticalPathMethod关键路径法)是项目管理中最基本也是非常关键的一个概念,它上连着WBS(工作分解结构),下连着执行进度控制与监督。关键路径是项目计划中最长的路线。它决定了项目的总实耗时间。项目经理必须把注意力集中于那些优先等级最高的任务,确保它们准时完成,关键路径上的任何活动的推迟将使整个项目推迟。向关键路径要时间,向非关键路径要资源。所以在进行项目操作的时候确定关键路径并进行有效的管理是至关重要的。 关键路径法 关键路径法 - 定义 关键路径法Critical Path Method,CPM),又称关键线路法。一种计划管理方法。它是通过分析项目过程中哪个活动序列进度安排的总时差最少来预测项目工期的网络分析。它用网络图表示各项工作之间的相互关系,找出控制工期的关键路线,在一定工期、成本、资源条件下获得最佳的计划安排,以达到缩短工期、提高工效、降低成本的目的。CPM中工序时间是确定的,这种方法多用于建筑施工和大修工程的计划安排。它适用于有很多作业而且必须按时完成的项目。关键路线法是一个动态系统,它会随着项目的进展不断更新,该方法采用单一时间估计法,其中时间被视为一定的或确定的。

关键路径法 关键路径法 - 起源 关键路径法关键路线法是一种网络图方法,最早出现于20世纪50年代,由雷明顿-兰德公司(Remington- Rand)的JE克里(JE Kelly)和杜邦公司的MR沃尔克(MR Walker)在1957年提出的,用于对化工工厂的维护项目进行日程安排。这种方法产生的背景是,在当时出现了许多庞大而复杂的科研和工程项目,这些项目常常需要运用大量的人力、物力和财力,因此如何合理而有效地对这些项目进行组织,在有限资源下以最短的时间和最低的成本费用下完成整个项目就成为一个突出的问题,这样CPM就应运而生了。 关键路径法 关键路径法 - 原理与网络图设定步骤 关键路径法关键路径法(CPM)是一种网络分析技术,是确定网络图当中每一条路线从起始到结束,找出工期最长的线路,也就是说整个项目工期的决定是由最长的线路来决定的。 关键路径法是时间管理中很实用的一种方法,其工作原理是:为每个最小任务单位计算工期、定义最早开始和结束日期、最迟开始和结束日期、按照活动的关系形成顺序的网络逻辑图,找出必须的最长的路径,即为关键路径。

基于Floyd算法的最短路径问题的求解c++

摘要 现实生活中许多实际问题的解决依赖于最短路径的应用,其中比较常用的是floyd 算法。通过floyd算法使最短路径问题变得简单化。采用图的邻接矩阵或邻接表实现最短路径问题中图的存储。采用Visual C++6.0的控制台工程和MFC工程分别实现基于floyd算法求最短路径的应用。 关键词:最短路径;floyd算法;邻接矩阵;MFC工程

目录 1需求分析 (1) 2算法基本原理 (1) 2.1邻接矩阵 (1) 2.2弗洛伊德算法 (2) 3类设计 (2) 3.1类的概述 (2) 3.2类的接口设计 (3) 3.3类的实现 (4) 4基于控制台的应用程序 (7) 4.1主函数设计 (7) 4.2运行结果及分析 (8) 5基于MFC的应用程序 (9) 5.1图形界面设计 (9) 5.1程序代码设计 (11) 5.3运行结果及分析 (20) 结论 (21) 参考文献 (22)

1需求分析 Floyd算法又称为插点法,是一种用于寻找给定的加权图中多源点之间最短路径的算法。该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名。 假若要在计算机上建立一个交通咨询系统则可以采用图的结构来表示实际的交通网络。这个资讯系统可以回答游客提出的各种问题。例如,一位旅客要从A城到B城,他希望选择一条途中中转次数最少的路线。假设图中每一站都需要换车,则这个问题反映到图上就是要找一条从顶点A到B所含边的数目最少的路径。我们只需从顶点A出发对图作广度优先搜索,一旦遇到顶点B就终止。由此所得广度优先生成树上,从根顶点A到顶点B的路径就是中转次数最少的路径,路径上A与B之间的顶点就是途径中的中转站数。但是这只是一类最简单的图的最短路径的问题。有时对于旅客来说,可能更关心的是节省交通费用;对于司机来说里程和速度则是他们感兴趣的信息。为了在图上标示有关信息可对边赋以权的值,权的值表示两城市间的距离,或图中所需时间,或交通费用等等。此时路径长度的量度就不再是路径上边的数目,而是路径上边的权值之和。边赋以权值之后再结合最短路径算法来解决这些实际问题。Floyd算法是最短路径经典算法中形式较为简单,便于理解的一种。 2算法基本原理 2.1 邻接矩阵 邻接矩阵(Adjacency Matrix):是表示顶点之间相邻关系的矩阵。设G=(V,E)是一个图,其中V={v1,v2,…,vn}。G的邻接矩阵是一个具有下列性质的n阶方阵:(1)对无向图而言,邻接矩阵一定是对称的,而且对角线一定为零(在此仅讨论无向简单图),有向图则不一定如此。 (2)在无向图中,任一顶点i的度为第i列所有元素的和,在有向图中顶点i的出度为第i行所有元素的和,而入度为第i列所有元素的和。 (3)用邻接矩阵法表示图共需要个空间,由于无向图的邻接矩阵一定具有对称关系,所以扣除对角线为零外,仅需要存储上三角形或下三角形的数据即可,因此仅需

计算智能大作业--蚁群算法解决TSP问题

(计算智能大作业) 应用蚁群算法求解TSP问题

目录 蚁群算法求解TSP问题 (3) 摘要: (3) 关键词: (3) 一、引言 (3) 二、蚁群算法原理 (4) 三、蚁群算法解决TSP问题 (7) 四、解决n个城市的TSP问题的算法步骤 (9) 五、程序实现 (11) 六、蚁群算法优缺点分析及展望 (18) 七、总结 (18)

采用蚁群算法解决TSP问题 摘要:蚁群算法是通过蚂蚁觅食而发展出的一种新的启发算法,该算法已经成功的解决了诸如TSP问题。本文简要学习探讨了蚂蚁算法和TSP问题的基本内容,尝试通过matlab 仿真解决一个实例问题。 关键词:蚁群算法;TSP问题;matlab。 一、引言 TSP(Travelling Salesman Problem)又称货郎担或巡回售货员问题。TSP问题可以描述为:有N个城市,一售货员从起始城市出发,访问所有的城市一次,最后回到起始城市,求最短路径。TSP问题除了具有明显的实际意义外,有许多问题都可以归结为TSP问题。目前针对这一问题已有许多解法,如穷举搜索法(Exhaustive Search Method), 贪心法(Greedy Method), 动态规划法(Dynamic Programming Method)分支界定法(Branch-And-Bound),遗传算法(Genetic Agorithm)模拟退火法(simulated annealing),禁忌搜索。本文介绍了一种求解TSP问题的算法—蚁群算法,并通过matlab仿真求解50个城市之间的最短距离,经过仿真试验,证明是一种解决TSP问题有效的方法。

关键路径求解

数据结构中关键路径算法的实现与应用 摘要介绍求关键路经的算法,对于给出的事件结点网络,要求求出从起点到终点的所有路径,经分析、比较后找出长读最大的路径,从而得出求关键路径的算法,并给出计算机上机实现的源程序。 关键词关键路径最少时间 1:引言 通常把计划、施工过程、生产流程、程序流程的都当成一个工程。除了很小的工程外、一般都把工程分为若干个叫做“活动”的子工程。完成了这些“活动”的子工程,这个工程就可以完成了。 通常我们用有向图表示一个工程。在这种有向图中,用顶点表示活动,用有向边 表示活动Vi必须先于活动Vj进行。如果在无有向环的带权有向图中用有向边表示一个工程中的各项活动(ACTIVITY),用有向边上的权值表示活动的持续时间(DURATION),用顶点表示事件(EVENT),则这种的有向图叫做用边表示活动的网络,简称AOE(active on edges)网络。 AOE网络在某些工程估算方面非常有用。他可以使人们了解: (1):研究某个工程至少需要多少时间? (2):那些活动是影响工程进度的关键? 在AOE网络中,有些活动可以并行的进行。从源点到各个顶点,以至从源点到汇点的有向路径可能不止一条。这些路径的长度也可能不同。完成不同路径的活动所需的时间虽然不同,但只有各条路径上所有活动都完成了,这个工程才算完成。因此,完成整个工程所需的时间取决于从源点到汇点的最长路径长度,即在这条路径上所有活动的持续时间之和。这条路径长度就叫做关键路径(criti cal path)。 2:设计步骤: 1: 以某一工程为蓝本,采用图的结构表示实际的工程计划的时间。 2: 调查以分析和预测这个工程计划个阶段的时间。 3: 用调查的结果建立AOE网(Activity On Edge Network),即边表示活动的网络,并用图的形式表示。 4: 用图来存储这些信息。 5: 用CreateGraphic();函数建立AOE图。 6: 用SearchMapPath();函数求出最大路径,并打印出关键路径。 7:编写代码 8: 测试 3: 设计代码: #include #include #include #include //#define PROJECTNUMBER 9//10 //#define PLANNUMBER 11//13 typedef struct node { int adjvex;

基于蚁群算法的MATLAB实现

基于蚁群算法的机器人路径规划MATLAB源代码 基本思路是,使用离散化网格对带有障碍物的地图环境建模,将地图环境转化为邻接矩阵,最后使用蚁群算法寻找最短路径。 function [ROUTES,PL,Tau]=ACASPS(G,Tau,K,M,S,E,Alpha,Beta,Rho,Q) %% --------------------------------------------------------------- % ACASP.m % 基于蚁群算法的机器人路径规划 % GreenSim团队——专业级算法设计&代写程序 % 欢迎访问GreenSim团队主页→https://www.360docs.net/doc/4d17472229.html,/greensim %% --------------------------------------------------------------- % 输入参数列表 % G 地形图为01矩阵,如果为1表示障碍物 % Tau 初始信息素矩阵(认为前面的觅食活动中有残留的信息素) % K 迭代次数(指蚂蚁出动多少波) % M 蚂蚁个数(每一波蚂蚁有多少个) % S 起始点(最短路径的起始点) % E 终止点(最短路径的目的点) % Alpha 表征信息素重要程度的参数 % Beta 表征启发式因子重要程度的参数 % Rho 信息素蒸发系数 % Q 信息素增加强度系数 % % 输出参数列表 % ROUTES 每一代的每一只蚂蚁的爬行路线 % PL 每一代的每一只蚂蚁的爬行路线长度 % Tau 输出动态修正过的信息素 %% --------------------变量初始化---------------------------------- %load D=G2D(G); N=size(D,1);%N表示问题的规模(象素个数) MM=size(G,1); a=1;%小方格象素的边长 Ex=a*(mod(E,MM)-0.5);%终止点横坐标 if Ex==-0.5 Ex=MM-0.5; end Ey=a*(MM+0.5-ceil(E/MM));%终止点纵坐标 Eta=zeros(1,N);%启发式信息,取为至目标点的直线距离的倒数 %下面构造启发式信息矩阵 for i=1:N

matlab 蚁群算法 机器人路径优化问题

用ACO 算法求解机器人路径优化问题 4.1 问题描述 移动机器人路径规划是机器人学的一个重要研究领域。它要求机器人依据某个或某些优化原则(如最小能量消耗,最短行走路线,最短行走时间等),在其工作空间中找到一条从起始状态到目标状态的能避开障碍物的最优路径。机器人路径规划问题可以建模为一个有约束的优化问题,都要完成路径规划、定位和避障等任务。 4.2 算法理论 蚁群算法(Ant Colony Algorithm,ACA),最初是由意大利学者Dorigo M. 博士于1991 年首次提出,其本质是一个复杂的智能系统,且具有较强的鲁棒性,优良的分布式计算机制等优点。该算法经过十多年的发展,已被广大的科学研究人员应用于各种问题的研究,如旅行商问题,二次规划问题,生产调度问题等。但是算法本身性能的评价等算法理论研究方面进展较慢。 Dorigo 提出了精英蚁群模型(EAS),在这一模型中信息素更新按照得到当前最优解的蚂蚁所构造的解来进行,但这样的策略往往使进化变得缓慢,并不能取得较好的效果。次年Dorigo 博士在文献[30]中给出改进模型(ACS),文中 改进了转移概率模型,并且应用了全局搜索与局部搜索策略,来得进行深度搜索。 Stützle 与Hoos给出了最大-最小蚂蚁系统(MAX-MINAS),所谓最大-最小即是为信息素设定上限与下限,设定上限避免搜索陷入局部最优,设定下限鼓励深度搜索。 蚂蚁作为一个生物个体其自身的能力是十分有限的,比如蚂蚁个体是没有视觉的,蚂蚁自身体积又是那么渺小,但是由这些能力有限的蚂蚁组成的蚁群却可以做出超越个体蚂蚁能力的超常行为。蚂蚁没有视觉却可以寻觅食物,蚂蚁体积渺小而蚁群却可以搬运比它们个体大十倍甚至百倍的昆虫。这些都说明蚂蚁群体内部的某种机制使得它们具有了群体智能,可以做到蚂蚁个体无法实现的事情。经过生物学家的长时间观察发现,蚂蚁是通过分泌于空间中的信息素进行信息交流,进而实现群体行为的。 下面简要介绍蚁群通过信息素的交流找到最短路径的简化实例。如图 2-1 所示,AE 之间有

关键路径法简洁的方法

1、E S最早开始时间(earliest start time)是指某项活动能够开始的最早时间。 2、E F:最早结束时间(earliest finish time)是指某项活动能够完成的最早时间。 EF=ES工期估计 规则:某项活动的最早开始时间=直接指向这项活动的最早结束时间中的最晚时间。正向推出取最大值。 3、L F:最迟结束时间(latest finish time)是指为了使项目在要求完工时间 完成,某项活动必须完成的最迟时间。 4、L S:最迟开始时间(latest start time)是指为了使项目在要求完工时间完成,某项活动必须开始的最迟时间。 LS=LF工期估计 规则:某项活动的最迟结束时间=该活动直接指向的所有活动(紧后活动) 最迟开始时间的最早(小)时间。(LS和LF通过反向推出取最小值) 3、TF:总时差(用TFi-j表示),双代号网络图时间计算参数,指一项工 作在不影响总工期的前提下所具有的机动时间。 用工作的最迟开始时间LSi-j与最早开始时间ESi-j之差表示。也等于工作的最迟完成时间LFi-j -工作的最早完成时间EFi-j(当前节点,本工作)总时差TF=t迟开始时间LS最早开始时间ES (开始-开始)总时差TF=<迟完成时间LF-最早完成时间EF (完成-完成)

延误小于总时差不会影响工期 TF=LS-ES=LF-EF 4、FF:自由时差,指一项工作在不影响后续工作的情况下所拥有的机动时间。是研究本工作与紧后工作的关系。 自由时差FF=^后工作的最早开始时间ES本工作的最早完成时间EF FF=ES f 一节点)-EF (当前工作) 以网络计划的终点节点为箭头节点的工作,其: 自由时差FF*划工期-本工作最早完成时间EF 延期超过自由时差,会影响其紧后工作的最早开始时间。 最早,从前向后,先算出最早开始时间ES加上持续时间,就是最早完成时间EF。 最迟,从后向前,先算出最迟完成时间LF,减去持续时间,就是最迟开始时间LS 某项工作有多项紧后工作,那么其自由时间为紧后工作最早开始时间减工作M的最早完成时间所得之差的最小值 【进度检查】 如实际进度比计划进度延后M天,若该工作的总时差为A,自由时差为 B,若: M < A, M < B,则对总工期及紧后工作无影响 M > A, M > B,则对总工期推后M-A天,影响紧后工作的最早开始时间M-B 天。

蚁群算法最短路径通用Matlab程序(附图)

蚁群算法最短路径通用Matlab程序(附图) function [ROUTES,PL,Tau]=ACASP(G,Tau,K,M,S,E,Alpha,Beta,Rho,Q) %% --------------------------------------------------------------- % ACASP.m % 蚁群算法动态寻路算法 % ChengAihua,PLA Information Engineering University,ZhengZhou,China % Email:aihuacheng@https://www.360docs.net/doc/4d17472229.html, % All rights reserved %% --------------------------------------------------------------- % 输入参数列表 % G 地形图为01矩阵,如果为1表示障碍物 % Tau 初始信息素矩阵(认为前面的觅食活动中有残留的信息素) % K 迭代次数(指蚂蚁出动多少波) % M 蚂蚁个数(每一波蚂蚁有多少个) % S 起始点(最短路径的起始点) % E 终止点(最短路径的目的点) % Alpha 表征信息素重要程度的参数 % Beta 表征启发式因子重要程度的参数 % Rho 信息素蒸发系数 % Q 信息素增加强度系数 % % 输出参数列表 % ROUTES 每一代的每一只蚂蚁的爬行路线 % PL 每一代的每一只蚂蚁的爬行路线长度 % Tau 输出动态修正过的信息素 %% --------------------变量初始化---------------------------------- %load D=G2D(G); N=size(D,1);%N表示问题的规模(象素个数) MM=size(G,1); a=1;%小方格象素的边长 Ex=a*(mod(E,MM)-0.5);%终止点横坐标 if Ex==-0.5 Ex=MM-0.5; end Ey=a*(MM+0.5-ceil(E/MM));%终止点纵坐标 Eta=zeros(1,N);%启发式信息,取为至目标点的直线距离的倒数 %下面构造启发式信息矩阵 for i=1:N if ix==-0.5

基于蚁群算法的路径规划

MATLAB实现基于蚁群算法的机器人路径规划 1、问题描述 移动机器人路径规划是机器人学的一个重要研究领域。它要求机器人依据某个或某些优化原则(如最小能量消耗,最短行走路线,最短行走时间等),在其工作空间中找到一条从起始状态到目标状态的能避开障碍物的最优路径。机器人路径规划问题可以建模为一个有约束的优化问题,都要完成路径规划、定位和避障等任务。 2 算法理论 蚁群算法(Ant Colony Algorithm,ACA),最初是由意大利学者Dorigo M. 博士于1991 年首次提出,其本质是一个复杂的智能系统,且具有较强的鲁棒性,优良的分布式计算机制等优点。该算法经过十多年的发展,已被广大的科学研究人员应用于各种问题的研究,如旅行商问题,二次规划问题,生产调度问题等。但是算法本身性能的评价等算法理论研究方面进展较慢。 Dorigo 提出了精英蚁群模型(EAS),在这一模型中信息素更新按照得到当前最优解的蚂蚁所构造的解来进行,但这样的策略往往使进化变得缓慢,并不能取得较好的效果。次年Dorigo 博士给出改进模型(ACS),文中改进了转移概率模型,并且应用了全局搜索与局部搜索策略,来得进行深度搜索。Stützle 与Hoos给出了最大-最小蚂蚁系统(MAX-MINAS),所谓最大-最小即是为信息素设定上限与下限,设定上限避免搜索陷入局部最优,设定下限鼓励深度搜索。蚂蚁作为一个生物个体其自身的能力是十分有限的,比如蚂蚁个体是没有视觉的,蚂蚁自身体积又是那么渺小,但是由这些能力有限的蚂蚁组成的蚁群却可以做出超越个体蚂蚁能力的超常行为。蚂蚁没有视觉却可以寻觅食物,蚂蚁体积渺小而蚁群却可以搬运比它们个体大十倍甚至百倍的昆虫。这些都说明蚂蚁群体内部的某种机制使得它们具有了群体智能,可以做到蚂蚁个体无法实现的事情。经过生物学家的长时间观察发现,蚂蚁是通过分泌于空间中的信息素进行信息交流,进而实现群体行为的。 下面简要介绍蚁群通过信息素的交流找到最短路径的简化实例。如图2-1 所示,AE 之间有两条路ABCDE 与ABHDE,其中AB,DE,HD,HB 的长度为1,BC,CD 长度为0.5,并且,假设路上信息素浓度为0,且各个蚂蚁行进速度相同,单位时间所走的长度为1,每个单位时间内在走过路径上留下的信息素的量也相同。当t=0时,从A 点,E 点同时各有30 只蚂蚁从该点出发。当t=1,从A 点出发的蚂蚁走到B 点时,由于两条路BH 与BC 上的信息素浓度相同,所以蚂蚁以相同的概率选择BH 与BC,这样就有15 只蚂蚁选择走BH,有15 只蚂蚁选择走BC。同样的从E 点出发的蚂蚁走到D 点,分别有15 只蚂蚁选择DH 和DC。当t=2 时,选择BC 与DC的蚂蚁分别走过了BCD 和DCB,而选择BH 与DH 的蚂蚁都走到了H 点。所有的蚂蚁都在所走过的路上留下了相同浓度的信息素,那么路径BCD 上的信息素的浓度是路径BHD 上信息素浓度的两倍,这样若再次有蚂蚁选择走BC 和BH 时,或选择走DC 与DH 时,都会以较大的概率选择信息素浓度高的一边。这样的过程反复进行下去,最短的路径上走过的蚂蚁较多,留下的信息素也越多,蚁群这样就可以找到一条较短的路。这就是它们群体智能的体现。 蚁群算法就是模拟蚂蚁觅食过程中可以找到最短的路的行为过程设计的一种仿生算法。在用蚁群算法求解组合优化问题时,首先要将组合优化问题表达成与信息素相关的规范形式,然后各个蚂蚁独立地根据局部的信息素进行决策构造解,并根据解的优劣更新周围的信息素,这样的过程反复的进行即可求出组合优化问题的优化解。 归结蚁群算法有如下特点: (1)分布式计算:各个蚂蚁独立地构造解,当有蚂蚁个体构造的解较差时,并不会影响整体的求解结果。这使得算法具有较强的适应性; (2)自组织性:系统学中自组织性就是系统的组织指令是来自系统的内部。同样的蚁

最短路径问题的算法分析及建模案例

最短路径问题的算法分析及建模案例

最短路径问题的算法分析及建模案例 一.摘要 (3) 二.网络最短路径问题的基础知识 (5) 2.1有向图 (7) 2.2连通性................... 错误!未定义书签。 2.3割集....................... 错误!未定义书签。 2.4最短路问题 (8) 三.最短路径的算法研究.. 错误!未定义书签。 3.1最短路问题的提出 (9) 3.2 Bellman最短路方程错误!未定义书签。 3.3 Bellman-Ford算法的基本思想错误!未定义书签 3.4 Bellman-Ford算法的步骤错误!未定义书签。 3.5实例....................... 错误!未定义书签。 3.6 Bellman-FORD算法的建模应用举例错误!未定义 3.7 Dijkstra算法的基本思想 (9) 3.8 Dijkstra算法的理论依据 (9) 3.9 Dijkstra算法的计算步骤 (9) 3.10 Dijstre算法的建模应用举例 (10) 3.11 两种算法的分析错误!未定义书签。

1.Diklstra算法和Bellman-Ford算法 思想有很大的区别错误!未定义书签。 Bellman-Ford算法在求解过程中,每 次循环都要修改所有顶点的权值,也就 是说源点到各顶点最短路径长度一直 要到Bellman-Ford算法结束才确定下 来。...................... 错误!未定义书签。 2.Diklstra算法和Bellman-Ford算法 的限制.................. 错误!未定义书签。 3.Bellman-Ford算法的另外一种理解错误!未定 4.Bellman-Ford算法的改进错误!未定义书签。 摘要 近年来计算机发展迅猛,图论的研究也得到了很大程度的发展,而最短路径 问题一直是图论中的一个典型问题,它已应用在地理信息科学,计算机科学等 诸多领域。而在交通路网中两个城市之间的最短行车路线就是最短路径问题的 一个典型例子。 由于最短路径问题在各方面广泛应用,以及研究人员对最短路径的深入研究, 使得在最短路径问题中也产生了很多经典的算法。在本课题中我将提出一些最 短路径问题的算法以及各算法之间的比较,最后将这些算法再应用于实际问题

实现求关键路径的算法

沈阳航空航天大学 课程设计报告 课程设计名称:数据结构课程设计 课程设计题目:实现求关键路径的算法 院(系):计算机学院 专业:计算机科学与技术 班级:04010102 学号:2008040101058 姓名:刘小靖 指导教师:许清 完成日期:2014年1月9日

沈阳航空航天大学课程设计报告 目录 第一章需求分析 (1) 1.1题目内容与要求 (1) 1.2题目理解与功能分析 (1) 第二章概要设计 (3) 2.1设计思路 (3) 2.2系统模块图 (3) 第三章详细设计 (4) 3.1图存储结构的建立 (4) 3.2求关键路径的算法 (5) 第四章调试分析 (7) 参考文献 (10) 附录(程序清单) (11)

第一章需求分析 1.1 题目内容与要求 内容: 自拟定合适的方式从键盘上输入一个AOE网,使用图的邻接表存储结构存储该AOE网,然后求出该AOE网的关键路径。输入AOE网的方式要尽量的简单方便,程序要能够形象方便地观察AOE网和它的关键路径 基本要求: 1.熟悉图的存储结构及操作方式; 2.熟悉求关键路径的算法; 3.熟练运用开发环境; 4.完成软件的设计与编码; 5. 熟练掌握基本的调试方法; 6. 提交符合课程设计规范的报告; 1.2 题目理解与功能分析 该题实质要求用数据结构中的图形知识编写一个求无循环有向帯权图中从起点到终点所有路径,经分析、比较求出长度最大路径,从而求出关键路径。 通常我们用有向图表示一个工程。在这种有向图中,用顶点表示活动,用有向边表示活动Vi必须先于活动Vj进行。如果在这种图中用有向边表示一个工程中的各项活动(ACTIVITY),用有向边上的权值表示活动的持续时间(DURATION),用顶点表示事件(EVENT),则这种的有向图叫做用边表示活动的网络,简称AOE网络。在AOE网络中,从源点到各个顶点,可能不止一条。这些路径的长度也可能不同。不同路径所需的时间虽然不同,但只有各条路径上所有活动都完成了,这个工程才算完成。因此,完成整个工程所需的时间取决于从源点到汇点的最长路径长度,即在这条路径上所有活动的持续时间之和。这条路径长度就叫做关键路径(critical path)。程序所要达到的功能:输入并建立AOE

关键路径法简洁的方法

1、ES:最早开始时间(earliest start time)是指某项活动能够开始的最早时间。 2、EF:最早结束时间(earliest finish time)是指某项活动能够完成的最早时间。 EF=ES+工期估计 规则:某项活动的最早开始时间=直接指向这项活动的最早结束时间中的最晚时间。正向推出取最大值。 3、LF:最迟结束时间(latest finish time)是指为了使项目在要求完工时间内完成,某项活动必须完成的最迟时间。 4、LS:最迟开始时间(latest start time)是指为了使项目在要求完工时间内完成,某项活动必须开始的最迟时间。 LS=LF-工期估计 规则:某项活动的最迟结束时间=该活动直接指向的所有活动(紧后活动)最迟开始时间的最早(小)时间。(LS和LF通过反向推出取最小值)3、TF:总时差(用TFi-j表示),双代号网络图时间计算参数,指一项工作在不影响总工期的前提下所具有的机动时间。 用工作的最迟开始时间LSi-j与最早开始时间ESi-j之差表示。也等于工作的最迟完成时间LFi-j - 工作的最早完成时间EFi-j(当前节点,本工作)总时差TF=最迟开始时间LS-最早开始时间ES(开始-开始) 总时差TF=最迟完成时间LF-最早完成时间EF(完成-完成) 延误小于总时差不会影响工期 TF=LS-ES=LF-EF

4、FF:自由时差,指一项工作在不影响后续工作的情况下所拥有的机动时间。是研究本工作与紧后工作的关系。 自由时差FF=紧后工作的最早开始时间ES-本工作的最早完成时间EF FF=ES(后一节点)-EF(当前工作) 以网络计划的终点节点为箭头节点的工作,其: 自由时差FF=计划工期-本工作最早完成时间EF 延期超过自由时差,会影响其紧后工作的最早开始时间。 注意: 最早,从前向后,先算出最早开始时间ES,加上持续时间,就是最早完成时间EF。 最迟,从后向前,先算出最迟完成时间LF,减去持续时间,就是最迟开始时间LS。 某项工作有多项紧后工作,那么其自由时间为紧后工作最早开始时间减工作M的最早完成时间所得之差的最小值 【进度检查】 如实际进度比计划进度延后M天,若该工作的总时差为A,自由时差为B,若: M≤A,M≤B,则对总工期及紧后工作无影响 M>A,M>B,则对总工期推后M-A天,影响紧后工作的最早开始时间M-B天。 【关键工作】

求AOE网络中的关键路径算法

//求AOE网络中的关键路径算法 #include #include #define MAXN 100 //顶点个数的最大值 #define MAXM 200 //边数的最大值 struct ArcNode { int to, dur, no; //边的另一个顶点,持续时间,活动序号 ArcNode *next; }; int n, m; //顶点个数、边数 ArcNode* List1[MAXN]; //每个顶点的边链表表头指针(出边表) ArcNode* List2[MAXN]; //每个顶点的边链表表头指针(入边表) int count1[MAXN]; //各顶点的入度 int count2[MAXN]; //各顶点的出度 int Ee[MAXN]; //各事件的最早可能开始时间 int El[MAXN]; //各事件的最迟允许开始时间 int e[MAXM]; //各活动的最早可能开始时间 int L[MAXM]; //各活动的最迟允许开始时间 void CriticalPath( ) //求关键路径 { //拓扑排序求Ee int i, j, k; int top1 = -1; ArcNode* temp1; memset( Ee, 0, sizeof(Ee) ); for( i=0; i

CPM:关键路径法

CPM:关键路径法 CPM即关键路径法(Critical Path Method),又称关键线路法,最早出现于20世纪50年代,是一种计划管理方法,它是通过分析项目过程中哪个活动序列进度安排的总时差最少来预测项目工期的网络分析。它用网络图表示各项工作之间的相互关系,找出控制工期的关键路线,在一定工期、成本、资源条件下获得最佳的计划安排,以达到缩短工期、提高工效、降低成本的目的。 CPM:关键路径法 概述 关键路径法(Critical Path Method,CPM),又称关键线路法。一种计划管理方法。它是通过分析项目过程中哪个活动序列进度安排的总时差最少来预测项目工期的网络分析。它用网络图表示各项工作之间的相互关系,找出控制工期的关键路线,在一定工期、成本、资源条件下获得最佳的计划安排,以达到缩短工期、提高工效、降低成本的目的。CPM中工序时间是确定的,这种方法多用于建筑施工和大修工程的计划安排。它适用于有很多作业而且必须按时完成的项目。关键路线法是一个动态系统,它会随着项目的进展不断更新,该方法采用单一时间估计法,其中时间被视为一定的或确定的。 关键路线法是一种网络图方法,最早出现于20世纪50年代,由雷明顿-兰德公司(Remington- Rand)的JE克里(JE Kelly)和杜邦公司的MR沃尔克(MR Walker)在1957年提出的,用于对化工工厂的维护项目进行日程安排。这种方法产生的背景是,在当时出现了许多庞大而复杂的科研和工程项目,这些项目常常需要运用大量的人力、物力和财力,因此如何合理而有效地对这些项目进行组织,在有限资源下以最短的时间和最低的成本费用下完成整个项目就成为一个突出的问题,这样CPM就应运而生了。 设定方法、步骤 简单关键路径法 关键路径法(CPM)是一种网络分析技术,是确定网络图当中每一条路线从起始到结束,找出工期最长的线路,也就是说整个项目工期的决定是由最长的线路来决定的。 关键路径法是时间管理中很实用的一种方法,其工作原理是:为每个最小任务单位计算工期、定义最早开始和结束日期、最迟开始和结束日期、按照活动的关系形成顺序的网络逻辑图,找出必须的最长的路径,即为关键路径。 时间压缩是指针对关键路径进行优化,结合成本因素、资源因素、工作时间因素、活动的可行进度因素对整个计划进行调整,直到关键路径所用的时间不能再压缩为止,得到最佳时间进度计划。 (1)画出网络图,以节点标明事件,由箭头代表作业。这样可以对整个项目有一

弗洛伊德算法求解最短路径

课程设计任务书

目录 第1章概要设计 (1) 1.1题目的内容与要求 (1) 1.2总体结构 (1) 第2章详细设计 (2) 2.1主模块 (2) 2.2构建城市无向图 (3) 2.3添加城市 (4) 2.4修改城市距离 (5) 2.5求最短路径 (6) 第3章调试分析 (7) 3.1调试初期 (7) 3.2调试中期 (7) 3.3调试末期 (7) 第4章测试及运行结果 (7) 附页(程序清单) (10)

第1章概要设计 1.1题目的内容与要求 内容:给出一张无向图,图上的每个顶点表示一个城市,顶点间的边表示城市间存在路径,边上的权值表示城市间的距离。试编写程序求解从某一个城市出发到达任意其他任意城市的最短路径问题。 要求: 1)能够提供简单友好的用户操作界面,可以输入城市的基本信息,包括城市名 称,城市编号等; 2)利用矩阵保存城市间的距离; 3)利用Floyd算法求最短路径; 4)独立完成系统的设计,编码和调试; 5)系统利用C语言完成; 6)按照课程设计规范书写课程设计报告。 1.2总体结构 本程序主要分为四个模块(功能模块见图1.1):主模块对整个程序起一主导作用,开始构建一城市无向图,对其进行添加城市顶点,以及对原来的距离数据进行修改,整体构建结束可以实现求一城市到其他城市的最短路径问题。 图1.1 功能模块图

第2章详细设计 2.1主模块 用户根据屏幕上显示的操作提示输入要进行操作的模块,通过调用相对应的模块程序,达到用户所想进行操作。程序的总框架大致分为四个模块:1.建立城市无向图2.添加城市模块3.修改城市距离4.求最短路径。具体实现过程见2.2:建立城市无向图2.3:添加城市2.4:修改城市距离2.5:求最短路径。流程图中通过输入n,由n的值来选择调用相对应子函数,实现所选择的功能,调用完后可以返回调用主函数进行下一次选择,从而实现反复调用子函数而实现四个模块的功能等。 图2.1 主模块流程图

蚁群算法在车辆路径问题中的应用

蚁群算法在车辆路径问题中的应用 摘要 蚁群算法(Ant Colony Optimization, ACO)是意大利学者M.Dorigo等人通过模拟蚁群觅食行为提出的一种基于种群的模拟进化算法。通过介绍蚁群觅食过程中基于信息素(pheromone)的最短路径的搜索策略,给出了基于MATLAB 的蚁群算法在车辆路径问题(Vehicle Routing Problem, VRP)中的应用。蚁群算法采用分布式并行计算机制,易于其他方法结合,而且具有较强的鲁棒性,但搜索时间长,容易陷入局部最优解。针对蚁群算法存在的过早收敛问题,加入2—opt方法对问题求解进行了局部优化,计算机仿真结果表明,这种混合型蚁群算法对求解车辆路径问题有较好的改进效果。 关键词:蚁群算法、组合优化、车辆路径问题、2-opt方法 1.车辆路径问题 车辆路径问题(VRP)来源于交通运输,1959年由Dantzig 提出,它是组合优化问题中一个典型的NP-hard问题。最初用于研究亚特兰大炼油厂向各个加油站投送汽油的运输路径优化问题,并迅速成为运筹学和组合优化领域的前沿和研究热点。

车路优化问题如下: 已知有一批客户,各客户点的位置坐标和货物需求已知,供应商具有若干可供派送的车辆,运载能力给定,每辆车都是从起点出发,完成若干客户点的运送任务后再回到起点。现要求以最少的车辆数和最少的车辆总行程来完成货物的派送任务。 2、蚁群系统基本原理 在蚂蚁群找到食物时,它们总能找到一条从食物到蚁穴之间的最短路径。因为蚂蚁在寻找食物时会在路途上释放一种特殊的信息素。当它们碰到一个还没有走过的路口时,会随机地挑选一条路径前行。与此同时释放出与路径长度有关的信息素。路径越长,释放的激素浓度越低。当后面的蚂蚁再次碰到这个路口时,会选择激素浓度较高的路径走。这样形成了一个正反馈,最优路径上的激素浓度越来越高,而其他的路径上激素浓度却会随时间的流逝而消减。最终整个蚁群会找出最优路径。在整个寻找过程中,整个蚁群通过相互留下的信息素作用交换着路径信息,最终找到最优路径。 3、基本蚁群算法求解车辆路径问题 求解VRP问题的蚂蚁算法中,每只蚂蚁是一个独立的用 于构造路线的过程,若干蚂蚁过程之间通过信息素值来交换信

蚁群算法最短路径matlab程序

蚁群算法最短路径通用Matlab程序 下面的程序是蚁群算法在最短路中的应用,稍加扩展即可应用于机器人路径规划 function [ROUTES,PL,Tau]=ACASP(G,Tau,K,M,S,E,Alpha,Beta,Rho,Q) %% ---------------------------------------------------------------% ACASP.m % 蚁群算法动态寻路算法 % ChengAihua,PLA Information Engineering University,ZhengZhou,China % Email:aihuacheng@https://www.360docs.net/doc/4d17472229.html, % All rights reserved %% ---------------------------------------------------------------% 输入参数列表 % G 地形图为01矩阵,如果为1表示障碍物 % Tau 初始信息素矩阵(认为前面的觅食活动中有残留的信息素) % K 迭代次数(指蚂蚁出动多少波) % M 蚂蚁个数(每一波蚂蚁有多少个) % S 起始点(最短路径的起始点) % E 终止点(最短路径的目的点) % Alpha 表征信息素重要程度的参数 % Beta 表征启发式因子重要程度的参数 % Rho 信息素蒸发系数 % Q 信息素增加强度系数 % % 输出参数列表 % ROUTES 每一代的每一只蚂蚁的爬行路线 % PL 每一代的每一只蚂蚁的爬行路线长度 % Tau 输出动态修正过的信息素 %% --------------------变量初始化---------------------------------- %load D=G2D(G); N=size(D,1);%N表示问题的规模(象素个数) MM=size(G,1); a=1;%小方格象素的边长 Ex=a*(mod(E,MM)-0.5);%终止点横坐标 if Ex==-0.5 Ex=MM-0.5; end Ey=a*(MM+0.5-ceil(E/MM));%终止点纵坐标 Eta=zeros(1,N);%启发式信息,取为至目标点的直线距离的倒数 %下面构造启发式信息矩阵 for i=1:N if ix==-0.5 ix=MM-0.5;

相关文档
最新文档