车内噪声声品质的支持向量机预测

车内噪声声品质的支持向量机预测
车内噪声声品质的支持向量机预测

振 动 与 冲 击

第29卷第6期

J OURNAL OF V IBRAT I ON AND SHOCK

Vo.l 29No .62010

车内噪声声品质的支持向量机预测

基金项目:国家863计划电动汽车重大专项(2005AA501000)和上海市

曙光计划项目(05SG22)资助收稿日期:

2009-03-31 修改稿收到日期:2009-05-18

第一作者申秀敏女,博士生,1982年生

申秀敏,左曙光,李 林,张世炜

(同济大学汽车学院,上海 201804)

摘 要:对多元线性回归、神经网络和支持向量机的三个预测模型进行了研究。以车内噪声为例,建立了基于以

上三种方法的车内噪声声品质预测模型,并采用留一法交叉检验作比较,所构建的支持向量机模型预测精度高于其他两种方法。实验结果同时也表明,支持向量计算法具有较强的稳健性和良好的泛化能力,能够用于车内噪声声品质的预测。

关键词:声品质;多元线性回归;神经网络;支持向量机中图分类号:TB535;U 467.4+93 文献标识码:A

随着我国汽车工业的迅猛发展,汽车的NVH 特性已成为衡量车辆品质的重要指标。车内噪声是影响乘

员的舒适性、听觉损害程度、语言清晰度以及对车外各种音响讯号识别能力的重要因素,因此车内声音的品质成为人们评价和选购汽车的重要因素之一,于是关于车内噪声品质评价(SQE )也变得重要起来。自20世纪30年代沿用至今的噪声评价指标A 计权声级,其并不能反映人对噪声的主观感觉,不能反映噪声对人的骚扰。因此,许多心理声学指标[1]

如响度、尖锐度、波动强度、粗糙度等逐渐被运用到噪声品质评价中来,这些参数可以定量地描述噪声激励和人耳听觉之间的相互关系。因为声品质研究最终的评判标准是人的听觉感受,虽然这种主观感受不能用现有的仪器和设备直接测出,但可以用某些客观参量来进行描述。目前,几乎所有的声品质评价模型都是线性模型,即先确定声质量评价参量,然后确定该参量函数的自变量,最后通过试验数据进行回归分析,确定模型中的各个待定常数。然而,一般来说人耳对声音的主观评价过程是一个非线性过程,因此以上方法的这种非线性模型的近似,通常达不到理想的精度。针对车内噪声的特点,以心理声学参数为基础,建立能够客观衡量的声品质评价模型,对于现代汽车噪声的评价、分析与控制都具有重要意义。

本文研究了多元线性回归、神经网络和支持向量机三种预测模型的基本原理原理和建立步骤,分别建立了车内噪声声品质预测模型并进行了比较,结果表明:基于支持向量机的车内噪声声品质评价模型预测精度高于其他两种方法,且支持向量计算法具有较强的稳健性和良好的泛化能力,能够广泛应用于车内噪声声品质的预测。

1 车内噪声声品质分析

声品质

[2]

是基于人耳的主观感受,声品质的优劣

决定了用户对产品性能的评判。因此,声品质的研究结果很快被运用到产品尤其是高端消费品研发上,汽车产品是最先运用声品质研究结果的产品之一。目前车内声品质评价可分为两大类:主观评价和客观评价,主观评价是以人为主体,以听审团评价的方式进行;客观评价方法即用客观物理量作为评价的依据,使用仪器进行自动评价[3]

。由于主观评价试验存在可重复性和一致性差的缺点,为获得具有统计学意义的结果往往需要耗费大量人力、时间和成本,特别是这种主观评价数据对于进行汽车声品质评价、诊断和改善工作的工程师而言,并没有直接的参考价值和指导意义。因此,非常需要对声品质指标实现客观的量化描述。在进行车内声品质预测时,大多采用传统的预测方法,它们无论在理论上还是在应用上都已经非常成熟。传统的预测方法能够比较好地处理线形关系,对非线性关系的处理往往不尽如人意。因此,本文引入支持向量机对车内噪声声品质进行预测分析。

文献[6]中对所采集的不同类型国产轿车的32个稳态车内噪声信号进行了客观评价参量计算和主观评价试验,以等级评分方法对声音样本进行了主观评价试验,同时以响度、尖锐度、粗糙度、抖动度和A 声级作为客观评价参量对样本声音进行了计算。主客观评价结果如表1所示。

为获得相关分析的精确结果,以确定究竟哪些客观参量对车内声品质指标具有显著的影响;然后建立与主观评价结果相关性较大的客观参量描述的车内噪声声品质评价模型,并对比诸心理声学参数与A 计权声压级和主观评价结果的相关性,以软件SPSS 计算出声品质主观评价结果与客观参量之间的相关系数,结果见表2。可以看到四种心理声学参数中的响度、尖锐度和粗糙度与声品质主观评价结果之间的相关系数较高,绝对值基本在0.8以上,而抖动度的相关系数很

小;A计权声压级与声品质评价结果相关性也较大。

因此本文将以响度、尖锐度、粗糙度、A声级四个客观评价参量为输入向量,主观评价结果为输出向量,分采用多元线性回归、神经网络和支持向量机三种方法分别建立车内噪声声品质的预测模型。

表1 车内噪声样本的主客观评价结果

T ab.1R esults of sub ject i ve and ob jective

evaluation w ith veh i c le in terior no ise

样本序号主观评

价结果

响度尖锐度粗糙度抖动度A声级

12.7924.0290.75780.57620.189260.8

23.2219.4860.79340.56470.197255.6

33.5930.1550.87030.48570.207863

44.0725.08550.78190.46250.218363.8

2510.8638.8691.10341.76310.418666.5 2611.3851.8931.23572.17640.203871.7 2711.8343.0791.20451.66370.276774.7 2812.1444.3571.0972.10240.387172.2 2912.08252.8591.07061.27360.348375.9 3013.0953.0691.03261.43390.182275.4 3113.2754.291.07811.53480.234476.5 3214.9149.41.31162.09410.239173.4

表2 车内声品质主观评价与客观评价之间的相关性Tab.2Correlation between sub jective and ob jective eval uation

响度尖锐度粗糙度抖动度A声级

主观评价结果相关

系数

0.8950.8320.8050.0740.723

(n=32)双尾

检验

0.0000.0000.0000.7160.000

2 多元线性回归预测模型

多元线性回归预测法是诸多预测方法中比较通俗直观的方法,而利用多元线性回归预测法进行预测,关键在于确定多元线性回归方程。多元线性回归问题的基本原理如下[4]:

假设Y为因变量,X j(j=1,2,,m)为自变量,则多元线性回归预测方程可表示为:

Y t=b0+b1x1+b2x2++b m x m(1)式中,b0,b1,b2,b m为待定系数。可以看出,多元线性回归方程中,一旦待定系数确定,方程也就确定。

文中,以车内噪声的声品质主观评价结果作为因变量,客观参量的计算结果作为自变量,建立基于多元线性回归的车内噪声声品质预测模型,其仿真实验是在SPSS环境下实现的,得到的车内噪声声品质多元线性回归模型为:

Y=0.167x1+10.617x2+0.06x3+0.24x4-10.219 Y

!!!车内噪声声品质主观评价;

x1,x2,x3,x4!!!车内噪声声品质客观参量,分别为:响度、尖锐度、粗糙度、A声级。

3 神经网络预测模型

人工神经网络(NN)[5]是一类模拟生物神经系统结构,由大量处理单元组成的非线性自适应动态系统。其中BP网络是指用反向传(Back Propagation,简称BP)算法训练的具有单隐层的多层前馈式网络,目前比较成熟和应用最广泛的人工神经网络,是一种误差反向传播的多层前向反馈神经网络。一个三层的BP神经网络可以完成任意的映射[6],因此文中的BP网络将采用三层结构。基于BP神经网络的车内噪声声品质评价模型结构如下:以响度、尖锐度、粗糙度和A计权声压级四个客观参量作为输入量,因此输入层的神经元个数为n=4;以主观评价结果作为输出量,因此输出层取节点数p=1;隐含层节点数的选取尚无理论上的指导,只有几个经验公式,且只能确定单元数的范围.如q=n+p+a(n,p分别为输入层、输出层节点数,a为常数(取1~10)[7],考虑到单隐含层网络的非

图1 网络模型结构

F i g.1N et wo rk m odel structure

线性映射能力

较弱,对于相

同的问题,为

了达到预定的

映射关系,隐

含层节点要多

一些,以增加

网络的可调参

数,所以隐含

层节点数初设为12。因此本文所建立的BP神经网络的拓扑结构为4-12-1,网络模型的结构如图1所示。基于BP神经网络的车内噪声声品质预测的仿真实验是在M atlab环境下实现的。

4 支持向量机预测模型

支持向量机具有完备的统计学习理论基础和出色的学习性能,是一类新型机器学习方法,已成为机器学习界的研究热点,并在如人脸检测、手写体数字识别、文本自动分类、多维函数预测等领域都取得了成功应用。支持向量机(SVM)解决回归问题的基本原理如下[8]:

设训练样本集:

T={(x1,y1),(x2,y2),,(x l,y l),}?(X#Y)

x i?X=R n y i?Y=R

对于非线性回归,其回归方程为:

f(x)=?l i=1( i- *i)K(x i,x)+b(2)求解下列规划问题:

67

第6期 申秀敏等:车内噪声声品质的支持向量机预测

m ax W i , *

i

=-1

2

K (x i ,x )=exp -x i -x

2

2m ax W i , *i

=-1

2?l

i=1?

l

j=1

( i - *

i )( j - *

j )K (x i ,x )+

?

l

i=1

[ i (y i - )- *

i

(y i + )]s ..t

?

l

i=1

( i - *

i )=0

0 i , *

i

C

, i =1,2, ,l (3)式(3)中K (x i ,x )为核函数,核函数可以有不同的形式,如多项式核、高斯径向基核、指数径向基核、多层感知核、样条核等。这里把时间序列作为输入,实际值作为输出。核函数K (x i ,x )采用高斯径向基核函数:

K (x i ,x )=exp -x i -

x

2 2

(4)图2 S VM 模型结构

F i g.2SVM m ode l structure 参数设置如下:C =50,

=0.01, 2

=1.44,所建立的车内噪声声品质的SVM 模型,其结构如图2所示。基于支持向量

机的车内噪声

声品质预测的仿真实验是在M atlab 环境下实现的。

5 留一法交叉检验模型预测结果

为了比较多元线性回归、神经网络和支持向量机的建模结果,采用留一法交叉校验预测结果。所谓留一法交叉检验即随机从一组测定数据中抽取一部分数据来建立模型,用其余的数据来检验此模型的方法。如在人工神经网络法中,随机从一组测定数据中抽取一部分数据来训练网络,获得权系数,根据所得到的权系数进行预测,以预测值与实验值的差值作为评价参数,来校验所建立的网络模型。本文在建立预测模型时,均将表1中的1~20号声音样本作为模型训练样

本,21~32号声音样本作为模型测试样本。三种预测模型对测试数据的预测结果如图3所示,表3显示了

图3 三种预测模型的预测结果对比F i g .3Com par ison o f three pred icti ve models

三种方法的误差的平方和、平均相对误差和最大相对误差。

表3 三种预测模型的误差的平方和Tab .3Th e errors of three predict i ve m ode ls

预测模型多元线性回归

神经网络支持向量机

误差平方和102.7640.428.12平均相对误差/%11.086.132.67最大相对误差/%

15.56

14.24

4.42

从表3可以看出,支持向量机模型的预测方法精度较高,效果较差的是多元线性回归方法。由于车内噪声的客观评价参量与主观感觉之间存在一定的非线性关系,所以使用多元线性回归进行预测误差会比较大;神经网络和支持向量机都可以实现主客观之间的非线性映射。但是神经网络预测方法具有收敛速度慢和容易陷入局部极值等缺点;而支持向量机预测方法具有速度快,精度高等优点,效果比较好。

6 结 论

车内噪声声品质预测是目前汽车界NVH 研究的热点,能够找到精确的预测模型对车内噪声的研究有着重要的意义。本文以车内噪声数据样本为对象,研究车内噪声声品质预测问题,所提出的支持向量机算法,其训练问题本质上是一个经典的二次规划问题,它可避免局部最优解,并且有唯一的全局最优解。在核函数的选择上,文中采用高斯径向基核函数,其收敛速度快,具有全局收敛等特性;比传统的预测方法及神经网络方法有更高的计算精度,是一种很有价值的新方法。

参考文献

[1]舒歌群,王养军,卫海桥,等.汽车车内噪声声音品质的

测试与评价[J].内燃机学报,2007,25(1):77-83.[2]Schne i der M a tthias ,W il he l m M ichae.l D evelop m ent of veh i c le

sound quality targ ets and m ethods [C ]%SAE In ternati ona,l 971-976.

[3]汪念平,陈 剑,钟秤平.汽车声品质分析方法与评价流程

[J].汽车工程,2007,29(9):800-803.

[4]王松珪,陈 敏,陈立萍.线性统计模型!!!线性回归与方

差分析[M ].北京:高等教育出版社,1999.[5]VA PN I K V.The nat ure of sta tisti ca l learn i ng theo ry [M ].

N ew Yo rk :Spri nger V e rlag ,2000.

[6]G unn S R.Support V ector M ach i nes f o r C lass ificati on and

R egress i on[R ].T echn ica l R epo rt ,I m age Speech and Inte lli gent Syste m s R esearch G roup ,U niversity of Sou t ha m p ton ,1997.

[7]程屿菲,聂规划.BP 网络在企业管理中的应用研究[J].武

汉理工大学学报(信息与工程版),2004,26(4):139-142.[8]G unn S R.Support V ector M ach i nes f o r C l assifi cation and R e

g ressi on[R ].T echn i ca l R eport ,I m age Speech and Inte lli gen t Systems R esearch G roup ,U n i versity of Southa m p ton ,1997.

68振动与冲击 2010年第29卷

236 J OURNAL OF V IBRAT I ON AND S HOCK V o.l29N o.62010

Interiror sound quality forecast for veheicles based on s upport vector m achi n e

S H EN X iu m in,ZUO Shu guang,LI L in,Z HANG Shi w ei

(Tong jiU n i ve rsity,Shangha i201804,China)

Abstract: Three fo recasti n g m odels,na m ely,m u ltiple li n ear regressi o n m ode,l neural ne t w ork forecasti n g m odel and support vectorm ach i n e(SVM)forecasting m ode lw ere inspected.Tak i n g veh icle i n ter i o r no ise as objec,t veh icle i n te rior sound quality prediction m ode ls based on the above three m ethods w ere established.The m ode ls outputsw ere cr ossly vali d ated by the leave one outm ethod and co m pared w ith each other.The resu lts i n dica te t h at t h e pred i c ti o n accuracy o f SVM is superior to that of the o t h er t w o m ethods.The experi m ent i n d icates t h at SVM is o f better robustness and generaliza ti o n capab ility,and is the best m ethod to predict vehic le i n teri o r sound qua lity.

K ey w ords:sound quality;m u ltiple linear regressi o n;neural net w o r k;support vector m achine;prediction m odel

(pp:66-68)

Design and test for a type of particle i m pact da m ped dyna m ic absorber

Y ANG Zh i c hun1,LI Z e jiang

(Schoo l o f A eronauti cs,N orth w estern P olytechn i ca lU n i versity,X i an710072,Ch i na)

Abstract: A ne w type o f partic le i m pact da m ped dyna m ic absorber,w hich consists o f an e lastic ele m ent and a box partially filled w it h i m pact particles,w as desi g ned and used in the vibration contr o l o f a fi v e storeys fra m e str ucture m od e.l The dyna m ic properties of this type o f da m ped dyna m ic absorber w ere experi m entall y co m pared w it h those o f t h e classi ca l dyna m ic absorber,wh ich has the sa m e m ass and stiffness as t h e da m ped absorber.The frequency response f u ncti o ns (FRFs)of the fra m e str ucture w ith the t w o types o f abso r bersw ere m easured respecti v ely.It is shown that the particle i m pact da mped absorber has a w i d er frequency band than the c lassica l absorber.V i b ration contro l test results of the fra m e structure sub j e cted to rando m exc itati o n de m onstrates that the particle i m pact da m ped dyna m ic abso r ber exhibits a better rando m v i b ration absorption behav i o r than t h e c l a ssica l dyna m ic absorber.It is expected tha t this ne w type of dyna m i c absorber can be app li e d i n the contro l o f seis m ic and w ind exc ited v i b ration response o f tall bu ild i n gs.

K ey w ords:dyna m i c absorber;partic l e i m pact da m pi n g;v ibrati o n contr o l(pp:69-71,143)

Nu m erical analysis on co mplex loadings and s hockless co mpressions

of theW M o T i M g graded i m pedance i m pactor

BAI J ing song1,S HEN Q iang2,TA NG M i1,LUO Guo qiang1,2

(1.N ati onal K ey L aboratory of ShockW ave and D etona tion Physics,Institute o f F lui d Phy si cs,CAEP,M ianyang621900,Chi na;

2.S tate K ey L aboratory of A dvanced T echno l ogy for M ater i a ls Synthesi s and P rocessi ng,

W uhan U niversity of T echnology,W uhan430070,Ch i na)

Abstract: For the W M o T i M g co m positi o n,an exponential for m ula f o r co m putati o n o f each layer&s thickness o f t h e graded i m pedance i m pactor w as presented.The thickness of each layer i n creases w ith the i n crease o f i m pedance.For a20layers quasi conti n uum graded i m pedance i m pactor,the co m putati o na l resu lts o f co mp lex loadi n g and quasi isentrop i c co m pression o f1.0mm th ickness copper sa mp le w ere prov i d ed under2different i m pedance distri b uti o ns.By adding several layers o f l o w er i m pedance m ateri a ls a t the end o f the i m pactor,the shock less co m pression to the copper sa m ple is achieved.

K ey w ords:g raded i m pedance i m pactor;co m p lex l o adi n g;li g ht gas gun;shockless co m pression;num erica l co m putation(pp:72-75)

汽车车内声场分析及降噪方法研究发展

目录 1 引言 (1) 2 汽车噪声种类 (1) 3 车内噪声的主要来源 (2) 3.1 发动机噪声 (2) 3.2 底盘噪声 (2) 3.3 车身噪声和车内附属设备噪声 (2) 4 传统的车内噪声控制技术 (3) 4.1 消除或减弱噪声源的噪声辐射 (3) 4.2 隔绝传播途径 (3) 4.3 用吸声处理降低车室混响声 (3) 5 车内噪声主动控制技术 (4) 5.1 有源噪声控制技术 (4) 5.2 结构声的有源振动控制 (4) 6 车内噪声控制技术研究的发展趋势 (4) 7 结语及展望 (5) 参考文献: (6)

汽车车内声场分析及降噪方法研究发展 1引言 控制车内噪声一直是车辆设计、制造工程师的努力方向。汽车内部噪声不但增加驾驶乘人员的疲劳,而且影响车辆的行驶安全。车内噪声水平的高低在很大程度上反映了车辆制造厂家的设计和工艺水平。近年来,车内噪声已经成为无额定车辆品质的重要因素,车内低噪声设计已经成为产品开发中的重要任务之一。车内噪声级与乘坐室振动级别一样,已经成为判断汽车舒适性的主要指标。车内噪声主要取决于乘坐室的减振隔音性能,重量轻的承载式车身结构和类似的减轻车身重量的措施被认为可能增大车内噪声,尤其是低频噪声。实车测试表明,这种低频噪声主要集中在20~30HZ。车身壁板的振动和噪声有紧密关系,且乘坐室空腔的共振会放大噪声。这个问题的解决方法是在车辆设计阶段,利用现代振动力学与声学分析方法,预测车内噪声特性,实现优化设计;并通过实车测试,改进设计及工艺,最后使得车内噪声处于最优水平,最大极限地改善乘坐的舒适性,减轻人员的疲劳[1]。 2汽车噪声种类 汽车是有多种声源的机器, 运行中会有多种噪声,可分为: 车外噪声和车内噪声。车内噪声是指行驶的汽车乘坐室或驾驶室内存在的噪声, 其主要噪声源有: 发动机噪声、进气噪声、排气噪声、冷却风扇噪声、底盘噪声等。车内噪声按传播途径分为: 空气声和固体声[2][3][4]。 空气声(Air Borne Sound) 是从动力系统表面发出的辐射声, 它在空气中传播并对车身加振而形成。空气声会在传播过程中衰减, 材料对声能的衰减也使其大大衰减。固体声(Solid Borne Sound)是机械振动沿固体构件传播中产生的噪声, 它产生于发动机、变速箱、后桥、轮胎等, 并能通过底盘车架传播。由于固体构件一般由均质、密实的弹性材料组成, 对声波的吸收作用很小, 并能约束声波使它在有限空间内传播; 因此结构声往往可以传播很远距离。固体声通过构件表面的振动也会辐射出“再生”的空气声, 它与原始空气声相比较,结构声形成的再生噪声往往更难解决。空气声和结构声是可以相互转化的。空气声的振动能够迫使构件产生振动成为结构声; 结构声辐射出声音时, 也就成为空气声。减少空气声的传播, 要从减少或阻止空气的振动入手, 可以采取吸声或隔音措施; 减少结构声的传递,则须采取隔振或阻尼措施。

噪声治理措施

十大工业噪声源控制技术评述 目前影响工人健康、严重污染环境的十大工业噪声源,它们是风机、空压机电机、柴油机、织机、冲床、圆锯机、球磨机、高压放空排气以及凿岩机。 这些噪声源设备,普遍使用于各工业部门,产生的声级高,影响面大。我国在控制这些噪声问题方面,虽已积累了相当丰富的经验但仍存在许多实际问题,尚待研究解决。 风机、空压机的消声器,国内目前已有较成熟的系列产品。但是在大型消声器,尤其是耐腐蚀、防尘埃、耐水气等特殊类型的消声器方面,尚有许多工作需要深入进行。低噪声风机虽有一些产品出现,但这方面的工作,在我国也仅仅算是一个开端。 电机噪声的系列消声隔声罩,在我国也已有生产,但对于大型电机的降噪,以及从声源上降低电机的噪声,也尚待进一步深入下去。 在石油输送管道系统以及其它一些地方,大型柴油机噪声问题仍然严重存在,需要解决。研制隔声性能与散热性能元气优 {带高效消声器} 、使用方便的隔声罩,是问题的关键。 近些年来,我国在有梭织机噪声控制上已取得许多经验。不少单位采取各种措施,在单机上可获得10dBA的降噪效果。问题在于这些技术措施目前尚很难全面推广。深入对已取得效果的各项措施进行分析、筛选和改进,并探讨控制织机噪声危害的其它途径,是当务之急。 冲床噪声的产生机理及控制途径,近十多年来,在国内有了一些新的突破。冲床噪声影响面大,但目前国内只有少数一些地方开展了降噪工作,许多实际问题尚待解决。 圆锯机产生的噪声一般在100dBA以上.木材加工行业发生的断指事故,常与此噪声密切有关.国内自八十年代以来,对圆锯机降噪进行了较系统的研究,其结果表明,通过对锯片开适当的减振槽,在锯片上贴阻尼片以及对机组施用隔声罩待综合措施,可导致圆锯在工作时整机噪声的明显降低. 对于球磨机噪声,目前国内有一些部门采用橡胶衬板的方法,或对球磨机筒体采用阻尼隔声层包扎方法,或对球磨机施用隔声罩方法来降噪,取得一定的效果.但同样在使用上,仍然存在不少问题,值得探讨解决.

车内噪音的来源及解决方法

在汽车音响改装行业浸淫多年,改装过不少车型,因为音响改装涉及到车辆吸音降噪的处理,对此也有些心得,现在整理一下,和大家分享。 首先我们来分析一下车内的噪音的来源,车内噪音主要有下面几种: 1.发动机噪音 发动机噪音包括发动机缸体发出的机械声,还包括进气系统噪音,即高速气体经空气滤清器、进气管、气门进入气缸,在流动过程中,会产生一种很强的气动噪音。由于汽车公司在车辆设计时由于成本的问题,部分零件不会采用最好的材料,如该车引擎盖没有使用吸音材料,防火墙没有贴隔音材料造成了发动机的声音通过仪表台下方、底盘传入到车内。 2.轮胎噪音 一般的胎噪主要由三部分组成:一是轮胎花纹间隙的空气流动和轮胎四周空气扰动构成的空气噪音;二是胎体和花纹部分震动引起的轮胎震动噪音;三是路面不平造成的路面噪音。胎噪是不可避免的,即使是换用所谓的低胎噪轮胎也没有什么效果,关键还是看车辆本身的吸音隔音效果,现在市售30万以下的新车防火墙基本是不做吸音隔音的,造成了发动机声音和轮胎噪音通过仪表台下方、底盘叶子板处传入到车内。 3.空气噪音 一是风噪,就是由车身周围气流分离导致压力变化而产生的噪音;二是风漏,或叫吸出音,是由驾驶室及车身缝隙吸气而与车身周围气流相互作用而产生的噪音;三是其他噪音,包括空腔共鸣等,例如很多车尾箱内的备胎空腔,很容易与排气系统形成共鸣,而汽车的四个门是离车内最近的结构,如果密封做的不好,风噪和凤漏就会很明显。 4.车身结构噪音 主要是受两个方面因素影响,一是车身结构的震动传递方式,二是车身上的金属构件由于在里外作用下产生震动而产生噪音。例如车门和尾箱两侧的钢板,很容易因为车辆震动而产生噪音,车门噪音传导及车身密封性不足,车门是由钣金件和门饰板组成。市场上售价在30万以下的新车,大部分车门部分都没有做隔音处理,因此在关门的时候可以感觉到明显的金属声音,车辆高速行驶时金属声会更明显。下面,我们将以马自达5为例,讲解一下如何进行静音降噪的处理。 刚提回来还没上牌的新车,车主说低速行驶时没多大问题,当时速达到80-100km后整车车身振动大、低频共鸣噪音大,要求处理高速行驶时产生的各种噪声。噪音描述符合绝大部分中小型车的噪音特性。在弄清楚噪音产生的原因后跟车主详细解释各部位振动所产生噪音的原理和解决方法,车主明白认可后开始动工做降噪工程。详细了解该车的各种噪音情况,分析噪音产生的原因,向车主解释该车噪音产生的部位、原理和处理方法以及施工后能达到的效果,让顾客明白放心消费。

GB 1495-2002汽车加速行驶车外噪声限值及测量方法.doc

个人护理品用的有机硅 章基凯 上海高分子材料研究开发中心 1前言 随着日化工业的发展和人民消费水平日益提高,对个人护理产品提出更广泛的要求。由于工业发展,空气污染程度增加,洗涤剂、增白剂、农药、化肥等化工产品的广泛使用,使人的皮肤接触越来越多的化学物质。因此,要求个人护理品不仅能修饰脸部、头发和手部,而且要求能够保护皮肤健康。 有机硅(特别是硅油)以优异的综合性能和生理隋性,十多年来已进入销售额大产品升级换代快的个人护理品行业。它具有与皮肤相容性和与基材的配位性、疏水透气性好、耐化学介质侵蚀、润而不腻等独特性能,它作为个人护理品的组份,在改进个人护理品、提高使用性能和开发新品种方面必将起到举足轻重的作用。 2有机硅的特性和毒性 2.1结构特征 有机硅具有以下的结构特征: (1)结合能量大的SiOSi主链(Si-O,106Kcal/mol); (2)分子间相对弱的亲和力(硅油20~25达因/厘米); (3)形成螺旋分子能力大。 2.2有机硅生理毒性 以硅油为例,具有对称分子结构,无极性基团,整个分子呈隋性分子。根据国外资料报导和北京首都医院、中国医学卫生研究院和原上海第一医学院等单位所进行毒性试验,证实硅油无毒,具有生理隋性,在个人护理品行业使用是绝对安全的。 (1)皮肤相容性-赖皮症试验 硅油的皮肤相容性可通过实验动物皮肤上没有上皮增厚作用而得到证明。所谓“赖皮症试验”即在皮肤的表面分别给以石蜡、凡士林和硅油,10天后观察到涂有石蜡、凡士林的皮肤上皮的所谓赖细胞层显著地促成播散,而涂以硅油的皮肤则无此现象。这就说明硅油对于皮肤的惰性甚至胜过化妆品中常用的石蜡、凡士林等材料。

音频指标简介及测试原理方法

音频指标测试均是针对有输入和输出的设备而言,就是声音信号经过了一个通道以后,输出与输入之间的差别。两者差别越小那么性能越好,而且在一般情况下声音经过某一个通道或某一系统后,一般都有对原信号的放大和衰减。 信噪比、失真率、频率响应这三个指标是音响器材的“基础指标”或“基本特性”,我们在评价一件音响器材或者一个系统水准之前,必须先要考核这三项指标,这三项指标中的任何一项不合格,都说明该器材或者系统存在着比较重大的缺陷 1、信噪比SNR(Signal to Noise Ratio): (1)简单定义:狭义来讲是指放大器的输出信号的电压与同时输出的噪声电压的比,常常用分贝数表示,设备的信噪比越高表明它产生的杂音越少。一般来 说,信噪比越大,说明混在信号里的噪声越小,声音回放的音质量越高,否 则相反。信噪比一般不应该低于70dB,高保真音箱的信噪比应达到110dB以 上。音频信噪比是指音响设备播放时,正常声音信号强度与噪声信号 强度的比值 (2)计算方法:信噪比的计量单位是dB,其计算方法是10LG(PS/PN),其中Ps 和Pn分别代表信号和噪声的有效功率,也可以换算成电压幅值的比率关系:20LG(VS/VN),Vs和Vn分别代表信号和噪声电压的“有效值”。 (3)测量方法:信噪比通常不是直接进行测量的,而是通过测量噪声信号的幅度换算出来的,通常的方法是:给放大器一个标准信号,通常是0.775Vrms 或2Vp-p@1kHz,调整放大器的放大倍数使其达到最大不失真输出功率或幅度(失真的范围由厂家决定,通常是10%,也有1%),记下此时放大器的输出幅Vs,然后撤除输入信号,测量此时出现在输出端的噪声电压,记为Vn,再根据SNR=20LG(Vn/Vs)就可以计算出信噪比了. 或者是10LG(PS/PN),其中Ps和Pn分别代表信号和噪声的有效功率 计权:这样的测量方式完全可以体现设备的性能了。但是,实践中发现,这种测量方式很多时候会出现误差,某些信噪比测量指标高的放大器,实际听起来噪声比指标低的放大器还要大。经过研究发现,这不是测量方法本身的错误,而是这种测量方法没有考虑到人的耳朵对于不同频率的声音敏感性是不同的,同样多的噪声,如果都是集中在几百到几千Hz,和集中在20KHz以上是完全不同的效果,后者我们可能根本就察觉不到. 这样就引入了权的概念。噪声中对人耳影响最大的频段“权”最高,而人耳根本听不到的频段的“权”为0。这种计算方式被称为“A计权”,已经称为音响行业中普遍采用的计算方式。 2 、频响范围: (1)频率响应是指在振幅允许的范围内音响系统能够重放的频率范围,以及在此范围内信号的变化量称为频率响应。 (2)测试方法:要求输入信号幅值为一个固定值(要在动态范围之内,音响设备我们可以取100mv)。当输入信号为正常频率时(不能有失真,可以定位1KZ),记录这个时候的输出电压的大小V1。然后开始逐渐降低输入信号的频率,当降低到一定程度时,输出信号的幅值会开始减小。继续降低频率,直到输出电压为0.707V1

锅炉引风机噪声的治理通用范本

内部编号:AN-QP-HT592 版本/ 修改状态:01 / 00 When Carrying Out Various Production T asks, We Should Constantly Improve Product Quality, Ensure Safe Production, Conduct Economic Accounting At The Same Time, And Win More Business Opportunities By Reducing Product Cost, So As T o Realize The Overall Management Of Safe Production. 编辑:__________________ 审核:__________________ 单位:__________________ 锅炉引风机噪声的治理通用范本

锅炉引风机噪声的治理通用范本 使用指引:本安全管理文件可用于贯彻执行各项生产任务时,不断提高产品质量,保证安全生产,同时进行经济核算,通过降低产品成本来赢得更多商业机会,最终实现对安全生产工作全面管理。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 采暖锅炉引风机噪音是目前城市噪声源之一。该噪音的特点是进入采暖期以后每日24小时分3至4段时间供热,严重影响附近居民的休息。通化市某银行现有10吨采暖锅炉,配 Y5—47NO10C引风机,锅炉烟囱为直径 0.9m,高24m,铁制。该烟囱高出附近居民楼5m,锅炉房界外1m处环境夜间本底值 39dB(A),噪声值63.5dB(A),超出我国城市环境噪声允许标准二类混合区的限值 18.5dB(A)。 在对该锅炉引风机进行降低噪声处理时,

汽车音响测试标准

汽车音响测试标准(FM部分) 1,覆盖频率测试 被测机处于待测状态,波段调制FM状态,把台钮旋转至最低端,数字信号发生器频率设置在87.5MHZ,频偏22.5KHZ。调制频率1KHZ,输入电平暂设20DB,把信号发生器天线插入被测机天线插孔,被测机音量开最大,调均衡器打到适当位置,旋转发生器频率微调至被测机输出最大,此时发生器的频率为被测机低端频率。把台钮旋转至最高端,数字信号发生器频率设置在108.5MHZ,频偏调制不变,输入电平20DB,旋转发生器频率微调至被测机输出最大,此时发生器的频率为被测机高端频率,此时低端与高端为被测机FM覆盖频率。2,最大灵敏度(10 10) 被测机处于待测状态,数字信号发器频率设置与90MHZ,频偏22.5KHZ,调制频率1KHZ,输入电平暂设20DB,旋转台钮至90MHZ,输出标准参考电压2V,输出高于2V时,降低信号发生器发生器输入电平至输出为2V止,此时信号发生器的输入电平即为被测机低端最大灵敏度。98MHZ,106MHZ测试方法一样。让VOL升到最大,再降低发生器的电平DB,让毫伏表为2V,此时所显示的电平DB为最大灵敏度。 3,实用灵敏度(30DB S/N) 被测机处于待测状态,数字信号发器频率设置与90MHZ,频偏22.5KHZ,调制频率1KHZ,输入电平暂设20DB,旋转台钮至90MHZ,调节音量电位器至输出电压制2V,然后关去发生器调制,调毫伏表DB档调小30DB(三个档位),看此时毫伏表指示是否为2v,如大于2V,侧应加大输入电平,再调回调制输入及调回毫伏表DB档,看毫伏表指示是否为2v,大于2v,再调音量电压器至2v为止,然后再去调制及毫伏表DB档30DB,输出是否回到原2V处,如低于2v,侧降低输出电平DB数到2V,如此调校多次至调准为止,调准后数字信号发生器输入电平即为被测机的低端实用灵敏度,98MHZ,106Mhz测发一样。 4,信噪比 被测机处于待测状态,先测试好最大灵敏度,然后把输入电平增到60DB,调音量电位器至输出2v,去信号发生器调制,调节毫伏表DB档,此时档位DB加表针所读DB数即为被测机的信噪比。 5,中频(10.7MHz)10.7±0.02 被测机处于待测状态,数字信号发器频率设置与10.7MHZ,频偏22.5KHZ,调制频率1KHZ,输入电平暂设80DB,把被测机台钮旋至最低端,然后旋转发生器的频率调制输出电压最高,此时发生器上的频率即为被测机的中频频率。 6,显示频率差 被测机处于待测状态,数字信号发器频率设置与98MHZ,频偏22.5KHZ,调制频率1KHZ,输入电平暂设20DB,把被测机台旋转至98MH,使输出最高,此时被测机的显示频率与发生频率至差,即为被测机的显示频率之差。 7,中频抑制(90MHZ)IF Rejected 60.5 被测机处于待测状态,先测试好最大灵敏度,然后数字信号发器频率设置与10.7MHZ,调制频率和频偏不变,输入电平增加至输出为最大灵敏度时的标准输出2v,此时输入电平DB 数减去最大灵敏度是的DB数,即为被测机的中频抑制。 8 镜像抑制106MhZ Image Rejected 60.5 被测机处于待测状态,先测试好106MH最大灵敏度,然后把数字发生器输入频率加入两个中频(106MHZ+2*10.7MHZ),再增加输入电平至被测机的输出达到原标准输出2V,再用此数码电平减去最大灵敏时输入电平,所得出来的电平数即被测机镜像抑制DB数。

汽车空调系统噪声与车内噪声研究与解决

汽车空调系统拍频现象 引起的车内噪声研究与解决 朱卫兵(1),李宏庚(2) 上汽通用五菱汽车股份有限公司 【摘要】 汽车室内噪声是汽车NVH的主要内容。引起车内噪声的因素很多,主要有发动机噪声、进排气噪声、传动系噪声以及高速行驶时的风噪声等等;汽车空调系统在工作时也会产生非常明显的车内噪 声,而且其产生的噪声相对容易被乘员辨识。空调系统压缩机、蒸发器、鼓风机及管路系统有轻微噪声是 正常的,但是如果噪声过大或存在异响,就说明空调系统有故障,需要及时处理。本文针对国内某款微型 面包车在开发过程中出现空调系统拍频异响问题,采用分别运转法、频谱分析法等将存在的异响问题解决,从而降低汽车车内噪声,同时也为汽车工程技术人员NVH开发提供借鉴。 【关键词】:汽车NVH,速比,压缩机,发电机,拍频 The Analysis and Solution on the Automobile Interior Noise Caused by Air Conditioning Beat-frequency ZHU Weibing(1),LI Honggeng(2) SAIC-GM-Wuling Automobile Co,.Ltd Abstract: The interior noise is one of key performances of vehicle NVH. There are many factors for vehicle interior noise, include engine noise, intake noise, exhaust noise, transmission noise and wind noise on high speed. The vehicle air condition will bring visible interior noise while it working. And it’s easy to distinguish it on relatively. In air condition system, it’s normal for a little noise in compressor, evaporator, fan and pipeline. But if it exist too big noise, there may be exist some problems in air condition system. This passage explains how to resolve the problem according to the air condition noise with the method of separate working and frequency analysis. At the same time it’s a reference to the carmaker’s vehicle NVH develop. Key words:Vehicle NVH, Speed ratio, Compressor, Dynamotor, Beat-frequency 1 前言 汽车空调系统在工作时也会产生非常明显的车内噪声,而且其产生的噪声相对容易被乘员辨识。空调系统压缩机、蒸发器、鼓风机及管路系统有轻微噪声是正常的,但是如果噪声过大或存在异响,就说明空调系统有故障,需要及时治理。 本文针对国内某款微车在开发过程中,由于空调系统拍频现象导致的车内噪声过大问题,采用分别运转法、频谱分析法等方法来确定汽车产生拍频现象的源头,并运用适当的方法来解决此问题,同时也为汽车工程技术人员NVH开发提供借鉴。 2空调系统噪声分析

汽车音响指标测试方法

汽车音响指标测试方法 FM指标测试方法(1khz 22.5%.DEV) 一、30dB实用灵敏度(USABLE SENSITIVITY《S/N:30dB》 先将机器收正为90Mhz(98Mhz、106Mhz),电平(LEVEL)打在正常dB数(40左右),音量收细至0dB处,然后去掉信号(即打下ON、OFF钮)再扭毫伏表三下,(即30dB,每扭一下为10dB),然后调信号发生器的电平(LEVEL),使没信号时的指针与有信号的指针重复(若没重复也不能超过1个dBm),最后电平(LEVEL)显示的dB数就是此机的-30dB实用灵敏度。 二、3%失真灵敏度(I.F.H. SENSITITV《75khz DEV 3%T.H.D》 先将机器收正为90Mhz(98Mhz、106Mhz),调制度打在75%,将失真仪打在DIST、10%(-20dB)档,然后分别调整音量电位器和发生器的电平(LEVEL)dB 数,使失真仪指针指在3%的位置(不可超过3%的位置,正常应在3%内波动),这时发生器的电平(LEVEL)dB数就是此机的3%失真灵敏度(例如:电平(LEVEL)dB 数为11,那么3%失真灵敏度就是11)。 三、-3dB极限灵敏度(-3dB LIMITING SENSITIVITY) 先将机器收正为98Mhz,电平(LEVEL)打在66dB数,音量收细至0dB处,然后减少发生器的电平(LEVEL)dB数,到毫伏表指针减少3个dB时停,此时的电平(LEVEL)dB数就是此机-3dB的极限灵敏度。 四、信噪比(S/N RATIO《@1mv INPUT》) 先将机器收正为98Mhz,电平(LEVEL)打在66dB,音量收细至0dB处,然后去掉信号(即打下ON、OFF钮)再打毫伏表,每扭一下为10dB,但毫伏表指针不能超过0dB,最后看指针指数是多少,再加上一共所打毫伏表的次数(每档为 10dB),(例:你一共打了三次指针指数为6,那么信噪比就是30+6=36dB)。就是此机的信噪比值。 五、中频抑制(IF REJECTION 600khz) 将机器收正为90Mhz,先测出实用灵敏度的dB数,再将FREQ90Mhz转为10.7Mhz(FM中频),然后调节电平(LEVEL)dB数,使指针指在2V时所显示的dB

车内噪声主动控制的研究

https://www.360docs.net/doc/541003948.html, 车内噪声主动控制技术的研究 徐云峰靳晓雄 (同济大学汽车学院上海 201804) fly10007@https://www.360docs.net/doc/541003948.html, 摘要:基于国内对汽车车内噪声控制标准的提升,运用目前国内外对噪声主动控制方面的研究成果,结合汽车本身的特点,本文阐述了利用压电陶瓷对车内噪声进行主动控制的研究。并根据车内声学模态对压电陶瓷优化配置方法和基于神经网络的控制策略进行探讨,通过对桑塔纳2000型轿车试验证实了这种主动控制方法的有效性。 关键词:车内噪声,压电陶瓷,主动控制,控制策略 1.前言: 随着国内外汽车技术的发展,车内噪声的控制标准越来越严格,它对汽车噪声控制技术提出了更高的要求。众所周知,传统的噪声被动控制技术较好的解决了车内高频段噪声,而对低频段噪声控制效果不佳。对此我们研究了一种新的噪声控制技术,即基于神经网络的基础上,利用传感器/作动器来进行车内噪声的主动控制。试验研究表明,这种控制技术有效的降低了汽车车内噪声。并且随着信号处理、电子技术的飞速发展和现代控制理论及测试技术的进步,这种噪声主动控制方法有着广泛的应用前景。 2.压电传感器与作动器的配置研究 在压电传感/作动器的配置方面,主要是基于给定的压电传感器与作动器,要求最佳的数据采集与动作位置。先前的研究表明,在振动能量最大点布置传感器,在振动能量最小点布置作动器。以桑塔纳2000型轿车为例分析计算,使用ANSYS软件进行轿车结构振动的声学贡献模拟分析,在要研究的20HZ、25HZ、50HZ频率内,顶棚后部被认为正贡献区域并且其声学贡献较大,所以我们以顶棚作为对象进行振动噪声的控制。然后运用ANSYS软件对轿车顶棚进行模态分析,以掌握其振动特性,并确定待控振动模态。模态分析的部分计算结果如表1所示。 表1 轿车顶棚有限元模态分析结果 阶数(m,n)固有频率(Hz) 1 1,1 26.845 2 2,1 54.214 3 1,2 98.324 4 3,1 142.35 将轿车顶棚简化为四边简支的矩形薄板结构【1】,运用下面的声学辐射效率公式(1)对轿车顶

多工况加速行驶车外噪声测量评价方法

V ol 35No.4 Aug.2015 噪 声与振动控制NOISE AND VIBRATION CONTROL 第35卷第4期2015年8月 文章编号:1006-1355(2015)04-0183-06 多工况加速行驶车外噪声测量评价方法 谢东明,张振鼎,郭 勇 (中国汽车技术研究中心,天津300300) 摘要:欧洲经济委员会正在起草修订的新噪声法规ECE R5103系列,要求对M1、N1类汽车进行多工况下的加速行驶车外噪声测量。阐述其测量方法产生的背景、发展过程及适用范围;结合验证试验解析多工况加速行驶车外噪声测量的试验流程,以及相应的三种评价方式。为汽车企业、大学及科研机构研究多工况下的加速行驶车外噪声测量与控制提供技术参考。 关键词:声学;多工况加速行驶车外噪声;测量方法;试验流程;评价方式中图分类号:O422.6 文献标识码:A DOI 编码:10.3969/j.issn.1006-1335.2015.04.040 Summary of Measurement and Evaluation Methods for Additional Sound Emission Provisions XIE Dong-ming ,ZHANG Zhen-ding ,GUO Yong (China Automotive Technology and Research Center,Tianjin 300300,China ) Abstract :In the draft of UN ECE R5103series,the M1and N1categories of vehicles are required to carry out the measurement of the Additional Sound Emission Provisions (ASEP).In this paper,the background knowledge,developing process and scope of the measurement method were introduced.According to the proof tests,the test procedure and three evaluation methods were analyzed.This summary provides a technical reference for the automobile companies,universities and research organizations for the purpose of measuring and controlling the Additional Sound Emission. Key words :acoustics ;ASEP ;measurement method ;test process ;evaluation method 现行欧盟噪声法规ECE R5102系列以及即将实施的ECE R5103系列在汽车加速行驶车外噪声认证试验过程中,均只对汽车特定工况(特定发动机转速、车速)条件下的噪声进行测量[1],而随着发动机及变速箱电控技术的发展,汽车生产厂商可能为了单纯满足特定工况下的噪声认证试验,而将车辆动力系统调整到非正常的状态或模式[2]。为了防止汽车生产厂商专门针对认证试验特定工况对汽车进行特殊调整,更加准确、全面控制M1、N1类汽车在各个档位,不同发动机转速、车速、不同加速度条件下的噪声,产生了一种新的方法—多工况加速行驶车外噪声测量方法。 对车速20km/h ~80km/h 范围内,发动机怠速 收稿日期:2014-12-25基金项目:环境保护部项目《汽车加速行驶外噪声限值及测 量方法(修订GB 1495-2002)》,项目统一编号464 作者简介:谢东明(1985-),男,四川大竹县人,目前从事整 车道路试验和道路试验标准工作。E-mail:xdongming@https://www.360docs.net/doc/541003948.html, ~90%额定转速范围内,多档位多工况条件下的加 速行驶车外噪声值进行测量。并采用噪声与发动机转速对应关系,噪声与车速、加速度对应关系两套理论,三种方法评价汽车在各车速、转速、加速度条件下的噪声水平,防止汽车使用过程中异常噪声的发出,严格控制汽车正常使用过程中多种工况条件下的噪声水平。 1ASEP 测量方法产生背景 现行的加速行驶车外噪声欧盟法规ECE R5102系列及对应的国标GB 1495-2002标准已实施多年[3],对于M1、N1类汽车,均采用2、3档全油门加速行驶的极端工况噪声(方法A )进行噪声试验结果评价。 极端工况噪声(方法A )与城市实际行驶工况存在较大差异,并直接导致噪声限值的降低与城市声学环境改善无法同步,1992年开始这一问题开始逐渐引起关注。1996—2000年,德国汽车技术研究机构TUV FIGE ,美国联邦环境保护局EPA 等机构采集了欧洲、亚洲、美国等地的汽车城市工况,并从

汽车车内噪声控制方法研究

汽车维修工高级技师论文 汽车车内噪声控制方法研究 姓名:付建伟 日期:2011年8月19日

论文题目:汽车车内噪声控制方法研究 摘要:汽车车内噪声指行驶汽车车厢内存在的各种噪声。车内噪声极易使乘车人员感到疲劳,对汽车的舒适性有着重要影响。本文从系统的观点出发,在分析了国内外汽车 产品的噪声控制技术水平现状以及噪声研究和控制技术方法的基础上,开展了比较 系统的车内噪声控制研究,识别了主要的噪声源和噪声辐射部位,同时,通过本项 目的研究,摸索出了一些行之有效的汽车噪声研究和控制的方法和措施。 关键词:汽车,车内噪声,声源识别,噪声控制,试验研究。 论文内容: 交通噪声是目前城市环境中最主要的噪声源,汽车噪声约占整个交通噪声的75%,是影响其性能和质量的重要指标之一,根据汽车对环境的影响,汽车噪声一般分为车外噪声和车内噪声。车外噪声在很大程度上对外部环境产生生态影响,而车内噪声对乘客舒适性产生影响。 一、国内外汽车噪声状况及控制技术 国外一般对车外噪声有严格的限制标准,至于对车内噪声尚没有严格的标准。在欧洲、美国、日本一些发达国家,汽车加速行驶时主噪声源并不是来自发动机,而是来自胎噪。发达国家对汽车发动机、消声器、变速箱、冷却系等主要噪声源已有深入研究,并且有成熟的理论计算和产品开发设计程序。目前,国外汽车噪声研究和控制的重点已经转向结构振动噪声、轮胎噪声及发动机隔声罩的研究方面,控制技术已普遍达到实用阶段。 国内对车外加速噪声的限制标准制定相对缓慢,自1979年制定了GB1495-79《机动车辆允许噪声》以来一直未做修订,直到2002年才颁布新标准GB1495-2002《汽车加速行驶车外噪声限值及测量方法》,国内对车内噪声没有严格的限制,只对某些星级汽车设置了噪声限值,在国内,发动机噪声仍占汽车噪声的三分之一以上,发动机的减振、降噪成为汽车噪声控制的关键。 对于汽车噪声的控制,不同阶段针对不同噪声源采取的控制措施是不同的。国内汽车的噪声控制技术每个时期都有其侧重点(见表1) 表1不同阶段重点集中发展的控制技术

风机噪声处理技术方案

风机噪声处理技术 初 设 方 案 杭州汉克斯隔音技术工程有限公司 2020年06月

风机设备在工业生产中比较常见,而且功率大、数量多,产生的噪声值也相对较大,常见的风机有罗茨风机、锅炉风机、离心风机、一次风机等等。这些风机设备在工作时产生的噪声值在100分贝以上,严重超出工业厂房噪声标准,为了保证工人的身心健康,需要对风机进行隔音降噪,汉克斯带您了解风机噪声处理技术方案。 一、风机现场噪声分析 针对工业常见的罗茨风机来说,其产生噪声的位置通常主要是风机的进出气口,风机设备外壳、电机、部件产生的机械噪声,以及设备震动产生的震动传递噪声。其中进出气口产生的空气动力型噪声是风机设备噪声中噪声值最大、最常见的,主要呈现为旋转噪声和风机涡流噪声,严重的情况下,风机噪声值可以达到120分贝。常见的多是在95-105分贝。

二、风机设备降噪目标要求 风机设备多数使用在工厂,对于工业厂区的风机设备降噪要求是在8小时工作时间内,厂房内噪声低于85分别。对于油烟风机或者屋顶风机根据使用环境区域,二类商业办公区域要求低于夜间50分贝,白天低于60分贝,一类住宅医院等区域夜间低于45分贝,白天低于55分贝。 三、风机噪声处理技术方案 1.风机机械噪声处理:机械噪声可以通过提高风机部件之间的润滑度、装配的精度、更换新零件等措施进行处理。 2.风机空气动力型噪声处理: 使用进出风消声器:在风机进出风口噪声普遍比其他位置噪声高10分贝以上,所以在进出风口安装消声器可以有效的降低进出风产生的空气动力型噪声,消声器类型可以选择阻抗复合式消声器,消音量可以达到25分贝以上。 使用风机隔声罩:隔声罩采用了复合隔音板材作为主体,将单台风机或者所有风机都封闭在内,成为风机隔声罩或者隔音房,此方法对于风机的降噪效果好,但是场地要求高。同时隔音房还要配套使用隔声门窗、通风散热系统等等。

汽车音响电性能测试指标

汽车音响电气性能测试指标 AM电气性能指标测试 一、频率范围(FREQUENCY RANGE) 1.定义:表示接收机可能收到的最低端和最高端的频率 2.条件:VOL:最大且不失真位置。 调制度:30%,调制频率:1KHz或400Hz。 3.方法: A.首先将接收机的TUNER钮转到最低端。 B.调整SSG频率使接收机输出最大(SSG电平可用74dB.) C.降低SSG的电平数值,使刚刚看得出波形,再细调SSG的频率,使输出最大为止。 D.然后将TUNER转到最高端。 E.用B.C的同样方法,使接收机输出最大。 F.记录此时最低端和最高端频率为被测机的频率范围。 二、中频频率(INTERMEDIATE FREQUENCY) 1.定义:表示接收机455 KHz(465 KHz)的偏移状况。 2.条件:调制度30%,调制频率:1 KHz或400 Hz,VOL:最大且不失真位置。 3.方法: A.接收机于600 KHz,SSG同样于600KHZ。 B.将SSG的频率置于455 KHz(465 KHz),100 dB电平输出,此时示波器上应有波形; C.降低电平,能刚刚看得出波形,再细调SSG的频率,使接收机输出最大; D.此时SSG上的频率为该接收机的AM中频频率。 三、最大灵敏度(USABLE SENSITIVITY) 1.定义:以获得信号对杂音之比为20 dB的标准输出的最小输入信号强度。 2.条件:VOL:最大,调制度:30%,调制频率:1 KHz或400 Hz。 3.方法: A.固定SSG的频率于600 KHz、1000 KHz、1400 KHz三点,接收机与之同上述三点。 B.增减SSG的输出电平,在不失调的情况下,使接收机的输出达到标准输出; C.此时SSG的输出电平为最大灵敏度,以dB表示。 四、实用灵敏度(USABLE SENSITIVITY) 1.定义:以获得信号对杂音之比为20dB的标准输出的最小输入信号强度。 2.条件:VOL:不定位,调制度:30%,调制频率:1KHz或40Hz。 3.方法: A.分别固定SSG的频率为600KHz、1000KHz、1400KHz三点,接收机与之同调于上述三点; B.先调整SSG上的输出电平强度(此时音量最大),使接收机达于标准输出; C.然后去掉调制度,此时为接收机的S/N为20dB为止。 D.增加SSG上的输出电平为实用灵敏度,以dB表示。 注:若在最大灵敏度时,接收机的S/N大于20dB,则此项测试可免。 五、信噪比(S/N RA TIO) 1.定义:表示信号输出与杂音之比。 2.条件:VOL:标准输出,信号强度:74dB,调制度:30%,调制频率:1KHz或400Hz。 3.方法: A.固定SSG频率于600 KHz 、1000KHz、14400KHz,接收机与之同调于600 KHz 、1000KHz、 1400 KHz三点。 B.从SSG输出74dB电平到接收机内,VOL定于标准输出,且以此输出为0dB。 C.将SSG调制度去掉,调节毫伏表dB档,使表针不超过输出的2V,此时档位的dB数加上表针 所读数,所得到的数据为信噪比。用dB表示。

汽车车内声场分析及降噪方法研究现状

汽车车内声场分析及降噪方法研究现状 摘要:本文首先对车内噪声的来源进行分析,然后建立了车室空腔声场的声学有限元模型,利用结构及声场动态分析技术,对车身结构的动态特性、车室空腔声场的声学特征进行了研究。在此基础上,分析了声固耦合系统在外界激励下的声学响应。阐述了车内被动噪声控制在低频噪声上的原理与应用。及决定主动噪声控制效果的决定因素及在车内噪声控制中应用的发展过程, 并指出当前研究中需解决的问题和今后的研究方向。 关键词:车内噪声;控制;车室空腔;主动降噪 Abstract:This article first interior noise sources were analyzed, and then the establishment of a finite element model of the vehicle compartment acoustic sound field in the cavity, the use of the structure and dynamic sound field analysis of the dynamic characteristics of the body structure, the acoustic characteristics of the vehicle compartment cavities were sound field the study. On this basis, the analysis of the acoustic excitation solid coupling system in the outside world under the acoustic response. It describes the principle and application of passive noise control car on the low-frequency noise. And determine the effect of active noise control determinants and development process in the car noise control applications, and pointed out that current research problems to be resolved and future research directions. Keywords: interior noise; control; the passenger compartment of the cavity; Active Noise Reduction 0 引言 汽车车内噪声不但增加驾驶员和乘客 的疲劳,而且影响汽车的行驶安全。因此,车内噪声特性已成为汽车乘坐舒适性的评价 指标之一,日益受到人们的重视。车内噪声 主要由发动机、传动系、轮胎、液压系统及结构振动引起。而这些噪声有直接或间接地传到车身结构,在车室内形成声场。车内的噪声水平是体现其舒适性的一项重要指标。为了提高车辆的舒适性, 世界各大汽车公 司都对车内噪声水平制定了严格的控制标准, 将车内噪声的控制作为重要的研究方向。特别是轿车, 车内噪声状况更是衡量轿车档次的标准之一。如何改善车辆内部乘员室声学环境, 降低车内噪声水平,提高车辆 乘坐舒适性已成为研究的热点。 1 车内噪声来源 一切向周围辐射噪声的振动物体都被 称为噪声源。噪声源的类型较多, 有固体的, 即机械性噪声;还有流体的, 即空气、水、 油的动力性噪声; 行驶汽车的噪声包括发 动机、汽车动力总成所产生的噪声, 车身因发动机、道路和空气流的作用而振动所产生的噪声以及附件噪声等。车内噪声产生机理如图1所示[1]。从声源来看,车内噪声的来源主要有: 发动机噪声、进排气噪声、冷却风扇噪声等。车外噪声向车内传播的具体途径主要有两个: 一是通过车身壁板及门窗上所有的孔、缝直接传入车内;二是车外噪声声波作用于车身壁板,激发壁板振动,并向车内辐射噪声。从振动源来看,主要有两个方面: 发动机、底盘工作时产生的振动和路面激励产生的振动。后者频率较低,对激发噪声影响较小。车身壁板主要由金属板和玻璃构成,这些材料都具有很强的声反射性能。在车室门窗均关闭的条件下,上述传入车内的空气声和壁板振动辐射的固体声,都会在密闭空间内多次反射,相互叠加成为车内噪声。 图1 车内噪声产生机理

机动车辆车外允许噪声标准

机动车辆车外允许噪声标准 姓名: 学号: 指导老师:卢海峰专业班级:车辆2班 重庆大学车辆工程 二O一三年十月

机动车辆车外允许噪声标准 (重庆大学) 我国现行的车外噪声标准是由国家环境保护总局和国家质量监督检验检疫总局于2002年1月4日共同发布的,并于2002年10月1日开始实施。该标准的全称为《汽车加速行驶车外噪声限值及测量方法》,标准编号为:GB 1495-2002。 试用范围 该标准规定了M和N1类汽车的加速行驶车外噪声的限值,并且给出了测量方法具体内容: GB 1495—2002 汽车加速行驶车外噪声限值dB(A) 汽车分类 噪声限值dB(A) 第一阶段第二阶段 2002.10.1~2004.12.3 0期间生产的汽车 2005.1.1以后生产 的汽车 M1 77 74 M2(GVM≤3.5t), 或N1(GVM≤3.5t): GVM≤2t 2t5t): P<150kW P≥150kW 82 85 80 83 N2(3.5t12t): P<75kW 75kW≤P≤150kW P≥150kW 83 86 88 81 83 84 说明: a)M1、M2(GVM≤3.5t)和N1类汽车装用直喷式柴油机,其限值增加1dB b)对于越野汽车,其GVM)>2t时: 如果P<150kW,其限值增加1 dB(A); 如果P≥150kW,其限值增加2 dB(A)。 c)M1类汽车,若其变速器前进档多于四个,P>140kW,P/GVM之比大于75kW/t,并且用第三档测 试时其尾端出线的速度大于61km/h,则其限值增加1dB(A)。 该标准只给出了各类车辆加速行驶时的噪声限值,并未给出匀速行驶时的噪声限值和车内噪声限值。只限制加速度的噪声限值,是因为汽车在市区里是要频繁的加减速的,这种噪声在市区里对人的不良影响尤为显著。限制了加减速时的车外噪声就能把其对人的干扰限制住。但随着人们对生活品质的进一步要求,汽车的噪声限制肯定是越来越严格的,今后匀速行驶时的噪声限值预计也将加到汽车噪声的法规中。这应该是该法规进一步发展的方向。 GB 1495-2002是我国关于车外噪声限值的第三部国家标准。在此之前,

相关文档
最新文档