线性系统状态空间分析与运动解

线性系统状态空间分析与运动解
线性系统状态空间分析与运动解

【实验地点】课外(宿舍) 【实验目的】

1、学会利用MATLAB 实现离散系统传递函数模型的生成

2、学会利用MATLAB 将连续系统离散化 【实验设备与软件】

1、MATLAB/Simulink 数值分析软件

2、计算机一台 【实验原理】

1、求矩阵特征值和特征向量命令格式[V J]=eig (A ) Cv=eig(A)

说明:V 特征向量,J 是Jordan 型,cv 是特征值列向量 2、求运动的方法

(1)利用Laplace 逆变换----适合于连续/离散线性系统

采用ilaplace/iztrans 对传递函数求逆,这种方法一般是零输入情况下求响应。 (2)用连续(离散)状态转移矩阵表示系统解析解----适合于线性定常系统 对连续定常系统有:

假设初始时刻为零,LTI 系统的解析解为dt Bu e

e

x e t x t

At

At

At

??+=0

)()0()(τ。若u (t )是单位

阶跃输入,则上述解可写成dtBu e

e x e t x t

At

At At ??+=0

)()0()(τ。进一步简化为:

Bu A Bu A x e t x At 11))0(()(---+=

对离散线性定常系统有:

∑---+

=1

1

)()0()(k i k

k

i Hu G x G k x

(3)状态方程的数值分析方法----适合于连续线性系统和非线性系统

采用直接数值积分很容易的处理各种定常/时变和线性/非线性系统。有很多数值积分方法,其中有一类预测-修正数值积分方法+自适应步长调整的算法比较有效。在MATLAB/Simulink 中包含的多种有效的、适用于不同类型的ODE 求解算法,典型的是Runge-Ktuta 算法,其通常使用如下的函数格式:

[t,x]=ode45(odefun,[ti,tf],x0,options)----采用四阶、五阶Runge-Ktuta 算法 [t,x]=ode23(odefun,[ti,tf],x0,options)----采用二阶、三阶Runge-Ktuta 算法 说明:a.这两个函数是求解非刚性常微分方程的函数。

b.参数options 为积分的误差设置,取值为相对误差‘reltol ’和绝对误差‘abstol ’;[ti,tf]求解的时间范围;x0是初值是初值向量;[t,x]是解。

(4)利用CotrolToolBox 的离散化求解函数----适合于TLI 系统 用step ()/impulse()函数求取阶跃输入/冲激输入时系统的状态响应: 当系统G 是连续的情况下:

调用[y,t,x]=step/impulse(G )会自动对连续系统G 选取采样时间范围和周期;

调用[y,t,x]=step/impulse(G ,ti:Ts:tf)由用户自己定义对连续系统G 的样时间范围和周期; 当系统G 是离散的情况下:

调用[y,t,x]=step/impulse(G )会按离散系统G 给出的采样周期计算;

调用[y,t,x]=step/impulse(G ,ti:Ts:tf)是Ts 必须与离散系统G 的采样时间范围和周期一致。 另外lsim()函数调用格式:[y,x,t]=lsim(G,u,ti,TS,tf,x0) 零输入响应调用函数initial (),格式:[y,x,t]=(G,x0) (5)利用simulink 环境求取响应----适用于所有系统求取响应

使用simulink 求取线性或非线性系统的响应,调用格式如下:

[t,x,y]=sim(‘XX.mdl’,ti:Ts:tf,options,u)

【实验内容】

已知线性系统:])

(201)()

(2

10)(404040202119201921)(t x t y t u t x t x +-----?

已知线性系统

1、利用Matlab 求零状态下的阶跃响应(包括状态和输出),生成两幅图:第一幅绘制各状态响应曲线并标注;第二幅绘制输出响应曲线。

状态响应曲线:

A=[-21 19 -20;19 -21 20;40 -40 -40]; B=[0;1;2]; C=[1 0 2];

D=[0]; %输入状态空间模型各矩阵,若没有相应值,可赋空矩阵 X0=[0;0;0]; % 输入初始状态 sys=ss(A,B,C,D); %构造传递函数

[y,x,t]=step(sys); % 绘以时间为横坐标的状态响应曲线图 plot(t,x); grid;

title('状态响应曲线') 输出响应程序:

A=[-21 19 -20;19 -21 20;40 -40 -40]; B=[0;1;2]; C=[1 0 2]; D=0; X0=[0;0;0]

[num,den]=ss2tf(A,B,C,D,1); sys=tf(num,den); step(sys) grid

title('输出响应曲线')

图一(状态响应曲线)图二(输出响应曲线)

2、利用Matlab求零状态下的冲激响应(包括状态和输出),生成两幅图:第一幅绘制各状态响应曲线并标注;第二幅绘制输出响应曲线。

状态响应曲线程序:

A=[-21 19 -20;19 -21 20;40 -40 -40];

B=[0;1;2];

C=[1 0 2];

D=[]; %输入状态空间模型各矩阵,若没有相应值,可赋空矩阵

x0=[0;0;0]; % 输入初始状态

sys=ss(A,B,C,D); %构造传递函数

[y,x,t]= impulse(sys);

plot(t,x);

grid;

title('状态响应曲线')

输出响应曲线程序:

A=[-21 19 -20;19 -21 20;40 -40 -40];

B=[0;1;2];

C=[1 0 2];

D=0;

X0=[0;0;0]

[num,den]=ss2tf(A,B,C,D,1);

sys=tf(num,den);

impulse(sys);

grid;

title('')

图三(状态响应曲线')

图四(输出响应曲线)

3、若控制输入为,且初始状态为,求系统的响应,要求

a.在simulink 只能够画出模型求响应,生成两幅图:第一幅绘制各状态响应曲线并标注;第二幅绘制输出响应曲线。

程序如下: t=[0:0.01:5];

u=(1+exp(-t).*cos(5*t)).*(t<3)+1*(t>=3); t=t'; u=u'; ut=[t,u];

[t1,x,y]=sim('shiyan5.mdl',t,[],ut); plot(t1,x) figure(2); plot(t1,y) 创建的模型图如下:

图五(模型图)

b.编写.m 文件求响应,生成两幅图:第一幅绘制各状态响应曲线并标注;第二幅绘制输出响应曲线。

状态响应曲线:

t=[0:0.02:5];

u=(1+exp(-t).*cos(5*t)).*(t<3)+1*(t>=3);

t=t';

u=u';

A=[-21 19 -20;19 -21 20;40 -40 -40];

B=[0;1;2];

C=[1 0 2];

D=[0]; %输入状态空间模型各矩阵,若没有相应值,可赋空矩阵 X0=[0.2;0.2;0.2]; % 输入初始状态u=(t==0); %就是个条件判断,只有t=0的时候,u才为“1”

sys=ss(A,B,C,D); %构造传递函数

plot(t,x);

grid;

title('状态响应曲线')

输出响应曲线:

plot(t,y);

grid;

title('输出响应曲线')

图六(状态响应曲线)图七(输出响应曲线)

4、以阶跃输入情况下的,分析各模块对响应有什么影响。

图八(阶跃输入时)

阶跃输入的图像到答稳定时间快,曲线平滑

5、求系统的传递函数

在MATLAB软件Command Window窗口中输入以下程序

A=[-21 19 -20;19 -21 20;40 -40 -40];

B=[0;1;2];

C=[1 0 2];

D=0;

[num,den]=ss2tf(A,B,C,D,1);

printsys(num,den)

程序运行结果为

图七

6、若采用K增益负反馈,绘制闭环根轨迹图,并对根轨迹加以描述说明。A=[-21 19 -20;19 -21 20;40 -40 -40];

B=[0;1;2];

C=[1 0 2];

D=0;

[num,den]=ss2tf(A,B,C,D,1);

rlocus(num,den);

grid

title('K增益负反馈闭环根轨迹图')

图九(K增益负反馈闭环根轨迹图)

采用K增益负反馈,画出如图所示的根轨迹图。由图可知,共有3条根轨迹,第一条最终趋于原点;第二条收敛在20~60之间;第三条最终趋于无穷远处。

7、在Matlab中绘制Bode图和Nyquist图,并对图给予说明。

绘制Bode图:

A=[-21 19 -20;19 -21 20;40 -40 -40];

B=[0;1;2];

C=[1 0 2];

D=0;

sys=tf(num,den)

bode(num,den)

grid

title('Bode图')

汇出的波特图如图所示,由图可知,对复制响应分析可得,交越频率在转折频率之后,故复制的变化主要发生在低频段。对相频特性进行分析,可知此系统的相频特性角度均为负值,并且最后的相角是趋于-90度的。

绘制Nyquist图:

nyquist(sys)

title('Nyquist图 ')

图十(波特图)

图十一(Nyquist 图)

画出的奈奎斯特图如上所示,根据此图可知,此系统是稳定的系统,由奈奎斯特曲线可以分析出此系统的稳定性。

【实验结论与总结】

经过本次试验我们了解了线性系统状态空间,知道如何在simulink 中用状态方程搭建系统仿真模型,以及调用模型。不同输入对对系统有着一定的影响。如何把方程转换成simulink 中的方块模型是非常重要的,在本次实验中,最困难的地方在于运用Simulink 生成图形,在这过程中由于要利用到sim 函数,不熟悉导致出错后来经过检查才改正错误。

信号与线性系统分析吴大正习题答案1-2

1 1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。 (2)∞<<-∞= -t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ=

(4)) fε = t ) (sin (t (5)) t f= r (t ) (sin 2

(7)) t (k f kε = ) ( 2 (10)) f kε k - = (k + ( ] )1 ( ) 1[ 3

4 1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f (5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11) )]7()()[6 sin()(--=k k k k f εεπ (12) )]()3([2)(k k k f k ---=εε 解:各信号波形为 (1))2()1(3)1(2)(-+--+=t t t t f εεε

(2) )2 ( )1 ( 2 )( )(- + - - =t r t r t r t f (5) ) 2( ) 2( )(t t r t f- =ε 5

控制系统的状态空间分析与综合

第8章控制系统的状态空间分析与综合 第1~7章涉及的内容属于经典控制理论的范畴,系统的数学模型是线性定常微分方程和传递函数,主要的分析与综合方法是时域法、根轨迹法和频域法。经典控制理论通常用于单输入-单输出线性定常系统,其缺点是只能反映输入-输出间的外部特性,难以揭示系统内部的结构和运行状态,不能有效处理多输入-多输出系统、非线性系统、时变系统等复杂系统的控制问题。 随着科学技术的发展,对控制系统速度、精度、适应能力的要求越来越高,经典控制理论已不能满足要求。1960年前后,在航天技术和计算机技术的推动下,现代控制理论开始发展,一个重要的标志就是美国学者卡尔曼引入了状态空间的概念。它是以系统内部状态为基础进行分析与综合的控制理论,两个重要的内容如下。 (1)最优控制:在给定的限制条件和评价函数下,寻求使系统性能指标最优的控制规律。 (2)最优估计与滤波:在有随机干扰的情况下,根据测量数据对系统的状态进行最优估计。 本章讨论控制系统的状态空间分析与综合,它是现代控制理论的基础。 8.1 控制系统的状态空间描述 8.1.1 系统数学描述的两种基本方法 统的内部结构和内部变量,如传递函数;另一种是状态空间描述(内部描述),它是基于系统内部结构的一种数学模型,由两个方程组成。一个反映系统内部变量x和输入变量u间的关系,具有一阶微分方程组或一阶差分方程组的形式;另一个是表征系统输出向量y与内部变量及输入变量间的关系,具有代数方程的形式。外部描述虽能反映系统的外部特性,却不能反映系统内部的结构与运行过程,内部结构不同的两个系统也可能具有相同的外部特性,因此外部描述通常是不完整的;内部描述则能全面完整地反映出系统的动力学特征。

线性系统状态空间分析报告与运动解

【实验地点】课外(宿舍) 【实验目的】 1、学会利用MATLAB 实现离散系统传递函数模型的生成 2、学会利用MATLAB 将连续系统离散化 【实验设备与软件】 1、MATLAB/Simulink 数值分析软件 2、计算机一台 【实验原理】 1、求矩阵特征值和特征向量命令格式[V J]=eig (A ) Cv=eig(A) 说明:V 特征向量,J 是Jordan 型,cv 是特征值列向量 2、求运动的方法 (1)利用Laplace 逆变换----适合于连续/离散线性系统 采用ilaplace/iztrans 对传递函数求逆,这种方法一般是零输入情况下求响应。 (2)用连续(离散)状态转移矩阵表示系统解析解----适合于线性定常系统 对连续定常系统有: 假设初始时刻为零,LTI 系统的解析解为dt Bu e e x e t x t At At At ??+=0 )()0()(τ。若u (t )是单 位阶跃输入,则上述解可写成dtBu e e x e t x t At At At ? ?+=0 )()0()(τ。进一步简化为: Bu A Bu A x e t x At 11))0(()(---+= 对离散线性定常系统有: ∑---+ =1 1 )()0()(k i k k i Hu G x G k x

(3)状态方程的数值分析方法----适合于连续线性系统和非线性系统 采用直接数值积分很容易的处理各种定常/时变和线性/非线性系统。有很多数值积分方法,其中有一类预测-修正数值积分方法+自适应步长调整的算法比较有效。在MATLAB/Simulink 中包含的多种有效的、适用于不同类型的ODE 求解算法,典型的是Runge-Ktuta 算法,其通常使用如下的函数格式: [t,x]=ode45(odefun,[ti,tf],x0,options)----采用四阶、五阶Runge-Ktuta 算法 [t,x]=ode23(odefun,[ti,tf],x0,options)----采用二阶、三阶Runge-Ktuta 算法 说明:a.这两个函数是求解非刚性常微分方程的函数。 b.参数options 为积分的误差设置,取值为相对误差‘reltol ’和绝对误差‘abstol ’;[ti,tf]求解的时间围;x0是初值是初值向量;[t,x]是解。 (4)利用CotrolToolBox 的离散化求解函数----适合于TLI 系统 用step ()/impulse()函数求取阶跃输入/冲激输入时系统的状态响应: 当系统G 是连续的情况下: 调用[y,t,x]=step/impulse(G )会自动对连续系统G 选取采样时间围和周期; 调用[y,t,x]=step/impulse(G ,ti:Ts:tf)由用户自己定义对连续系统G 的样时间围和周期; 当系统G 是离散的情况下: 调用[y,t,x]=step/impulse(G )会按离散系统G 给出的采样周期计算; 调用[y,t,x]=step/impulse(G ,ti:Ts:tf)是Ts 必须与离散系统G 的采样时间围和周期一致。 另外lsim()函数调用格式:[y,x,t]=lsim(G,u,ti,TS,tf,x0) 零输入响应调用函数initial (),格式:[y,x,t]=(G,x0) (5)利用simulink 环境求取响应----适用于所有系统求取响应 使用simulink 求取线性或非线性系统的响应,调用格式如下: [t,x,y]=sim(‘XX.mdl ’,ti:Ts:tf,options,u) 【实验容】 已知线性系统:]) (201)() (2 10)(404040202119201921)(t x t y t u t x t x +-----? 已知线性系统 1、利用Matlab 求零状态下的阶跃响应(包括状态和输出),生成两幅图:第一幅绘制各状态响应曲线并标注;第二幅绘制输出响应曲线。

答案 控制系统的状态空间描述 习题解答

第2章 “控制系统的状态空间描述”习题解答 系统的结构如图所示。以图中所标记的1x 、2x 、3x 作为状态变量,推导其状态空间表达式。其中,u 、y 分别为系统的输入、输出,1α、2α、3α均为标量。 3 x 2 x 图系统结构图 解 图给出了由积分器、放大器及加法器所描述的系统结构图,且图中每个积分器的输出即为状态变量,这种图形称为系统状态变量图。状态变量图即描述了系统状态变量之间的关系,又说明了状态变量的物理意义。由状态变量图可直接求得系统的状态空间表达式。 着眼于求和点①、②、③,则有 ①:2111x x x +=α& ②: 3222x x x +=α&③:u x x +=333α& 输出y 为1y x du =+,得 1112223331000100 1x a x x a x u x a x ?? ?????? ????????=+???????????????????????? &&& []123100x y x du x ?? ??=+?? ???? 已知系统的微分方程 (1) u y y y y 354=+++&&&&&& ;(2) u u y y -=+&&&&&&32; (3) u u y y y y 75532+=+++&&&&&&&&& 。试列写出它们的状态空间表达式。 (1) 解 选择状态变量1y x =,2y x =&,3y x =&&,则有:

1223 31231 543x x x x x x x x u y x =??=?? =---+??=?&&& 状态空间表达式为:[]112233123010000105413100x x x x u x x x y x x ????????????????=+????????????????---???????? ????=?????? &&& (2) 解 采用拉氏变换法求取状态空间表达式。对微分方程(2)在零初试条件 下取拉氏变换得: 3222332()3()()() 11()12 23()232 s Y s sY s s U s U s s Y s s U s s s s s +=---==++ 由公式、可直接求得系统状态空间表达式为 1122330100001031002x x x x u x x ?? ????????????????=+? ?????????????????????-?? ?? &&& 123110 2 2x y x x ?????? =- ?????????? (3) 解 采用拉氏变换法求取状态空间表达式。对微分方程(3)在零初试条件 下取拉氏变换得: 323()2()3()5()5()7()s Y s s Y s sY s Y s s U s U s +++=+

实验25线性系统状态空间分析和运动解

广西大学实验报告纸 【实验时间】2014年06月15日 【实验地点】(课外) 【实验目的】 1、掌握线性系统状态空间的标准型、解及其模型转换。 【实验设备与软件】 1、MATLAB数值分析软件 【实验原理】 Matlab提供了非常丰富的线性定常连续系统的状态空间模型求解(即系统运动轨迹的计算)的功能,主要的函数有 ①、阶跃响应函数step()可用于计算在单位阶跃输入和零初始状态(条件)下传递函数模型的输出响应,或状态空间模型的状态和输出响应,其主要调用格式为 step(sys,t) [y,t] = step(sys,t) [y,t,x] = step(sys,t) ②、脉冲激励下的仿真函数impulse()可用于计算在脉冲刺激输入下传递函数模型的输出响应,或状态空间模型的状态和输出响应,其主要调用格式为 impulse(sys,t) [y,t] = impulse(sys,t) [y,t,x] = impulse(sys,t) ③、任意输入激励下的仿真函数lsim()可用于计算在给定的输入信号序列(输入信号函数的采样值)下传递函数模型的输出响应,其主要调用格式为 lsim(sys,u,t,x0) [y,t,x] = lsim(sys,u,t,x0) 【实验内容、方法、过程与分析】 已知线性系统 1、利用Matlab求零状态下的阶跃响应(包括状态和输出),生成两幅图:第一幅绘制各状态响应曲线并标注;第二幅绘制输出响应曲线。 状态响应曲线: A=[-21 19 -20;19 -21 20;40 -40 -40]; B=[0;1;2]; C=[1 0 2]; D=[0]; %输入状态空间模型各矩阵,若没有相应值,可赋空矩阵 X0=[0;0;0]; % 输入初始状态 sys=ss(A,B,C,D); %构造传递函数 [y,x,t]=step(sys); % 绘以时间为横坐标的状态响应曲线图 plot(t,x); grid;

(整理)控制系统的状态空间模型

第一章控制系统的状态空间模型 1.1 引言 工程系统正朝着更加复杂的方向发展,这主要是由于复杂的任务和高精度的要求所引起的。一个复杂系统可能有多个输入和多个输出,并且以某种方式相互关联或耦合,可能是时变的。由于需要满足控制系统性能提出的日益严格的要求,系统的复杂程度越来越大,为了分析这样的系统,必须简化其数学表达式,转而借助于计算机来进行各种大量而乏味的分析与计算,并且要求能够方便地用大型计算机对系统进行处理。从这个观点来看,状态空间法对于系统分析是最适宜的。大约从1960年升始发展起来。这种新方法是建立在状态概念之上的。状态本身并不是一个新概念,在很长一段时间内,它已经存在于古典动力学和其他一些领域中。 经典控制理论是建立在系统的输入-输出关系或传递函数的基础之上的,而现代控制理论以n个一阶微方程来描述系统,这些微分方程又组合成一个一阶向量-矩阵微分方程。应用向量-矩阵表示方法,可极大地简化系统的数学表达式。状态变量、输入或输出数目的增多并不增加方程的复杂性。事实上,分析复杂的多输入-多输出系统,仅比分析用一阶纯量微分方程描述的系统在方法上稍复杂一些。 本课程将主要涉及控制系统的基于状态空间的描述、分析与设计。本章将首先给出状态空间方法的描述部分。将以单输入单输出系统为例,给出包括适用于多输入多输出或多变量系统在内的状态空间表达式的一般形式、线性多变量系统状态空间表达式的标准形式(相变量、对角线、Jordan、能控与能观测)、传递函数矩阵,以及利用MA TLAB进行各种模型之间的相互转换。第二章将讨论状态反馈控制系统的分析方法。第三章将给出系统的稳定性分析。第四章将给出几种主要的设计方法。 本章1.1节为控制系统状态空间分析的引言。1.2节介绍状态空间描述1.3节讨论动态系统的状态空间表达式。1.4状态空间表达式的标准形式。1.5 介绍系统矩阵的特征值基本性质.1.6讨论用MATLAB进行系统模型的转换问题。 1.2控制系统的状态空间描述 状态空间描述是60年代初,将力学中的相空间法引入到控制系统的研究中而形成的描述系统的方法,它是时域中最详细的描述方法。 特点:1.给出了系统的内部结构信息. 2.形式上简洁,便于用数字计算机计算. 1.2.1 状态的基本概念 在介绍现代控制理论之前,我们需要定义状态、状态变量、状态向量和状态空间。

控制系统的状态空间分析

第八章 控制系统的状态空间分析 一、状态空间的基本概念 1. 状态 反应系统运行状况,并可用一个确定系统未来行为的信息集合。 2. 状态变量 确定系统状态的一组独立(数目最少的)变量,如果给定了0t t =时刻 这组变量的值())()() (00201t x t x t x n 和0t t ≥时输入的时间函数)(t u , 则系统在0t t ≥任何时刻())()()(21t x t x t x n 的行为就可完全确定。 3. 状态向量 以状态变量为元素构成的向量,即[])()()()(21t x t x t x t x n =。 4. 状态空间 以状态变量())()() (21t x t x t x n 为坐标的n 维空间。 系统在某时刻的状态,可用状态空间上的点来表示。 5. 状态方程 描述状态变量,输入变量之间关系的一阶微分方程组。 6. 输出方程 描述输出变量与状态变量、输入变量间函数关系的代数方程。 二、状态空间描述(状态空间表达式) 1. 状态方程与输出方程合起来称为状态空间描述或状态空间表达式,线性定常系统状 态空间描述一般用矩阵形式表示,对于线性定常连续系统有 ? ? ?+=+=)()()()()()(t Du t Cx t y t Bu t Ax t x (8-1) 对于线性定常离散系统有 ?? ?+=+=+) ()()() ()()1(k Du k Cx k y k Hu k Gx k x (8-2) 2. 状态空间描述的建立:系统的状态空间描述可以由系统的微分方程,结构图(方框 图),状态变量图、传递函数或脉冲传递函数(Z 传递函数)等其它形式的数学模型导出。 3. 状态空间描述的线性变换及规范化(标准型) 系统状态变量的选择不是唯一的,状态变量选择不同,状态空间描述也不一样。利用线性变换可将系统的矩阵A (见式8-1)规范化为四种标准型:能控标准型、能观标准型、对角标准型、约当标准型。

线性系统的状态空间分析与综合

第九章线性系统的状态空间分析与综合 一、教学目的与要求: 通过本章内容的学习,使学生建立起状态变量和状态空间的概念,掌握线性定常系统状态空间模型的建立方法,状态空间表达式的线性变换,状态完全能控或状态完全能观测的定义,及其多种判据方法,状态转移矩阵的求法,传递函数矩阵与状态空间表达式的关系。 二、授课主要内容: 1.线性系统的状态空间描述 2.线性系统的可控性与可观测性 3.线性定常系统的状态反馈与状态观测器 (详细内容见讲稿) 三、重点、难点及对学生的要求(掌握、熟悉、了解、自学) 1.重点掌握线性定常系统状态空间模型的建立方法与其他数学描述(微分方程、 传递函数矩阵)之间的关系。 2.掌握采用状态空间表述的系统运动分析方法,状态转移矩阵的概念和求解。 3.掌握系统基本性质——能控性和能观测性的定义、有关判据及两种性质之间 的对偶性。 4.理解状态空间表达式在线性变换下的性质,对于完全能控或能观测系统,构 造能控、能观测标准形的线性变换方法,对于不完全能控或不完全能观测系统,基于能控性或能观测性的结构分解方法。 5.掌握单变量系统的状态反馈极点配置和全维状态观测器设计方法,理解分离 定理,带状态观测器的状态反馈控制系统的设计。 重点掌握线性系统的状态空间描述和求解,线性系统的可控性与可观测性及状态反馈与状态观测器。 四、主要外语词汇 线性系统 linear system 状态空间 state space 状态方程 state equation

状态向量 state vector 传递函数矩阵 translation function matrix 状态转换矩阵 state-transition matrix 可观测标准形 observational standard model 可控标准形 manipulative standard model 李亚普诺夫方程Lyaponov equation 状态观测器 state observation machine 对偶原理 principle of duality 五、辅助教学情况(见课件) 六、复习思考题 1.什么是系统的状态空间模型?状态空间模型中的状态变量、输入变量、输出变量各指什么? 2.通过机理分析法建立系统状态空间模型的主要步骤有哪些? 3.何为多变量系统?如何用传递矩阵来描述多变量系统的动态特性? 在多变量系统中,环节串联、并联、反馈连接时,如何求取总的传递矩阵?4.试简述数学模型各种表达式之间的对应关系。 5.用非奇异矩阵P对状态方程式进行线性状态变换后,与原状态方程式之间存在什么关系? 6.试简述系统能控性与能观性两个概念的含义及意义。 7.试述能控性和能观性定义。 8.试述系统能控性和能观性常用判据。 9.何谓对偶系统和对偶原理? 10.什么是状态方程的线性变换? 11.试述系统状态方程规范型变换的条件、特点及变换的基本方法。 12.试述状态能控性与能观性和系统传递函数(阵)的关系。 七、参考教材(资料) 1.《自动控制原理与系统》上、下册清华大学吴麒等国防工业出版社

答案-控制系统的状态空间描述-习题解答

` 第2章 “控制系统的状态空间描述”习题解答 系统的结构如图所示。以图中所标记的1x 、2x 、3x 作为状态变量,推导其状态空间表达式。其中,u 、y 分别为系统的输入、输出,1α、2α、3α均为标量。 图系统结构图 解 图给出了由积分器、放大器及加法器所描述的系统结构图,且图中每个积分器 的输出即为状态变量,这种图形称为系统状态变量图。状态变量图即描述了系统状态变量之间的关系,又说明了状态变量的物理意义。由状态变量图可直接求得系统的状态空间表达式。 着眼于求和点①、②、③,则有 ①:2111x x x +=α ②: 3222x x x +=α ③:u x x +=333α 输出y 为1y x du =+,得 { 11 12223331000100 1x a x x a x u x a x ???????? ????????=+???????????????????????? []123100x y x du x ?? ??=+?? ???? 已知系统的微分方程 (1) u y y y y 354=+++ ;(2) u u y y -=+ 32;

(3) u u y y y y 75532+=+++ 。试列写出它们的状态空间表达式。 (1) 解 选择状态变量1y x =,2y x =,3y x =,则有: 12 23 31231 543x x x x x x x x u y x =??=?? =---+??=? 状态空间表达式为:[]112233123010000105413100x x x x u x x x y x x ????????????????=+????????????????---???????? ????=?????? (2) 解 采用拉氏变换法求取状态空间表达式。对微分方程(2)在零初试条件 下取拉氏变换得: 《 3222332()3()()() 11()1223()232 s Y s sY s s U s U s s Y s s U s s s s s +=---== ++ 由公式、可直接求得系统状态空间表达式为 1122330100001031002x x x x u x x ?? ????????????????=+? ?????????????????????- ???? 123110 2 2x y x x ?????? =- ??????????

第3章线性系统的时域分析习题答案

第3章 线性系统的时域分析 学习要点 1控制系统时域响应的基本概念,典型输入信号及意义; 2控制系统稳定性的概念、代数稳定判据及应用; 3控制系统的时域指标,一阶二阶系统的阶跃响应特性与时域指标计算; 4高阶系统时域分析中主导极点和主导极点法; 5 控制系统稳态误差概念、计算方法与误差系数,减小稳态误差的方法。 思考与习题祥解 题 思考与总结下述问题。 (1)画出二阶系统特征根在复平面上分布的几种情况,归纳ξ值对二阶系统特征根的影响规律。 【 (2)总结ξ和n ω对二阶系统阶跃响应特性的影响规律。 (3)总结增加一个零点对二阶系统阶跃响应特性的影响规律。 (4)分析增加一个极点可能对二阶系统阶跃响应特性有何影响 (5)系统误差与哪些因素有关试归纳减小或消除系统稳态误差的措施与方法。 (6)为减小或消除系统扰动误差,可采取在系统开环传递函数中增加积分环节的措施。请问,该积分环节应在系统结构图中如何配置,抗扰效果是否与扰动点相关 答:(1)二阶系统特征根在复平面上分布情况如图所示。 图 二阶系统特征根在复平面上的分布 当0ξ=,二阶系统特征根是一对共轭纯虚根,如图中情况①。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,变化轨迹是 以n ω为半径的圆弧,如图中情况②。 @ 当1ξ=,二阶系统特征根是一对相同的负实根,如图中情况③。 当1ξ>,二阶系统特征根是一对不等的负实根,如图中情况④。

(2)ξ和n ω是二阶系统的两个特征参量。 ξ是系统阻尼比,描述了系统的平稳性。 当0ξ=,二阶系统特征根是一对共轭纯虚根,二阶系统阶跃响应为等幅振荡特性,系统临界稳定。 当01ξ<<,二阶系统特征根是一对具有负实部的共轭复数根,二阶系统阶跃响应为衰减振荡特性,系统稳定。ξ越小,二阶系统振荡性越强,平稳性越差; ξ越大,二阶系统振荡性越弱,平稳性越好。因此,二阶系统的时域性能指标超 调量由ξ值唯一确定,即001_ 100%2 ?=-π ξξ σe 。在工程设计中,对于恒值控制系 统,一般取 ξ=~;对于随动控制系统ξ=~。 n ω是系统无阻尼自然振荡频率,反映系统的快速性。当ξ一定,二阶系统的 时域性能指标调节时间与n ω值成反比,即34 s n t ξω≈。 (3)二阶系统增加一个零点后,增加了系统的振荡性,将使系统阶跃响应的超调量增大,上升时间和峰值时间减小。 所增加的零点越靠近虚轴,则上述影响就越大;反之,若零点距离虚轴越远,则其影响越小。 (4)二阶系统增加一个极点后,减弱了系统的振荡性,将使系统阶跃响应的超调量减小,上升时间和峰值时间减小; 所增加的极点越靠近虚轴,则上述影响就越大;反之,若极点距离虚轴越远,则其影响越小。 & (5)系统误差与系统的误差度(开环传递函数所含纯积分环节的个数或系统型别)、开环放大系数,以及作用于系统的外部输入信号有关。如果是扰动误差还与扰动作用点有关。 因此,减小或消除系统稳态误差的措施与方法有:增大开环放大系数,增加系统开环传递函数中的积分环节,引入按给定或按扰动补偿的复合控制结构。 无论采用何种措施与方法减小或消除系统稳态误差,都要注意系统须满足稳定的条件。 (6)采取在系统开环传递函数中增加积分环节的措施来减小或消除系统扰动误差时,所增加的积分环节须加在扰动作用点之前。若所增加的积分环节加在扰动作用点之后,则该积分环节无改善抗扰效果作用。这一点可以通过误差表达式分析得到。 题系统特征方程如下,试判断其稳定性。 (a )0203.002.023=+++s s s ; (b )014844122345=+++++s s s s s ; (c )025266.225.11.0234=++++s s s s ! 解:(a )稳定; (b )稳定; (c )不稳定。

线性系统理论综述

线性系统理论课程大作业论文线性系统理论综述及其应用

这学期学习的线性系统理论属于系统控制理论的一个最为基本和成熟发展的分支,主要包括以下内容:介绍采用系统理论解决工程问题的一般步骤,明确建模、分析、综合在解决实际问题中的作用,并重点介绍线性系统模型的特征和分析方法;介绍系统的状态空间描述,结余状态空间方法的分析和系统结构特征和结构的规范分解以及状态反馈及其性质等。 一.线性系统理论研究内容综述 系统是系统控制理论所要研究的对象,从系统控制理论的角度,通常将系统定义为由相互关联和相互制约的若干部分组成的具有特定功能的整体。 动态系统是运动规律按照确定规律或者确定的统计的规律岁时间演化的一类系统,动态系统的行为由各类变量间的关系来表征,系统的变量可以分为三种形式,一类是反映外部对系统的影响或者作用的输入变量组,如控制、投入、扰动等;二是表征系统状态行为的内部状态变量组;三是反映系统外部作用或影响的输入变量组如响应,产出。表征系统动态的过程的数学描述具有两类基本形式,一是系统的内部描述,另一组是输入变量对状态变量的组的动态影响。从机制的角度来看,动态系统可被分类为连续系统变量动态系统和离散事件动态系统;从特征的角度,动态系统可分别分类为线性系统和非线性系统,参数集成系统和分布参数系统;从作用时间类型角度,动态系统可被称为连续时间系统和离散时间系统。 线性系统理论是系统控制理论最为成熟和最为基础的分支。他是现代控制理论的一个重要组成部分,也是对经典控制理论的延申。现代控制理论主要是着重研究现性状态的运动规律和改变这种规律的可能性和方法。线性系统的理论和方法是建立在建模的基础上。在建模的基础上,可以进一步把线性系统的理论进一步区分为“分析理论”和“综合理论”。分析理论分为定量分析和定性分析,定量分析是着重于研究对系统性能和控制具有重要意义的结构特性。系统综合理论是建立在分析的基础上,系统综合目的是使系统的性能达到期望的指标或实现最优化。 线性系统理论的研究对象为线性系统,线性系统为最为简单和最为基本的一类动态系统。线性系统理论是系统控制理论中最为充分、发展最为成熟和应用最为广泛的一个开支。线性系统的的一个基本特征是其模型满足线性叠加原理。对于线性系统的研究也可以进一步分为线性是不变系统和线性时不变系统两类。对系统进行建模也是控制理论中具有重要的作用。对系统建模的作用多样性和基本型、途径以及系统的建模的准则=====系统建模的简单性和分析的结果的准确性之间做出适当的折中。 线性控制理论在1960年前后开始了从经典控制理论到现代理论的过渡。反应这种过渡的重要标志成果是,卡尔曼把在分析力学中广为采用的状态空间描

控制系统状态空间分析的 MATLAB 设计

《控制系统状态空间分析的MATLAB 设计》 摘要 线性系统理论主要研究线性系统状态的运动规律和改变这些规律的可能性与实施方法;它包含系统的能控性、能观测性、稳定性分析、状态反馈、状态估计及补偿器的理论和设计方法。本文说明,线性变换不改变系统的传递函数,基于状态空间的极点配置不需要附加矫正装置,是改变系统指标的简单可行的重要技术措施;全维状态观测器与降维观测器不影响系统的输出响应。 关键词:状态反馈、极点配置、全维状态观测器、降维观测器 前言 线性系统理论是现代控制理论的基础,主要研究线性系统状态的运动规律 和改变这些规律的可能性与实施方法;建立和揭示系统结构、参数、行为和性能之间的关系。它包含系统的能控性、能观测性、稳定性分析、状态反馈、状态估计及补偿器的理论和设计方法。 该报告结合以线性定常系统作为研究对象,分析控制系统动态方程,系统 可控标准型,线性变换传递函数及其不变性,系统可控性与可观测性。系统状态观测器及降维观测器对系统的阶跃响应的影响,并分别绘制模型,及其系统阶跃响应的仿真。 正文 1. 已知系统动态方程: x?=[?0.40?0.01100?1.49.8?0.02]x +[6.309.8]u y =[0 1]x 2. 设计内容及要求:

验证线性变换传递函数不变性,适当配置闭环适当配置系统闭环极点,使 σ%<15%、t s <4s ,以及当系统闭环极点为λ1,2=-3±j4时设计系统的降维状态观测器也使σ%<15%、t s <4s ,并绘制带反馈增益矩阵K 的降维状态观测器及其系统仿真。 3. 系统设计: 1)求系统可控标准型动态方程; >> A1=[-0.4 0 -0.01;1 0 0;-1.4 9.8 -0.02]; >> B1=[6.3;0;9.8]; >> C1=[0 0 1]; >> D1=0; >> G1=ss(A1,B1,C1,D1); >> n=size(G1.a); >> Qc=ctrb(A1,B1); >> pc1=[0 0 1]*inv(Qc); >> Pc=inv([pc1;pc1*A1;pc1*A1*A1]); >> G2 = ss2ss(G1,inv(Pc)); >> Gtf=tf(G2); 程序运行结果知n=3,原系统是可控的且可控标准型为: x?=[0 1 00 01?0.0980.006 ?0.42]x?+[001 ]u y ?=[61.74 ?4.99.8]x? 传递函数为: G (s )=9.8s 2?4.9s+61074 s 3+0.42s 2?0.006s+0.098 2)计算系统的单位阶跃响应 >> hold on >> grid on;hold on; >> step(G1,t,'b-.') >> step(Gtf,t,'r--')

第九章 线性系统的状态空间分析与综合习题

第九章 线性系统的状态空间分析与综合 9-1 已知电枢控制的直流司服电机的微分方程组及传递函数为 b a a a a a E t d di L i R u ++=,t d d K E m b b θ=,a m m i C M =,t d d f t d d J M m m m m m θθ+=2 2; )] ()([)()(2 m b m a a m m a m a m a m C K f R s R J f L s J L s C s U s ++++=Θ。 ⑴ 设状态变量m x θ=1,m x θ&=2,m x θ&&=3,输出量m y θ=,试建立其动态方程; ⑵ 设状态变量a i x =1,m x θ=2,m x θ&=3,输出量m y θ=,试建立其动态方程; ⑶ 设x T x =,确定两组状态变量间的变换矩阵T 。 解:⑴ 由传递函数得 a m a m m a m b m a m a u C x R J f L x C K f R x J L ++-+-=323)()(&,动态方程为 []x y u x x x x x x 001100010001032121321=??????????+????????????????????--=??????????αα&&&,其中)/()()/()()/(21m a a m m a m a m b m a m a a m J L R J f L J L C K f R J L u C u +=+==αα; ⑵ 由微分方程得 3 133 2311x f x C x J x x u x K x R x L m m m a b a a -==---=&&&,即 []x y u x x x a a a a x x x a 0200010100032133311311321=???? ? ?????+?????????????????? ??=??????????&&&,其中 m m m m a b a a J f a J C a L K a L R a ////33311311-==-=-=; ⑶ 由两组状态变量的定义,直接得到???? ? ???????????????=??????????3213331 321010001 0x x x a a x x x 。 9-2 设系统的微分方程为 u x x x =++23&&& 其中u 为输入量,x 为输出量。 ⑴ 设状态变量x x =1,x x &=2,试列写动态方程; ⑵ 设状态变换211x x x +=,2122x x x --=,试确定变换矩阵T 及变换后的动态方程。 解:⑴ u x x x x ??????+????????????--=??????1032102121&&,[]?? ????=2101x x y ; ⑵ ??????=??????2121x x T x x ,??????--=2111T ;?? ????--=-11121 T ;AT T A 1-=,B T B 1-=,CT C =; 得,? ?????--=2111T ;u x x x x ?? ????-+????????????-=??????1110012121&&,[]??????=2111x x y 。 9-3 设系统的微分方程为 u y y y y 66116=+++&&&&&& 其中u 、y 分别系统为输入、输出量。试列写可控标准型(即A 为友矩阵)及可观标准型(即A 为友矩 阵转置)状态空间表达式,并画出状态变量图。

《自动控制原理》第九章 线性系统的状态空间分析与综合

第九章 线性系统的状态空间分析与综合 在第一章至第七章中,我们曾详细讲解了经典线性系统理论以及用其设计控制系统的方法。可以看到,经典线性理论的数学基础是拉普拉斯变换和z 变换,系统的基本数学模型是线性定常高阶微分方程、线性常系数差分方程、传递函数和脉冲传递函数,主要的分析和综合方法是时域法、根轨迹法和频域法,分析的主要内容是系统运动的稳定性。经典线性系统理论对于单输入-单输出线性定常系统的分析和综合是比较有效的,但其显著的缺点是只能揭示输入-输出间的外部特性,难以揭示系统内部的结构特性,也难以有效处理多输入-多输出系统。 在50年代蓬勃兴起的航天技术的推动下,在1960年前后开始了从经典控制理论到现代控制理论的过渡,其中一个重要标志就是卡尔曼系统地将状态空间概念引入到控制理论中来。现代控制理论正是在引入状态和状态空间概念的基础上发展起来的。 在现代控制理论的发展中,线性系统理论首先得到研究和发展,已形成较为完整成熟的理论。现代控制理论中的许多分支,如最优控制、最优估计与滤波、系统辨识、随机控制、自适应控制等,均以线性系统理论为基础;非线性系统理论、大系统理论等,也都不同程度地受到了线性系统理论的概念、方法和结果的影响和推动。 现代控制理论中的线性系统理论运用状态空间法描述输入-状态-输出诸变量间的因果关系,不但反映了系统的输入—输出外部特性,而且揭示了系统内部的结构特性,是一种既适用于单输入--单输出系统又适用于多输入—多输出系统,既可用于线性定常系统又可用于线性时变系统的有效分析和综合方法。 在线性系统理论中,根据所采用的数学工具及系统描述方法的不同,又出现了一些平行的分支,目前主要有线性系统的状态空间法、线性系统的几何理论、线性系统的代数理论、线性系统的多变量频域方法等。由于状态空间法是线性系统理论中最重要和影响最广的分支,加之受篇幅限制,所以本章只介绍线性系统的状态空间法。 9-1 线性系统的状态空间描述 1. 系统数学描述的两种基本类型 这里所谓的系统是指由一些相互制约的部分构成的整体,它可能是一个由反馈闭合的整体,也可能是某一控制装置或受控对象。本章中所研究的系统均假定具有若干输入端和输出端,如图9-1所示。图中方块以外的部分为系统环境,环境对系统的作用为系统输入,系统对环境的作用为系统输出;二者分别用向量12[,,...,] T p u u u u =和 12[,,...,] T q y y y y =表示,它们均为系统的外部变量。描述系统内部每个时刻所处状况的

信号与线性系统分析吴大正习题答案1_2

1-1画出下列各信号的波形【式中r(t) t (t)】为斜升函数。 (2) f(t) e N, t (4) f(t) (si nt) (7) f(t) 2k (k) 解:各信号波形为(2) f(t) e N, t (3) f(t) sin( t) (t) (5) f (t) r(sint) (10) f(k) [1 ( 1)k] (k) (hl (3) f(t) sin( t) (t)

(4) f(t) (si nt) (d) (5) f(t) r(si nt)

(7) f(t) 2k (k) (10) f(k) [1 ( 1)k] (k)

2 卜〔 ■■ 4* * 0::2 3 4 5( 5 2 1-2画出下列各信号的波形[式中r(t)t (t)为斜升函数]。 (1) f(t) 2 (t 1) 3 (t1) (t 2)(2) f (t) r(t)2r(t1) r(t 2) (5) f(t)r(2t) (2 t)(8) f(k)k[ (k)(k 5)] (11) f(k)k (k 7)](12) f(k)2k[ (3k) ( k)] sin( )[ (k) 6 解:各信号波形为 ⑴ f(t) 2 (t 1) 3 (t 1) (t 2)

(5)f(t) r(2t) (2 t) r(t) 2r(t 1) r(t 2) j /O) Z\ 1 a 7 (b) ⑵ f(t)

4 P -OF ■"■ (8)f(k) k[ (k) (k 5)] O 3) 2 1 3, 2< k (11)f(k) sin(~6)[ (k) (k 7)]

信号与线性系统分析吴大正知识题目解析

专业课习题解析课程 第2讲 第一章信号与系统(二)

1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ=

(4)) t fε= (sin )(t (5)) t f= r )(t (sin

(7))( t f kε )(k 2 = (10))(])1( 1[ k f kε )(k = - +

1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f (5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11) )]7()()[6 sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k ---=εε 解:各信号波形为 (1))2()1(3)1(2)(-+--+=t t t t f εεε

(2) )2()1(2)()(-+--=t r t r t r t f (5) )2()2()(t t r t f -=ε

信号与线性系统分析吴大正第四版第一章习题答案

专业课习题解析课程 第1讲 第一章信号与系统(一)1

2 专业课习题解析课程 第2讲 第一章 信号与系统(二) 1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+=

3 解:各信号波形为 (2)∞< < -∞ = -t e t f t, )( (3))( ) sin( ) (t t t fε π = (4)) (sin ) (t t fε =

4 (5))(sin )(t r t f = (7))(2)(k t f k ε=

5 (10))(])1(1[)(k k f k ε-+= 1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f

6 (5)) 2( ) 2( )(t t r t f- =ε(8))] 5 ( ) ( [ ) (- - =k k k k fε ε (11))] 7 ( ) ( )[ 6 sin( ) (- - =k k k k fε ε π (12))] ( ) 3( [ 2 ) (k k k f k- - - =ε ε 解:各信号波形为 (1))2 ( )1 ( 3 )1 ( 2 )(- + - - + =t t t t fε ε ε (2) )2 ( )1 ( 2 )( )(- + - - =t r t r t r t f

相关文档
最新文档