小波变换理论及应用

小波变换理论及应用
小波变换理论及应用

2011-2012 学年第一学期

2011级硕士研究生考试试卷

课程名称:小波变换理论及应用任课教师:考试时间:分钟

考核类型:A()闭卷考试(80%)+平时成绩(20%);

B()闭卷考试(50%)+ 课程论文(50%);

C(√)课程论文或课程设计(70%)+平时成绩(30%)。

一、以图示的方式详细说明连续小波变换(CWT)的运算过程,分析小波变换的内涵;并阐述如何从多分辨率(MRA)的角度构造正交小波基。(20分)

二、综述小波变换理论与工程应用方面的研究进展,不少于3000字。(25分)

三、运用MATLAB中的小波函数和小波工具箱,分别对taobao.wav语音信号在加噪之后的taobao_noise.wav信号进行降噪处理,要求列出程序、降噪结果及降噪的理论依据。(25分)

四、平时成绩。(30分)

(一)连续小波变换(CWT )的运算过程及内涵

将平方可积空间中任意函数f (t )在小波基下展开,称这种展开为函数f (t )的连续小波变换(Continue Wavelet Transform ,简记CWT )其表达式为

t a b t t f a b a f W d )(*)(||1),(?

∞+∞--=ψψ ( 1.1)

其中,a ∈R 且a ≠0。式(1.19)定义了连续小波变换,a 为尺度因子,表示与频率相关的伸

缩,b 为时间平移因子。其中)(|

|1)(,a b t a t b a -=ψψ为窗口函数也是小波母函数。 从式(1.1)可以得出,连续小波变换计算分以下5个步骤进行。

① 选定一个小波,并与处在分析时段部分的信号相比较。

② 计算该时刻的连续小波变换系数C 。如图1.5所示,C 表示了该小波与处在分析时段内的信号波形相似程度。C 愈大,表示两者的波形相似程度愈高。小波变换系数依赖于所选择的小波。因此,为了检测某些特定波形的信号,应该选择波形相近的小波进行分析。

图1.5 计算小波变换系数示意图

③ 如图1.6所示,调整参数b ,调整信号的分析时间段,向右平移小波,重复①~②步骤,直到分析时段已经覆盖了信号的整个支撑区间。

④ 调整参数a ,尺度伸缩,重复①~③步骤。

⑤ 重复①~④步骤,计算完所有的尺度的连续小波变换系数,如图1.7所示。

图1.6 不同分析时段下的信号小波变换系数计算 图1.7 不同尺度下的信号小波变换系数计算 C =0.2247

小波变换的实质是用小波(微小的特定波形)与待分析信号波形分段求内积,所得的系数反映了小波与待分析信号的相似度,相似度越高则系数越高。通过改变平移因子b 可以实现对信号时频域的分析。通过改变尺度因子可以改变小波与待分析信号的相似度。最后由得到的系数和所选小波的特性可以知道待分析信号的特性或是待分析信号某一时段或频段的特征。

(二)从多分辨率(MRA )的角度构造正交小波基

从数值计算数据压缩等角度,我们仍希望减小它们的冗余度,提出了寻找正交基的要求。 多分辨率的理论是指将信号分解到不同的尺度空间,实现在各个尺度上可以有粗及精地观察。由多分辨率的思想我们可以将任意函数,,(),()j k j k d f t t ψ=<>0()f t V ∈分解为细节部分1W 和大尺度逼近部分1V ,然后将大尺度逼近部分1V 进一步分解。如此重复就可以得到任意分辨率上的逼近部分和细节部分。在MRA 理论中同一尺度下小波函数和尺度函数分别满足。 1212()()()R

f t k f t k dt k k δ--=-? 同一尺度下小波函数,j k ψ同尺度函数,j k φ正交 ,,()()0j k j k t t dt ψφ=?

小波函数()t ψ和尺度函数()t φ在多分辨率分析中满足方程

01,0()()()()(2)n n n t h n t h n t n φφφ-==-∑

11,1()()()()(2)n n n

t h n t h n t n ψφφ-==-∑

这两个方程就是二尺度方程。利用二尺度方程可以构造出小波母函数,通过伸缩平移就得到整个平方可积空间的基。正交尺度函数{()}k z t k φ∈-构造正交小波基,还有当尺度函数为Riesz 基是构造的正交小波基函数。所以说MRA 不仅为正交小波基的构造提供了一种简单的方法,而且为正交小波变换的快速算法提供了理论依据。

(三)小波变换理论与工程应用方面的研究进展

摘要:小波变换作为一种数学理论和方法在科学技术界引起了越来越多的关注和重视。在数学家们看来,基于小波变换的小波分析技术是泛函分析、调和分析、数值分析等半个多世纪以来发展最完美的结晶,是正在发展中的新的数学分支。在工程应用领域,特别是在信号处理、图像处理、模式识别、语音识别、量子物理、地震勘测、流体力学、电磁波、CT成像、机器视觉、机械故障诊断。

关键词; 小波变换工程应用

引言

小波分析(wavelet)是在应用数学的基础上发展起来的一门新兴学科,近十几年来得到了飞速的发展.作为一种新的时频分析工具的小波分析,目前已成为国际上极为活跃的研究领域.从纯粹数学的角度看,小波分析是调和分析这一数学领域半个世纪以来工作的结晶;从应用科学和技术科学的角度来看。小波分析又是计算机应用,信号处理,图形分析,非线性科学和工程技术近些年来在方法上的重大突破.由于小波分析的“自适应性”和“数学显微镜”的美誉,使它与我们观察和分析问题的思路十分接近,因而被广泛应用于基础科学。应用科学,尤其是信息科学,信号分析的方方面面.本文将介绍小波分析的基本理论,产生背景及其在一些工程方面的应用。最后展望了小波分析应用研究的发展趋势。

1小波理论所涉及的基础数学知识:

小波理论所涉及的基础数学知识包括泛函分析、傅里叶分析、信号与系统、数字信号处理等方面的内容。在这里主要介绍泛函分析的基础知识:

泛函分析是上世纪初开始发展起来的一个重要数学分支,它是以集合论为基础的现在分析的一个基本组成部分。在泛函研究中,一个重要的基本概念是函数空间。所谓函数空间,即由函数构成的集合。下面列出几个简单的函数空间的定义。

1.1距离空间

设X是一个非空集合,如果X中任意两个元素x与y,都对应一个实数p(x,y)而且满足:

(1)非负性:p(x,y)>=0,当且仅当x=y时,p(x,y)=0。

(2)对称性:p(x,y)= p(y,x)。

(3)三角不等式: 对于任意的X中的x,y,z ,p(x,z)<=p(x,y)+p(y,z)都成立

1.2线性空间

设X为一非空集合,若在X中规定了线性运算——元素的加法和元素的数乘运算,并满足相应的加法或数乘的结合律及分配律,则称X为一线性空间或向量空间。对于线性空间的任一向量我们用范数来定义其长度。

1.3平方可积空间

L2(μ(X))表示X 上所有在几乎处处(almost everywhere)意义下平方可积(square-integrable)的复值的可测函数的集合。平方可积表示该函数的绝对值的平方的积分是有限的。

1.4巴拿赫空间Banach Space

巴拿赫空间是一个完备的赋范矢量空间Normed Vector Space,它是希尔伯特空间的推广。巴拿赫空间定义为完备的线性赋范矢量空间。即是说,它是一个实数或复数的矢量空间并且有一个完备的范数||·|| ,即其每个柯西Cauchy序列都是收敛列。

2重要的小波理论;

2.1小波变换的提出

傅里叶变换在平稳信号分析中可以知道信号所含有的频率信息,但是不能知道这些频率信息究竟出现在那些时间段上,可见若要提取局部时间段(或瞬间)的频域特征信息,傅里叶变换已经不再适用了。

1946年Carbor 提出了加窗的Fourier 变换。其基本思想是取时间函21/4/2g()t t e π--= 作为窗口函数,用g()t τ-同待分析函数()f t 相乘,然后在傅里叶变换:

',(,)()()()()j t f R

G f t g t e dt f t g t ωωτωττ--=? (2.1) ',()()()jwt jwt g t g t e

g t e ωτττ--=-=- (2.2) 这一加窗变换使得我们可以分析出一个信号在任意局部范围的频率特征,这是比傅里叶变换优越之处。这一类加窗变换Fourier 变换统称为短时傅里叶变换(Short Time Fourier Transform ,简称为STFT )。但是其时频窗口不随频率和时间的变化而变化,使它的灵活性与普遍性运用受到限制。

2.2小波变换基本理论

为了使得短时傅里叶变换的时,频窗口均随频率的变化而变化,以实现对低频分量采用大时窗,对高频分量采用小时窗的符合自然规律的分析方法。我们设计一组连续变化的伸缩平移基,()a t τψ,()t ψ称为连续小波基函数,来代替STFT 中的',()()jwt g t g t e ωττ-=-。

小波函数的确切定义为:设()t ψ为一平方可积函数,也即2()L R ψ∈,若傅里叶变换()ωψ满足条件:2()r d ωωωψ<∞? (2.3)

则()t ψ称为一个基本小波或小波母函数,并称式(2.3)为小波函数的可容许性条件。 连续小波变换:将任意平方可积空间中的f (t )在小波基下进行展开,称这种展开为函数f (t )的连续小波变换(Continue Wavelet Transform ,简记为CWT )其表达式为

,()(,)(),()()()f a R

t WT a f t t f t dt a τττψψ-=<>=(2.4) 由表达式可知小波变换也是类似于傅里叶变换,但小波变换与STFT 本质不同的是,小波变换是一种变分辨率的时频联合分析方法,当分析低频信号时,其时间窗很大,而当分析高频信号时,其时间窗很小。这与实际问题中的高频信号的持续时间短、低频信号持续时间较长的自然规律相符合,这种对信号有“自适应”使得小波变换广泛的应用于时频联合分析及目标识别领域。因为CWT 得冗余性较大计数值实现的需要,我们常采用离散型式。对某一

确定的尺度因子001,0a b >>,我们选择:相000,,,m m a a b nb a m n Z ==∈应的离散小波为

/2m,n 000()m m a a x nb ψψ-=-。

对ψ和0a ,0b 做某些特殊的选择,则m,n ψ可以构成2()L R 的标准正交基。

所谓小波就是小的波形,”小”即在时频域都具有紧支集。通常选取紧支集或近似紧支集的具有正则性的实数或复数函数作为小波母函数,以使小波母函数在时频域有较好的局部性。“波”是指具有波动性。小波分析优于傅里叶变换分析在于:

(a)在时频域同时具有良好的局部性:

小波的“自适应”能力正好符合低频信号变化缓慢而高频变化快的特点,特别适合处理瞬变信号。小波能对高频采用逐渐精细的时域取样步长,从而可以聚焦到对象的任意细节,被誉为“数学显微镜”

(b)基的多样性:

小波分析与Fourier 分析的实质都是将信号f (t )投影在一组正交基上,所不同的是Fourier 分析对f (t )只用唯一的基{exp (iwx )}:而小波基的家族是庞大的,同一f (t )可投影在不同的小波基上。

小波分析将非平稳信号分解为各种小波的组合, 而所有的小波函数形式不是确定的, 即小波函数具有多样性。在实际应用中,一个重要的问题是最优小波基的选择问题,这是因为不同的小波基分析同一个问题会产生不同的结果。目前主要通过小波分析方法处理信号的结果与理论结果的误差来判定小波基的好坏,并由此选定下小波基。我们实际使用一个“巨大的库”来描述信号, 这个库是按照某种组织原理进行管理的秩序井然的库,内容极其丰富,以适用于所有瞬时信号。这样, 便于找到适合已知信号的某种算法。

小波变换的实质是将信号向一系列小波基上进行投影,小波变换分为连续型和离散型。正交小波和双正交小波是离散小波变换的两种特殊情况。离散小波变换理论主要建立在多尺度分析或滤波器的基础上,关键是如何构造正交小波基,它的应用相当广泛。连续小波变换理论建立在群论的基础上,对信号细致变化的探测时更灵敏。

连续小波变换在方向的选择上有其自由度和优越性,而离散小波变换只能沿x 、y 轴方向搜索。离散小波变换小波基的选择一般均由多尺度分析方法构造;而连续小波变换小波基的构造具有更大的灵活性,可视具体情况而定。不同的连续小波变换小波基函数由不同的特点, 一些基函数对空间变量的变化敏感;一些对方向变量反映灵敏。

多分辨分析是小波分析的核心内容之一,其系统和过程符合人类视觉和思维方式。最常见的多分辨分析有两大类: 一类是时间有限多分辨分析,另一类是样条多分辨分析。如果说小波分析是描述信号的一种语言,则多分辨分析和Mallat 算法就是这种语言的语法规则. Mallat 算法通过调节尺度因子实施对信号由细至粗的分解和有粗至细的重构。

小波包的分析函数是在多分辨率的基础上对每层的高频细节进行再次分解。小波包能改善小波对时频局部化的性能,使得时频窗大小、频率和空间位置能各自独立地变化,为小波的选择提供了一个新自由度。小波包形成一个冗余系统,它有无穷多个正交小波基。 它比小波具有更大柔软性和对信号的灵活适应性,适合由非平稳信号和稳定信号合成的信号,如指纹等,可用于压缩算法和最佳小波基的选择。

小波基的构造与选择是小波分析的主要内容. 在使用基本小波, 如二进小波、二进对偶小波、框架及小波时, 对于时间- 频率分析和其它的应用, 有许多重点必须考虑. 它们是: 时间- 频率窗的大小, 计算的复杂性和有效性, 实现的简单型, 基小波的的光滑与对称性以及逼近阶。

3.小波工程应用

小波分析在工程实际中比较成功的应用主要体现在如下几个方面:

( 1) 小波分析在故障诊断中的应用

小波分析在故障诊断中的应用已取得了极大的成功。小波分析不仅可以在低信噪比的信号中检测到故障信号,而且可以滤去噪声恢复原信号,具有很高的应用价值。梯形小波变换适用于电力系统故障分析,尤其适用于电动机转子鼠笼断条以及发电机转子故障分析。用二进小波Mallat 算法对往复压缩机阀盖振动信号进行分解和重构, 可诊断出进、排气阀泄漏故障。利用小波包对变速箱故障声压信号进行分解,诊断出了变速箱齿根裂纹故障等。

( 2) 小波分析在图像处理中的应用

在图像处理中,小波分析的应用是很成功的,二进小波变换用于图像拼接和镶嵌中,可以消除拼接缝。利用正交变换和小波包进行图像数据压缩,可望克服由于数据压缩而产生的方块效应,获得较好的压缩效果。利用小波变换方法可进行边缘检测、图像匹配、图像目标识别及图像细化等。

( 3) 小波分析在ICT 中的应用

ICT 即工业计算机断层摄影,主要用于机械构件的无损探伤。但是ICT 图像的投影数据存在一定的噪声,这给图像处理带来困难。利用小波变换先对投影数据进行滤波,重建后取模极大值,所得图像边缘噪声较小。边缘清晰,并可滤去非白噪声。这种将小波分析用于卷积反投影的方法已成功地开辟了一条崭新的技术路线. 小波分析方法可用于焊缝位置识别、混凝土内部缺陷识别及管道检漏等方面。

( 4) 小波分析在语音信号处理中的应用

语音信号处理的目的是得到一些语音参数以便高效地传输或存储。利用小波分析可以提取语音信号的一些参数,并对语音信号进行处理。小波理论应用在语音处理方面的主要内容包括: 清/ 浊音分割;基音检测;去噪、重建与数据压缩等几个方面。小波应用于语音信号提取、语音合成、语音增加、波形编码已取得了很好的效果。

( 5) 小波分析在地球物理勘探中的应用

在地球物理勘探中,寻找地壳物质物性参数的奇异性时是非常有意义的。由于小波变换同时具有空间域和频率域的局部性,因此它是描述、检测函数奇异性的有效工具。我们利用小波变换和分形理论,对石油、天然气中的实际地震道数据进了奇异性检测和高分辨处理,并给出了地震道油气检测的重建相空间法,这对于油气勘探及地震资料的高分辨处理都具有重大的理论意义和应用价值。

( 6) 小波分析在医学中的应用

淋巴细胞微核的识别在医学中有重要的应用价值,可用于环境检测、药品及各种化合物的毒性检测。在微核的计算机自动识别中,用连续小波就可准确提取胞核的边缘。目前,人们正在研究利用小波变换进行脑信号的分析与处理,这样可有效地消除瞬态干扰,并检测出脑电信号中短时、低能量的瞬态脉冲。.

( 7) 小波分析在数学和物理中的应用

在数学领域,小波分析是数值分析强有力的工具,能简捷、有效地求解偏微分方程和积分方程,亦能很好地求解线性问题和非线性问题。而由此产生的小波有限元方法和小波边界元方法,极大的丰富了数值分析方法的内容。在物理领域中,小波表示了量子力学中一种新的凝聚态。在自适应光学中,目前有人研究了可利用小波变换进行波前重构。另外,小波变换适宜于刻画不规则性,为湍流研究提供了新的工具。

( 8) 小波分析在神经网络中的应用

小波理论提供了一个对前传网分析和理论框架,小波形式在网络构造中被用来使包含在训练数据中的频谱信息具体化。使用小波变换设计处理网络,可使训练问题大大简化。不像传统的前神经网络构造的情况,这里函数是凸的,因此全局极小解是唯一的。把小波分析与神经网络结合起来, 可对设备进行智能化诊断。利用小波分析可给出惯性导航系统初始对准的线性和非线性模型。

( 9) 小波分析在工程计算中的应用

矩阵运算是工程中经常遇到的问题,如稠密矩阵作用于向量( 离散情况) 或积分算子作用于函数( 连续情况) 的计算。有时运算量极大,利用快速小波变换,可使得运算量大大减少。另外,在CAD/ CAM、大型工程有限元分析、机械工程优化设计、自动测试系统设计等方面都有小波分析的应有实例。

( 10) 小波分析在流体力学中的应用

流体力学中有些问题难度较大,传统的方法难以解决。利用小波方法对平面叶栅叶型进行优化设计,效果很好。将小波分析应用于双重孔隙储集层系统数学模型的分析中,也取得了人们满意的效果。

( 11) 小波分析在股票价格行为分析方面的应用

小波分析具有良好的时频局部性,被认为是分析股市数据的有效工具。利用小波变换方法对股票价格信号进行奇异性分析,可提取奇异点并分析其分布规律,它为股市管理和投资提供了帮助。.

( 12) 小波分析提取文件特征

用二维多分辨分析方法提取文件参考线,从而达到能提取文件中任意兴趣信息的目的. 这在各种支票、票据的分析和识别中具有重大意义。小波分析也可以用于设备的保护和状态检测系统,如高压线路保护和发电机定子匝间短路保护等。另外,小波分析也应用于天体研究、气象分析识别和信号发送等领域。

4.小波应用发展趋势

目前,小波应用的深度和广度得到进一步拓展。在某些方面已取得了传统无法达到的效果,人们正在挖掘有前景的应用领域。

小波分析是一门新的交叉科学,对它进行理论研究、仿真计算、实验分析都是很重要的,目前在高校、研究所开展的比较好。现在正在逐渐走出仿真及实验室阶段,向人们提供具有实用价值的小波分析技术,以小波作为工具的分析软件也日益丰富。

小波分析与神经网络、模糊数学、分形分析、遗传优化相结合后,形成小波神经网络、小波模糊神经网络、小波分形等方法,是分析非平稳、非线性问题的理想手段。如高速压缩机的故障检测与诊断中,综合运用了二进小波分析和谐波分析、分形分析,得到了满意的效

果。总之,小波分析与其他理论的综合运用也日益增多。

参考文献:

[1]彭玉华.小波变换与工程应用[M].北京:科学出版社,1999:137

[2]赵健,谢红梅,俞卞章.小波理论的应用研究及新思路[J].数字电视与数字视屏,2002.06:3-5

[3]郁晓红,姚敏.小波变换及在图像处理中小波系数分析[J].计算机应用,2001,2月:36-38

[4]陈伟根,邓帮飞.小波包能谱熵与神经网络在断路器故障诊断中的应用[J].重庆大学学报,2008,7月:744-748

[5]陈鹏,郭伟.小波多分辨率分解的雷达视频压缩研究[J].计算机工程与应用,2005.21:83-85

[6]秦毅,秦树人,毛永芳.连续小波快速带通滤波实现算法的研究[J].震动与冲击,卷12期:23-27

[7]徐胜男,陈桂友,池海.基于离散小波框架变换的色彩多聚焦图像融合算法[J]计算机应用,2005.25卷3期:580-582

[8]孙明,吴正国,龚沈光.基于离散小波理论的时间尺度变换实现[J].武汉理工大学,2002,2月:93-95

[9]梁霖,徐光华,侯成刚基于奇异值分解的连续小波消澡方法[J].西安交通大学学报,2004,38卷9期:904=907

[10]郑刚,石梅香.基于时域/多分辨率分析和规则基的电能质量扰动分类[J].电网技术,2004.28卷3期:65-68

[11]田养军,薛春纪.基于提升小波分解曲波变换的雷达影像消噪法[J].地球科学与环境学报,2008 30卷3期:326-330

[12刘婕,宋伟杰.基于小波变换和Cycle spring图像放大算法[J].图形/图像/模式识别,2011.10-13:

[13孙小伟,李言俊.基于小波多尺度分解的Mean Shift图像滤波方法[J].计算机工程与应用,2008,44卷18期:16-20

[14]石旭东,李大勇.基于小波分析的飞机导线故障定位方法研究[J].哈尔滨理工大学学报,2007,8月:26-28

[15]徐昕,傅煊基于小波分解和BP网络模拟电路故障诊断研究[J].现代电子技术,20011.34卷19期:171-175

[16]杨建宏.基于小波理论的多尺度计算方法[J].科技信息:期,:15-16

[17李文江,刘超,刘南.改进型小波包变换的谐波检测研究[J].电力电力技术,20011.45卷9期:93-94

[18]黄冬冬.基于小理论的股票价格指数分析与预测[J]经济月刊,2011.5月;41-43

[19] Alexander Kai-man Leunga, Foo-tim Chaua, Jun-bin Gaob. A review on applications of wavelet transform techniques in chemical analysis. Hung Hom, Kowloon Xi’an Jiaotong University .1989–1997

[20] Xuefeng Chena, Jiawei Xiangb, Bing Lia, Zhengjia Hea. A study of multiscale wavelet -based elements for adaptive finite element analysis. Xi’an Jiaotong University. 17 October 2009 [21]HOURong-tao1,SUNLi-yuan,RENLi-yi,YANGWen-ping.FaultDiagnosisofaTurbo-unitBasedo nWavelet Packet Theory. Hebei Institute of Technology. December 2002

(四)语音信号除噪原理及示例

在实际工程巾,有用的信号常常表现为低频信号或一些较平稳的信号,而噪声信号则表现为高频信号。所以,去噪过程可按如下方法进行:首先对信号进行小波分解,则噪声部分通常包含在高频部分。进而可以门限阈值对小波系数进行处理,然后对信号进行重构即可达到去噪的目的。基于一维小波变换对语音信号降噪的MATLAB实现

一般而言,一维信号降噪的过程可分为以下3个步骤:(1)信号的小波分解。选择一个小波并确定分解层次,然后进行分解计算。(2)小波分解高频系数的阈值量化。对各个分解尺度下的高频系数选择一个阈值进行软阈值量化处理。(3)一维小波重构。根据小波分解的底层低频系数和各层高频系数进行一维小波重构。在MA TLAB中应用一维小波分析进行信号降噪处理,主要通过两个函数wden和wdencmp 来实现。用wden函数时,返回的是经过对原始信号进行降噪处理后的信号。wdencmp函数是一种使用更普遍的函数。它可以直接对一维或二维信号进行降噪或压缩,处理方法也是通过对小波分解系数进行闽值量化来实现I 。一维语音信号去噪示例:

去噪程序:

[y,fs,bits]=wavread('C:\Users\Administrator\Desktop\taobao_noise.wav');

% sound(y,fs) % 回放语音信号

n=9600 %选取变换的点数

y_p=fft(y,n); %对n点进行傅里叶变换到频域

f=fs*(0:n/2-1)/n; % 对应点的频率

subplot(3,1,1);

plot(y);

%语音信号的时域波形图

title('原始语音信号采样后时域波形');

xlabel('时间轴')

ylabel('幅值A')

subplot(3,1,2);

plot(f,abs(y_p(1:n/2)));

%语音信号的频谱图

title('原始语音信号采样后频谱图');

xlabel('频率Hz');

ylabel('频率幅值');

[thr,sorh,keepapp]=ddencmp('den','wv',y);

% 获取降噪的默认阈值

[c,l]=wavedec(y,5,'sym6');

%利用sym6小波进行5层分解

xd=wdencmp('gbl',c,l,'sym6',5,thr,sorh,keepapp);

%利用wdencmp函数和默认阈值进行降噪处理sdl=wnoisest(c,l,1:5);

%求出默认阈值

subplot(3,1,3);

plot(xd);

MATLAB程序的去噪效果图:

未加噪声的音频信号图:

利用小波工具箱进行软阈值的去噪结果图

选取不同分解小波的分析结果不同,选取不同的阈值其去噪效果也不同,如何选取最优分解小波和选取各分解层的阈值是信号去噪的核心问题也是难点问题.

小波变换的基本原理

10.2小波变换的基本原理 地质雷达的电磁波信号和地震波信号都是非平稳随机时变信号,长期以来,因非平稳信号处理的理论不健全,只好将其作为平稳信号来处理,其处理结果当然不满意。近年来,随着科学技术的发展和进步,国内外学术界已将注意力转向非平稳随机信号分析与处理的研究上,其中非平稳随机信号的时频表示法是研究热点之一。在这一研究中,戈勃展开、小波变换、维格纳分布与广义双线性时频分布等理论发展起来,这些方法既可以处理平稳信号过程,也可以处理非平稳随机时变信号。 小波变换是上世纪80年代中后期逐渐发展起来的一种数学分析方法。1984年法国科学家J.M OLET在分析地震波的局部特性时首先使用了小波这一术语,并用小波变换对地震信号进行处理。小波术语的含义是指一组衰减震动的波形,其振幅正负相间变化,平均值为零,是具有一定的带宽和中心频率波组。小波变换是用伸缩和平移小波形成的小波基来分解(变换)或重构(反变换)时变信号的过程。不同的小波具有不同带宽和中心频率,同一小波集中的带宽与中心频率的比是不变的,小波变换是一系列的带通滤波响应。它的数学过程与傅立叶分析是相似的,只是在傅立叶分析中的基函数是单频的调和函数,而小波分析中的基函数是小波,是一可变带宽内调和函数的组合。 小波变换在时域和频域都具有很好的局部化性质,较好地解决了时域和频域分辨率的矛盾,对于信号的低频成分采用宽时窗,对高频成分采用窄时窗。因而,小波分析特别适合处理非平稳时变信号,在语音分析和图象处理中有广泛的应用,在地震、雷达资料处理中将有良好的应用前景。 下边就小波分析的基本原理、主要作用及在雷达资料处理中的应用三方面作以介绍。 10.2.1小波分析的基本原理 小波函数的数学表达

(完整版)小波原理课件

我希望能简单介绍一下小波变换,它和傅立叶变换的比较,以及它在移动平台做motion detection的应用。如果不做特殊说明,均以离散小波为例子。考虑到我以前看中文资料的痛苦程度,我会尽量用简单,但是直观的方式去介绍。有些必要的公式是不能少的,但我尽量少用公式,多用图。另外,我不是一个好的翻译者,所以对于某些实在翻译不清楚的术语,我就会直接用英语。我并不claim我会把整个小波变换讲清楚,这是不可能的事,我只能尽力去围绕要点展开,比如小波变换相对傅立叶变换的好处,这些好处的原因是什么,小波变换的几个根本性质是什么,背后的推导是什么。我希望达到的目的就是一个小波变换的初学者在看完这个系列之后,就能用matlab或者别的工具对信号做小波变换的基本分析并且知道这个分析大概是怎么回事。 要讲小波变换,我们必须了解傅立叶变换。要了解傅立叶变换,我们先要弄清楚什么是”变换“。很多处理,不管是压缩也好,滤波也好,图形处理也好,本质都是变换。变换的是什么东西呢?是基,也就是basis。如果你暂时有些遗忘了basis的定义,那么简单说,在线性代数里,basis是指空间里一系列线性独立的向量,而这个空间里的任何其他向量,都可以由这些个向量的线性组合来表示。那basis在变换里面啥用呢?比如说吧,傅立叶展开的本质,就是把一个空间中的信号用该空间的某个basis的线性组合表示出来,要这样表示的原因,是因为傅立叶变换的本质,是。小波变换自然也不例外的和basis有关了。再比如你用Photoshop去处理图像,里面的图像拉伸,反转,等等一系列操作,都是和basis的改变有关。 既然这些变换都是在搞基,那我们自然就容易想到,这个basis的选取非常重要,因为basis的特点决定了具体的计算过程。一个空间中可能有很多种形式的basis,什么样的basis比较好,很大程度上取决于这个basis服务于什么应用。比如如果我们希望选取有利于压缩的话,那么就希望这个basis能用其中很少的向量来最大程度地表示信号,这样即使把别的向量给砍了,信号也不会损失很多。而如果是图形处理中常见的线性变换,最省计算量的完美basis就是eigenvector basis了,因为此时变换矩阵T对它们的作用等同于对角矩阵( Tv_n = av_n,a是eigenvalue )。总的来说,抛开具体的应用不谈,所有的basis,我们都希望它们有一个共同的特点,那就是,容易计算,用最简单的方式呈现最多的信号特性。 好,现在我们对变换有了基本的认识,知道他们其实就是在搞基。当然,搞基也是分形式的,不同的变换,搞基的妙处各有不同。接下来先看看,傅立叶变换是在干嘛。 傅立叶级数最早是Joseph Fourier 这个人提出的,他发现,这个basis不仅仅存在与vector space,还存在于funct ion space。这个function space本质上还是一个linear vector space,可以是有限的,可以是无限的,只不过在这个空间里,vector就是function了,而对应的标量就是实数或者复数。在vector space里,你有vector v可以写成vector basis的线性组合,那在function space里,function f(x)也可以写成对应function basis的线性组合,也有norm。你的vector basis可以是正交的,我的function basis也可以是正交的(比如sin(t)和sin(2t))。唯一不同的是,我的function basis是无穷尽的,因为我的function space的维度是无穷的。好,具体来说,那就是现在我们有一个函数,f(x)。我们希望将它写成一些cos函数和一些sin函数的形式,像这样 again,这是一个无限循环的函数。其中的1,cosx, sinx, cos2x …..这些,就是傅立叶级数。傅立叶级数应用如此广泛的主要原因之一,就是它们这帮子function basis是正交的,这就是有趣的地方了。为什么function basis正交如此重要呢?我们说两个vector正交,那就是他俩的内积为0。那对于function basis呢?function basis怎么求内积呢? 现在先复习一下vector正交的定义。我们说两个vector v,w如果正交的话,应符合:

小波分析的发展历程

小波分析的发展历程 一、小波分析 1910年,Haar提出了L2(R)中第一个小波规范正交基,即Haar正交基。 (1)操作过程:Haar正交基是以一个简单的二值函数作为母小波经平移和伸缩而形成的。 (2)优点:Haar小波变换具有最优的时(空)域分辨率。 (3)缺点:Haar小波基是非连续函数,因而Haar小波变换的频域分辨率非常差。 1936年,Littlewood和Paley对傅立叶级数建立了二进制频率分量分组理论,(即L-P理论:按二进制频率成分分组,其傅立叶变换的相位并不影响函数的大小和形状),这是多尺度分析思想的最早起源。 1952年~1962年,Calderon等人将L-P理论推广到高维,建立了奇异积分算子理论。 1965年,Calderon发现了著名的再生公式,给出了抛物型空间上H1的原子分解。 1974年,Coifman实现了对一维空间和高维空间的原子分解。 1976年,Peetre在用L-P理论对Besov空间进行统一描述的同时,给出了Besov空间的一组基。1981年,Stromberg引入了Sobolev空间H p的正交基,对Haar正交基进行了改造,证明了小波函数的存在性。 1981年,法国地球物理学家Morlet提出了小波的正式概念。 1985年,法国数学家Meyer提出了连续小波的容许性条件及其重构公式。 1986年,Meyer在证明不可能存在同时在时频域都具有一定正则性(即光滑性)的正交小波基时,意外发现具有一定衰减性的光滑性函数以构造L2(R)的规范正交基(即Meyer基),从而证明了正交小波系的存在。 1984年~1988年,Meyer、Battle和Lemarie分别给出了具有快速衰减特性的小波基函数:Meyer小波、Battle-Lemarie样条小波。 1987年,Mallat将计算机视觉领域中的多尺度分析思想引入到小波分析中,提出了多分辨率分析的概念,统一了在此前的所有具体正交小波的构造,给出了构造正交小波基的一般方法,提出了快速小波变换(即Mallat算法)。它标志着第一代小波的开始? (1)操作过程:先滤波,再进行抽二采样。 (2)优点:Mallat算法在小波分析中的地位相当于FFT在经典傅立叶分析中的地位。它是小波分析从纯理论走向实际应用。 (3)缺点:以傅立叶变换为基础,直接在时(空)域中设计滤波器比较困难,并且计算量大。 1988年,Daubechies基于多项式方式构造出具有有限支集的光滑正交小波基(即Daubechies基)。 Chui和中国学者王建忠基于样条函数构造出单正交小波函数,并提出了具有最优局部化性能的尺度函数和小波函数的一般性构造方法。1988年,Daubechies在美国NSF/CBMS主办的小波专题研讨会上进行了10次演讲,引起了广大数学家、物理学家、工程师以及企业家的重视,将小波理论发展与实际应用推向了一个高潮。 1992年,Daubechies对这些演讲内容进行了总结和扩展形成了小波领域的经典著作——小波十讲《Ten Lectures on Wavelet》。 1992年3月,国际权威杂志《IEEE Transactions on Information Theory》专门出版了“小波分析及其应用”专刊,全面介绍了此前的小波分析理论和应用及其在不同学科领域的发展,从此小波分析开始进入了全面应用阶段。 1992年,Kovacevic和Vetterli提出了双正交小波的概念。 1992年,Cohen、Daubechies和Feauveau构造出具有对称性、紧支撑、消失矩、正则性等性质的双正交小波。 (1)操作过程:利用两组互为对偶的尺度函数和小波函数实现函数的分解与重构。 (2)优点:具有正交小波无法同时满足的对称性、紧支撑、消失矩、正则性等性质。

小波变换的原理及matlab仿真程序讲解学习

小波变换的原理及m a t l a b仿真程序

基于小波变换的信号降噪研究 2 小波分析基本理论 设Ψ(t)∈L 2( R) ( L 2( R) 表示平方可积的实数空间,即能量有限的信号空间) , 其傅立叶变换为Ψ(t)。当Ψ(t)满足条件[4,7]: 2 () R t dw w C ψψ =<∞? (1) 时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到一个小波序列: ,()( )a b t b t a ψ -= ,,0a b R a ∈≠ (2) 其中a 为伸缩因子,b 为平移因子。 对于任意的函数f(t)∈L 2( R)的连续小波变换为: ,(,),()( )f a b R t b W a b f f t dt a ψψ-=<>= ? (3) 其逆变换为: 211()(,)()f R R t b f t W a b dadb C a a ψ ψ+-= ?? (4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参

数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。 3 小波降噪的原理和方法 3.1 小波降噪原理 从信号学的角度看 ,小波去噪是一个信号滤波的问题。尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如图所示[6]: 小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下形式: (k)()()S f k e k ε=+* k=0.1…….n-1 其中 ,f( k)为有用信号,s(k)为含噪声信号,e(k)为噪声,ε为噪声系数的标准偏差。 假设e(k)为高斯白噪声,通常情况下有用信号表现为低频部分或是一些比较平稳的信号,而噪声信号则表现为高频的信号,下面对 s(k)信号进行如图结构的小波分解,则噪声部分通常包含在Cd1、Cd2、Cd3中,只要对 Cd1,Cd2,Cd3作相应的小波系数处理,然后对信号进行重构即可以达到消噪的目的。

小波变换基本原理

第五章 小波变换基本原理 问题 ①小波变换如何实现时频分析?其频率轴刻度如何标定? —尺度 ②小波发展史 ③小波变换与短时傅里叶变换比较 a .适用领域不同 b.STFT 任意窗函数 WT (要容许性条件) ④小波相关概念,数值实现算法 多分辨率分析(哈尔小波为例) Daubechies 正交小波构造 MRA 的滤波器实现 ⑤小波的历史地位仍不如FT ,并不是万能的 5.1 连续小波变换 一.CWT 与时频分析 1.概念:? +∞ ∞ --ψ= dt a b t t S a b a CWT )( *)(1),( 2.小波变换与STFT 用于时频分析的区别 小波 构造? 1910 Harr 小波 80年代初兴起 Meyer —小波解析形式 80年代末 Mallat 多分辨率分析—WT 无须尺度和小波函数—滤波器组实现 90年代初 Daubechies 正交小波变换 90年代中后期 Sweblews 第二代小波变换

3.WT 与STFT 对比举例(Fig 5–6, Fig 5–7) 二.WT 几个注意的问题 1.WT 与)(t ψ选择有关 — 应用信号分析还是信号复原 2.母小波)(t ψ必须满足容许性条件 ∞<ψ=? ∞ +∞ -ψdw w w C 2 )( ①隐含要求 )(,0)0(t ψ=ψ即具有带通特性 ②利用ψC 可推出反变换表达式 ??+∞∞-+∞ ∞-ψ -ψ= dadb a b t b a CWT a C t S )(),(11 )(2 3.CWT 高度冗余(与CSTFT 相似) 4.二进小波变换(对平移量b 和尺度进行离散化) )2(2)()(1 )(2 ,22,,n t t a b t a t n b a m m n m b a m m -ψ=ψ?-ψ= ??==--ψ dt t t S n CWT d n m m m n m )(*)()2,2(,,?+∞ ∞ ---ψ=?= 5.小波变换具有时移不变性 ) ,()() ,()(00b b a C W T b t S b a C W T t S -?-? 6.用小波重构信号 ∑∑ ∑∑+∞-∞=+∞ -∞ =+∞-∞=+∞ -∞ =ψψ= m n m n n m n m n m n m t d t d t S )(?)(?)(,,,,正交小波 中心问题:如何构建对偶框架{} n m ,?ψ

小波变换及其应用_李世雄

现代数学讲座 小波变换及其应用 李世雄 (安徽大学数学系 合肥 230039) 科学技术的迅速发展使人类进入了信息时代。在信息社会中人们在各种领域中都会涉及各种信号(语音,音乐,图像,金融数据,……)的分析、加工、识别、传输和存储等问题。长期以来,傅里叶变换一直是处理这方面问题最重要的工具,并且已经发展了一套内容非常丰富并在许多实际问题中行之有效的方法。但是,用傅里叶变换分析处理信号的方法也存在着一定的局限性与弱点,傅里叶变换提供了信号在频率域上的详细特征,但却把时间域上的特征完全丢失了。小波变换是80年代后期发展起来的新数学分支,它是傅里叶变换的发展与扩充,在一定程度上克服了傅里叶变换的弱点与局限性。本文从信号分析与处理的角度来介绍小波变换的基本理论与应用,使具有微积分基础的读者通过本文能对这一新的数学分支有一初步了解。小波变换在函数论、微分方程、数值计算等方面也有着重要的应用,有兴趣的读者可参看[1][4]。 (一)从傅里叶变换谈起 数学中经常用变换这一技巧将问题由繁难化为简易,初等数学中用对数将较繁难的乘除法化为简易的加减法就是很典型的一个例子。而傅里叶变换(简称FT )则是利用积分将一个函数f (t )(-∞

小波分析考试题及答案

一、叙述小波分析理论发展的历史和研究现状 答:傅立叶变换能够将信号的时域和特征和频域特征联系起来,能分别从信号的时域和频域观察,但不能把二者有机的结合起来。这是因为信号的时域波形中不包含任何频域信息,而其傅立叶谱是信号的统计特性,从其表达式中也可以看出,它是整个时间域内的积分,没有局部化分析信号的功能,完全不具备时域信息,也就是说,对于傅立叶谱中的某一频率,不能够知道这个频率是在什么时候产生的。这样在信号分析中就面临一对最基本的矛盾——时域和频域的局部化矛盾。 在实际的信号处理过程中,尤其是对非常平稳信号的处理中,信号在任一时刻附近的频域特征很重要。如柴油机缸盖表明的振动信号就是由撞击或冲击产生的,是一瞬变信号,单从时域或频域上来分析是不够的。这就促使人们去寻找一种新方法,能将时域和频域结合起来描述观察信号的时频联合特征,构成信号的时频谱,这就是所谓的时频分析,亦称为时频局部化方法。 为了分析和处理非平稳信号,人们对傅立叶分析进行了推广乃至根本性的革命,提出并开发了一系列新的信号分析理论:短时傅立叶变换、时频分析、Gabor 变换、小波变换Randon-Wigner变换、分数阶傅立叶变换、线形调频小波变换、循环统计量理论和调幅—调频信号分析等。其中,短时傅立叶变换和小波变换也是因传统的傅立叶变换不能够满足信号处理的要求而产生的。 短时傅立叶变换分析的基本思想是:假定非平稳信号在不同的有限时间宽度内是平稳信号,从而计算出各个不同时刻的功率谱。但从本质上讲,短时傅立叶变换是一种单一分辨率的信号分析方法,因为它使用一个固定的短时窗函数,因而短时傅立叶变换在信号分析上还是存在着不可逾越的缺陷。 小波变换是一种信号的时间—尺度(时间—频率)分析方法,具有多分辨率分析(Multi-resolution)的特点,而且在时频两域都具有表征信号局部特征的能力,使一种窗口大小固定不变,但其形状可改变,时间窗和频率窗都可以改变的时频局部化分析方法。小波变换在低频部分具有较高的频率分辨率和较低的时间分辨率。在高频部分具有较高的时间分辨率和较低的频率分辨率,很适合于探测正常信号中夹带的瞬态反常现象并展示其成分,所以被誉为分析信号的显微镜。 小波分析最早应用在地震数据压缩中, 以后在图像处理、故障诊断等方面取得了传统方法根本无法达到的效果. 现在小波分析已经渗透到了自然科学、应用

小波变换去噪基础地的知识整理

1.小波变换的概念 小波(Wavelet)这一术语,顾名思义,“小波”就是小的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。有人把小波变换称为“数学显微镜”。 2.小波有哪几种形式?常用的有哪几种?具体用哪种,为什么? 有几种定义小波(或者小波族)的方法: 缩放滤波器:小波完全通过缩放滤波器g——一个低通有限脉冲响应(FIR)长度为2N和为1的滤波器——来定义。在双正交小波的情况,分解和重建的滤波器分别定义。 高通滤波器的分析作为低通的QMF来计算,而重建滤波器为分解的时间反转。例如Daubechies和Symlet 小波。 缩放函数:小波由时域中的小波函数 (即母小波)和缩放函数 (也称为父小波)来定义。 小波函数实际上是带通滤波器,每一级缩放将带宽减半。这产生了一个问题,如果要覆盖整个谱需要无穷多的级。缩放函数滤掉变换的最低级并保证整个谱被覆盖到。 对于有紧支撑的小波,可以视为有限长,并等价于缩放滤波器g。例如Meyer小波。 小波函数:小波只有时域表示,作为小波函数。例如墨西哥帽小波。 3.小波变换分类 小波变换分成两个大类:离散小波变换 (DWT) 和连续小波转换 (CWT)。两者的主要区别在于,连续变换在所有可能的缩放和平移上操作,而离散变换采用所有缩放和平移值的特定子集。 DWT用于信号编码而CWT用于信号分析。所以,DWT通常用于工程和计算机科学而CWT经常用于科学研究。 4.小波变换的优点 从图像处理的角度看,小波变换存在以下几个优点: (1)小波分解可以覆盖整个频域(提供了一个数学上完备的描述) (2)小波变换通过选取合适的滤波器,可以极大的减小或去除所提取得不同特征之间的相关性 (3)小波变换具有“变焦”特性,在低频段可用高频率分辨率和低时间分辨率(宽分析窗口),在高频段,可用低频率分辨率和高时间分辨率(窄分析窗口) (4)小波变换实现上有快速算法(Mallat小波分解算法) 另: 1) 低熵性变化后的熵很低; 2) 多分辨率特性边缘、尖峰、断点等;方法, 所以可以很好地刻画信号的非平稳特性 3) 去相关性域更利于去噪; 4) 选基灵活性: 由于小波变换可以灵活选择基底, 也可以根据信号特性和去噪要求选择多带小波、小波包、平移不变小波等。 小波变换的一个最大的优点是函数系很丰富, 可以有多种选择, 不同的小波系数生成的小波会有不同的效果。噪声常常表现为图像上孤立像素的灰度突变, 具有高频特性和空间不相关性。图像经小波分解后可得到低频部分和高频部分, 低频部分体现了图像的轮廓, 高频部分体现为图像的细节和混入的噪声, 因此, 对图像去噪, 只需要对其高频系数进行量化处理即可。 5.小波变换的科学意义和应用价值

小波变换及其应用

实验三小波变换及其应用 实验目的 1、通过观察小波变换系数建立对小波变换及其有关性质的感性认识。 2、掌握小波变换及重构方法;了解小波变换基本应用。 实验内容 1、图像二维离散小波变换及其重构; 2、小波变换在去噪、压缩、图像增强上的应用。 实验原理 1、“小波”就是小区域、长度有限、均值为0的波形。所谓“小”是指它具有衰减性;而称之为“波”则是指它的波动性,其振幅正负相间的震荡形式。与 Fourier变换相比,小波变换是时间(空间)频率的局部化分析,它通过伸缩平移运算对信号(函数)逐步进行多尺度细化,最终达到高频处时间细分,低频处频率细分,能自动适应时频信号分析的要求,从而可聚焦到信号的任意细节,解决了Fourier变换的困难问题,成为继Fourier变换以来在科学方法上的重大突破。 小波转换分成两个大类:离散小波变换 (DWT) 和连续小波转换 (CWT)。两者的主要区别在于,连续转换在所有可能的缩放和平移上操作,而离散转换采用所有缩放和平移值的特定子集。 小波变换的公式有内积形式和卷积形式,两种形式的实质都是一样的。它要求的就是一个个小波分量的系数也就是“权”。其直观意义就是首先用一个时窗最窄,频窗最宽的小波作为尺子去一步步地“量”信号,也就是去比较信号与小波的相似程度。信号局部与小波越相似,则小波变换的值越大,否则越小。当一步比较完成后,再将尺子拉长一倍,又去一步步地比较,从而得出一组组数据。如此这般循环,最后得出的就是信号的小波分解(小波级数)。 当尺度及位移均作连续变化时,可以理解必将产生大量数据,作实际应用时并不需要这么多的数据,因此就产生了离散的思想。将尺度作二进离散就得到二进小波变换,同时也将信号的频带作了二进离散。当觉得二进离散数据量仍显大时,同时将位移也作离散就得到了离散小波变换。 2、二维离散小波变换常用函数

小波变换算法应用

《软件开发》 课程设计 题目:小波算法的设计 【题目要求:将小波算法在MATLAB中实现,并将其应用于数字图像处理中。】 学院:数学学院 专业班级:应用数学09-2班 姓名:李明 学号:20096312 指导教师:邢燕、何蕾 2013.3.5

小波算法的设计 一、小波变换背景 小波变换是当前应用数学中一个迅速发展的领域,是分析和处理非平稳信号的一种有力 工具。它是以局部化函数所形成的小波基作为基底而展开的,具有许多特殊的性能和优点。 小波分析是一种更合理的时频表示和子带多分辨分析,对它的研究开始于20世纪80年代, 理论基础奠基于20世纪80年代末。经过十几年的发展,它已在信号处理与分析、地震信号处理、信号奇异性监测和谱古迹、计算机视觉、语音信号处理、图像处理与分析,尤其是图像编码等领域取得了突破性进展,成为一个研究开发的前沿热点。 二、小波变换概念 小波变换是一窗口大小固定不变但其形状可改变的时频局部化分析方法。小波变换在信号的高频部分,可以取得较好的时间分辨率;在信号的低频部分,可以取得较好的频率分辨率,从而能有效地从信号〔语音、图像等)中提取信息。 设)(t f 是平方可积分函数,即)()(2R L t f ∈,则该连续函数的小波变换定义为: dt a b t t f a b a WT f )()(1 ),(*-=?+∞ ∞-ψ 0≠a 式中)()(1 ,*t a b t a b a ψψ=-称为母小波)(t ψ(基本小波)生成的位移和尺度伸缩,其中a 为尺度参数,b 为平移参数。 连续小波变换有明确的物理意义,尺度参数a 越大,则)(a t ψ越宽,该函数的时间分辨 率越低。)(t ab ψ前增加因子 a 1是为了使不同的a 下的)(t a b ψ能量相同。而),(b a WT f 在频域可以表示为ωωψωπωd e F a b a WT b j f )()(2),(*?=。)(ωψ是幅频特性比较集中的带通 函数,小波变换具有表征分析信号)(ωF 频域上局部性质的能力。采用不同的a 值做处理时,)(ωψ的中心频率和带宽都不同,但品质因数(中心频率/带宽)却不变。

小波变换理论及应用

2011-2012 学年第一学期 2011级硕士研究生考试试卷 课程名称:小波变换理论及应用任课教师:考试时间:分钟 考核类型:A()闭卷考试(80%)+平时成绩(20%); B()闭卷考试(50%)+ 课程论文(50%); C(√)课程论文或课程设计(70%)+平时成绩(30%)。 一、以图示的方式详细说明连续小波变换(CWT)的运算过程,分析小波变换的内涵;并阐述如何从多分辨率(MRA)的角度构造正交小波基。(20分) 二、综述小波变换理论与工程应用方面的研究进展,不少于3000字。(25分) 三、运用MATLAB中的小波函数和小波工具箱,分别对taobao.wav语音信号在加噪之后的taobao_noise.wav信号进行降噪处理,要求列出程序、降噪结果及降噪的理论依据。(25分) 四、平时成绩。(30分)

(一)连续小波变换(CWT )的运算过程及内涵 将平方可积空间中任意函数f (t )在小波基下展开,称这种展开为函数f (t )的连续小波变换(Continue Wavelet Transform ,简记CWT )其表达式为 t a b t t f a b a f W d )(*)(||1),(? ∞+∞--=ψψ ( 1.1) 其中,a ∈R 且a ≠0。式(1.19)定义了连续小波变换,a 为尺度因子,表示与频率相关的伸 缩,b 为时间平移因子。其中)(| |1)(,a b t a t b a -=ψψ为窗口函数也是小波母函数。 从式(1.1)可以得出,连续小波变换计算分以下5个步骤进行。 ① 选定一个小波,并与处在分析时段部分的信号相比较。 ② 计算该时刻的连续小波变换系数C 。如图1.5所示,C 表示了该小波与处在分析时段内的信号波形相似程度。C 愈大,表示两者的波形相似程度愈高。小波变换系数依赖于所选择的小波。因此,为了检测某些特定波形的信号,应该选择波形相近的小波进行分析。 图1.5 计算小波变换系数示意图 ③ 如图1.6所示,调整参数b ,调整信号的分析时间段,向右平移小波,重复①~②步骤,直到分析时段已经覆盖了信号的整个支撑区间。 ④ 调整参数a ,尺度伸缩,重复①~③步骤。 ⑤ 重复①~④步骤,计算完所有的尺度的连续小波变换系数,如图1.7所示。 图1.6 不同分析时段下的信号小波变换系数计算 图1.7 不同尺度下的信号小波变换系数计算 C =0.2247

小波变换及应用

小波变换及应用 一. 为什么研究小波变换 傅立叶变换(Fourier Transform ,缩写为FT )由下列公式定义: 正变换公式 ?()()i t f f t e dt ωω∞ --∞ =?? (1) 逆变换公式 ? ∞ ∞ -?= dt e f t f t i ωωπ )(?21 )( (2) 分析: 1.对于确定信号和平稳随机过程,傅立叶变换把时间域与频率域联系起来,许多在时域内难以看清的问题,在频域中往往表现得非常清楚。 2.变换积分核t i e ω±的幅值在任何情况下均为1,即1=±t i e ω,因此,频 谱)(?ωf 的任一频率点值是由时间过程)(t f 在整个时间域),(∞-∞上的贡献决定的;反之,过程)(t f 在某一时刻的状态也是由)(?ωf 在整个频率域),(∞-∞上的贡献决定的。)(t f 与)(?ωf 彼此之间是整体刻画,不能够反映各自在局部区域上的特征,因此不能用于局部分析。特别是傅立叶变换的积分作用平滑了非平稳过程的突变成分。要知道所分析的信号在突变时刻的频率成分,傅立叶变换是无能为力的。 3.实际中存在许多信号具有局部时间范围(特别是突变时刻)内的信号特征(一般是频率成分),例如,在音乐和语音信号中,人们所关心的是什么时刻奏什么音符,发出什么样的音节;图像信号中的细节信息,如边缘特征。 4.为了对非平稳信号作较好的分析,可以对信号在时域上加一个窗函数 )(τ-t g ,使其对信号)(t f 进行乘积运算以实现在τ附近的开窗,再对加窗的信 号进行傅立叶分析,这就是短时傅立叶变换(Short Time Fourier Transform, 缩写为STFT ),或者称为加窗傅立叶变换(Windowed Fourier Transform )。STFT 定义如下: (,)()()i t f S f t g t e dt ωωττ∞ --∞ =-? (3)

小波变换算法应用

小波变换算法应用

《软件开发》 课程设计 题目:小波算法的设计 【题目要求:将小波算法在MATLAB中实现,并将其应用于数字图像处理中。】 学院:数学学院 专业班级:应用数学09-2班 姓名:李明 学号:20096312 指导教师:邢燕、何蕾 2013.3.5

小波算法的设计 一、小波变换背景 小波变换是当前应用数学中一个迅速发展的领域,是分析和处理非平稳信号的一种有力 工具。它是以局部化函数所形成的小波基作为基底而展开的,具有许多特殊的性能和优点。 小波分析是一种更合理的时频表示和子带多分辨分析,对它的研究开始于20世纪80年代, 理论基础奠基于20世纪80年代末。经过十几年的发展,它已在信号处理与分析、地震信号处理、信号奇异性监测和谱古迹、计算机视觉、语音信号处理、图像处理与分析,尤其是图像编码等领域取得了突破性进展,成为一个研究开发的前沿热点。 二、小波变换概念 小波变换是一窗口大小固定不变但其形状可改变的时频局部化分析方法。小波变换在信号的高频部分,可以取得较好的时间分辨率;在信号的低频部分,可以取得较好的频率分辨率,从而能有效地从信号〔语音、图像等)中提取信息。 设)(t f是平方可积分函数,即)( f ,则该 t (2R ) L

连续函数的小波变换定义为: dt a b t t f a b a WT f )()(1),(*-=?+∞ ∞-ψ 0≠a 式中)()(1 ,*t a b t a b a ψψ=-称为母小波)(t ψ(基本小波)生 成的位移和尺度伸缩,其中a 为尺度参数,b 为平移参数。 连续小波变换有明确的物理意义,尺度参数a 越大,则 )(a t ψ越宽,该函数的时间分辨率越低。)(t ab ψ前增加因子 a 1是为了使不同的a 下的)(t a b ψ能量相同。而),(b a WT f 在频域可以表示为ωωψωπωd e F a b a WT b j f )()(2),(*?=。)(ωψ是幅频特性比较集中 的带通函数,小波变换具有表征分析信号)(ωF 频域上局部性质的能力。采用不同的a 值做处理时,)(ωψ的中心频率和带宽都不同,但品质因数(中心频率/带宽)却不变。 三、小波变换需求分析

小波变换的原理及matlab仿真程序

基于小波变换的信号降噪研究 2 小波分析基本理论 设Ψ(t)∈L 2( R) ( L 2( R) 表示平方可积的实数空间,即能量有限的信号空间) , 其傅立叶变换为Ψ(t)。当Ψ(t)满足条件[4,7]: 2 () R t dw w C ψψ =<∞? (1) 时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到一个小波序列: ,()( )a b t b t a ψ -= ,,0a b R a ∈≠ (2) 其中a 为伸缩因子,b 为平移因子。 对于任意的函数f(t)∈L 2( R)的连续小波变换为: ,(,),()( )f a b R t b W a b f f t dt a ψψ-=<>= ? (3) 其逆变换为: 211()(,)()f R R t b f t W a b dadb C a a ψ ψ+-= ?? (4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。 3 小波降噪的原理和方法 3.1 小波降噪原理 从信号学的角度看 ,小波去噪是一个信号滤波的问题。尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如 图所示[6] : 小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下

小波分析结课作业——小波理论发展及应用综述

摘要 摘要 小波分析是一门正在迅速发展的新兴学科,目前,它在实际中得到了广泛的应用。研究小波的新理论、新方法以及新应用具有重要的理论意义和实用价值。 本文在简述了小波发展历史和小波的基本理论知识后,对以小波为工具进行数字图像处理进行了有益的探索。最后详细介绍了基于阈值的小波分析的图像去噪算法及其在信号处理中的应用。 关键字:小波分析研究现状应用图像去噪阈值

ABSTRACT ABSTRACT Wavelet analysis is a rapidly developing and novel subject. Nowadays,it has been widely used in practical applications. To study the new theory,methods and applications of wavelet is of great theoretical significance and practical value. After a brief description of the history of wavelet development and the basic theoretical knowledge of wavelet,this paper makes valid probe towards digital image processing using wavelet. Finally,this paper analysis and study of the classical thresholding denoising methods and the new scopes of wavelet applications. key word: Wavelet Analysis , Research Status , Application , Signal Denoising, Thresholding

小波变换

小波变换理论及应用 ABSTRACT:小波理论是近几年发展起来的新的信号处理技术,因其在时间域和频率域都可以达到高的分辨率,被称为“数学显微镜”,在数值信号处理领域应用广泛,发展非常快。但其涉及较多的数学知识,以及巧妙的数字计算技巧,对于非数学专业的科研人员,要完全掌握其中的精妙之处,有一定的难度。正是考虑到这一点,本文的开始部分不过多说明小波分析的数学理论,只是以尽量简短的篇幅介绍必要的预备知识,接着阐述小波变换理论。在理解了小波变换理论的基础上,再举例说明小波变换在实际中的应用。 第一章小波变换理论 这一章用尽量简短的篇幅和通俗的语言介绍小波变换的基本概念。 1.1.从傅里叶变换到小波变换 一、傅里叶变换 在信号处理中重要方法之一是傅里叶变换(Fourier Transform),它架起了时间域和频率域之间的桥梁。图1.1给出了傅里叶分析的示意图。 图1.1 傅里叶变换示意图 定义x(t)的傅里叶变换X(ω): ?∞∞-- =dt e t x X t jω ω) ( ) ( (1) X(ω)的傅里叶反变换x(t): ?∞∞- =ω ω π ωd e X t x t j ) ( 2 1 ) ( (2) 对很多信号来说,傅里叶分析非常有用。因为它能给出信号中包含的各种频率成分。但是,傅里叶变换有着严重的缺点:变换之后使信号失去了时间信息,它不能告诉人们在某段时间里发生了什么变化。而很多信号都包含有人们感兴趣的非稳态(或)特性,如漂移、趋势项、突然变化以及信号的开始或结束。这些特性是信号的重要部分。因此傅里叶变换不适于分析处理这类信号。

二、短时傅里叶变换 为了克服傅里叶变换的缺点,D.Gabor(1946)提出了短时傅里叶变换(Short Time Fourier Transform), 又称为盖博(Gabor)变换或者加窗傅里叶变换(Windowed Fourier Transform)。图1.2给出了短时傅里叶变换的示意图。 图1.2短时傅里叶变换 盖博变换把一个时间信号变换为时间和频率的二维函数,它能够提供信号在某个时间段和某个频率范围的一定信息。这些信息的精度依赖于时间窗的大小。盖博变换的缺点是对所有的频率成分,所取的时间窗的大小都相同。然而,对很多信号为了获得更精确的时间或频率信息,需要可变的时间窗。 三、小波变换 小波变换提出了变化的时间窗。当需要精确的低频信息时,采用长的时间窗,当需要精确的高频信息时,采用短的时间窗。图1.3给出了时间域信号、傅 里叶变换、短时傅里叶变换和小波变换对比的示意图。 时间域频率域 短时傅里叶变换小波变换 图1.3 小波变换示意图 1.2.连续小波变换 什么是小波?小波是一个衰减的波形,它在有限的区域里存在(不为零), 且其均值为零。小波变换采用改变时间-频率窗口形状的方法,很好的解决了时

小波分析原理

小波分析原理 1.1 小波变换及小波函数的多样性 小波是函数空间2()L R 中满足下述条件的一个函数或者信号()x ψ: 2 ?().R C d ψψωωω+=<∞? 式中,*{0}R R =-表示非零实数全体,?()ψ ω是()x ψ的傅里叶变换,()x ψ成为小波母函数。 对于实数对(,)a b ,参数a 为非零实数,函数 1 (,)()x b a b x a a ψψ-??= ??? 称为由小波母函数()x ψ生成的依赖于参数对(,)a b 的连续小波函数,简称小波。其中:a 称为伸缩因子;b 称为平移因子。 对信号()f x 的连续小波变换则定义为 ,1 (,)()(),()f a b R x b W a b f x dx f x x a a ψψ-??==?? ??? ? 其逆变换(回复信号或重构信号)为 *1 ()(,)f R R x b f x W a b dadb C a ψψ?-??= ??? ?? 信号()f x 的离散小波变换定义为 2(2,2)2()(2)j j j j f W k f x x k dx ψ+∞ ---∞=-? 其逆变换(恢复信号或重构信号)为 (2,2)()(2,2)()j j j j f k j k f t C W k x ψ+∞ +∞=-∞=-∞=∑∑ 其中,C 是一个与信号无关的常数。 显然小波函数具有多样性。在MATLAB 小波工具箱中提供了多种小波幻术,包括Harr 小波,Daubecheies (dbN )小波系,Symlets (symN )小波系,ReverseBior (rbio )小波系,Meyer (meyer )小波,Dmeyer (dmey )小波,Morlet(morl)小波,Complex Gaussian(cgau)小波系,Complex morlet(cmor)小波系,Lemarie (lem )小波系等。实际应用中应根据支撑长度、对称性、正则性等标准选择合适的小波函数。 1.2 小波的多尺度分解与重构 1988年Mallat 在构造正交小波基时提出多尺度的概念,给出了离散正交二进小波变换的金字塔算法,其小波分析树形结构如图1所示,即任何函数2()()f x L R ∈都可以根据分

相关文档
最新文档