1.2线性变换及其矩阵

1.2线性变换及其矩阵

§7.3线性变换和矩阵.

1.在向量空间 3 F 3中,设1, 1, 1, 1, 是F3的两个基, F 3), 1) 3到 基§7.3 线性变换和矩 阵 1, 0, 1, 1 , 1, 1, 1 2, 1, 1 3 的过渡矩阵; 1,2,3 2) 在基1, 2, 3下的矩阵; 3)求基1, 2, 3下的矩阵; 4)设 (2,1,3) ,分别求在基 1, 2, 3与1 设三维向量空间V 的线性变换在基1, 2 , 3 下的矩阵是 a11a12a13 A a21a22a23 a31a32a33 1)求在基3, 2, 1下的矩阵; 2)求在基1,k 2 , 3下的矩阵, 其中0k F;2 2. 12 12 3 下的坐标.3) 在基3下的矩阵. 3.在向量空间M 2 (F) 中,定义线性变换 (x)= a b a b (X)= a c b d X c a d b

在基E11, E12, E21, E22下的矩阵. 4.在F 2 2中,求在基E11, E12, E21, E22下的矩阵为 1020 0102 A 3040 0304 的线性变换 . 5. 在n维向量空间V中, L(V),存在向量V ,使得 n1 0,但 n 0 .证 明:V中存在一个基,使得在这个基下的矩阵是 0E n1 00 6. 设A s B,C s D,证明 A0B0 s 0C0C 7. 设A可逆,证明:AB^BA. 8. 在向量空间F3 3中,设 ab c c a b b c a A b c a , B a b c, C c a b ca b b c a a b c 证明:A,B, C 彼此此相似. 9.设V 是数域 F 上n 维向量空间,证明:V 的与全体线性变换可交换的线性变换是数乘变换. 10.设V是数域F上n维向量空间,问V中是否有线性变换,,使其中I 是恒等变换,为什么?对无限维空间结论又如何? I.

几类特殊线性变换及其二阶矩阵优秀教学设计

几类特殊线性变换及其二阶矩阵 【教学目标】 1.了解二阶矩阵的概念,线性变换与二阶矩阵之间的关系。 2.熟练运用旋转变换、反射变换、伸缩变换、投影变换、切变变换这五种变换的概念与矩阵表示解决具体问题。 3.亲历几类特殊线性变换的探索过程,体验分析归纳得出其二阶矩阵,进一步发展学生的探究、交流能力。 【教学重难点】 重点:掌握几类特殊线性变换及其二阶矩阵。 难点:旋转变换、反射变换、伸缩变换、投影变换、切变变换的实际应用。 【教学过程】 一、直接引入 师:今天这节课我们主要学习几类特殊线性变换及其二阶矩阵,这节课的主要内容有旋转变换、反射变换、伸缩变换、投影变换、切变变换,并且我们要掌握这些知识的具体应用,能熟练解决相关问题。 二、讲授新课 (1)教师引导学生在预习的基础上了解线性变换与二阶矩阵内容,形成初步感知。 (2)首先,我们先来学习线性变换及其相关概念,它的具体内容是: 在平面直角坐标系xoy 内,很多几何变换都具有下列形式:x ax by y cx dy '=+??'=+? ③; 其中系数a ,b ,c ,d 均为常数,我们把形如③的几何变换叫做线性变换。 ③式叫做这个线性变换的坐标变换公式。 (,)P x y '''是(,)P x y 在这个线性变换作用下的像。 像这样,由4个数a ,b ,c ,d 排成的正方形表a b c d ?? ???称为二阶矩阵。数a ,b ,c ,d 称为矩阵的元素 元素全为0的二阶矩阵0000?? ???称为零矩阵,简记为0。

矩阵1001?? ??? 称为二阶单位矩阵,记为E 它是如何在题目中应用的呢?我们通过一道例题来具体说明。 例:在直角坐标系xoy 内,将每个点绕原点O 按逆时针方向旋转30°的变换称为旋转角是30°的旋转变换。求点(1,0)A 在这个旋转变换作用下的像A '。 解析:教师板书。 (3)接着,我们再来看下旋转变换的概念,它的具体内容是: 在直角坐标系xOy 内的每个点绕原点O 按逆时针方向旋转α角的旋转变换(通常记为n R )的坐标变换公式:cos sin sin cos x x y y x y αααα'=-??'=+?,对应的二阶矩阵为:cos sin sin cos αααα-?? ??? 。 它是如何在题目中应用的呢?我们也通过一道例题来具体说明。 例:例:在直角坐标系xoy 内,将每个点绕原点O 按逆时针方向旋转30°的变换称为旋转角是30°的旋转变换,写出这个旋转变化的表达式。 解析:教师板书。 (4)接着,我们再来看下反射变换内容,它的具体内容是: 一般地,我们把平面上的任意一点P 变成它关于直线l 的对称点P '的线性变换叫做关于l 的反射。 它是如何在题目中应用的呢?我们也通过一道例题来具体说明。 例:在直角坐标系xoy 内,直线l 过原点,倾斜角为α。求关于直线l 的反射变换的坐标变换公式。 学生板书,教师纠正解答。 (5)接着,我们再来看下伸缩变换内容,它的具体内容是: 在直角坐标系xOy 内,将每个点的横坐标变为原来1k 倍,纵坐标变为原来的2k 倍,其中1k ,2k 均为非零常数,我们称这样的几何变换为伸缩变换。 它是如何在题目中应用的呢?我们也通过一道例题来具体说明。 例:直角坐标系xOy 内,将每一点的纵坐标变为原来的2倍,横坐标保持不变。 (1)试确定该伸缩变换的坐标变换公式及其对应的二阶矩阵。 (2)求点A (1,1)-在该伸缩变换作用下的像A ' 教师请同学上讲台解答,并纠正总结。

(全国通用)2014届高考数学总复习(考点引领+技巧点拨)矩阵与变换第1课时 线性变换、二阶矩阵及其乘法

《最高考系列 高考总复习》2014届高考数学总复习(考点引领+技巧点拨)选修4-2 矩阵与变换第1课时 线性变换、二阶矩阵 及其乘法 1. (选修42P 34习题第1题改编)求点A(2,0)在矩阵???? ?? 1 00-2对应的变换作用下得到 的点的坐标. 解:矩阵?? ?? ?? 1 00-2表示横坐标保持不变,纵坐标沿y 轴负方向拉伸为原来的2倍的伸 压变换,故点A(2,0)变为点A′(2,0) 2. 点(-1,k)在伸压变换矩阵???? ?? m 001之下的对应点的坐标为(-2,-4),求m 、k 的 值. 解:??????m 001??????-1 k =??????-2-4,??? ?? -m =-2,k =-4. 解得? ????m =2, k =-4. 3. 已知变换T 是将平面内图形投影到直线y =2x 上的变换,求它所对应的矩阵. 解:将平面内图形投影到直线y =2x 上,即是将图形上任意一点(x ,y)通过矩阵M 作用 变换为(x ,2x),则有??????a 0b 0??????x y =?????? x 2x ,解得? ?? ??a =1,b =2, ∴ T =?? ?? ??10 20 .

4. 求曲线y =x 在矩阵???? ?? 0110作用下变换所得的图形对应的曲线方程. 解:设点(x ,y)是曲线y =x 上任意一点,在矩阵?? ?? ?? 01 10 的作用下点变换成(x′, y ′),则??????0110???? ??x y =?????? x′y′,所以? ????x′=y y′=x .因为点(x ,y)在曲线y =x 上,所以x′=y′,即x =y. 5. 求直线x +y =5在矩阵?? ?? ?? 0011 对应的变换作用下得到的图形. 解:设点(x ,y)是直线x +y =5上任意一点,在矩阵???? ?? 0011的作用下点变换成(x′, y ′),则?? ????0011???? ?? x y =?????? x′y′,所以? ????x′=0y′=x +y .因为点(x ,y)在直线x +y =5上,所以y′=x +y =5,故得 到的图形是点(0,5). 1. 变换 一般地,对于平面上的任意一个点(向量)(x ,y),若按照对应法则T ,总能对应唯一的 一个平面点(向量)(x′,y ′),则称T 为一个变换,简记为T :(x ,y )→(x′,y ′)或T :???? ? ? x y →?? ?? ?? x′y′. 一般地,对于平面向量的变换T ,如果变换规则为T :??????x y →??????x′y′=???? ?? ax +by cx +dy ,那么根 据二阶矩阵与列向量的乘法规则,可以改写为??????x y →??????x′y′=??????a b c d ???? ?? x y (a 、b 、c 、d∈R )的 矩阵形式,反之亦然. 2. 几种常见的平面变换

线性变换与矩阵地关系

线性变换与矩阵的关系 学院:数学与计算机科学学院 班级:2011级数学与应用数学 : 学号:

线性变换与矩阵的关系 (西北民族大学数学与应用数学专业, 730124) 指导教师 一、线性变换 定义1 设有两个非空集合V,U,若对于V中任一元素α,按照一定规则总有U中一个确定的元素β和它对应,则这个对应规则被称为从集合V到集合U的变换(或映射),记作β=T(α)或β=T α,( α∈V)。 设α∈V,T(α)= β,则说变换T把元素α变为β,β称为α在变换T下的象,α称为β在变换T下的源,V称为变换T的源集,象的全体所构成的集合称为象集,记作T(V)。即 T(V)={ β=T(α)|α∈V}, 显然T(V) ?U 注:变换的概念实际上是函数概念的推广。 定义2 设V n,U m分别是实数域R上的n维和m维线性空间,T是一个从V n到U m得变换,如果变换满足 (1)任给α1 ,α2∈V n,有T(α1+α2)=T(α1)+T(α2); (2)任给α∈V n,k∈R,都有 T(kα)=kT(α)。 那么,就称T为从V n到U m的线性变换。 说明:

○1线性变换就是保持线性组合的对应的变换。 ○2一般用黑体大写字母T,A,B,…代表现象变换,T(α)或Tα代表元 α在变换下的象。 ○3若U m=V n,则T是一个从线性空间V n到其自身的线性变换,称为线性空 V n中的线性变换。下面主要讨论线性空间V n中的线性变换。 二、线性变换的性质 设T是V n中的线性变换,则 (1)T(0)=0,T(-α)=-T(α); (2)若β=k1α1+k2α2+…+k mαm,则Tβ=k1Tα1+k2Tα2+…+k m Tα m; (3)若α1,…αm线性相关,则Tα1…Tαm亦线性相关; 注:讨论对线性无关的情形不一定成立。 (4)线性变换T的象集T(V n)是一个线性空间V n的子空间。 记S T={α|α∈V n,T α=0}称为线性变换T的核,S T是V n的子空间。 设V和W是数域F上的向量空间,而σ:V→W是一个线性映射。那么 (i)σ是满射Im(σ)=W; (ii)σ是单射Ker(σ)={0}

线性变换和矩阵.

§3 线性变换和矩阵 一、线性变换关于基的矩阵 设V 是数域P 上n 维线性空间.n εεε,,,21 V 的一组基,现在建立线性变换与 矩阵关系. 空间V 中任意一个向量ξ可以被基n εεε,,,21 线性表出,即有关系式 n n x x x εεεξ+++= 2211 (1) 其中系数是唯一确定的,它们就是ξ在这组基下的坐标.由于线性变换保持线性关系不变,因而在ξ的像A ξ与基的像A 1ε,A 2ε,…,A n ε之间也必然有相同的关系: A ξ=A (n n x x x εεε+++ 2211) =1x A (1ε)+2x A (2ε)+…+n x A (n ε) (2) 上式表明,如果知道了基n εεε,,,21 的像,那么线性空间中任意一个向量ξ 的像也就知道了,或者说 1. 设n εεε,,,21 是线性空间V 的一组基,如果线性变换?与?在这组基上 的作用相同,即 A i ε= B i ε, ,,,2,1n i = 那么A = B . 结论1的意义就是,一个线性变换完全被它在一组基上的作用所决定.下面指出,基向量的像却完全可以是任意的,也就是 2. 设n εεε,,,21 是线性空间V 的一组基,对于任意一组向量n ααα,,,21 一定有一个线性变换?使 A i ε=i α .,,2,1n i = 定理1 设n εεε,,,21 是线性空间V 的一组基,n ααα,,,21 是V 中任意n 个 向量.存在唯一的线性变换?使

A i ε=i α .,,2,1n i = 定义2 设n εεε,,,21 是数域P 上n 维线性空间V 的一组基,A 是V 中的一个 线性变换.基向量的像可以被基线性表出: ???????+++=+++=+++=. ,,22112222112212211111n nn n n n n n n n a a a A a a a A a a a A εεεεεεεεεεεε 用矩阵表示就是 A (n εεε,,,21 )=(A (1ε),A ?(2ε),…, A (n ε)) =A n ),,,(21εεε (5) 其中 ?????? ? ??=nn n n n n a a a a a a a a a A 2122221 11211 矩阵A 称为线性变换A 在基n εεε,,,21 下的矩阵. 例 1 设m εεε,,,21 是n )(m n >维线性空间V 的子空间W 的一组基,把它 扩充为V 的一组基n εεε,,,21 .指定线性变换A 如下 ???+====. ,,1,0,,,2,1,n m i A m i A i i i εεε 如此确定的线性变换A 称为子空间W 的一个投影.不难证明 A 2=A 投影A 在基n εεε,,,21 下的矩阵是

选修4-2 矩阵与变换 第一节 线性变换与二阶矩阵

第一节 线性变换与二阶矩阵 1.矩阵的相关概念 (1)由4个数a ,b ,c ,d 排成的正方形数表?????? a b c d 称为二阶矩阵,数a ,b ,c ,d 称为矩 阵的元素.在二阶矩阵中,横的叫行,从上到下依次称为矩阵的第一行、第二行;竖的叫列,从左到右依次称为矩阵的第一列、第二列.矩阵通常用大写的英文字母A ,B ,C ,…表示. (2)二阶矩阵?? ?? ?? 00 0称为零矩阵,简记为0,矩阵?? ?? ??1 00 1称为二阶单位矩阵,记作E 2. 2.矩阵的乘法 (1)行矩阵[]a 11a 12与列矩阵?? ?? ?? b 11b 21的乘法规则:为[]a 11a 12?? ? ? ?? b 11b 21=[]a 11×b 11+a 12×b 21. (2)二阶矩阵??????a 11 a 12a 21 a 22与列向量??????x 0y 0和乘法规则:??????a 11 a 12a 21 a 22??????x 0y 0=??????a 11×x 0+a 12×y 0a 21×x 0+a 22×y 0. (3)两个二阶矩阵相乘的结果仍然是一个矩阵,其乘法法则如下:

??????a 11 a 12a 21 a 22??????b 11 b 12b 21 b 22=???? ??a 11×b 11+a 12×b 21 a 11×b 12+a 12×b 22a 21×b 11+a 22×b 21 a 21×b 12+a 22×b 22. (4)两个二阶矩阵的乘法满足结合律,但不满足交换律和消去律 即(AB )C =A (BC ), AB ≠BA , 由AB =AC 不一定能推出B =C . 一般地两个矩阵只有当前一个矩阵的列数与后一个矩阵的行数相等时才能进行乘法运算. 3.线性变换的相关概念 (1)我们把形如???? ? x ′=ax +by y ′=cx +dy (*)的几何变换叫做线性变换,(*)式叫做这个线性变换的坐 标变换公式,P ′(x ′,y ′)是P (x ,y )在这个线性变换作用下的像. (2)对同一个直角坐标平面内的两个线性变换σ、ρ,如果对平面内任意一点P ,都有σ(P )=ρ(P ),则称这两个线性变换相等,简记为σ=ρ,设σ,ρ所对应的二阶矩阵分别为A ,B ,则A =B . 4.几种常见的线性变换 (1)由矩阵M =?? ?? ??1 00 1确定的变换T M 称为恒等变换, 这时称矩阵M 为恒等变换矩阵或单位矩阵,二阶单位矩阵一般记为E .平面是任何一点(向量)或图形,在恒等变换之下都把自己变为自己. (2)由矩阵M =???? ?? a 00 1或M =?? ?? ??1 00 k (k >0)确定的变换T M 称为(垂直)伸压变换,这时称矩 阵M =?? ?? ?? k 00 1或M =?? ?? ??1 00 k 伸压变换矩阵. 当M =?? ?? ??k 00 1时确定的变换将平面图形作沿x 轴方向伸长或压缩,当k >1时伸长,当 01时伸长,当 0

高等代数与解析几何第七章(1-3习题)线性变换与相似矩阵答案

第七章线性变换与相似矩阵 习题 7.1 习题 7.1.1 判别下列变换是否线性变换? (1)设是线性空间中的一个固定向量, (Ⅰ),, 解:当时,显然是的线性变换; 当时,有,,则 ,即此时不是的线性变换。 (Ⅱ),; 解:当时,显然是的线性变换; 当时,有,,则 ,即此时不是的线性变换。 (2)在中, (Ⅰ), 解:不是的线性变换。因对于,有,,所以。 (Ⅱ); 解:是的线性变换。设,其中,,则有 ,

。 (3)在(Ⅰ)解:是中, , 的线性变换:设,则 , ,。 (Ⅱ)解:是 ,其中 的线性变换:设 是中的固定数; ,则 , ,。 (4)把复数域看作复数域上的线性空间, 共轭复数; 解:不是线性变换。因为取,时,有 ,即。,其中是的 , (5)在中,设与是其中的两个固定的矩阵,,。 解:是的线性变换。对,,有 , 。 习题7.1.2 在中,取直角坐标系,以表示空间绕轴由 轴向方向旋转900的变换,以表示空间绕轴由轴向方向

旋转 900的变换,以表示空间绕轴由轴向方向旋转900的变换。证明(表示恒等变换), , ; 并说明是否成立。 证明:在中任取一个向量,则根据,及的定义可 知:, ,, ; ; , , , ,即,故。 因为因为 , ,所以 , ,所以 。 。 因为, ,所以。 习题 7.1.3 在中,,,证明。证明:在中任取一多项式,有 。所以。 习题 7.1.4 设,是上的线性变换。若,证明 。 证明:用数学归纳法证明。当时,有

命题成立。假设等式对成立,即。下面证明等式对 也成立。因有 ,即等式对也成立,从而对任意自然数都成立。习题 7.1.5 证明(1)若是上的可逆线性变换,则的逆变换唯一; (2)若,是上的可逆线性变换,则也是可逆线性变换,且 。 证明:(进而(2)因1)设 ,都是 都是的逆变换,则有, 。即的逆变换唯一。 上的可逆线性变换,则有 。 ,同理有 由定义知是可逆线性变换,为逆变换,有唯一性得 。 习题7.1.6 设是上的线性变换,向量,且,,,都不是零向量,但。证明,,, 线性无关。 证明:设,依次用可得 ,得,而, 故即得 ;同理有: ;依次类推可得,即得 ,得, ,进而得。

线性变换的矩阵表示式

§5 线性变换的矩阵表示式 上节例10中,关系式 ()T x Ax = ()n x R ∈ 简单明了地表示出n R 中的一个线性变换. 我们自然希望n R 中任何一个线性变换都能用这样的关系式来表示. 为此,考虑到n n Ae Ae ==αα,,11 (n e e ,,1 为单位坐标向量),即 ()n i Ae i i ,,2,1 ==α, 可见如果线性变换T 有关系式()Ax x T =,那么矩阵A 应以()i e T 为列向量. 反之,如果一贯个线性变换T 使()()n i e T i i ,,2,1 ==α,那么T 必有关系式 ()11122(), ,() n n n T x T e e x T x e x e x e ==++ +???? 1122()()() n n x T e x T e x T e =++ + ()11(),,()(,,)n n T e T e x x Ax αα=== 总之,n R 中任何线性变换T ,都能用关系式 ()()n R x Ax x T ∈=表示,其中1((),,())n A T e T e =. 把上面的讨论推广到一般的线性空间,我们有 定义7 设T 是线性空间n V 中的线性变换,在n V 中取定一个基 n αα,,1 ,如果这个基在变换T 下的象(用这个基线性表示)为 11112121212122221122(),(),(), n n n n n n n nn n T a a a T a a a T a a a αααααααααααα=++ +??=+++???? =++ +? 记()()()()n n T T T αααα,,,,11 = ,上式可表示为

线性变换与二阶矩阵

线性变换与二阶矩阵 学习目标 1.理解线性变换、矩阵、单位矩阵、零矩阵的概念; 2.掌握旋转变换的矩阵表示和其几何意义。 教学重点: 旋转变换的矩阵表示和其几何意义。 教学过程 1.旋转变换 P (x,y )绕原点逆时针旋转180o 得到P ’(x ’,y ’),称P ’为P 在此旋转变换作用下的象。 其结果为''x x y y ?=-?=-?,也可以表示为''00x x y y x y ?=-+??=?-?。 问题1. P (x,y )绕原点逆时针旋转30o 得到),(///y x p ,试完成以下任务①写出象/p ; ②写出这个旋转变换的方程组形式;③写出矩阵形式. 事实上,在平面直角坐标XOY 内,很多几何变换都具有下列形式: dy cx y by ax x +=+=// ,其中d c b a ,,,均为常数。我们把形如上式的几何变换叫做线性变换。该式叫做这

),(///y x p 是P (x,y )在这个线性变换作用下的像。 我们引进正方形数表a b c d ??? ???,那么上述线性变换可由a b c d ??????唯一确定,反之,a b c d ??????也可以由上述线性变换唯一确定。 像这样,由4个数d c b a ,,,排成的正方形数表a b c d ?????? 称为二阶矩阵,数d c b a ,,,称为矩阵的元素。 元素全为0的二阶矩阵?? ????0000称为零矩阵,简记作0. 矩阵?? ????1001称为二阶单位矩阵,记为2E 。 问题2.把问题2中的旋转30o 改为旋转α角,其结果又如何? 四、简单应用

1.设矩阵A=1001-??????,求点P(2,2)在A 所对应的线性变换下的象。 练习: P 13 1.2.3.4.5

#第七章 线性变换(小结)

第七章 线性变换(小结) 本章的重点: 线性变换的矩阵以及它们对角化的条件和方法. 本章的难点: 不变子空间的概念和线性变换和矩阵的一一对应关系. 线性变换是线性代数的中心内容之一,它对于研究线性空间的整体结构以及向量之间的内在联系起着重要作用.线性变换的概念是分析几何中的坐标变换、数学分析中的某些变换替换等的抽象和推广,它的理论和方法,(特别是和之相适应的矩阵理论和方法)在分析几何、微分方程等许多其它使用学科,都有极为广泛的使用. 本章的中心问题是研究线性变换的矩阵表示,在方法上则充分利用了线性变换和矩阵对应和相互转换. 一、线性变换及其运算 1. 基本概念: 线性变换,可逆线性变换和逆变换; 线性变换的值域和核,秩和零度; 线性变换的和和差, 乘积和数量乘法, 幂及多项式. 2. 基本结论 (1) 线性变换保持零向量、线性组合和线性关系不变; 线性变换把负向量变为象的负向量、把线性相关的向量组变为线性相关的向量组 (2) 线性变换的和、差、积、数量乘法和可逆线性变换的逆变换仍为线性变换. (3) 线性变换的基本运算规律(略). (4) 一个线性空间的全体线性变换关于线性变换的加法和数量乘法作成一个线性空间. (5) 线性空间V 的线性变换A 的象Im(A )= A V 和核ker A = A -1(0) (a) A 的象Im(A )= A V 和核ker A = A -1(0)是V 的(A -)子空间. (b)若dim(V )=n ,则Im(A )由V 的一组基的象生成: 即设V 的一组基 n ααα,...,,21, Im(A )= A V =L(A α1, A α2,… ,A αn )={ A α|α∈V }. ker A = A -1(0)= { α∈V | A α=0}. (c)A 的秩(dim Im(A ))+A 的零度(dim ker A )=n . (d)A 是双射?A 是单射? Ker(A )={0}?A 是满射.

二阶矩阵、二阶矩阵

第一讲二阶矩阵、二阶矩阵与平面向量的乘法、二阶矩阵与线性变换。 一、二阶矩阵 1.矩阵的概念 ① →→??????2 3 ③概念一: 象??????2 3 80908688??????23324m ????-?? 的矩形数字(或字母)阵列称为矩阵.通常用大写的拉丁字母A 、B 、C…表示, 横排叫做矩阵的行,竖排叫做矩阵的列. 名称介绍: ①上述三个矩阵分别是2×1矩阵,2×2矩阵(二阶矩阵),2×3矩阵,注意行的个数在前。 ②矩阵相等:行数、列数相等,对应的元素也相等的两个矩阵,称为A =B 。 ③行矩阵:[a 11,a 12](仅有一行) ④列矩阵:???? ??a 11 a 21 (仅有一列) ⑤向量a → =(x,y ),平面上的点P (x,y )都可以看成行矩阵[,]x y 或列矩阵x y ?????? ,在本书中规定 所有的平面向量均写成列向量x y ??????的形式。 练习1: 1.已知???? ??-=243x A ,?? ????-=21z y B ,若A=B ,试求z y x ,, 2.设23x A y ??=????,2m n x y B x y m n ++??=??--??,若A=B ,求x,y,m,n 的值。 概念二: 由4个数a,b,c,d 排成的正方形数表a b c d ??? ??? 称为二阶矩阵。a,b,c,d 称为矩阵的元素。 ①零矩阵:所有元素均为0,即0000?????? ,记为0。 ②二阶单位矩阵:1001??????,记为E 2. 二、二阶矩阵与平面向量的乘法 — 2 — 3 — 231,3242x y mz x y z ++=??-+=?简记为23324m ????-??

线性变换及其矩阵

第三讲 线性变换及其矩阵 一、线性变换及其运算 定义:设V 是数域K 上的线性空间,T 是V 到自身的一个映射,使得对于V 中的任意元素x 均存在唯一的 y ∈V 与之对应,则称T 为V 的一个变换或算子,记为 y x T =)( 称y 为x 在变换T 下的象,x 为y 的原象。 若变化T 还满足 )()()(y T x T y x T +=+ )()(x kT kx T = K k V y x ∈∈?,, 称T 为线性变换。 [例1] 二维实向量空间12 2i R R ξξξ?? ??=∈???????? ,将其绕原点反时针方向旋转θ 角的操作即 ??? ? ?????? ??-=???? ??2121cos sin sin cos ξξθθ θθ ηη就是一个线性变换。 [例2] 次数不超过 n 的全体实多项式n P 构成实数域上的一个 1n +维的线性空间,其基可选为 {}2 1,,,,n x x x ,微分算子d D dx = 是n P 上的一个线性变换。 [例3] 取定矩阵n n K C B A ?∈,,,定义n n K ?的变换C XB AX X T ++= )( n n K X ?∈,是否是线 性变换 2. 性质 (1) 线性变换把零元素仍变为零元素 (2) 负元素的象为原来元素的象的负元素 (3) 线性变换把线性相关的元素组仍变为线性相关的元素组 应该注意,线性无关的元素组经过线性变换不一定再是线性无关的。但 (4) 如果线性变换是一个单射,则把线性无关的元素组变为线性无关的元素组 3. 线性变换的运算 (1) 恒等变换e T :,e x V T x x ?∈= (2) 零变换0T :0,0x V T x ?∈= (3) 变换的相等:1T 、2T 是V 的两个线性变换,x V ?∈,均有12T x T x =,则称1T =2T (4) 线性变换的和1T +2T :x V ?∈,1212()T T x T x Tx +=+ (5) 线性变换的数乘kT :x V ?∈,()()kT x k Tx = 负变换:()()T x Tx -=-

高等代数与解析几何第七章(1-3习题) 线性变换与相似矩阵答案

第七章线性变换与相似矩阵 习题7.1 习题7.1.1判别下列变换是否线性变换? (1)设是线性空间中的一个固定向量, (Ⅰ),, 解:当时,显然是的线性变换; 当时,有,,则 ,即此时不是的线性变换。 (Ⅱ),; 解:当时,显然是的线性变换; 当时,有,,则 ,即此时不是的线性变换。 (2)在中, (Ⅰ), 解:不是的线性变换。因对于,有, ,所以。 (Ⅱ); 解:是的线性变换。设,其中,, 则有 ,

。 (3)在中, (Ⅰ), 解:是的线性变换:设,则 , ,。 (Ⅱ),其中是中的固定数; 解:是的线性变换:设,则 , ,。 (4)把复数域看作复数域上的线性空间,,其中是的共轭复数; 解:不是线性变换。因为取,时,有, ,即。 (5)在中,设与是其中的两个固定的矩阵,, 。 解:是的线性变换。对,,有 , 。 习题7.1.2在中,取直角坐标系,以表示空间绕轴由 轴向方向旋转900的变换,以表示空间绕轴由轴向方向

旋转900的变换,以表示空间绕轴由轴向方向旋转900的 变换。证明(表示恒等变换), , ; 并说明是否成立。 证明:在中任取一个向量,则根据,及的定义可 知:,,;, ,;,, ,即,故。 因为, ,所以。 因为, ,所以。 因为, ,所以。 习题7.1.3在中,,,证明。证明:在中任取一多项式,有 。所以。 习题7.1.4设,是上的线性变换。若,证明 。 证明:用数学归纳法证明。当时,有

命题成立。假设等式对成立,即。下面证明等式对 也成立。因有 ,即等式对也成立,从而对任意自然数都成立。习题7.1.5证明(1)若是上的可逆线性变换,则的逆变换唯一;(2)若,是上的可逆线性变换,则也是可逆线性变换,且 。 证明:(1)设都是的逆变换,则有,。进而。即的逆变换唯一。 (2)因,都是上的可逆线性变换,则有 ,同理有 由定义知是可逆线性变换,为逆变换,有唯一性得 。 习题7.1.6设是上的线性变换,向量,且,,, 都不是零向量,但。证明,,, 线性无关。 证明:设,依次用可得 ,得,而, 故;同理有:,得, 即得;依次类推可得,即得,进而得 。

线性变换和矩阵

§3 线性变换和矩阵 一、线性变换在某组基下对应的矩阵 设V 是数域P 上n 维线性空间.n εεε,,,21ΛV 的一组基,现在建立线性变换与矩阵关系. 空间V 中任意一个向量ξ可以被基n εεε,,,21Λ线性表出,即有关系式 n n x x x εεεξ+++=Λ2211 (1) 其中系数是唯一确定的,它们就是ξ在这组基下的坐标. 由于线性变换保持线性关系不变, 因而在ξ的像A ξ与基的像A 1ε,A 2ε,…,A n ε之间也必然有相同的关系: A ξ=A (n n x x x εεε+++Λ2211) =1x A(1ε)+2x A(2ε)+…+n x A (n ε) (2) 上式表明,如果知道了基n εεε,,,21Λ的像,那么线性空间中任意一个向量ξ的像也就 知道了,或者说 1. 设n εεε,,,21Λ是线性空间V 的一组基,如果线性变换A 与?在这组基上的作用 相同,即 A i ε= B i ε, ,,,2,1n i Λ= 那么A= B. 结论1的意义就是,一个线性变换完全被它在一组基上的作用所决定.下面指出, 基向量的像却完全可以是任意的,也就是 2. 设n εεε,,,21Λ是线性空间V 的一组基,对于任意一组向量n ααα,,,21Λ一定有一个 线性变换 A , 使 A i ε=i α .,,2,1n i Λ=

定理1 设n εεε,,,21Λ是线性空间V 的一组基,n ααα,,,21Λ是V 中任意n 个向量. 存在唯一的线性变换A 使 A i ε=i α .,,2,1n i Λ= 定义2 设n εεε,,,21Λ是数域P 上n 维线性空间V 的一组基,A 是V 中的一个线性变换. 基向量的像可以被基线性表出: ???????+++=+++=+++=. ,,22112222112212211111n nn n n n n n n n a a a A a a a A a a a A εεεεεεεεεεεεΛΛΛΛΛΛΛΛΛ 用矩阵表示就是 A (n εεε,,,21Λ)=(A(1ε),A(2ε),…, A(n ε)) =A n ),,,(21εεεΛ (5) 其中 ?????? ? ??=nn n n n n a a a a a a a a a A ΛΛΛΛΛΛΛΛΛΛΛ2122221 11211 矩阵A 称为线性变换A 在基n εεε,,,21Λ下的矩阵. 例1 设m εεε,,,21Λ是n )(m n >维线性空间V 的子空间W 的一组基,把它扩充为 V 的一组基n εεε,,,21Λ.指定线性变换A 如下 ???+====.,,1,0,,,2,1,n m i A m i A i i i ΛΛεεε 如此确定的线性变换A 称为子空间W 的一个投影.不难证明 A 2=A 投影A 在基n εεε,,,21Λ下的矩阵是 ]练习:7, 8, 9

1.线性变换与二阶矩阵

线性变换与二阶矩阵 学习目标 1.理解线性变换、矩阵、单位矩阵、零矩阵的概念; 2.掌握旋转变换的矩阵表示和其几何意义。 教学重点: 旋转变换的矩阵表示和其几何意义。 教学过程 1.旋转变换 P (x,y )绕原点逆时针旋转180o 得到P ’(x ’,y ’),称P ’为P 在此旋转变换作用下的象。 其结果为''x x y y ?=-?=-?,也可以表示为''00x x y y x y ?=-+??=?-?。 问题1. P (x,y )绕原点逆时针旋转30o 得到),(///y x p ,试完成以下任务①写出象/p ; ②写出这个旋转变换的方程组形式;③写出矩阵形式. 事实上,在平面直角坐标XOY 内,很多几何变换都具有下列形式: dy cx y by ax x +=+=// ,其中d c b a ,,,均为常数。我们把形如上式的几何变换叫做线性变换。该式叫做这个线性变换的坐标变换公式。 ),(///y x p 是P (x,y )在这个线性变换作用下的像。 我们引进正方形数表a b c d ??????,那么上述线性变换可由a b c d ??????唯一确定,反之,a b c d ?????? 也可以由上述线性变换唯一确定。 像这样,由4个数d c b a ,,,排成的正方形数表a b c d ?????? 称为二阶矩阵,数d c b a ,,,称为矩阵的元素。 元素全为0的二阶矩阵?? ????0000称为零矩阵,简记作0.

矩阵?? ????1001称为二阶单位矩阵,记为2E 。 问题2.把问题2中的旋转30o 改为旋转α 四、简单应用 1.设矩阵A=1001-?????? ,求点P(2,2)在A 所对应的线性变换下的象。 练习:P 13 1.2.3.4.5

7.3线性变换的矩阵

§3 线性变换的矩阵 设V 是数域P 上n 维线性空间,12,,,n εεε是V 的一组基,现在我们来建立线性变换与矩阵的关系。 空间V 中任一向量ξ可以被基12,, ,n εεε表示出,即有关系式 1122n n x x x ξεεε=++ +, (1) 其中系数是唯一确定的,它们就是ξ在这组基下的坐标。由于线性变换保持线性关系不变,因而在ξ的象A ξ与基的象12,,,n A A A εεε之间也必然有相同的关系: )(2211n n x x x A A εεεξ+++= )()()(2211n n A x A x A x εεε+++= (2) 上式表明,如果我们知道了基12,,,n εεε的象,那么线性空间中任意一个向量ξ的象也就知道了,或者说 1.设12,,,n εεε是线性空间V 的一组基。如果线性变换A 与B 在这组基上的作用相 同,即 n i B A i i ,,2,1, ==εε, 那么A =B 。 证明 A 与B 相等的意义是它们对每个向量的作用相同。因此,我们就是要证明对任一向量ξ,等式A B ξξ=成立。而由(2)及假设,即得 ξεεεεεεξB B x B x B x A x A x A x A n n n n =+++=+++= 22112211 结论1的意义就是,一个线性变换完全被它在一组基上的作用所决定。下面我们进一步指出,基向量的象完全可以是任意的,也就是说, 2.设12,,,n εεε是线性空间V 的一组基。对于任意一组向量12,,,n ααα一定有一个线性变换A 使 ,1,2, ,i i A i n εα== (3) 证明 我们来作出所要的线性变换。设 ∑==n i i i x 1εξ 是线性空间V 的任意一个向量,我们定义V 的变换A 为 1 n i i i A x ξα ==∑ (4) 下面来证明变换A 是线性的。 在V 中任取两个向量, ∑∑====n i i i n i i i c b 1 1 ,εγεβ。 于是 ∑=+=+n i i i i c b 1 )(ελβ, P k kb k n i i i ∈=∑=,1εβ。 按所定义的A 的表达式(4),有

高考数学矩阵与变换第1课时线性变换、二阶矩阵及其乘法

《最高考系列高考总复习》2014届高考数学总复习(考点引领+技巧点拨)选修4-2 矩阵与变换第1课时线性变换、二阶矩阵 及其乘法 考情分析考点新知 掌握恒等变换、伸压变换、反射变换、旋转 变换、投影变换、切变变换等常见的线性变 换的几何表示及其几何意义. 掌握恒等变换、伸压变换、反射变换、 旋转变换、投影变换、切变变换等常见的线 性变换的几何表示及其几何意义,并能应用 这几种常见的线性变换进行解题. 1. (选修42P34习题第1题改编)求点A(2,0)在矩阵 ? ? ? ? ? ? 1 0 0-2 对应的变换作用下得到 的点的坐标. 解:矩阵 ? ? ? ? ? ? 1 0 0-2 表示横坐标保持不变,纵坐标沿y轴负方向拉伸为原来的2倍的伸压变换,故点A(2,0)变为点A′(2,0) 2. 点(-1,k)在伸压变换矩阵 ? ? ? ? ? ? m0 01 之下的对应点的坐标为(-2,-4),求m、k的值. 解: ? ? ? ? ? ? m0 01? ? ? ? ? ? -1 k = ? ? ? ? ? ? -2 -4 , ?? ? ??-m=-2, k=-4. 解得 ?? ? ??m=2, k=-4. 3. 已知变换T是将平面内图形投影到直线y=2x上的变换,求它所对应的矩阵. 解:将平面内图形投影到直线y=2x上,即是将图形上任意一点(x,y)通过矩阵M作用 变换为(x,2x),则有 ? ? ? ? ? ? a0 b0? ? ? ? ? ?x y = ? ? ? ? ? ? x 2x ,解得 ?? ? ??a=1, b=2, ∴ T= ? ? ? ? ? ? 10 20 .

03线性变换及其矩阵(精)

第三讲 线性变换及其矩阵 一、线性变换及其运算 定义:设V 是数域K 上的线性空间,T 是V 到自身的一个映射,使得对于V 中的任意元素x 均存在唯一的 y ∈V 与之对应,则称T 为V 的一个变换或算子,记为 Tx =y 称y 为x 在变换T 下的象,x 为y 的原象。 若变化T 还满足 T(kx+ly)=k(Tx)+l(Ty) ?x,y ∈V , k,l ∈K 称T 为线性变换。 [例1] 二维实向量空间12 2i R R ξξξ?? ??=∈???????? ,将其绕原点旋转θ 角的操作就是一个线性变换。 [证明] 12x ξξ??=???? 12y Tx ηη?? ==???? 112212cos sin sin cos ηξθξθ ηξθξθ =+?? =-+? 1122cos sin sin cos ηξθθηξθθ??????=??????-? ????? 2 R ∈ 可见该操作T 为变换,下面证明其为线性变换 12x x x ???=???? 12z z z ?? =????2R ∈,k ,l R ∈ 11112222=kx lz kx lz kx lz kx lz kx lz +?????? ++=?????? +?????? 1122cos sin ()sin cos kx lz T kx lz kx lz θ θθθ+?? ??+=??? ?+-???? 1122cos sin cos sin sin cos sin cos x z k l x z θ θθθθ θθ θ???? ????=+????????--? ??????? ()()k Tx l Tz =+ ∴ T 是线性变换。 [例2] 次数不超过 n 的全体实多项式n P 构成实数域上的一个 1n +维的线性空间,其基可选为

04 线性变换及其矩阵

第四讲 线性变换及其矩阵 一、线性变换及其运算 1,定义:T 是到自身的一个映射,满足()n V F x ?∈V 中的任意元,均存在唯一的 y ∈V 与之对应,则称T 为V 的一个变换,记为 Tx =y 称y 为x 在变换T 下的象,x 为y 的原象。 若变化T 还满足线性性:T(kx+ly)=k(Tx)+l(Ty) x,y ∈V , k,l F ?∈称T 为线性变换。 [例1] 二维实向量空间12 2i R R ξξξ?????????=∈????????????? ,将其绕原点旋转角的操作就是一个线性变换。 θ[证明] 12 2,x R x ξξ?????∈=????12y Tx ηη????==???? 112212cos sin sin cos ηξθξθηξθξ?=+????=?+??θ 1122cos sin sin cos ηξθθηξθθ???? ??????? ?=????????????? 2R ∈ 可见T 为变换,下面证明其为线性变换. [例2] 次数不超过-1的全体实多项式[x]构成实数域上的一个n 维的线性空 间,微分算子n n P d dx D =是[x]上的一个线性变换。 n P [证明] Remark: [x]上的积分变换n P 0 (())()x J p x p s ds =∫ 不是[x]上的线性变换,为 C[0,1]上的线性变换。 n P [例3])上对任意固定α为线性变换0=时称零变 (n V F ,()F T λα∈=λ。换; λ

1λ=时称恒等变换。 [例4] 上定义,选定,为上线性变换。 n F (),n n A T X AX A F ×=∈A T n F 2. 性质 (1) 线性变换把零元素仍变为零元素(T(0)=T(0x)=0(Tx)=0) (2) 负元素的象为原来元素的象的负元素(T (-x )=(-1)(Tx )=-(Tx )) (3) 线性变换把线性相关的元素组仍变为线性相关的元素组 [证明] Remark: 线性无关的元素组经过线性变换不一定再是线性无关的。 3, 线性变换相关的空间 ★象空间 {}|(),..()n V F s t T βαβα=?∈=()R T ()N T dimR(T)为线性变换T 的秩 ★零空间 {}|()0T αα== dimN(T)为线性变换T 的零度。 [例] 求线性变换的象空间和零空间。 A T 4. 线性变换的运算 (1) 恒等变换e T :,e x V T x x ?∈= (2) 零变换0T :0 ,0x V T x ?∈=(3) 变换的相等:1T 、2T 是V 的两个线性变换,x V ?∈,均有, 则称1T =2T . 12T x T x =(4) 线性变换的和1T +2T :x V ?∈,2() 121T T x T x Tx +=+(5) 线性变换的数乘kT :x V ?∈,()() kT x k Tx =负变换:() (T x Tx ?=?)

相关文档
最新文档