SM137R-1.2G 接收模块-manual

SM137R-1.2G 接收模块-manual
SM137R-1.2G 接收模块-manual

SM137R无线视频接收模块

1通用规格(G e n e r a l):

直流特性(DC Characteristics)

供电电压(POWER SUPPLY) 5.0V

耗电流(Current Consumption) 270 Max

工作环境(Environmental Specification)

工作温度(Operating Temperature) -10~+65 oC

存储温度(Storing Temperature) -30~+85 oC

工作湿度(Operating humidity) 85%RH

射频(RF)

接收频率范围(Receiving frequency range) 1000~1380MHz*

输入驻波比(Voltage Standing Wave Ratio) 2:1

解调方式(Demodulation system) FM/PLL

中频频率 IF 480MHz

天线端口阻抗(ANT. input impedance) 50?, Typ.

本振频率稳定性(LO Frequency stabilization) ±200kHz

本振频率精度(LO Frequency Precision) ±200kHz

本振控制(LO Control) PLL

输入端本振泄漏(Input LO Leak) -65dBm

接收灵敏度(Receiving Sensitivity) -95dBm

输入电平范围(Input Level Range) -95 dBm ~+5 dBm

视频(Video Characteristics)

视频输出阻抗(Video Output impedance) 75?, Typ.

视频输出电平(Video Output Level) 1V p-p, Typ.

视频极性(Video Polarity) 负极性(NEGATIVE)

视频频率响应(Video Frequency Respone) ±5 dB, Max. 50Hz ~ 6MHz 微分增益(Differential Gain) ±5 %, Max

微分相位(Differential Phase) ±5 Deg., Max

3dB 中频带宽(3Db IF WIDEBAND) 16.5MHz

信噪比 S/N 38dB, Min

RSSI Output Voltage(-30dBm~-90dBm) 0.8~1.8V

音频(Aud i o)

音频输出阻抗(Audio Output impedance) 2K?, Typ.

音频输出电平(Audio Output Level) 1±0.2V p-p, Typ.

音频输出频率范围(Audio Output Frequency Range) 100Hz ~ 20kHz

音频副载波频率(Audio carrier) 6.0MHz(AR), 6.5MHz(AL) 音频副载波频率精度(Audio carrier precision) ±30kHz

音频信噪比 S/N(50Hz ~ 15kHz) 50dB, Min

音频失真度(THD):(50Hz ~ 15kHz, 3 V p-p 正弦波) 1.5 %, Max

*支持四组频率组(MHz):

A: Ch1:1080MHz Ch2:1120MHz Ch3:1160MHz Ch4:1200MHz

Ch5:1240MHz Ch6:1280MHz Ch7:1320MHz Ch8:1360MHz

B: Ch1:1080MHz Ch2:1120MHz Ch3:1160MHz Ch4:1200MHz

Ch5:1258MHz Ch6:1280MHz Ch7:1320MHz Ch8:1360MHz

A: Ch1:1080MHz Ch2:1120MHz Ch3:1160MHz Ch4:1200MHz

Ch5:1010MHz Ch6:1040MHz Ch7:1240MHz Ch8:1280MHz

2 结构规格书(Mechanical Specification)

SM137R Please refer to Figure 1.

3 环境条件(Environmental Specification)

3.1 工作温度(Temperature ) -10℃ ~ +65℃

4 测试条件(Test C ond i t i on)

4.1 周边环境温度(Ambient temperature):25℃

4.2 视频输入电压(Video input voltage):1.0Vp-p,150 (IRE)

4.3 音频输入电压(Audio input voltage):1.0Vp-p 正弦波信号(sine wave signal) 1KHz

5 SM137R 引脚分布及频道表(Pin Assignment&Channel Tab l e)

Pin NO. 功能(Function)

1 +3.3~+5V IN

2 S1,频率组选择(Frequency SEL.)

3 GND

4 音频 A6.

5 声道输出(Audio A6.5 Out)

5 音频 A6.0 声道输出(Audio A6.0 Out)

6 视频输出(Vidoe Out)

7 CS3:见表一(refer to t a b l e1)

8 CS2:见表一(refer to t a b l e1)

9 CS1:见表一(refer to t a b l e1)

10 S2,频率组选择(Frequency SEL.)

11 GND

12 GND

13 GND

14 GND

15 天线输入(ANT IN)

16 GND

17 RF 信号强度指示(RSSI)

SM137R 频道表(CHANNEL T AB LE)

频道(CHANNEL)/本振(LO)P7(CS3) P8(CS2) P9(CS1) P10(S2) P2(S1) 频率组 A(FREQUENCY GROUP1):S1=H S2=H

A1:1080MHz/1560MHz0 0 0 1 1

A2:1120MHz/1600MHz0 0 1 1 1

A3:1160MHz/1640MHz0 1 0 1 1

A4:1200MHz/1680MHz0 1 1 1 1

A5:1240MHz/1720MHz 1 0 0 1 1

A6:1280MHz/1760MHz 1 0 1 1 1

A7:1320MHz/1800MHz 1 1 0 1 1

A8:1360MHz/1840MHz 1 1 1 1 1

频率组 B(FREQUENCY GROUP1):S1=L S2=H

B1:1080MHz/1560MHz0 0 0 0 0

B2:1120MHz/1600MHz0 0 1 0 0

B3:1160MHz/1640MHz0 1 0 0 0

B4:1200MHz/1680MHz0 1 1 0 0

B5:1258MHz/1720MHz 1 0 0 0 0

B6:1280MHz/1760MHz 1 0 1 0 0

B7:1320MHz/1800MHz 1 1 0 0 0

B8:1360MHz/1840MHz 1 1 1 0 0

频率组 C(FREQUENCY GROUP1):S1=X S2=L

A1:1080MHz/1560MHz0 0 0 1 0

A2:1120MHz/1600MHz0 0 1 1 0

A3:1160MHz/1640MHz0 1 0 1 0

A4:1200MHz/1680MHz0 1 1 1 0

A5:1010MHz/1490MHz 1 0 0 1 0

A6:1040MHz/1520MHz 1 0 1 1 0

A7:1240MHz/1720MHz 1 1 0 1 0

A8:1280MHz/1760MHz 1 1 1 1 0

表一

6. S M137R应用电路(Application Circuit )

1N4148U1

超再生接收电路原理

求教!!无线接收电路分析 谁能帮我分析一下这张电路图,是一个超再生接收电路,图是网上的,但没什么具体分析(搜无线发射接收电路,或PT2262/2272电路等可找到)。我想知道这个电路是怎么解调信号的,接收的应该是ASK调制的信号。前面两个三极管的电路分别有什么做用,还有那个LM358(是一个运放的芯片)这样接有什么作用,最后就是从LM358的1号脚输出到2272芯片,这个就不用管它了,就是求前面电路的分析,谢谢 ASK指的是振幅键控方式。这种调制方式是根据信号的不同,调制信号的幅度。 此处的LM358的123脚及外围下称后比较器(同相滞回电压比较器),LM358的567脚及外围下称前放大器。 超再生接收电路原理:它实际上是一个受间歇振荡控制的高频振荡器(自熄振荡器),这个高频振荡器采用电容三点式振荡器,振荡频率和发射器的发射频率相一致。而间歇振荡又是在高频振荡的振荡过程中产生的,反过来又控制着高频振荡器的振荡和间歇。 自熄振荡器通俗的说就是有一点震荡,然后马上熄灭,过一会又振荡,这个周期频率一般有上百Khz。这样脆弱的环境容易让其跟着外加同频率信号的幅度一起增大减小,因此灵敏度高。但是调试起来就相当麻烦了,可以试试看。只要工作点找准了,还是好用的。 此电路有很高的增益,在未收到控制信号时,由于受外界及自身,产生一种特有的超噪声,这个噪声的频率范围为0.3~5kHz之间。在无信号时,超噪声电平很高,经滤波放大后输出噪声电压,该电压作为电路一种状态的控制信号。 当有控制信号到来时,电路谐振,超噪声被抑制,高频振荡器开始产生振荡。而振荡过程建立的快慢和间歇时间的长短,受接收信号的振幅控制(是信号的幅度)。接收信号振幅大时,起始电平高,振荡过程建立快,每次振荡间歇时间也短,得到的控制电压也高,后比较器输出1电平;反之,得到的控制电压也低,后比较器输出0电平。这样,在电路的负载上便得

315M发射模块

基于声表面谐振器315M的无线发射电路图及制作使用声表谐振器的无线发射电路形式很多,这里推出又一款电路,这个电路是我在3年前参考电子报上的文章后,又结合了该文章介绍的那个模块的实样做的,在经过批量生产后,改进了一些参数,现在这款产品真是非常不错。不过现在这个东东的仿制产品实在太多了,质量差别也很大,但是因为它比较简单,所以我觉得还是很有必要把它弄出来给大家,我在网上也找到许多类似的电路图,不过其中有的是有陷阱的哦,希望大家要注意学会自己辨别一些BUG。对于这个模块,我没有测试过它的无线发射的绝对功率,不过我们开着汽车在公路上拉过距离,它和普通的315M超再生接收模块相配合,可以达到800米距离,虽然我的电路只要减小一下8050基极电阻的值,通讯距离会加大到1200米甚至更加远,但是经过大量的实验证明,那样不是很可靠的,原因我不是很清楚,可能有2方面的原因,一个是8050在R2小的时候,有轻微的导通,导致发射不能快速截止。还有一个是R2很小,8050开通电流比较大,对供电可能是一个扰动,而达不到起振要求。我曾经怀疑过自己的电路是不是很匹配,因此特意买了好多号称1500米的类似模块,发现它们也有一样的不可靠性,普遍表现为偶尔的不能起振或者波特率上不到2K,后来我就增加R2电阻,在大于15K时,发射一直很正常,距离和27K的差不多,所以现在就用这个电阻了,这里的L1L2,我是用0.8mm的免去漆漆包线在3毫米的钻头上绕4圈半脱胎而成。

其中RF01就是2SC3356三极管,在制作PCB时,如果找不到相应的型号,可用相同封装的其他三极管代替,同时更改标示就可以了

发射接收模块

接收板主要参数 工作频率:315M 工作电压:DC5V 工作电流:≤3mA(5.0VDC) 工作原理:超再生 调制方式:ASK 编码芯片:SC2272(PT2272、PT2294),芯片兼容 灵敏度:优于-105dBm(50Ω) 输出信号:互锁(L)或非锁(M)或自锁(T),卖家在订货前要说明选择哪款 遥控距离:20~50米以上(开阔地) 接收模块的七根引脚分别为D3、D2、D1、D0、GND、VT、VCC,其中VCC为DC5V的供电端,GND为接地端,VT端为解码有效输出端,只要发射器的数据码有输出,VT都能同步输出高电平;D3、D2、 D1、D0是2262解码芯片的四位数据输出端,有信号时能输出5V左右的高电平,驱动电流约2mA,与发

射器的四位数据码输出一一对应。接收模块不焊天线也能接收信号,为提高接收灵敏度,可以用一根长度约为23厘米的软导线直接焊接到天线孔处,图中RC 所指的是振荡电阻,接收模块和发射器的震荡电阻需要匹配才能工作,我店接收模块用的是270K或者820K电阻,可以分别和1.5M或者4.7M振荡电阻的发射器配套使用。发射器可以用我店固定码四键遥控器或者带编码四路发射模块,如与其他发射器配套,则必须提供发射器相关参数。 四键遥控器和超再生固定码接收模块可以组成四路无线发射接收电路,遥控器的四位数据码对应模块的四路输出,可以方便的组成无线遥控发射接收电路,该产品广泛适用于广大电子爱好者的家庭、工业遥控类电子产品的设计和开发,可很好的作为单片机的信号输入源,特别适合大中院校学生电子电路设计、毕业设计中的遥控电路部分。 超再生带解码四路遥控接收模块可以和发射器组成四路无线发射接收电路。该模块广泛适用于广大电子爱

无线遥控发射接收模块

无线遥控发射接收模块 这是一种目前用途非常广泛的200米四键遥控模块,常用于报警器设防、车库门遥控、摩托车、汽车的防盗报警等,这类用途要求遥控器的遥控距离并不远,一般50米足够了,但要求:遥控模块价格低廉,发射机手柄体积小巧、外观精致,耗电尽可能省,工作稳定可靠。 这里提供的发射机体积非常小巧,体积只有58x38x8毫米,采用桃木花纹的优质塑料外壳,带保险盖,防止误碰按键,天线拉出时长13厘米,遥控器只有20克。 产品名称: 200米四键遥控模块价格:20元/个 外形尺寸: 58x38.5x13毫米发射功率:20毫瓦工作电流: 14毫安 工作电压:12V A27报警器专用电池 图为发射器外形,面板上有A、B、C、D四位操 纵按键及一个发射指示灯。发射机内部采用进口 声表谐振器稳频,频率一致性非常好,稳定度极 高,工作频率315MHZ频率稳定度优于10-5, 使用中无需调整频点,特别适合多发一收等无线 电遥控系统使用,而目前市场上的一些低价位无 线电遥控模块一般仍采用LC振荡器,稳定度及 一致性较差,即使采用高品质微调电容,当温度 变化或者震动后也很难保证已调试好的频点不 会发生偏移,造成发射距离缩短。 图中两发射器效果一样,只是外表不同

这是发射机等效电路图 1000米四键遥控模块——价格:35元/个 手持式微型无线编码遥控模块的使用距离一般为50~100m,对某些需要四五百米甚至更远操作距离的应用场合,这类遥控模块便显得无能为力。

这里介绍一种800米四通道遥控接收模块,它的特点是:发射器内部采用了声表面谐振稳频技术,可靠性达到工业级水准,空旷地实测有效距离可达1000m,是目前性能较好,距离较远的遥控产品。

AU-YK04解码接收模块规格说明书

AU-YK04解码接收模块规格说明书 产品型号:AU-YK04 产品名称:5伏高频超再生四路解码接收模块 一、技术参数 工作电压(V):DC5V 静态电流(mA): 4.5MA 调制方式:调幅(OOK) 工作温度: -10℃~+70℃ 接收灵敏度(dBm):-105DB

工作频率(MHz):315、433.92MHz(266-433MHZ频率段可任选) 编码方式:焊盘编码(固定码) 工作方式:M4(点动:按住不松手就输出,一松手就停止输出)、L4(互锁:四路同时只能有一路输出)、T4(自锁:四路相互独立输出、互不影响,按一下输出再按一下停止输出) 尺寸(LWH):40*22*7mm 二、产品特点: 超再生接收模块采用LC振荡电路,内含放大整形,输出的数据信号为解码后的高电平信号,使用极为方便,并且价格低廉,所以被广泛使用。带四路解码输出(同时也可改为六路点动或互锁输出),使用方便;频点调试容易,供货周期短;产品质量一致性好,性价比高。 接收模块有较宽的接收带宽,一般为±10MHz,出厂时一般调在315MHz或433.92MHZ(如有特殊要求可调整频率,频率的调整范围为266MHz~433MHz。)。接收模块一般采用DC5V供电,如有特殊要求可调整电压范围。 三、脚位及使用说明: 接收模块一共有八个外部接口,上面有英文表示。“5V”表示接电源正极,“ D0、D1、D2、D3”表示输出,“GND”表示接电源负极,“ANT”表示接天线端。

使用前要接上50欧姆1/4波长的天线,并且天线应该是直的,以达到最佳的接收效果,波长=光速/频率。 四、应用环境(应用领域) 无线遥控开关、遥控插座、数据传输、遥控玩具、防盗报警主机、车库门、卷闸门、道闸门、伸缩门等门控业及其遥控音响领域等。 五、自选配件 与公司发射系列、遥控器系列产品配套使用。 六、备注 VCC电压要与模块工作电压一致,且要做好电源滤波; 天线对模块的接收效果影响很大,最好接1/4波长的天线,一般采用50欧姆单芯导线,天线的长度315M的约为23cm,433M的约为17cm; 天线位置对模块接收效果亦有影响,安装时,天线尽可能伸直,远离屏蔽体,高压,及干扰源的地方; 使用时接收频率、解码方式应与发射匹配。

315m无线发射接收模块

无线数据传输广泛地运用在车辆监控、遥控、遥测、小型无线网络、无线抄表、门禁系统、小区传呼、工业数据采集系统、无线标签、身份识别、非接触RF智能卡、小型无线数据终端、安全防火系统、无线遥控系统、生物信号采集、水文气象监控、机器人控制、无线232数据通信、无线485/422数据通信、数字音频、数字图像传输等领域中。 315M无线发射模块参数介绍 主要技术指标: (1)通讯方式:调幅AM (2)工作频率:315MHZ/433MHZ (3)频率稳定度:±75KHZ (4)发射功率:≤500MW (5)静态电流:≤0.1UA

(6)发射电流:3~50MA (7)工作电压:DC 3~12V 数据发射模块的工作频率为315M,采用声表谐振器SAW稳频,频率稳定度极高,当环境温度在-25~+85度之间变化时,频飘仅为3ppm/度。特别适合多发一收无线遥控及数据传输系统。声表谐振器的频率稳定度仅次于晶体,而一般的LC振荡器频率稳定度及一致性较差,即使采用高品质微调电容,温差变化及振动也很难保证已调好的频点不会发生偏移。 发射模块未设编码集成电路,而增加了一只数据调制三极管Q1,这种结构使得它可以方便地和其它固定编码电路、滚动码电路及单片机接口,而不必考虑编码电路的工作电压和输出幅度信号值的大小。比如用PT2262或者SM5262等编码集成电路配接时,直接将它们的数据输出端第17脚接至数据模块的输入端即可。 数据模块具有较宽的工作电压范围3~12V,当电压变化时发射频率基本不变,和发射模块配套的接收模块无需任何调整就能稳定地接收。当发射电压为3V 时,空旷地传输距离约20~50米,发射功率较小,当电压5V时约100~200米,当电压9V时约300~500米,当发射电压为12V时,为最佳工作电压,具有较好的发射效果,发射电流约60毫安,空旷地传输距离700~800米,发射功率约500毫瓦。当电压大于l2V时功耗增大,有效发射功率不再明显提高。 这套模块的特点是发射功率比较大,传输距离比较远,比较适合恶劣条件下进行通讯。天线最好选用25厘米长的导线,远距离传输时最好能够竖立起来,因为无线电信号传输时收很多因素的影响,所以一般实用距离只有标称距离的一半甚至更少,这点需要开发时注意。 数据模块采用ASK方式调制,以降低功耗,当数据信号停止时发射电流降为零,数据信号与发射模块输入端可以用电阻或者直接连接而不能用电容耦合,否则发射模块将不能正常工作。数据电平应接近数据模块的实际工作电压,以获得较高的调制效果。 发射模块最好能垂直安装在主板的边缘,应离开周围器件5mm以上,以免受分布参数影晌。模块的传输距离与调制信号频率及幅度,发射电压及电池容量,发射天线,接收机的灵敏度,收发环境有关。一般在开阔区最大发射距离约800米,在有障碍的情况下,距离会缩短,由于无线电信号传输过程中的折射和反射会形成一些死区及不稳定区域,不同的收发环境会有不同的收发距离。

无线发射与接收模块

无线发射与接收模块带编码与解码 接收模块 默认发货为M4型 超再生接收模块有七个引出端,分别为10、11、12、13、GND、VT、VCC,其中VCC为5V供电端,GND为接地端,VT端为解码有效输出端,10、11、12、13是解码芯片PT2272(SC2272)集成电路的10~13脚,为四位数据锁存输出端,有信号时能输出5V左右的高电平,驱动电流约 2mA,与发射器上的四为个按键一一相对应。 ZB-S3(PT2272-L4或者SC2272-L4)――信号锁定(互锁型) 即:按遥控器A键所对应的A路输高电平并保持,B路停止,按遥控器B键,A路停止,B路输出高电平并保持,依次循环工作。 ZB-S3(PT2272-M4或者SC2272-M4)――信号暂存(非锁型) 即:按下遥控器A键,所对应的A路输出高电平,松开遥控器按键,A路停止,依次循环工作。 1.工作电压:DC5V±0.5V 2.静态电流:≤ 3.5mA 3.工作电流:15~35mA 4.工作频率:315MHz 5.接收灵敏度:-105dbm 6.工作状态:互锁(L)/非锁(M) 7.输出信号:TTL电平 8.接口方式:插针(7PIN间距2.54mm) 9.外型尺寸:48×20×8mm 10.工作温度:-10℃~+50℃ 11.产品特点:低电压、小体积、高性价比

发射模块 该200米四通道遥控模块没有配电池和四个发射按键,天线也变成软导线,这样可以进一步缩小体积,便于和单片机或者其它设备组成一个无线报警或者遥控系统,比如和门磁开关组合可以变成无线门磁,和人体热释电模块组合可以变成无线人体传感器,和单片机组合可以借助单片机强大灵活的控制功能发出不同地址码和控制码的发射前端,组成一个一点对多点遥控系统。 天线用软导线或其它硬质金属(如拉杆天线),长度为23公分,长度既不能过长也不能过短,否则会影响接收距离。若使用软导线,请拉直使用,并尽量不要靠近金属物体。 地址码设定区:一共有8个,分别可以设定为悬空、高电平(H)、低电平(L)。使用时地址码可以自行定义或者更改(当发射板第一位地址码设为高电平时,相应的接收板的第一脚也应设成高电平)。 数据码设定区:4个,数据码只有两个状态:高电平(H)和低电平(L)。这里有高电平一种状态,当芯片的其中一脚设成高电平其它脚为低电平时,相应接收模块的对应脚输出高电平。注意事项:本发射板属瞬间发射型,建议每次连续发射时间不要超过3秒,然后间隔3秒以上。当收、发组件间的距离太近时,可适当降低工作电压,发射机就可长时间连续发射了,例如9V机用6V供电,此时的传输距离太约降低一半。如果只是需要固定发射一个通道时,可以直接将10、11、12、13中的一个与电源并接,通过开关接通电源即可。 1.工作电压: DC3~12V 2.工作电流: ≤30mA 3.工作频率: 315MHz 4.调制方式:ASK(调幅) 5.发射功率:300mW 6.发射距离:200~500m(空阔地) 7.外型尺寸:35×23×8mm

315超再生接收电路 理解以及实现

把最近看的一些关于超再生文章总结一下,个人理解,仅能参考。 Q1进行选频放大,滤除无用频率信号;Q2与C4、C6、L2、C7等元件组成超再生高频接收电路,微调L2改变其接收频率,使之严格对准发射频率。当L1收到调制波时,经Q1调谐预放大,再经Q2检波调制信号送入前放大器放大。C9相对于自激频率来讲是个大电容,充电完成后自激熄灭导致放电(R9、C8、C9起自熄作用),之后继续下一个自激过程。ASK信号的检波解码是靠后比较器来完成的,据噪声电压的平均值与电压本身(R11和R12分压2.5V),用比较器比较出1或者0的信号。 超再生电路本质为电容三点式振荡器,电路是典型的共基放大电路,晶体管的B和C之间通 过交流连接L2、C6和C4,以及 C9和BE之间的结电容构成分压反馈,形成电容三点式振荡 器。L4用来隔绝振荡频率与地之间的连通。振荡器工作时,随着振荡幅度增加,晶体管 电流Ice增加,这个Ice流过R9,会使R9两端电压成增长趋势,而C9两端电压已经建立 (静态工作点建立时建立的),无法突变,因此改电流对C9充电,使其两端电压升高,晶 体管BE电压下降,工作点开始降低,当降低到一定程度,电路开始停振,Ice随振荡逐渐 停止而减小,这使得R9两端电压成减小趋势,C9开始通过R9放电,C9两端电压降低,晶 体管工作电提升,振荡幅度开始回升,重复前面的过程,因此振荡器工作在一个间歇振荡状 态,振荡的波形类似有三角波或类似方波包络线的调幅信号,间歇频率由C9和R9决定,约 为它们乘积的倒数。C9和R9两端的电压为类似类似方波或三角波(这个与原始静态工作点 有关,原始静态工作点高,振荡建立快,C9很快冲点饱和,此时电路为平衡状态,振幅不 便,一段时间后振幅开始跌落,如果振荡建立慢,则未到最大振幅就开始跌落,此时为三角 波形),经过后面的电感电容网络滤波后,理论上为直流电压(为什么是理论上,后面讲), 以下简称R9C9为RC,L2C6为LC。此电路为自熄式,间歇频率由自身提供,与振荡频率牵 连比较大,较难调整,如果间歇频率由外部输入,则称他熄式,这种电路的间歇频率波形可 以用标准方波,效果更好。 好了,基本电路工作原理清楚了,现在看看电路是怎么接收信号的,先从调幅信号来说。 LC构成的回路由选频作用,当天线输入的信号频率与电路振荡频率相同时,对电路的振荡

315M收发射模块电路

315M发射模块 主要技术指标: 1。通讯方式:调幅AM 2。工作频率:315MHZ (可以提供433MHZ,购货时请特别注明) 3。频率稳定度:±75KHZ 4。发射功率:≤500MW 5。静态电流:≤0.1UA 6。发射电流:3~50MA 7。工作电压:DC 3~12V 无线数据传输广泛地运用在车辆监控、遥控、遥测、小型无线网络、无线抄表、门禁系统、小

区传呼、工业数据采集系统、无线标签、身份识别、非接触RF智能卡、小型无线数据终端、安全防火系统、无线遥控系统、生物信号采集、水文气象监控、机器人控制、无线232数据通信、无线485/422数据通信、数字音频、数字图像传输等领域中。 DF数据发射模块的工作频率为315M,采用声表谐振器SAW稳频,频率稳定度极高,当环境温度在-25~+85度之间变化时,频飘仅为3ppm/度。特别适合多发一收无线遥控及数据传输系统。声表谐振器的频率稳定度仅次于晶体,而一般的LC振荡器频率稳定度及一致性较差,即使采用高品质微调电容,温差变化及振动也很难保证已调好的频点不会发生偏移。 DF发射模块未设编码集成电路,而增加了一只数据调制三极管Q1,这种结构使得它可以方便地和其它固定编码电路、滚动码电路及单片机接口,而不必考虑编码电路的工作电压和输出幅度信号值的大小。比如用PT2262等编码集成电路配接时,直接将它们的数据输出端第17脚接至DF数据模块的输入端即可。 DF数据模块具有较宽的工作电压范围3~12V,当电压变化时发射频率基本不变,和发射模块配套的接收模块无需任何调整就能稳定地接收。当发射电压为3V时,空旷地传输距离约20~50米,发射功率较小,当电压5V时约100~200米,当电压9V时约300~500米,当发射电压为12V时,为最佳工作电压,具有较好的发射效果,发射电流约60毫安,空旷地传输距离700~800米,发射功率约500毫瓦。当电压大于l2V时功耗增大,有效发射功率不再明显提高。这套模块的特点是发射功率比较大,传输距离比较远,比较适合恶劣条件下进行通讯。天线最好选用25厘米长的导线,远距离传输时最好能够竖立起来,因为无线电信号传输时收很多因素的影响,所以一般实用距离只有标称距离的20%甚至更少,这点需要在开发时注意考虑。 DF数据模块采用ASK方式调制,以降低功耗,当数据信号停止时发射电流降为零,数据信号与DF发射模块输入端可以用电阻或者直接连接而不能用电容耦合,否则DF发射模块将不能正常工作。数据电平应接近DF数据模块的实际工作电压,以获得较高的调制效果。 DF发射发射模块最好能垂直安装在主板的边缘,应离开周围器件5mm以上,以免受分布参数影晌。DF模块的传输距离与调制信号铎率及幅度,发射电压及电池容量,发射天线,接收机的灵敏度,收发环境有关。一般在开阔区最大发射距离约800米,在有障碍的情况下,距离会缩短,由于无线电信号传输过程中的折射和反射会形成一些死区及不稳定区域,不同的收发环境会有不同的收发距离。 315MHZ超再生接收模块 超再生接收模块的体积:30x13x8毫米模块的中间两个引脚都是信号输出,连通的。

无线电发射与接收电路

无线电发射与接收电路

————————————————————————————————作者:————————————————————————————————日期:

简易无线遥控发射接收设计--- 315M遥控电路 OOK调制尽管性能较差,然而其电路简单容易实现,工作稳定,因此得到了广泛的应用,在汽车、摩托车报警器,仓库大门,以及家庭保安系统中,几乎无一例外地使用了这样的电路。 早期的发射机较多使用LC振荡器,频率漂移较为严重。声表器件的出现解决了这一问题,其频率稳定性与晶振大体相同,而其基频可达几百兆甚至上千兆赫兹。无需倍频,与晶振相比电路极其简单。以下两个电路为常见的发射机电路,由于使用了声表器件,电路工作非常稳定,即使手抓天线、声表或电路其他部位,发射频率均不会漂移。和图一相比,图二的发射功率更大一些。可达200米以上。 图一 图二 接收机可使用超再生电路或超外差电路,超再生电路成本低,功耗小可达100uA左右,调整良好的超再生电路灵敏度和一级高放、一级振荡、一级混频以及两级中放的超外差接收机差不多。然而,超再生电路的工作稳定性比较差,选择性差,从而降低了抗干扰能力。下图为典型的超再生接收电路。

超外差电路的灵敏度和选择性都可以做得很好,美国Micrel公司推出的单片集成电路可完成接收及解调,其MICRF002为MICRF001的改进型,与MICRF001相比,功耗更低,并具有电源关断控制端。MICRF002性能稳定,使用非常简单。与超再生产电路相比,缺点是成本偏高(RMB35元)。下面为其管脚排列及推荐电路。 ICRF002使用陶瓷谐振器,换用不同的谐振器,接收频率可覆盖300-440MHz。MICRF002具有两种工作模式:扫描模式和固定模式。扫描模式接受带宽可达几百KHz,此模式主要用来和LC振荡的发射机配套使用,因为,LC发射机的频率漂移较大,在扫描模式下,数据通讯速率为每秒2.5KBytes。固定模式的带宽仅几十KHz,此模式用于和使用晶振稳频的发射机配套,数据速率可达每秒钟10KBytes。工作模式选择通过MICRF002的第16脚(SWEN)实现。另外,使用唤醒功能可以唤醒译码器或CPU,以最大限度地降低功耗。

超再生原理

超再生接收和ASK发射电路原理 超再生接收是编解码电路最常见的一种形式,成本低廉,灵敏度高,电气性能满足一般的应用环境。除此之外如超外差等也较多见,从根本上说也是一种发展取代的方向。 有一个很重要的概念:超再生接收电路全称“自息/他息灭式再生检波电路”,从这个定义上可以知道1:它归属检波电路的一类;2:它是一个工作在间歇状态的检波电路;3:这个检波电路利用了再生原理。 上图是再生检波的基本图,其中C2起正反馈(再生)作用,R3R2R1共同决定N的工作点。电路调好时,该检波电路有很高的灵敏度指标。但当这个检波电路再生分量过强时就会产生高频振荡。 在60、70年代该电路直接用于民用中波收音,该段加上音频放大复用成“再生来复式收音机”。不敢用于短波,那时的管子fT太低--现在FT大于1G的管子一抓一大把,直接检波效果我看比那些粗制滥造的什么“十波段全球牌收音机”灵敏度指标差不到哪去?(增益值大家可以算出) 那时候,不敢用到短波,因是直接检波,故对几M--几十M的信号而言,性能大打折扣。可以这么理解:干脆把这个电路调到振荡去(增益很高),然后在A点加入个频率低得多的电压,让电路(N)的工作点随该电压的变化简歇振荡工作---这就是超再生电路,这个外加的电压称为熄灭电压。超再生式接收电路在无信号输入时,由于外界或内在的噪音电压的激发,会产生不规则的杂乱振荡,导致输出极大的噪声,这是超再生电路的一个主要特点。其原理如下图所示。

超再生电路按熄灭电压来源的不同,可分为他熄式和自熄式两种,这个外加或自生的电压决定了超再生的熄灭频率。前者采用独立的振荡电路来产生熄灭电压,后者有管子本身兼产生熄灭电压。自熄式电路简单、经济效率也高相对使用得更为广泛。以下也主要介绍这种电路形式。(图2图3图4图6电路参数为对应27MHz,图5对应266MHz频率)。 图2是超再生的祖宗级电路,特点:灵敏度很高,相当于一台有独立本机振荡、一级混频、两级中放的标准超外差接收电路;对晶体管要求不严,允许很低的工作电压(譬如3V)环境仍保持差不多的参数。 60年代的民用收音机多用此电路,估计是那时的管子实在是太昂贵的原因。缺点:带一铁芯变压器(取音频) 图3是演变电路,省了变压器,参数有所降低。 图4电路外围电路最为简单,理论上性能指标也较差,目前成批生产的产品多于它的“加强版”如图5的电路(电路最大的改进在于晶体管的大致工作点由D1R4所构成的“嵌位电路”所决定,从而解决了大批量生产时晶体管参数指标“离散性”所造成的后期工序中的统调问题)。 图6是使用场效应管的电路。成品有很高的性能,超再生所普遍存在的选择性和抗干扰指标差的缺陷,在这种电路里能得到一定的遏制。这类电路目前很罕见。 图2 图3 图4图5

无线、射频收发模块大全

无线收发模块大全 本文中着重通过几种实用的无线收发模块的剖析为你逐步揭开无线收发的原理,应用和结构,希望对你有所裨益! 无线数据传输广泛地运用在车辆监控、遥控、遥测、小型无线网络、无线抄表、门禁系统、小区传呼、工业数据采集系统、无线标签、身份识别、非接触RF智能卡、小型无线数据终端、安全防火系统、无线遥控系统、生物信号采集、水文气象监控、机器人控制、无线232 数据通信、无线485/422数据通信、数字音频、数字图像传输等领域中。

这是DF发射模块,体积:19x19x8毫米,右边是等效的电路原理图 主要技术指标: 1。通讯方式:调幅AM 2。工作频率:315MHZ (可以提供433MHZ,购货时请特别注明) 3。频率稳定度:±75KHZ 4。发射功率:≤500MW 5。静态电流:≤0.1UA 6。发射电流:3~50MA 7。工作电压:DC 3~12V DF数据发射模块的工作频率为315M,采用声表谐振器SAW稳频,频率稳定度极高,当环境温度在-25~+85度之间变化时,频飘仅为3ppm/度。特别适合多发一收无线遥控及数据传输系统。声表谐振器的频率稳定度仅次于晶体,而一般的LC振荡器频率稳定度及一致性较差,即使采用高品质微调电容,温差变化及振动也很难保证已调好的频

点不会发生偏移。 DF发射模块未设编码集成电路,而增加了一只数据调制三极管Q1,这种结构使得它可以方便地和其它固定编码电路、滚动码电路及单片机接口,而不必考虑编码电路的工作电压和输出幅度信号值的大小。比如用PT2262等编码集成电路配接时,直接将它们的数据输出端第17脚接至DF数据模块的输入端即可。 DF数据模块具有较宽的工作电压范围3~12V,当电压变化时发射频率基本不变,和发射模块配套的接收模块无需任何调整就能稳定地接收。当发射电压为3V时,空旷地传输距离约20~50米,发射功率较小,当电压5V时约100~200米,当电压9V时约300~500米,当发射电压为12V时,为最佳工作电压,具有较好的发射效果,发射电流约60毫安,空旷地传输距离700~800米,发射功率约500毫瓦。当电压大于l2V时功耗增大,有效发射功率不再明显提高。这套模块的特点是发射功率比较大,传输距离比较远,比较适合恶劣条件下进行通讯。天线最好选用25厘米长的导线,远距离传输时最好能够竖立起来,因为无线电信号传输时收很多因素的影响,所以一般实用距离只有标称距离的20%甚至更少,这点需要在开发时注意考虑。 DF数据模块采用ASK方式调制,以降低功耗,当数据信号停止时发射电流降为零,数据信号与DF发射模块输入端可以用电阻或者直接连接而不能用电容耦合,否则DF发射模块将不能正常工作。数据电平

GPS卫星定位接收模块.

GPS卫星定位接收模块 GPS卫星定位模块是开发GPS相关产品的必备器件,站长在开发GPS产品中也逐步熟悉这类器件,GPS模块一般由美国、日本、台湾生产。其中台湾生产的模块价格比较便宜,性价比很高,所以被广泛应用。这里可以作为产品供货,并交流开发心得。 产品1:台湾HOLUX公司推出的SIRF第三代高灵敏度超小型GPS接收模块GR-87(含GPS天线及转接线,开发产品专用附送详细GPS 开发资料) 这是最新推出的产品,采用SiRF第三代芯片,主要是定位灵敏度大大提高,例如在汽车上应用时,只要靠近车窗就能较好工作,使用更方便,定位也 更准确。

清单: 1。台湾产GPS模块一个,体积25x23x5毫米 2。GPS磁性接收天线一根(馈线3米长,SMA接口) 3。GPS天线转接线一根(MMCX转SMA接口) 4。GPS输出彩虹软线一根 5。资料光盘一张(包含:GPS模块的PDF文档、电子地图软件、GPS数据格式定义、串口数据监控软件、典型51单片机接收GPS模块数据的源程序等) 备注:TTL电平数据输出,每秒一次GPS全功能数据,4800通讯波特率。

1. 使用SiRF第三代低耗电量(LP),高效能晶片,大大降低耗电量。 2. 快速定位及追踪 12 颗卫星的能力。 3. 晶片内建1920 次/ 频率硬体, 提高接收传送搜寻卫星讯号。 4. 内建WASS/EGNOS解调器。 5. 可支援美国海岸部队塔台差分全球定位系统修正讯号。 6. 低耗电量。 7. 内部有多次充电式备份电池。 8. 支援NMEA0183 v2.2 标准信号格式及SiRF二位元编码。 9. 超强定位运算程式, 在户外任何环境, 皆可提供优越导航效果。 开发经验交流: 1。GPS模块的12通道是什么含义?

无线发射和接收模块

TX2/RX2 五功能遥控器 概述 TX2/RX2 是一对用于遥控玩具汽车的 CMOS 电路 玩具汽车向前 向后 左转 右转和加速功能 有五种控制功能 即控制 特点 ! ! 工作电压范围 外接元件少 2.2 5V ! ! ! 标准振荡频率 128KHz TX2 具有静态电流低 自动切断电源等功能 RX2 内置 3.6V 稳压二极管,外接串联电阻降压 可提高工作电压范围 引脚排列

引脚说明 TX2 RX2 若该引脚接地 若该引脚接地

功能框图 TX2 TEST OSCI OSCO 振荡电路时序产生电路POSC RIGHT LEFT TURBO FORWARD BACKW ARD 锁 存 器 编 码 电 路输出控制 电路 PC SO SC RX2 OSCI OSCO 振荡电路时序产生电路 SI解码电路计数器VI1PLA VO1 VI2 VO2 LDB RDB 控制 逻辑 锁 存 器 RIGHT LEFT TURBO BACKW ARD FORWARD

极限值 说明 上述参数绝对不允许超出 否则器件将受到 永久性 损坏 也不能在临界条件下长时间工作 否则即使 不损坏器件 也会影响器 件的可靠性 电参数 TX2 VDD == 4V,, FOSSC = 1128KHHZ, 除非另有 说明 TAA = 255 C RX2 00 (VDD == 4V,, FOSSC = 128KHHZ, 除非另有 说明 TA = 25 C)) 0.3V 5.0V GND-0.2V VDD+0.2V 10 60 25 125

工作原理 TX2 电路把按键信息编成特殊的串行数字编码 经外围线路高频调制发 射出去 RX2 接收经外围线路解调的编码信号 经内部的解码电路送出相应的 控制信号去控制玩具汽车的运行 编码方 法 串行码格式 一帧为 n+4 个脉冲 起始码+功能码 起始码 4 个 W2 功能码 其中 W2 为 500H Z 频宽比为 3/4 W1 为 1KH Z 频宽比为 1/2 n 个 W1 功能码 由 n 个 W1 脉 冲组成 n 的不同 数值分别表 示不同的 功能 详述如下 n 4 W2 10 W1 16 W1 22 W1

超再生接收电路和无线电发射器工作原理

超再生接收电路和无线电发射器工作原理 超再生无线电遥控电路由无线电发射器和超再生检波式接收器两部分组成。 无线电发射器:它是由一个能产生等幅振荡的高频载频振荡器(一般用30~450MHz)和一个产生低频调制信号的低频振荡器组成的。用来产生载频振东和调制振荡的电路一般有:多揩苦荡器、互补振荡器和石英晶体振荡器等。 由低频振荡器产生的低频调制 波,一般为宽度一定的方波。如果 是多路控制,则可以采用每一路宽 度不同的方波,或是频率不同的方 波去调制高频载波,组成一组组的 己调制波,作为控制信号向空中发 射,组成一组组的己调制波,作为 控制信号向空中发射。如图2所示。 超再生检波接收器:超再生检波电路实际上是一个受间歇振荡控制的高频振荡器,这个高频振荡器采用电容三点式振荡器,振荡频率和发射器的发射频率相一致。而间歇振荡(又称淬装饰振荡)双是在高频振荡的振荡过程中产生的,反过来又控制着高频振荡器的振荡和间歇。而间歇(淬熄)振荡的频率是由电路的参数决定的(一般为1百~几百千赫)。这个频率选低了,电路的抗干扰性能较好,但接收灵敏度较低:反之,频率选高了,接收灵敏度较好,但抗干扰性能变差。应根据实际情况二者兼顾。 超再生检波电路有很高的增益,在未收到控制信号时,由于受外界杂散信号的干扰和电路自身的热搔动,产生一种特有的噪声,叫超噪声,这个噪声的频率范围为0.3~5kHz之间,听起来像流水似的“沙沙”声。在无信号时,超噪声电平很高,经滤波放大后输出噪声电压,该电压作为电路一种状态的控制信号,使继电器吸合或断开(由设计的状态而定)。 当有控制信号到来时,电路揩振,超噪声被抑制,高频振荡器开始产生振荡。而振荡过程建立的快慢和间歇时间的长短,受 接收信号的振幅 控制。接收信号振 幅大时,起始电平 高,振荡过程建立 快,每次振荡间歇 时间也短,得到的 控制电压也高;反 之,当接收到的信 号的振幅小时,得 到的控制电压也 低。这样,在电路 的负载上便得到 了与控制信号一 致的低频电压,这 个电压便是电路 状态的另一种控 制电压。 如果是多通道遥控电路,经超再生检波和低频放大后的信号,还需经选频回路选频,然后分别去控制相应的控制回路。 SP多用途无线数据收发模块 无线数据传输广泛地运用在车辆监控、遥控、遥测、小型无线网络、无线抄表、门禁系统、小区传呼、工业数据采集系统、无线标签、身份识别、非接触RF智能卡、小型无线数据终端、安全防火系统、无线遥控系统、生物信号采集、水文气象监控、机器人控制、无线232数据通信、无线485/422数据通信、数字音频、数字图像传输等领域中。

无线收发模块原理-详解教程文件

无线收发模块原理-详 解

用途DF无线数据收发模块 无线数据传输广泛地运用在车辆监控、遥控、遥测、小型无线网络、无线抄表、门禁系统、小区传呼、工业数据采集系统、无线标签、身份识别、非接触RF智能卡、小型无线数据终端、安全防火系统、无线遥控系统、生物信号采集、水文气象监控、机器人控制、无线232数据通信、无线485/422数据通信、数字音频、数字图像传输等领域中。 1.With my own ears I clearly heard the heart beat of the nuclear bomb. 我亲耳清楚地听到原子弹的心脏的跳动。 2.Next year the bearded bear will bear a dear baby in the rear. 3.明年,长胡子的熊将在后方产一头可爱的小崽. 4. 3. Early I searched through the earth for earth ware so as to research in earthquake. 早先我在泥土中搜寻陶器以研究地震.

这是DF发射模块,体积:19x19x8毫米,右边是等效的电路原理图主要技术指标:

1。通讯方式:调幅AM 2。工作频率:315MHZ (可以提供433MHZ,购货时请特别注明)3。频率稳定度:±75KHZ 4。发射功率:≤500MW 5。静态电流:≤0.1UA 6。发射电流:3~50MA 7。工作电压:DC 3~12V 315MHZ发射模块 8元一个433MHZ发射模块 8元一个DF数据发射模块的工作频率为315M,采用声表谐振器SAW稳频,频率稳定度极高,当环境温度在-25~+85度之间变化时,频飘仅为3ppm/度。特别适合多发一收无线遥控及数据传输系统。声表谐振器的频率稳定度仅次于晶体,而一般的LC振荡器频率稳定度及一致性较差,即使采用高品质微调电容,温差变化及振动也很难保证已调好的频点不会发生偏移。 DF发射模块未设编码集成电路,而增加了一只数据调制三极管Q1,这种结构使得它可以方便地和其它固定编码电路、滚动码电路及单片机接口,而不必考虑编码电路的工作电压和输出幅度信

基于51单片机315MHz无线收发模块调试程序

315Mhz 无线通信程序原理: 第一块单片机p1.0 口输出脉冲方波提供给无线发射模块,无线发射模块将信号以电磁波的形式传到无线接收模块。 无线接收模块会根据这个电磁波还原出脉冲方波提供给第二块单片机,第二块单片机进行进一步的解算处理。 通信协议: 根据这个原理和315模块的特性。 我决定以900us 高电平和2000us 底电平表示1; 450us 高电平和2000us 低电平表示0。 而8个1或0组成一个字节。为了防止误码, 所以在每个字节的前面加一个2ms 高电平和2ms 低电平的起始码。 每个5S 发送一个字符,一个字符发送20 遍

*******************************/ /**************************** 315Mhz 无线通信程序 发送程序11.0592M 晶振 1 机器周期=1.0851us 定时器产生2MS 定时 TH0=0XF8;TL0=0XCD; 900us 定时 TH0=0XFC;TL0=0XC3; 450us 定时 TH0=0XFE;TL0=0X61; *******************************/ #include #include "intrins.h" #define uint unsigned int #define uchar unsigned char sbit WXSEND=P1^0; uchar timedata[8]={0xfe,0x61,0xfc,0xc3,0xf8,0xcd,0xea,0x66};// 450us, 900us,2MS,6ms /************************************* 11.0592MHZ 下500 毫秒延时,还准 ***************************************/

超再生接收机原理

超再生电路原理和分析 看到大家讨论超再生电路,很多人都不明白其具体工作原理,只知道大概,值此长夜漫漫无心睡眠之际,特骚包一把,写点小小的分析心得,希望对初学者有所帮助。 我们知道普通的再生式电路,是利用正反馈来加强输入信号,而超再生电路确实用输入信号 来影响本地振荡信号,因此得名 拿最经典的超再生电路来说吧,如下图所示: 超再生电路本质上是一个电容三点振荡器,我们先来分析它。电路是典型的共基 电路,晶体管的B和C之间通过交流连接L3和C12,电容C9和BE之间的结电容构成分压反馈,形成三点式。。。振荡器。 L4用来隔绝振荡频率与地之间的连通。振荡器工作时,随着振荡幅度增加,晶体管电流Ice增加,这个Ice流过R12,会使R12两端电压成增长趋势,而C11两端电压已经建立(静态工作点建立时建立的),无法突变,因此改电流对C11充电,使其两端电压升高,晶体管BE电压下降,工作点开始降低,当降低到一定程度,电路开始停振,Ice随振荡逐渐停止而减小,这使得R12两端电压成减小趋势,C11开始通过R12放

电,C11两端电压降低,晶体管工作电提升,振荡幅度开始回升,重复前面的过程,因此振荡器工作在一个间歇振荡状态,振荡的波形类似有三角波或类似方波包络线的调幅信号,间歇频率由C11和R12决定,约为它们乘积的倒数。C11和R12两端的电压为类似类似方波或三角波(这个与原始静态工作点有关,原始静态工作点高,振荡建立快,C11很快冲点饱和,此时电路为平衡状态,振幅不便,一段时间后振幅开始跌落,如果振荡建立慢,则未到最大振幅就开始跌落,此时为三角波形),经过后面的电感电容网络滤波后,理论上为直流电压(为什么是理论上,后面讲),以下简称R12C11为RC,L2C12为LC。此电路为自熄式,间歇频率由自身提供,与振荡频率牵连比较大,较难调整,如果间歇频率由外部输入,则称他熄式,这种电路的间歇频率波形可以用标准方波,效果更好。 好了,基本电路工作原理清楚了,现在看看电路是怎么接收信号的,先从调幅信号来说。LC构成的回路由选频作用,当天线输入的信号频率与电路振荡频率相同时,对电路的振荡幅度有加强作用,类似于正反馈,此时电路正式进入超再生状态。通过前面的分析知道,电路振荡建立的速度与工作点有关,而振荡幅度受到改变时工作点也会相应变化,因此外部调幅信号使晶体管工作点随输入信号幅度变化而变化,而工作点的变化,又影响振荡的建立时间。因此就形成了这样的现象,输入信号幅度大,间歇振荡建立快,间歇振荡能达到的最大振幅就大(或者越早达到最大振幅),反之同理。因此高频间歇振荡在每个间隙之间能达到的最大振荡幅度(或持续最大幅度的时间)是随外部输入信号的幅度而变化的,而间歇振荡的包络线就是RC两端的电压,这个电压中包含一个直流分量,这个直流分量就是随外部信号幅度而变化的(类似PWM原理),也就是输入信号的包络线,因此达到解调制的目的,具 体见下图。 第一个波形的熄灭电压是个示意图,第二个波形是高频振荡波形,这是有信号输入的状态,如果没信号,每个间歇内都是一样的,第三个波形是RC两端的波形,里面的平滑波形是经过后面的滤波网络后的波形。可以看到,外部信号的幅度变化时,每个间歇内振荡波形的包络面积会相应改变,此图上的包络线为类似三角波,根据不同的工作点,有些资料上的图画

射频接收模块

射频接收模块 - RFM01 概述: RFM01是一款低成本的ISM频段射频接收模块,其核心电路采用的是带锁相环(PLL)和零中频技术的RF01射频接收芯片,可工作在315/433/868/915MHZ四个频段,并符合FCC和ETSI要求.它还提供一个SPI接口,实现由MCU通过软件去设置各种射频参数和其它辅助功能.RFM01与发射模块RFM02配对,组成一个完整的收发系统,可靠传输距离可以达到300米以上(在433频段). 特点: ?成本低,性价比高. ?生产免调试. ?采用PLL和零中频技术 ?锁相时间快 ?高分辩率的PLL,频率间隔最小2.5KHz ?高数据传输率(使用内部数据滤波器最高115.2 kbps) ?直接差分天线输入 ?天线阻抗自动调谐 ?可编程接收带宽(67 到400 kHz) ?模拟和数字接收信号强度指示(ARSSI/DRSSI) ?自动频率控制(AFC) ?数据质量检测(DQD) ?内部数据过滤 ?SPI控制接口 ?可为MCU提供时钟和复位信号 ?16位接收数据寄存器(先入先出队列) ?低功耗模式(少于0.5毫安的平均电流) ?标准10MHz晶振 ?唤醒定时器 ?低电压检测 ?可编程的晶振负载电容 ? 2.2V到5.4V供电 ?低功耗 ?睡眠模式电流(0.3μA)

射频发射模块 - RFM02 概述: RFM02是一款低成本的ISM 频段射频发射模块,其核心电路采用的是带锁相环(PLL)技术的RF02射频接收芯片,可工作在433/868/915MHZ三个频段,并符合FCC和ETSI要求.它还提供一个SPI接口,实现由MCU通过软件去设置各种射频参数和其它辅助功能.RFM02与接收模块RFM01配对,组成一个完整的收发系统,可靠传输距离可以达到300米以上(在433频段). 特点: ?成本低,性价比高. ?生产免调试. ?采用PLL技术 ?高分辩率的PLL,频率间隔最小2.5KHz ?可编程调制频偏大小(30KHz到240KHz,30KHz间隔) ?可编程输出功率大小 ?高数据传输率(FSK比特率最高115.2 kbps) ?直接差分天线输出 ?天线阻抗自动调谐 ?SPI控制接口 ?可为MCU提供时钟信号 ?标准10MHz晶振 ?可编程的晶振负载电容 ?唤醒定时器 ?低电压检测 ? 2.2V到5.4V供电 ?低功耗 ?低静态电流(0.3 μA)

相关文档
最新文档