一种变步长LMS自适应噪声抵消算法研究

一种变步长LMS自适应噪声抵消算法研究
一种变步长LMS自适应噪声抵消算法研究

介绍了噪声抵消的原理和从强噪声背景中自适应滤波提取有用信号的

LMS与RLS自适应滤波算法性能比较 马文民 【摘要】:介绍了自适应滤波器去除噪声的原理和从强噪声背景中采用自适应滤波提取有用信号的方法,并对最小均方(LMS, Least Mean Squares)和递推最小二乘(RLS, Recursive Least Squares)两种基本自适应算法进行了算法原理、算法性能分析。计算机模拟仿真结果表明,这两种算法都能通过有效抑制各种干扰来提高强噪声背景中的信号。检测特性相比之下,RLS 算法具有良好的收敛性能,除收敛速度快于LMS算法和NLMS算法以及稳定性强外,而且具有更高的起始收敛速率、更小的权噪声和更大的抑噪能力。 【关键词】:自适应滤波;原理;算法;仿真 引言: 自适应滤波是近30年以来发展起来的一种最佳滤波方法。它是在维纳滤波,kalman滤波等线性滤波基础上发展起来的一种最佳滤波方法。由于它具有更强的适应性和更优的滤波性能。从而在工程实际中,尤其在信息处理技术中得到广泛的应用。自适应滤波的研究对象是具有不确定的系统或信息过程。"不确定"是指所研究的处理信息过程及其环境的数学模型不是完全确定的。其中包含一些未知因数和随机因数。任何一个实际的信息过程都具有不同程度的不确定性,这些不确定性有时表现在过程内部,有时表现在过程外部。从过程内部来讲,描述研究对象即信息动态过程的数学模型的结构和参数是我们事先不知道的。作为外部环境对信息过程的影响,可以等效地用扰动来表示,这些扰动通常是不可测的,它们可能是确定的,也可能是随机的。此外一些测量噪音也是以不同的途径影响信息过程。这些扰动和噪声的统计特性常常是未知的。面对这些客观存在的各种不确定性,如何综合处理信息过程,并使某一些指定的性能指标达到最优或近似最优,这就是自适应滤波所要解决的问题。 在这几十年里,数字信号处理技术取得了飞速发展,特别是自适应信号处理技术以其计算简单、收敛速度快等许多优点而广泛被使用。它通过使内部参数的最优化来自动改变其特性。自适应滤波算法在统计信号处理的许多应用中都是非常重要的。 在工程实际中,经常会遇到强噪声背景中的微弱信号检测问题。例如在超声波无损检测领域,因传输介质的不均匀等因素导致有用信号与高噪声信号迭加在一起。被埋藏在强背景噪声中的有用信号通常微弱而不稳定,而背景噪声往往又是非平稳的和随时间变化的,此时很难用传统方法来解决噪声背景中的信号提取问题。自适应噪声抵消技术是一种有效降噪的方法,当系统能提供良好的参考信号时,可获得很好的提取效果。与传统的平均迭加方法相比采用自适应平均处理方法还能降低样本数量。 1自适应滤波器的基本原理 所谓的自适应滤波,就是利用前一时刻以获得的滤波器参数的结果,自动的调节现时刻的滤波器参数,以适应信号和噪声未知的或随时间变化的统计特性,从而实现最优滤波。自适应滤波器实质上就是一种能调节其自身传输特性以达到最优的维纳滤波器。自适应滤波器不需要关于输入信号的先验知识,计算量小,特别适用于实时处理。 由于无法预先知道信号和噪声的特性或者它们是随时间变化的,仅仅用FIR和IIR两种具有固定滤波系数的滤波器无法实现最优滤波。在这种情况下,必须设计自适应滤波器,以跟踪信号和噪声的变化。 自适应滤波器的特性变化是由自适应算法通过调整滤波器系数来实现的。一般而言,自适应滤波器由两部分组成,一是滤波器结构,二是调整滤波器系数的自适应算法。 自适应噪声抵消系统的核心是自适应滤波器,自适应算法对其参数进行控制,以实现最佳滤波。不同的自适应滤波器算法,具有不同的收敛速度、稳态失调和算法复杂度。根据自

基于LMS算法的自适应组合滤波器中英文翻译

Combined Adaptive Filter with LMS-Based Algorithms ′ Abstract: A combined adaptive ?lter is proposed. It consists of parallel LMS-based adaptive FIR ?lters and an algorithm for choosing the better among them. As a criterion for comparison of the considere d algorithms in the proposed ?lter, we take the ratio between bias and variance of the weighting coef?cients. Simulations results con?rm the advantages of the proposed adaptive ?lter. Keywords: Adaptive ?lter, LMS algorithm, Combined algorithm,Bias and var iance trade-off 1.Introduction Adaptive ?lters have been applied in signal processing and control, as well as in many practical problems, [1, 2]. Performance of an adaptive ?lter depends mainly on the algorithm used for updating the ?lter weighting coef?ci ents. The most commonly used adaptive systems are those based on the Least Mean Square (LMS) adaptive algorithm and its modi?cations (LMS-based algorithms). The LMS is simple for implementation and robust in a number of applications [1–3]. However, since it does not always converge in an acceptable manner, there have been many attempts to improve its performance by the appropriate modi?cations: sign algorithm (SA) [8], geometric mean LMS (GLMS) [5], variable step-size LMS(VS LMS) [6, 7]. Each of the LMS-bas ed algorithms has at least one parameter that should be de?ned prior to the adaptation procedure (step for LMS and SA; step and smoothing coef?cients for GLMS; various parameters affecting the step for VS LMS). These parameters crucially in?uence the ?lter output during two adaptation phases:transient and steady state. Choice of these parameters is mostly based on some kind of trade-off between the quality of algorithm performance in the mentioned adaptation phases. We propose a possible approach for the LMS-based adaptive ?lter performance improvement. Namely, we make a combination of several LMS-based FIR ?lters with different parameters, and provide the criterion for choosing the most suitable algorithm for different adaptation phases. This method may be applied to all the

自适应滤波LMS算法及RLS算法及其仿真.

自适应滤波 第1章绪论 (1) 1.1自适应滤波理论发展过程 (1) 1.2自适应滤波发展前景 (2) 1.2.1小波变换与自适应滤波 (2) 1.2.2模糊神经网络与自适应滤波 (3) 第2章线性自适应滤波理论 (4) 2.1最小均方自适应滤波器 (4) 2.1.1最速下降算法 (4) 2.1.2最小均方算法 (6) 2.2递归最小二乘自适应滤波器 (7) 第3章仿真 (12) 3.1基于LMS算法的MATLAB仿真 (12) 3.2基于RLS算法的MATLAB仿真 (15) 组别:第二小组 组员:黄亚明李存龙杨振

第1章绪论 从连续的(或离散的)输入数据中滤除噪声和干扰以提取有用信息的过 程称为滤波。相应的装置称为滤波器。实际上,一个滤波器可以看成是 一个系统,这个系统的目的是为了从含有噪声的数据中提取人们感兴趣的、 或者希望得到的有用信号,即期望信号。滤波器可分为线性滤波器和非 线性滤波器两种。当滤波器的输出为输入的线性函数时,该滤波器称为线 性滤波器,当滤波器的输出为输入的非线性函数时,该滤波器就称为非线 性滤波器。 自适应滤波器是在不知道输入过程的统计特性时,或是输入过程的统计特性发生变化时,能够自动调整自己的参数,以满足某种最佳准则要求的滤波器。 1.1自适应滤波理论发展过程 自适应技术与最优化理论有着密切的系。自适应算法中的最速下降算法以及最小二乘算法最初都是用来解决有/无约束条件的极值优化问题的。 1942年维纳(Wiener)研究了基于最小均方误差(MMSE)准则的在可加性噪声中信号的最佳滤波问题。并利用Wiener.Hopf方程给出了对连续信号情况的最佳解。基于这~准则的最佳滤波器称为维纳滤波器。20世纪60年代初,卡尔曼(Kalman)突破和发展了经典滤波理论,在时间域上提出 了状态空间方法,提出了一套便于在计算机上实现的递推滤波算法,并且适用于非平稳过程的滤波和多变量系统的滤波,克服了维纳(Wiener)滤波理论的局限性,并获得了广泛的应用。这种基于MMSE准则的对于动态系统的离散形式递推算法即卡尔曼滤波算法。这两种算法都为自适应算法奠定了基础。 从频域上的谱分析方法到时域上的状态空间分析方法的变革,也标志 着现代控制理论的诞生。最优滤波理论是现代控制论的重要组成部分。在控制论的文献中,最优滤波理论也叫做Kalman滤波理论或者状态估计理论。 从应用观点来看,Kalman滤波的缺点和局限性是应用Kalman滤波时要求知道系统的数学模型和噪声统计这两种先验知识。然而在绝大多数实际应用问题中,它们是不知道的,或者是近似知道的,也或者是部分知道的。应用不精确或者错误的模型和噪声统计设计Kalman滤波器将使滤波器性能变坏,导致大的状态估计误差,甚至使滤波发散。为了解决这个矛盾,产生了自适应滤波。 最早的自适应滤波算法是最小JY(LMS)算法。它成为横向滤波器的一种简单而有效的算法。实际上,LMS算法是一种随机梯度算法,它在相对于抽头权值的误差信号平方幅度的梯度方向上迭代调整每个抽头权 值。1996年Hassibi等人证明了LMS算法在H。准则下为最佳,从而在理论上证明了LMS算法具有孥实性。自Widrow等人1976年提出LMs自适应滤波算法以来,经过30多年的迅速发展,已经使这一理论成果成功的应用到通信、系统辨识、信号处理和自适应控制等领域,为自适应滤波开辟了新的发展方向。在各种自适应滤波算法中,LMS算法因为其简单、计算量小、稳定性好和易于实现而得到了广泛应用。这种算法中,固定步长因子μ对算法的性能有决定性的影响。若μ较小时,算法收敛速度慢,并且为得到满意的结果需要很多的采样数据,但稳态失调误差

复化梯形法 复化矩形法 变步长梯形 变步长辛普森

陕西科技大学 机械教改班 用C++的积分 其实积分的思想就是,微分—>求和—>取极限,如果是用纯手工法那就是先对一个函数微分,再求出它的面积,在取极限,因为我们的计算速度和计算量有限,现在有了计算机这个速度很快的机器,我们可以把微分后的每个小的面积加起来,为了满足精度,我们可以加大分区,即使实现不了微分出无限小的极限情况,我们也至少可以用有限次去接近他,下面我分析了四种不同的积分方法,和一个综合通用程序。 一.积分的基本思想 1、思路:微分—>求和—>取极限。 2、Newton —Leibniz 公式 ?-=b a a F b F dx x f ) ()()( 其中,)(x F 被积函数)(x f 的原函数。 3、用计算机积分的思路 在积分区间内“微分—>求和—>控制精度”。因为计算机求和不可以取极限,也就是不可以无限次的加下去,所以要控制精度。 二.现有的理论 1、一阶求积公式---梯形公式 ?=+-=b a T b f a f a b dx x f )]()([2 )( 他只能精确计算被积函数为0、1次多项式时的积分。 2、二阶求积分公式——牛顿、科特斯公式 ?=+++-=b a S b f a b f a f a b dx x f )]()2(4)([6)( 他只能精确计算被积函数为0、1、2、3次多项式时的积分。 三.四种实现方法 1.复化矩形法 将积分区间[a,b]等分成n 个子区间: ],[],[],[],[],[112322110n n n n x x x x x x x x x x ---、、、 则h=(b-a)/n,区间端点值k x =a+kh

LMS算法在噪声抵消中的应用

LMS算法在噪声抵消中的应用 冯振勇,王玉良 北京邮电大学信息工程学院,北京(100876) E-mail:fengzhenyong1984@https://www.360docs.net/doc/4117955658.html, 摘要:自适应噪声干扰抵消器是基于自适应滤波器原理的一种扩展。本文首先根据自适应LMS滤波器的设计理念介绍了噪声抵消器的原理,得出自适应抵消器只有参考输入噪声与原始输入噪声存在相关性,才能有效的抵消噪声的结论;在此基础上进行了稳定噪声抵消的求解,以单输入单输出维纳滤波器系统为例,通过滤波器的误差公式和转移函数求得维纳滤波器问题的无约束非因果解;随后利用LMS算法设计了自适应单信道噪声抵消器,根据前两步的分析,将自适应抵消器的参考输入信号谱函数分解,求得维纳解的最佳转移函数;最后通过MATLAB仿真实验证明了LMS算法在自适应滤波去噪中的优势,并对结果进行了分析。 关键词:LMS算法;自适应单信道噪声抵消器;自适应滤波 中图分类号:TN713 1. 引言 自适应噪声抵消器是利用自适应噪声抵消技术,从背景噪声中提取语音信号,以提高语音的清晰度。其目的是把信号中的噪声和语音信号进行有效地分离,降低环境噪声的影响。 自适应干扰对消是通过自适应过程加以控制的,它可以在信号很微弱或信号用常规的方法无法检测的噪声干扰场中,将从一个或多个传感器所取得的参考输入加以过滤,并从包含信号和噪声的原始输入中减去,最后结果是原始信号中的噪声或干扰被衰减或消除,而保留了有用信号[1]。噪声干扰对消可完成时间域(频域)的滤波,也可实现空间域的滤波,因此自适应干扰对消具有广泛的应用范围。例如消除心电图中的电源干扰、检测胎儿心音时滤除母亲的心音及背景干扰、在有多人讲话的场合下提取某人的讲话、作为天线阵列的自适应旁瓣对消器。 2. 自适应噪声抵消器的设计 理论上讲,自适应噪声干扰抵消器是基于自适应滤波器原理的一种扩展。简单的说,把 d n改为信号加噪声干扰的原始输入端,而它的输入端改自适应滤波器的期望信号输入端() 为噪声干扰端,有横向滤波器的参数调节输出以将原始输入端的噪声抵消掉,这时误差输出就是有用信号了。下面从噪声抵消器的原理介绍,求解过程和设计三方面进行说明。 2.1 噪声抵消器的原理 图1 噪声低消器的原理图

自适应噪声抵消LMS算法Matlab仿真

自适应噪声抵消LMS 算法Matlab 仿真 传统的宽带信号中抑制正弦干扰的方法是采用陷波器(notch filter),为此我们需要精确知道干扰正弦的频率.然而当干扰正弦频率是缓慢变化时,且选频率特性要求十分尖锐时,则最好采用自适应噪声抵消的方法.下图是用一个二阶FIR 的LMS 自适应滤波器消除正弦干扰的一个方案。 1) 借助MATLAB 画出误差性能曲面和误差性能曲面的等值曲线; 2) 写出最陡下降法, LMS 算法的计算公式(δ=0.4); 3) 用MATLAB 产生方差为0.05,均值为0白噪音S(n),并画出其中一次实现的波形据2)中的公式,并利用3)中产生的S(n),在1)中的误差性能曲面的等值曲n 的值曲线上叠加画出LMS 法时100情况确定,一般选取足够大以使算法达到基) (n y 宽带信号+正弦干扰 0()()() y n S n N n =+图; 4) 根线上叠加画出采用最陡下降法, LMS 法时H(n)的在叠代过程中的轨迹曲线。 5)用MATLAB 计算并画出LMS 法时 随时间变化曲线(对 应S(n)的某一次的一次实现)和e(n)波形;某一次实现的结果并不能从统计的角度反映实验的结果的正确性,为得到具有统计特性的实验结果,可用足够多次的实验结果的平均值作为实验的结果。用MATLAB 计算并画出LMS 法时J(n)的100次实验结果的平均值随时间n 的变化曲线。 6)用MATLAB 计算并在1)中的误差性能曲面的等次实验中的H(n)的平均值的轨迹曲线; (在实验中n=1,,…..N,N 的取值根据实验本收敛) 01(),(0)0.05 2()sin( 16102()sin() 16ss S n r N n n N n n πππ ==+是均匀分布的白噪音不相关 和)(),()(10n N n N n S ) (n x x 1()() ) (n e n N n =

LMS算法

自适应信号处理算法(LMS算法) 近来有许多同学想我询问LMS算法的仿真程序,这里提供一个从别处下载下来的,要验证。%自适应信号处理算法 clear all; hold off; sysorder=5; %抽头数 N=1000; %总采样次数 n1=randn(N,1);%产生高斯随机系列 n2=randn(N,1); [b,a]=butter(2,0.25); Gz=tf(b,a,-1); %逆变换函数 h=[0.0976;0.2873;0.3360;0.2210;0.0964;]; %信道特性向量 y = lsim(Gz,n1);%加入噪声 noise = n2 * std(y)/(10*std(n2));%噪声信号 d = y + noise;%期望输出信号 totallength=size(d,1);%步长 N=60 ; %60节点作为训练序列 %算法的开始 w = zeros ( sysorder , 1 ) ;%初始化 for n = sysorder : N u = inp(n:-1:n-sysorder+1) ;% u的矩阵 y(n)= w' * u;%系统输出 e(n) = d(n) - y(n) ;%误差 if n < 20 mu=0.32; else mu=0.15; end

w = w + mu * u * e(n) ;%迭代方程end %检验结果 for n = N+1 : totallength u = inp(n:-1:n-sysorder+1) ; y(n) = w' * u ; e(n) = d(n) - y(n) ;%误差 end hold on plot(d) plot(y,'r'); title('系统输出') ; xlabel('样本') ylabel('实际输出') figure semilogy((abs(e))) ;% e的绝对值坐标title('误差曲线') ; xlabel('样本') ylabel('误差矢量') figure%作图 plot(h, 'k+') hold on plot(w, 'r*') legend('实际权矢量','估计权矢量') title('比较实际和估计权矢量') ;

变步长的梯形积分方法的应用

CENTRAL SOUTH UNIVERSITY 数值分析实验报告

变步长的梯形积分方法的应用 一、问题背景 实际问题当中常常需要计算积分,有些数值方法,如微分方程和积分方程的求解,也都和积分计算相关联。 依据人们所熟知的微积分基本定理,对于积分 ()dx x f I a ?=b , 只要找到被积分函数()x f 的原函数()x F ,便有下列牛顿-莱布尼茨(Newton-Leibniz )公式: ()()()a F b F dx x f b -=?a . 但实际使用这种求积分方法往往有困难,因为大量的被积函数,诸如 ()0sin ≠x x x ,2x e -等,其原函数不能用初等函数表达,故不能用上述公式计算。即使能求得原函数的积分,有时计算也十分困难。例如对于被积函数 ()6 11x x f +=,其原函数 ()C x x x x x x x x F ++-+++??? ??-+=1 313ln 3411arctan 61arctan 3122, 计算()a F ,()b F 仍然很困难,另外,当()x f 是由测量或数值计算给出的一张数据表时,牛顿-莱布尼茨公式也不能直接运用。因此有必要研究积分的数值计算问题。 二、数学模型 由于牛顿-科特斯积分公式在8≥n 时不具有稳定性,故不能通过提高阶数的方法来提高求积精度。为了提高精度通常可以把积分区间划分成若干的子区间(通常是等分),再在每个子区间上用低阶求积公式。这种方法称为复合求积法。 复合梯形法虽然方法简单,但是却不能估计积分精度,这有时候是很不方便的。要想控制积分精度,可以采用如下的方法,设积分区间已经划分为n 个子区间,这时再把区间划分更细,给出新的积分结果,如果前后两次积分的差比给定的误差容限小的话,则停止细华否则继续增加积分区间。这种方法原理很简单也 容易实现,但是实际计算中一般采用的比较少,因为这种方法比较机械效率不是太高,实际上采用比较多的通常是Romberg 方法。 三、算法及流程 给定义误差容限小量TOL ,对于()dx x f b a ?,有复合梯形公式

自适应噪声抵消器的发展与现状

自适应噪声抵消器的发展与现状 1自适应滤波器简介 2自适应滤波器的发展与研究状况 1自适应滤波器简介 滤波器是电子设备的最基本的部件,人们对其己进行了广泛的研究。Winner 奠定了关于最佳滤波器的基础。维纳WImeIr根据最小均方误差准则求得了最佳线性滤波器的参数。这种滤波器被称为维纳滤波器,它获得了极其广泛的应用。在Winner研究的基础上,人们还根据最大输出信噪比准则等,获得了其他的最佳线性滤波器。要实现维纳滤波,要求(1)输入过程是广义平稳的;(2)输入过程的统计特性是己知的。根据其他最佳准则的滤波器亦有同样要求。然而,由于输入过程取决于外界的信号、干扰环境,这种环境的统计特性常常是未知的、变化的,因而不能满足上述两个要求。这就促使人们研究自适应滤波器。自适应滤波器是在输入过程的统计特性未知时,或输入过程的统计特性变化时,能够调整自己的参数,以满足某种最佳准则,即具有“学习”和“跟踪”能力,包括时域和空域滤波等。自适应噪声抵消的最早的一些工作,是1957年到1960年间,Howesll 和APPlbe~以及他们的同事通用电气公司完成的。他们使用取自一个辅助天线的参考输入和一个简单的两权的自适应滤波器,设计并制造了天线旁瓣对消系统。在这些早期年代里,只有少数人对自适应系统感兴趣。而多权自适应滤波器的研制则刚刚开始。1959年,Widorw和Hoff在斯坦福大学证明了最小均方(LMS)自适应算法和模式识别方案,称之为Adatni(代表“自适应线性门逻辑元件”)。就在当时,罗森布拉特在康奈尔宇航实验室建造了他的模拟人类视觉神经控制系统的电子设备。在苏联,莫斯科自动学和遥控力学研究所的艾日曼及其同事们,也在制造一种自动梯度搜索机器。英国,.D加布尔和他的助手们则在研制自适应滤波器。在六十年代初期和中期,关于自适应系统的工作加强了。文献中出现了数百篇关于自适应控制、自适应滤波和自适应信号处理的文章。自适应滤波在数字通信中的重要商业应用是这一时期勒凯在贝尔实验室的工作形成的。自适应

自适应噪声抵消器的MATLAB设计与实现概要

福建电脑 2010年第 9期 自适应噪声抵消器的 MATLAB 设计与实现 成利香 1,2, 张桂新 1 (1. 中南大学信息科学与工程学院湖南长沙 4100002. 湖南工学院湖南衡阳421002 【摘要】:本文简述了自适应滤波的基本原理 , 并给出了自适应滤波噪声抵消的一般系统模型 , 重点研究了 LMS 自适应算法。完成了在 MATALB 下的仿真 , 并通过设置不同参数 , 对其性能做了分析。【关键词】:自适应滤波 ; 噪声抵消 ; LMS 算法 ; MATLAB 0、引言 自适应滤波自适应滤波器不需要输入信号的先验知识 , 它是利用前一时刻已经获得的输入信号获参量 , 调节现时刻的滤波参数 , 以适应信号和噪声未知的或随时间变化的统计特性 , 从而实现最优维纳滤波。自适应滤波自 Widrow 等提出以来 , 因其计算量小 , 易于实现等特点 , 得到了各领域的广泛应用。 1、自适应滤波器噪声抵消的原理 1. 1自适应滤波器噪声抵消的基本原理 一个自适应滤波器包括两个不同的部分 :一个是具有可调系数的数字滤波器 , 一个是用于调整或改变滤波系数的自适应算法。图 1给出了自适应滤波器作为噪声对消的原理框图。 图 1自适应滤波器作为噪声对消的原理框图 噪声消除的主要目的是对被污染信号中的噪声的最优估计 , 以获得信号的最优估计。其中 x(n表示输入信号 ; y(n表示被污染的信号 , 包括所希望的信号和噪声

信号 ; r(n表示被污染信号的某种测量 , 与叠加的噪声信号相关 ; d (n:表示叠加噪声信号的估计值 ; e(n; 表示作为输出的信号 , 一是作为希望信号 x(n的估计输出值 , 二是用于调整自适应滤波器的参数。利用此输出值通过某种自适应算法对滤波器参数进行调整 , 最终获得噪声最优估计值 , 当输入信号的统计特性发生变化 , 自适应数字滤波器能够跟踪这种变化 , 自动调整参数 , 使滤波器性能重新达到最佳。 1.2自适应算法的研究 根据自适应算法优化准则的不同 , 其算法大致分为两大类 , 一是最小均方算法 (LMS , least -mean -square , 二是递归最小二乘法 (RLS 。 LMS 算法是基于最小均方误差准则的维纳滤波器和最陡下降法提出的 , 是对梯度下降算法的近似简化。算法的基本思想是 :调整滤波器自身的参数 , 使滤波器的输出信号与期望输 出信号之间的均方误差最小 , 系统输出为有用信号的最佳估计。其算法推导如下 : 其中μ为固定步长因子 , 是一常数。 显然上面的算法不需要事先知道信号的统计量 (即相关量 R 和 P , 而使用他们的瞬时估计代替算法获得的权重只是一个估计值 , 但随着调节权重 , 这些估计值逐渐提高 , 滤波器也越来越适应信号特性 , 最终权值收敛 , 收敛的条件为 其中λmax 是输入数据方差矩阵的最大特征值。下面给出基本 LMS 算法实 现的步骤 : 1 初始化 , 令所有权重为任一固定值 , 或为 0; 2 计算滤波输出 3 计算估计误差 4 更新下一时刻的滤波器的权重 3、自适应噪声抵消器的 MATLAB 的设计与实现 max

自适应噪声消除算法的性能比较与仿真

第9卷 第19期 2009年9月167121819(2009)1925835205  科 学 技 术 与 工 程 Science Technol ogy and Engineering  Vol 19 No 119 Oct .2009 Ζ 2009 Sci 1Tech 1Engng 1 自适应噪声消除算法的性能比较与仿真 江清潘 常太华3  朱红路 马 军 1 (华北电力大学控制科学与工程学院,北京102206;湖北省汉江河道管理局1,潜江433100) 摘 要 在信号处理中,噪声往往是非平稳和随时间变化的,传统方法很难解决噪声背景中的信号提取问题。通过对自适应噪声消除原理的研究,介绍了基于参考信号和基于预测原理的两种自适应噪声消除(ANC,Adap tive Noise Cancellati on )方法,分析对比了基于最小均方(L M S,LeastMean Squares )、递推最小二乘(RLS,Recursive Least Squares )和平方根自适应滤波(QR -RLS,recursive least squares based on QR decompositi on )三种噪声消除算法的性能。仿真结果表明:这几种算法都能从高背景 噪声中有效地抑制干扰提取出有用信号,显示出了良好的收敛性能。相比之下,RLS 算法和QR -RLS 算法呈现出更快的收敛速度、更强的稳定性和抑噪能力。 关键词 自适应噪声消除 自适应滤波器 噪声中图法分类号 TP27412; 文献标志码 A 2009年6月15日收到国家自然科学基金(50776030)资助 第一作者简介:江清潘(1986—),男,福建三明人,硕士在读,研究方向:电力生产过程建模、燃烧优化。E 2mail:jqpgg m @g mail 1com jqphd2007@yahoo 1cn 。 3 通信作者简介:常太华(1951—),女,山西榆社人,教授,研究方向: 信息融合及检测新技术。 在信号处理领域中噪声消除是一个非常重要的问题,对噪声环境中系统的正常工作有着很大的影响。隐藏在有用信号中的背景噪声往往是非平稳且随时间变化的,信号和噪声的统计特性往往无法知晓,而且背景噪声中的有用信号往往微弱而不稳定,此时采用传统方法很难解决噪声环境中的信号提取问题 [1] 。近年来自适应噪声消除(ANC )系 统成为消除噪声的研究热点,利用自适应滤波器具有在未知环境下良好运行并跟踪输入统计量随时间变化的能力,通过不断调整抽头权系数来适应发生变化的信号和噪声的统计特性,达到消除噪声干扰的目的 [2] 。 根据噪声知识的了解情况,ANC 系统可采用基于参考信号和基于预测原理的两种噪声消除方法。在噪声相关知识足够了解的情况下可选取一个与噪声信号相关的参考信号进行噪声干扰对消。在 噪声相关知识了解不够充分时可根据自适应滤波器的预测原理,利用噪声信号的时间不相关性来达到噪声消除的目的。 ANC 系统的核心是自适应滤波器,通过自适应 算法对滤波器权系数进行调整以实现最佳滤波。不同的自适应滤波器算法具有不同的收敛速度、稳态失调和算法复杂度,基于上述两种噪声消除方法对比分析了基于L MS 、RLS 和QR -RLS 三种算法的噪声消除效果。仿真结果表明,这几种算法都能从高背景噪声中提取有用信号。相比之下,在基于参考信号的方法中,RLS 算法体现出了更好的收敛性能和抑制干扰的能力。在基于预测的消噪方法中,QR -RLS 算法呈现出了更快的收敛速度、更强的稳 定性和抑噪能力。 1 自适应噪声消除原理及算法 111 噪声消除原理 自适应滤波器噪声消除系统是以噪声干扰为处理对象,将其抑制或者进行衰减,以提高输出端的信噪比质量。分析了基于参考信号和基于预测原理的两种自适应噪声消除方法。

LMS与RLS算法程序

%LMS算法程序 clear N=2000;Fs=500 n=0:N-1;t=n/Fs; s=5*sin(2*pi*t);%标准正弦信号 xn=randn(1,length(t));%与时间t等长随机信号 x=s+xn;%加噪信号 w=[0,0];%初始2阶加权系数 u=0.00026;%最佳参数 for i=1:N-1;%自适应算法 y(i+1)=xn(i:i+1)*w'; e(i+1)=x(i+1)-y(i+1); w=w+2*u*e(i+1)*xn(i:i+1); end; %画图程序 subplot(4,1,1) plot(t,s); title('输入周期信号'); xlabel('t'); ylabel('s(t)'); subplot(4,1,2) plot(t,xn); title('噪声信号'); xlabel('t'); ylabel('xn(t)'); subplot(4,1,3) plot(t,x); title('加噪信号'); xlabel('t'); ylabel('x(t)'); subplot(4,1,4) plot(t,e); title('自适应滤波器输出结果'); xlabel('t'); ylabel('e(t)'); %RLS算法程序 clear N=2000;Fs=500;

n=0:N-1;t=n/Fs; xs=( sin(2*pi*t))'; subplot(4,1,1); plot(t,xs);grid; ylabel('幅度'); title('\it{输入周期性信号}'); xn=( 0.6*randn(1,length(t)))'; subplot(4,1,2); plot(t,xn);grid; ylabel('幅度'); xlabel('时间'); title('\it{随机噪声信号}'); d=xs; x=xs+xn; M=32; w=(zeros(1,M))'; p=0.001*eye(M,M); a=0.98; for n=M:N; x1=x(n:-1:n-M+1); pi_ = x1' * p ;%互相关函数 k = a + pi_ * x1 ; K = pi_'/k;%增益矢量 e(n)=d(n)-w'*x1; w=w+K*conj(e(n)); y(n)=w'*x1; end subplot(4,1,3); plot(t,x);grid; axis([0 4 -2 2]); ylabel('幅度'); xlabel('时间'); title('\it{加入噪声信号}'); subplot(4,1,4); plot(t,y);grid; ylabel('幅度'); xlabel('时间'); axis([0 4 -1 1]); title('\it{自适应滤波器输出信号}');

RLS和LMS自适应算法分析

RLS 和LMS 自适应算法分析 摘要:本文主要介绍了自适应滤波的两种算法:最小均方(LMS, Least Mean Squares)和递推最小二乘(RLS, Recursive Least Squares)两种基本自适应算法。我们对这两种基本的算法进行了原理介绍,并进行了Matlab 仿真。通过仿真结果,我们对两种自适应算法进行了性能分析,并对其进行了比较。用Matlab 求出了LMS 自适应算法的权系数,及其学习过程曲线,和RLS 自适应权系数算法的学习过程。 关键词:自适应滤波、LMS 、RLS 、Matlab 仿真 Abstract: this article mainly introduces two kinds of adaptive filtering algorithms: Least Mean square (LMS), further Mean Squares) and Recursive Least Squares (RLS, Recursive further Squares) two basic adaptive algorithm. Our algorithms of these two basic principle is introduced, and Matlab simulation. Through the simulation results, we have two kinds of adaptive algorithm performance analysis, and carries on the comparison. Matlab calculate the weight coefficient of the LMS adaptive algorithm, and its learning curve, and the RLS adaptive weight coefficient algorithm of the learning process. Keywords:, LMS and RLS adaptive filter, the Matlab simulation 课题简介:零均值、单位方差的白噪声通过一个二阶自回归模型产 生的AR 过程。AR 模型的系统函数为: H(Z)=2 18.06.111--+-Z Z 假设1a =-1.6,2a =0.8将系统函数转化为差分方程为: )()2()1()(21n w n a n x a n x +----= 其中w(n)为白噪声,参数1a =-1.6,2a =0.8。激励源是白噪声w(n)。 本文用Matlab 仿真做出了模型系数的收敛过程及平均的学习曲线。分别用LMS 算法和RLS 算法,分别做出了模型系数的收敛过程及学

基于MATLAB的自适应噪声抵消器的设计与实现

2009年11月第”期危子测斌 ELECTRoNICTEsT Nov.2009 No.1/ 基于M棚,AB的自适应噪声抵消器的设计与实现 徐梅花,王福明 (中北大学现代教育技术与信息中心太原030051) 摘要:阐述了自适应噪声抵消(ANC)技术的基本原理,基于自适应滤波器的原理,设计了自适应噪声抵消器; 在对自适应滤波器相关理论研究的基础上,重点研究了自适应噪声抵消器的核心——I。MS自适应滤波算法。 在MATLAB中的Simulink下,建立了自适应噪卢抵消器的模型,并通过设置不同的参数进行仿真,结果表明系 统能够有效地从噪声中恢复出原始信号。最后对系统进行了性能分析,给出了自适应噪声抵消系统在实际应用 中选取参考信号的要求。 关键词:自适应滤波;噪声抵消;LMS;MATI。AB仿真 中图分类号:TN911.4文献标识码:A Designandrealizationofadaptivenoisecancellerbasedon MATLAB XuMeihua,WangFuming (ModernEducationTechnology&InformationCenterofNorthUniversityofChina。Taiyuan030051.China) Abstract:ThispaperelaboratedthebasictheoryofAdaptivenoisecancellationtechnology(ANC),designedAdaptivenoisecancellerbasedonadaptivefilter;Afterstudyingtherelated theoryofadaptivefilter,thecoreofadaptivenoisecaneeller-LMSadaptivefilteringalgorithmis researchedemphatically.UndertheSimulinkofMATI。AB,builtthemodelofadaptivenoise cancellerandsimulatedthroughinstallingdifferentparameters.Theresultsdeclaredthesystem canrecoveroriginalsignalfromnoiseeffectively.Finally,analyzedthefunctionofsystem,and giventhesystemrequirementsofselectedreferencesignalsinthepracticalapplication. Keywords:Adaptivefiltration;Noisecancellation;LMS;MATLABsimulation O引言 基于自适应噪声抵消技术(AdaptiveNoiseCan—cellation,ANC),作为在强噪声背景下通信的一种主要语音增强方法,把信号中的噪声和语音信号进行有效的分离,降低或抑制环境噪声的影响,有效提高了语音的清晰度。自Widrow等于1967年提出自适 电量塑gi墓 ELECTRON『GTEST应滤波概念以来,因其计算量小、易于实现等优点,发展极为迅速。目前广泛应用于通信、语音信号处理、图像处理、模式识别、系统辨识及自动控制等领域,是目前最活跃的研究领域之一。自适应噪声抵消技术和其他语音增强方法相比,突出之处就是该方法不基于任何信号模型和对信号的统计特性无特殊要求,故其应用范围相当广泛。 早在1975年,美国斯坦福大学的Widrow等 型 万方数据

自适应MATLABlms程序

自适应MATLAB lms程序 【讨论】自适应滤波的MATLAB实现1.LMS算法的仿真程序: %lms算法 clear all close all hold off%系统信道权数 sysorder=5;%抽头数 N=1000;%总采样次数 inp=randn(N,1);%产生高斯随机系列 n=randn(N,1); [b,a]=butter(2,0.25); Gz=tf(b,a,-1);%逆变换函数 h=[0.0976;0.2873;0.3360;0.2210;0.0964;];%信道特性向量y=lsim(Gz,inp);%加入噪声 n=n*std(y)/(10*std(n));%噪声信号 d=y+n;%期望输出信号 totallength=size(d,1);%步长 N=60;%60节点作为训练序列

%算法的开始 w=zeros(sysorder,1);%初始化 for n=sysorder:N u=inp(n:-1:n-sysorder+1);%u的矩阵y(n)=w'*u;%系统输出 e(n)=d(n)-y(n);%误差 if n<20 mu=0.32; else mu=0.15; end w=w+mu*u*e(n);%迭代方程end %检验结果 for n=N+1:totallength u=inp(n:-1:n-sysorder+1); y(n)=w'*u; e(n)=d(n)-y(n);%误差 end hold on plot(d) plot(y,'r');

title('系统输出'); xlabel('样本') ylabel('实际输出') figure semilogy((abs(e)));%e的绝对值坐标 title('误差曲线'); xlabel('样本') ylabel('误差矢量') figure%作图 plot(h,'k+') hold on plot(w,'r*') legend('实际权矢量','估计权矢量') title('比较实际和估计权矢量'); axis([060.050.35]) 2.NLMS算法的仿真程序: %lms算法 clear all close all hold off%系统信道权数 sysorder=5;%抽头数 N=1000;%总采样次数

相关文档
最新文档