基于单片机的温度控制系统设计与实现

基于单片机的温度控制系统设计与实现
基于单片机的温度控制系统设计与实现

基于单片机的温度控制系统设计与实现

——下位机系统

基于单片机的温度控制系统设计与实现—下位机系统

摘要

温度的测量与控制在工业生产和日常生活中应用广泛。本文介绍了一个基于单片机STC89C52的简单温度控制系统,该系统由上下位机两级组成,上位机采用PC机运行温度监控程序,对温度进行实时监控,同时设定下位机的控制参数,可实现对温度数据的存储管理。下位机由单片机构成温度现场采集与控制终端,负责现场温度的采集与控制。本文着重介绍了下位机系统的设计方案与软硬件实现。下位机系统采用8051单片机组成温度现场测控单元,使用DS18B20数字式温度传感器进行温度测量,温度的实时测量数据通过RS-232上传至上位机,进行实时监视,同时接收上位机的控制指令,通过继电器控制电加热丝的通断,实现对温度的控制。实验表明该系统能够实现对温度的控制,具有一定的控制精度。该系统测温电路简单、连接方便,可用于简单温度控制的场合。

关键词:单片机;温度控制;温度传感器;串口通讯

Based on a Temperature Control System Design and

Implementation - Controller System

Abstract

The application about temperature measurement and control is normal in the area of industry and daily life. A simple temperature control system, based on the STC89C52 MCU,is introduced in this paper, which include host computer and slave one. The host one, that is PC, runs temperature monitor software which monitors real-time temperature value, sets the control parameters to the slave, and save the data. The slave is temperature field collection and control unit composed by MCU, the digital temperature sensor, DS18B20, is used for the temperature measurement, the real-time data is transferred to the host computer by RS-232 for the online monitoring, the control instruction downloaded from the host is used to control temperature by means of heating wire make-break controlled by relay. The experiment shows that the system can control the temperature with the better control precise. With the simplicity of the temperature measurement circuit and the convenient connection procedure, this system may be adaptable for the situations needed simple temperature control.

Keywords: MCU; Temperature control; Temperature sensor; Serial communication

基于单片机的温度控制系统设计与实现—下位机系统

目录

1 绪论 (1)

1.1 温度控制系统的发展现状 (1)

1.2 课题的内容及要求 (3)

1.3 论文的内容及安排 (4)

2 温度控制系统总体方案设计 (5)

2.1 系统总体方案设计 (5)

2.2 硬件总体方案设计 (5)

2.3 软件总体方案设计 (7)

3 温度控制系统硬件系统设计 (8)

3.1 单片机最小系统设计 (8)

3.2 测温电路设计 (10)

3.2.1 DS18B20的介绍 (10)

3.2.2 测温电路设计 (13)

3.3 控温电路设计 (14)

3.4 电平转换及串口通信电路 (15)

3.4.1 电平转化电路 (16)

3.4.2 串口通信电路 (16)

4 温度控制系统的软件方案设计 (19)

4.1 初始化子程序设计 (19)

4.2 DS18B20测温子程序设计 (19)

4.3 串口通信子程序设计 (22)

4.4 控制部分子程序设计 (24)

5 系统调试 (25)

5.1 硬件部分调试 (25)

5.2 软件部分调试 (26)

5.3 系统联调 (27)

结论 (29)

社会经济效益分析 (30)

参考文献 (31)

致谢 (33)

附录Ⅰ电路图 (34)

附录Ⅱ程序清单 (35)

附录Ⅲ元器件清单 (44)

1 绪论

温度是生活及生产中最基本的物理量,它表征的是物体的冷热程度。自然界中任何物理、化学过程都紧密的与温度相联系。在很多生产过程中,温度的测量和控制都直接和安全生产、提高生产效率、保证产品质量、节约能源等重大技术经济指标相联系。因此,温度的测量与控制在国民经济各个领域中均受到了相当程度的重视。

在实际的生产实验环境下,由于系统内部与外界的热交换是难以控制的,其他热源的干扰也是无法精确计算的,因此温度量的变化往往受到不可预测的外界环境扰动的影响。为了使系统与外界的能量交换尽可能的符合人们的要求,就需要采取其他手段来达到这样一个绝热的目的,例如可以让目标系统外部环境的温度与其内部温度同步变化。根据热力学第二定律,两个温度相同的系统之间是达到热平衡的,这样利用一个与目标系统温度同步的隔离层,就可以把目标系统与外界进行热隔离。

另外,在大部分实际的环境中,增温要比降温方便得多。因此,对温度的控制精度要求比较高的情况下,是不允许出现过冲现象的,即不允许实际温度超过控制的目标温度。特别是隔热效果很好的环境,温度一旦出现过冲,将难以很快把温度降下来。这是因为很多应用中只有加热环节,而没有冷却的装置。同样道理,对于只有冷却没有加热环节的应用中,实际温度低于控制的目标温度,对控制效果的影响也是很大的。

鉴于上述这些特点,高精度温度控制的难度比较大,而且不同的应用环境也需要不同的控制策略。下面就简要的讨论一下温度测控技术的发展与现状。

1.1温度控制系统的发展现状

近年来,温度的检测在理论上发展比较成熟,但在实际测量和控制中,如何保证快速实时地对温度进行采样,确保数据的正确传输,并能对所测温度场进行较精确的控制,仍然是目前需要解决的问题。

温度测控技术包括温度测量技术和温度控制技术两个方面。

在温度的测量技术中,接触式测温发展较早,这种测量方法的优点是:简单、

基于单片机的温度控制系统设计与实现—下位机系统

可靠、低廉、测量精度较高,一般能够测得真实温度;但由于检测元件热惯性的影响,响应时间较长,对热容量小的物体难以实现精确的测量,并且该方法不适宜于对腐蚀性介质测温,不能用于超高温测量,难于测量运动物体的温度。另外的非接触式测温方法是通过对辐射能量的检测来实现温度测量的方法,其优点是:不破坏被测温场,可以测量热容量小的物体,适于测量运动物体的温度,还可以测量区域的温度分布,响应速度较快。但也存在测量误差较大,仪表指示值一般仅代表物体表观温度,测温装置结构复杂,价格昂贵等缺点。因此,在实际的温度测量中,要根据具体的测量对象选择合适的测量方法,

在满足测量精度要求的前提下尽量减少投入。

温度控制技术按照控制目标的不同可分为两类:动态温度跟踪与恒值温度控制。动态温度跟踪实现的控制目标是使被控对象的温度值按预先设定好的曲线进行变化。在工业生产中很多场合需要实现这一控制目标,如在发酵过程控制,化工生产中的化学反应温度控制,冶金工厂中燃烧炉中的温度控制等;恒值温度控制的目的是使被控对象的温度恒定在某一给定数值上,且要求其波动幅度(即稳态误差)不能超过某允许值。本文所讨论的基于单片机的温度控制系统就是要实现对温控箱的恒值温度控制要求,故以下仅对恒值温度控制进行讨论。

从工业控制器的发展过程来看,温度控制技术大致可分以下几种:

1.定值开关控温法

所谓定值开关控温法,就是通过硬件电路或软件计算判别当前温度值与设定目标温度值之间的关系,进而对系统加热装置(或冷却装置)进行通断控制。若当前温度值比设定温度值高,则关断加热器,或者开动制冷装置;若当前温度值比设定温度值低,则开启加热器并同时关断制冷器。这种开关控温方法比较简单,在没有计算机参与的情况下,用很简单的模拟电路就能够实现。目前,采用这种控制方法的温度控制器在我国许多工厂的老式工业电炉中仍被使用。由于这种控制方式是当系统温度上升至设定点时关断电源,当系统温度下降至设定点时开通电源,因而无法克服温度变化过程的滞后性,致使被控对象温度波动较大,控制精度低,完全不适用于高精度的温度控制。

2.PID线性控温法

这种控温方法是基于经典控制理论中的PID调节器控制原理,PID控制是最早发展起来的控制策略之一,由于其算法简单、鲁棒性好、可靠性高等优点被广泛应用

工业过程控制中,尤其适用于可建立精确数学模型的确定性控制系统。由于PID调节器模型中考虑了系统的误差、误差变化及误差积累三个因素,因此,其控制性能大大地优越于定值开关控温。其具体控制电路可以采用模拟电路或计算机软件方法来实现PID调节功能。前者称为模拟PID控制器,后者称为数字PID控制器。其中数字PID控制器的参数可以在现场实现在线整定,因此具有较大的灵活性,可以得到较好的控制效果。采用这种方法实现的温度控制器,其控制品质的好坏主要取决于三个PID参数(比例值、积分值、微分值)。只要PID参数选取的正确,对于一个确定的受控系统来说,其控制精度是比较令人满意的。但是,它的不足也恰恰在于此,当对象特性一旦发生改变,三个控制参数也必须相应地跟着改变,否则其控制品质就难以得到保证。

3.智能温度控制法

为了克服PID线性控温法的弱点,人们相继提出了一系列自动调整PID参数的方法,PID参数的自学习,自整定等等。并通过将智能控制与PID控制相结合,从而实现温度的智能控制。智能控温法以神经网络和模糊数学为理论基础,并适当加以专家系统来实现智能化。其中应用较多的有模糊控制、神经网络控制以及专家系统等。尤其是模糊控温法在实际工程技术中得到了极为广泛的应用。目前已出现一种高精度模糊控制器,可以很好的模拟人的操作经验来改善控制性能,从理论上讲,可以完全消除稳态误差。所谓第三代智能温控仪表,就是指基于智能控温技术而研制的具有自适应PID算法的温度控制仪表。

目前国内温控仪表的发展,相对国外而言在性能方面还存在一定的差距,它们之间最大的差别主要还是在控制算法方面,具体表现为国内温控仪在全量程范围内温度控制精度比较低,自适应性较差。这种不足的原因是多方面造成的,如针对不同的被控对象,由于控制算法的不足而导致控制精度不稳定。

1.2课题的内容及要求

1.课题内容

本课题拟设计一个基于单片机的温度控制系统,控制对象基于电热装置,进行水温的控制,本设计为控制系统的下位机设计,主要由单片机构成温度采集与控制终端,实现温度的采集与控制,其控制器参数由上位机设定。具体设计方案如下:

(1) 了解和掌握温度控制系统设计原理及方法。

(2) 查阅文献,掌握单片机数据采集、控制技术现状。

基于单片机的温度控制系统设计与实现—下位机系统

(3) 进行系统方案设计。

(4) 构建硬件平台,编制采集及通信程序,进行联机调试,完成系统功能。

2.课题要求

(1) 实现温度在60~90℃可调。

(2) 控制精度: 1℃。

(3) 设备等条件要求:单片机开发系统,PC机。

1.3论文的内容及安排

本论文共分5章,具体内容如下:

第1章绪论,介绍温度测控系统的背景和发展现状。

第2章针对该课题的任务进行具体方案论证和可行性分析,包括硬件方案和软件方案的设计及分析。

第3章介绍温度控制系统的硬件系统电路设计。包括单片机最小系统、测温电路部分、控温电路、电平转换电路和串行通信电路等。

第4章阐述了温度控制系统的软件设计,包括DS18B20测温子程序、串口通信子程序、温度控制子程序等。

第5章介绍软硬件调试的步骤和故障分析,最后得出结论并作社会经济效应分析。

2 温度控制系统总体方案设计

温度控制有许多种方法,可供选择的器件和运用的技术也有多种,因此,系统的总体方案设计应在满足系统整体性能指标的前提下,充分考虑系统使用的环境,所选的结构要尽量简单实用,易于实现,器件的选用要着眼于合适的参数、稳定的性能、较低的功耗、低廉的成本以及较好的性能等等。本章将介绍基于单片机的测控系统的总体方案的设计并给出结构框图,分别从软硬件两个方面来进行讨论。

2.1 系统总体方案设计

温控系统是将负载的电加热丝看成是被控对象,温度是控制量,控制前先设定温度值,然后对电加热丝进行温度采集,并将采集的数据通过串行通信传送给上位机,通过控制P 口的高低电平,控制电加热丝的通断,从而实现对温度的控制。

此课题是一个基于单片机的温度测控系统,需由上下位机联合完成,此系统为下位机系统,主要由单片机构成温度采集与控制终端,实现温度采集与控制,使受控对象达到上位机设定的温度。此系统由软硬件两部分组成,硬件电路是系统的结构框架,是软件的载体,软件是系统的内核,通过硬件来进行具体操作,因此软硬件相互配合,共同完成各种功能。此系统硬件主要由以下几个部分构成:单片机、温度采集电路、温度控制电路、电平转换电路以及串口通讯等部分组成,而系统软件主要通过对单片机编程来实现,此系统使用C 语言来完成编程。

2.2 硬件总体方案设计

本文所研究的系统硬件部分按照功能大致分为以下几个部分:最小系统、测温部分、控温部分以及电平转换和串口通讯部分。其结构框图如图2.1所示: 图2.1 硬件总体结构框图 受

温度采集电路 温度控制电路 单片机 串口通讯 计算机 电平转换

基于单片机的温度控制系统设计与实现—下位机系统

本设计本着低功耗、低成本、性能好等原则,最终选用以下器件来搭建硬件平台:

1.单片机最小系统

单片机最小系统包括单片机芯片,时钟电路和复位电路。时钟电路用于产生单片机工作时所必须的时钟信号。STC89C52单片机的内部电路在时钟信号控制下,严格地按时序执行指令进行工作;复位操作是单片机的初始化操作,只需给单片机的复位引脚RST加上大于2个机器周期的高电平就可以使单片机复位。

2.测温部分

传统的温度检测大多以热敏电阻为温度传感器,这种热敏传感器的工作原理是其电阻值随着温度的变化而发生显著变化,热敏传感器广泛用于一般精度的温度测量,或在计量设备、晶体管电路中作温度补偿。由于热敏电阻的可靠性差,测量温度准确率低,而且必须经过专门的接口电路转换为数字信号后才能由单片机进行处理,在高精度要求的温度检测应用中,热敏电阻已经被精度高、准确性好的各种集成温度采集设备所代替。

本部分采用的是DS18B20传感器进行温度测量,它在测量温度、转换时间、传输距离、分辨率等方面也有很大的改进。与传统的热敏电阻相比,它不仅能够直接读出被测温度值,并且可以根据实际要求通过简单的变成来读取9到12位的温度值,DS18B20温度变换功率来源于数据总线,总线本身也可以向所挂接的DS18B20供电,而无需额外电源,因而使用DS18B20可使系统结构更简单,可靠性更高,因此,DS18B20被广泛应用于温度采集与处理、数字温度计及各种温度控制系统中。

3.控制电路部分

该部分通过单片机的P口输出的高低电平来控制固态继电器的通断,从而决定电热丝是否加热,当P口输出低电平时,加热电阻通电,周围的温度缓慢升高,DS18B20测得的温度值也升高;当P口输出高电平时,加热电路断开,温度回落。

4.电平转换与串口通信部分

由于单片机的TTL电平与计算机要求的232电平并不兼容,故使用MAX232芯片对电平进行转换,转换后的电平通过串口与计算机进行串口通信。

2.3软件总体方案设计

温度控制系统的硬件电路确定之后,其主要功能将依赖于软件来实现,本系统的软件主要是完成温度数据的采集并把采集的数据通过串口通信传送给上位机,同时接收上位机的命令,达到温度控制的目的。软件具体结构框图如图2.2所示:

开始

初始化

调用温度模块程序

将温度传送给上位机

接收上位机指令

继电器控制

图2.2系统结构图

基于单片机的温度控制系统设计与实现—下位机系统

3 温度控制系统硬件系统设计

本系统需要焊接硬件电路。硬件电路作为整个系统运行的必要框架,是软件正常运行的结构基础,离开了硬件架构,整个系统需要实现的功能就无从谈起。

本章内容首先介绍数字式温度传感器,说明了传感器的使用特点,以及它的工作原理及主要特点。其次分别介绍了系统的硬件模块:单片机最小系统、DS18B20与单片机接口电路、控制电路、电平转换和串口通信电路。

3.1单片机最小系统设计

本系统主控芯片选用的是STC89C52单片机,是由深圳宏晶公司代理销售的一款MCU,是美国设计生产的一种低电压、高性能CMOS8位单片机,片内含8kbytes 的可反复写的FlashROM和128位bytes和RAM,2个16位定时计数器。

STC89C52单片机内部主要包括累加器ACC、程序状态字PSW、地址指示器DPTR、制度存储器ROM、随机存取存储器RAM、寄存器、并行I/O接口P0-P3,定时器/计数器、串行I/O接口以及定时控制逻辑电路等,这些部件通过内部总线连接起来,构成一个完整的微型计算机,其管脚图如图3.1所示:

图3.1STC89C52引脚图

单片机系统是本温度测控系统的核心部件,包括时钟电路和复位电路的设计。

时钟电路采用的是内部方式时钟电路(如图3.2所示)。STC89C52要形成时钟信号,必须外接元件。用外接11.0592MHz晶振以及电容C1和C2构成并联谐振电路,接在反馈回路中,电容C1和C2的值选择为30pF。

图3.2单片机内部方式时钟电路图

本系统的复位电路是采用按钮复位的电路,如图3.3所示,是常用复位电路之一。当STC89C52单片机的ALE及PSEN两引脚输出高电平,RET引脚高电平到时,单片机复位。RET/VPD端的高电平直接由上电瞬间产生则为上电复位。若通过按动按钮产生高电平复位称手动复位。上电时,刚接通电源,电容C相当于瞬间短路,+5V立即加到RET/VPD端,该高电平使STC89C52全机自动复位,这就是上电复位;若运行过程中需要程序从头执行,只需按动按钮即可。按下按钮,则直接把+5V加到了RET/VPD端从而复位称为手动复位。复位后,P0到P3并行I/O口全为高电平,其它寄存器全部清零,只有SBUF寄存器状态不确定。

图3.3单片机复位电路原理图

由单片机以及时钟电路和复位电路构成了单片机的最小系统,最小系统的电路图如图3.4所示:

基于单片机的温度控制系统设计与实现—下位机系统

图3.4单片机最小系统电路图

3.2测温电路设计

本部分电路主要通过传感器来实现对温度的测量,本系统选用的是DS18B20传感器,DS18B20是美国DALLAS公司继DS1820之后推出的增强型单总线数字温度传感器。它在测温精度、转换时间、传输距离、分辨率等方面较DS1820有了很大的改进,给用户带来了更方便的使用和更令人满意的效果。

3.2.1DS18B20的介绍

1.DS18B20的结构

DS18B20主要由寄生电源、温度传感器、64位串行ROM单线接口、存储中间数据的高速暂存器(内含便笺式RAM)、用于存储用户设定的温度上下限值的TH 和TL触发器存储与控制逻辑、8位循环冗余检验码(CRC)发生器部分。

DS18B20管脚排列如图3.5所示:

图3.5DS18B20的引脚图

本设计使用的是三引脚的产品。其中,1号引脚接地,2号引脚接数据端,3号引脚接电源。

2.DS18B20的主要特点

数字型智能温度传感器有以下主要特点:

(1) 适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数据线供电。

(2) 独特的单线接口方式,DS18B20 在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20 的双向通讯。

(3) DS18B20 支持多点组网功能,多个DS18B20 可以并联在唯一的单总线上,实现组网多点测温。

(4) DS18B20 在使用中不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管的集成电路内。

(5) 温范围-55℃~+125℃,在-10~+85℃时精度为±0.5℃。

(6) 温度分辨力可编程。DS18B20的数字温度输出可进行9~12位编程。

在实际应用时,需要在分辨力与转换时间两者之间权衡考虑。当DS18B20工作在12位分辨力时,温度与数字输出的对应关系见表3.1。

表3.1DS18B20输出数据与温度的对应关系

温度/℃数字输出(二进制)数字输出(十六进制)

+125 0000 0111 1101 0000 07D0H

+85 0000 0101 0101 0000 0550H +25.0625 0000 0001 1001 0001 0191H

+10.125 0000 0001 1010 0010 00A2H

+0.5 0000 0001 1010 1000 0008H

0 0000 0000 0000 0000 0000H

-10.125 1111 1111 0101 1110 FF5EH

-25.0625 1111 1110 0101 1111 FE6FH

-55 1111 1100 1001 0000 FC90H

(7) 测量结果直接输出数字温度信号,以“一线总线”串行传送给CPU,同时可

基于单片机的温度控制系统设计与实现—下位机系统

传送 CRC 校验码,具有极强的抗干扰纠错能力 。

(8) 测量结果直接输出数字温度信号,以“一线总线”串行传送给 CPU ,同时可传送 CRC 校验码,具有极强的抗干扰纠错能力 。

3.DS18B20测温原理

用一个高温度系数的振荡器确定一个门周期,内部计数器在这个门周期内对一个低温度系数的振荡器的脉冲进行计数来得到温度值。计数器被预置到对应于-55℃的一个值。如果计数器在门周期结束前达到0,则温度寄存器(同样被预置到-55℃)的值增加,表明所测量的温度大于-55℃。

同时,计数器被复位到一个值,这个值由斜坡式累加器电路确定,斜坡式累加器电路用来补偿感温振荡器的抛物线特性。然后计数器又开始计数直到0,如果门周期仍未结束,将重复这一过程。

斜坡式累加器用来补偿感温振荡器的非线性,以期在测温时获得比较高的分辨力。这是通过改变计数器对温度每增加一度所需计数的值来实现的。因此,要想获得所需的分辨力,必须同时知道在给定温度下计数器得值和每一度的计数值。温度测电路的方框图如图3.6所示:

图3.6 DS18B20测温原理图 停止

增加 斜率累加器

减法计数器1 减法计数器2 比较计数器

温度寄存器

减到0 减到0

预置

高温度系数振荡器 低温度系数振荡器 预置

3.2.2测温电路设计

本文中测温电路主要使用DS18B20传感器,通过P1.0口与单片机相连,实现数据的传递,其具体硬件原理图如图3.7所示:

图3.7测温电路原理图

DS18B20芯片有两种供电方式:寄生电源供电方式和外部电源供电方式。本文采用的是外部电源供电方式。

在外部电源供电方式下,DS18B20工作电源由VDD引脚接入,此时I/O线不需要强上拉,不存在电源电流不足的问题,可以保证转换精度,同时在理论上总线上可以挂接任意多个DS18B20传感器,组成多点测温系统。注意:在外部供电的方式下,DS18B20的GND引脚不能悬空,否则不能转换温度,读取的温度总是85℃。外部电源供电方式是DS18B20的最佳工作方式,工作稳定可靠,抗干扰能力强,而且电路也比较简单,可以开发出稳定可靠的多点温度监控系统,在外接电源方式下,可以充分发挥DS18B20宽电源电压范围的优点,即使电源电压VCC降到3V,依然能够保证温度量精度。

在实际应用中还需要注意的是,连接DS18B20的总线电缆是有长度限制的,试验中,当采用普通信号电缆传输长度超过50m时,读取的温度数据将发生错误,当将总线电缆改为双绞线带屏蔽电缆时,正常通信距离可达150m,当采用每米绞合次数更多的双绞线带屏蔽电缆时,正常通信距离进一步加长,这种情况主要是由总线分布电容使信号波形发生畸形造成的,因此,在用DS18B20进行长距离测温系统设计时,要充分考虑总线分布电容和阻抗匹配问题。

基于单片机的温度控制系统设计与实现—下位机系统

3.3控温电路设计

控制电路是硬件电路部分中十分重要的一部分,这部分的功能通过改变单片机输出口高低电平来控制固态继电器的开关通断,调节加热电阻丝的他通断,从而达到控制水温的目的,使之达到设定温度值。在设计这部分电路时,选用下面的方案。

该方案所需的元器件主要有:

1.电加热丝

电加热丝的选择是主要要考虑稳定性,耐热性能,额定功率等。在此电路中,选用了一个300W的电加热棒来作为电热丝,以此来加热容器内的水,水的温度则是被控对象。

2.固态继电器

主要作用是控制加热电路的通断,它是用半导体器件代替传统电接点作为切换装置的具有继电器特性的无触点开关器件,单相SSR为四端有源器件,其中两个输入控制端,两个输出端,输入输出间为光隔离,输入端加上直流或脉冲信号到一定电流值后,输出端就能从断态转变成通态。固态继电器的有点可以归结为以下几点:

(1) 高寿命,高可靠:SSR没有机械零部件,有固体器件完成触点功能,由于没有运动的零部件,因此能在高冲击,振动的环境下工作,由于组成固态继电器的元器件的固有特性,决定了固态继电器的寿命长,可靠性高。

(2) 灵敏度高,控制功率小,电磁兼容性好:固态继电器的输入电压范围较宽,驱动功率低,可与大多数逻辑集成电路兼容不需加缓冲器或驱动器。

(3) 快速转换:固态继电器因为采用固体器件,所以切换速度可从几毫秒至几微妙。

(4) 电磁干扰小:固态继电器没有输入“线圈”,没有触点燃弧和回跳,因而减少了电磁干扰。大多数交流输出固态继电器是一个零电压开关,在零电压处导通,零电流处关断,减少了电流波形的突然中断,从而减少了开关瞬态效应。

SSR在导通时,元件将承受P=V(管压降)×I(负载)的耗散功率,其中V 有效值和I有效值分别为饱和压降和工作电流的有效值。此时,需依据实际工作

基于51单片机的温度控制系统

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王*

毕业论文设计 基于51单片机的温度控制系统

摘要 在日常生活中温度在我们身边无时不在,温度的控制和应用在各个领域都有重要的作用。很多行业中都有大量的用电加热设备,和温度控制设备,如用于报警的温度自动报警系统,热处理的加热炉,用于融化金属的坩锅电阻炉及各种不同用途的温度箱等,这些都采用单片机技术,利用单片机语言程序对它们进行控制。而单片机技术具有控制和操作使用方便、结构简单便于修改和维护、灵活性大且具有一定的智能性等特 点,可以精确的控 制技术标准,提高了温控指标,也大大的提高了产品的质量和性能。 由于单片机技术的优点突出,智能化温度控制技术正被广泛地采用。本文介绍了基于单片机AT89C51 的温度控制系统的设计方案与软硬件实现。采用温度传感器DS18B20 采集温度数据,7段数码管显示温度数据,按键设置温度上下限,当温度低于设定的下限时,点亮绿色发光二极管,当温度高于设定的上限时,点亮红色发光二极管。给出了系统总体框架、程序流程图和Protel 原理图,并在硬件平台上实现了所设计功能。 关键词:单片机温度控制系统温度传感器

Abstract In daily life, the temperature in our side the ever-present, the control of the temperature and the application in various fields all have important role. Many industry there are a large number of electric heating equipment, and the temperature control equipment, such as used for alarm automatic temperature alarm systems, heat treatment furnace, used to melt metal crucible resistance furnace, and all kinds of different USES of temperature box and so on, these using single chip microcomputer, using single chip computer language program to control them. And single-chip microcomputer technology has control and convenient in operation, easy to modify and maintenance of simple structure, flexibility is large and has some of the intelligence and other characteristics, we can accurately control technology standard to improve the temperature control index, also greatly improve the quality of the products and performance. Because of the advantages of the single chip microcomputer intelligent temperature control technology outstanding, is being widely adopted. This paper introduces the temperature control based on single chip microcomputer AT89C51 design scheme of the system and the hardware and software implementation. The temperature sensor DS18B20 collection temperature data, 7 period of digital pipe display, the upper and lower limits of temperature button when temperature below the setting of the lower limit, light green leds, when the temperature is higher than the set on the limit, light red leds. Given the system framework and program flow chart and principle chart, and in Protel hardware platform to realize the function of the design. Keywords:SCM Temperature control system Temperature sensors

基于单片机的温度控制系统设计文献综述

文献综述 题目基于单片机的温度控制 系统设计 学生姓名 X X X 专业班级自动化07-2 学号20070x0x0x0x 院(系) xxxxxxxxxxxxxxxx 指导教师 x x x 完成时间 2011年06月10日

基于单片机的温度控制 系统设计文献综述 1.前言 温度是日常生活、工业、医学、环境保护、化工、石油等领域最常遇到的一个物理量。而且随着现代工业的发展,人们需要对工业生产中有关温度系统进行控制,如钢铁冶炼过程需要对刚出炉的钢铁进行热处理,塑料的定型及各种加热炉、热处理炉、反应炉和锅炉中温度进行实时监测和精确控制。而有很多领域的温度可能较高或较低,现场也会较复杂,有时人无法靠近或现场无需人力来监控。如加热炉大都采用简单的温控仪表和温控电路进行控制, 存在控制精度低、超调量大等缺点, 很难达到生产工艺要求。且在很多热处理行业都存在类似的问题,所以,设计一个较为通用的温度控制系统具有重要意义。这时我们可以采用单片机控制,这些控制技术会大大提高控制精度,不但使控制简捷,降低了产品的成本,还可以和计算机通讯,提高了生产效率. 单片机是指芯片本身,而单片机系统是为实现某一个控制应用需要由用户设计的,是一个围绕单片机芯片而组建的计算机应用系统,这是单片机应用系统。单片机自问世以来,性能不断提高和完善,其资源又能满足很多应用场合的需要,加之单片机具有集成度高、功能强、速度快、体积小、功耗低、使用方便、价格低廉等特点,因此,应用日益广泛,并且正在逐步取代现有的

多片微机应用系统。 2.历史研究与现状 在工业生产温控系统中采用的测温元件和测量方法不相同,产品的工艺不同,控制温度的精度也不相同,因此对数据采集的精度和采用的控制方法也不相同。 通常由位式或时间比例式温度调节仪控制的工业加热炉温度控制系统,其主回路由接触器控制时因为不能快速反应,所以控温精度都比较低,大多在几度甚至十几度以上。随着电力电子技术及元器件的发展,出现了以下几种解决的方案: (1)主回路用无触点的可控硅和固态继电器代替接触器,配以PID或模糊逻辑控制的调节仪构成的温度控制系统,其控温精度大大提高,常在±2℃以内,优势是采用模糊控制与PID 控制相结合,对控制范围宽、响应快且连续可调系统有巨大的优越性。 (2)采用单片机温度控制系统。用单线数字温度传感器采集温度数据,打破了传统的热电阻、热电偶再通过A/D 转换采集温度的思路。用单片机对数字进行处理和控制,通过RS - 232 串口传到PC 机对温度进行监视与报警,设置温度的上限和下限。其优势是结构简单,编程不需要用专用的编程器,只需点击电脑鼠标就可以把编好的程序写到单片机中,很方便且调试、修改和升级很容易。 (3)ARM(Advanced RISC Machine)嵌入式系统模糊温度控制。利用ARM处理器的强大功能,通过读取温度传感器数据,并与设定值进行比较,然后对温度进行控制。通过内嵌的操作系统μCLinux获得极好的实时性,并且通过TCP/IP协议能与PC机

单片机课程设计(温度控制系统)

温度控制系统设计 题目: 基于51单片机的温度控制系统设计姓名: 学院: 电气工程与自动化学院 专业: 电气工程及其自动化 班级: 学号: 指导教师:

2015年5月31日 摘要: (3) 一、系统设计 (3) 1.1 项目概要 (3) 1.2设计任务和要求: (4) 二、硬件设计 (4) 2.1 硬件设计概要 (4) 2.2 信息处理模块 (4) 2.3 温度采集模块 (5) 2.3.1传感器DS18b20简介 (5) 2.3.2实验模拟电路图 (7) 2.3.3程序流程图 (6) 2.4控制调节模块 (9) 2.4.1升温调节系统 (9) 2.4.2温度上下限调节系统 (8) 2.43报警电路系统 (9) 2.5显示模块 (12) 三、两周实习总结 (13) 四、参考文献 (13) 五、附录 (15)

5.1原理图 (15) 摘要: 在现代工业生产中,温度是常用的测量被控因素。本设计是基于51单片机控制,将DS18B20温度传感器实时温度转化,并通过1602液晶对温度实行实时显示,并通过加热片(PWM波,改变其占空比)加热与步进电机降温逐次逼近的方式,将温度保持在设定温度,通过按键调节温度报警区域,实现对温度在0℃-99℃控制的自动化。实验结果表明此结构完全可行,温度偏差可达0.1℃以内。 关键字:AT89C51单片机;温控;DS18b20 一、系统设计 1.1 项目概要 温度控制系统无论是工业生产过程,还是日常生活都起着非常重要的作用,过低或过高的温度环境不仅是一种资源的浪费,同时也会对机器和工作人员的寿命产生严重影响,极有可能造成严重的经济财产损失,给生活生产带来许多利的因素,基于AT89C51的单片机温度控制系统与传统的温度控制相比具有操作方便、价价格便宜、精确度高和开展容易等优点,因此市场前景好。

单片机课程设计(温度控制器)

基于单片机的温度控制器设计 内容摘要:该温度报警系统以AT89C51单片机为核心控制芯片,实现温度检测报警功能的方案。该系统能实时采集周围的温度信息,程序内部设定有报警上下限,根据应用环境不同可设定不同的报警上下限。该系统实现了对温度的自动监测和自动调温功能。 关键词:AT89C51ADC0808 温度检测报警自动调温 Abstract:The temperature alarm system AT89C51 control chip, realize temperature detection alarm function scheme. The system can collect real-time temperature information around that internal procedures set alarm equipped, according to different application environment can be set different alarm upper. The system realizes the automatic monitoring of temperature. The instrument can achieve the automatic thermostat function. Keywords:AT89C51 ADC0808Temperature detectingalarmautomatic thermostat 引言:本课题是基于单片机的温度控制器设计,经过对对相关书籍资料的查阅确定应用单片机为主控模块通过外围设备来实现对温度的控制。实现高低温报警、指示和低温自加热功能(加热功能未在仿真中体现)。 1.设计方案及原理 1.1设计任务 基于单片机设计温度检测报警,可以实时采集周围的温度信息进行显示,并且可以根据应用环境不同设定不同的报警上下限。 1.2设计要求 (1)实时温度检测。 (2)具有温度报警功能。 (3)可以设报警置温度上下限。 (4)低于下限时启动加热装置。 1.3总体设计方案及论证

模电课设—温度控制系统的设计

目录 1.原理电路的设计 (1) 1.1总体方案设计 (1) 1.1.1简单原理叙述 (1) 1.1.2设计方案选择 (1) 1.2单元电路的设计 (3) 1.2.1温度信号的采集与转化单元——温度传感器 (3) 1.2.2电压信号的处理单元——运算放大器 (4) 1.2.3电压表征温度单元 (5) 1.2.4电压控制单元——迟滞比较器 (6) 1.2.5驱动单元——继电器 (7) 1.2.6 制冷部分——Tec半导体制冷片 (8) 1.3完整电路图 (10) 2.仿真结果分析 (11) 3 实物展示 (13) 3.1 实物焊接效果图 (13) 3.2 实物性能测试数据 (14) 3.2.1制冷测试 (14) 3.2.2制热测试 (18) 3.3.3性能测试数据分析 (20) 4总结、收获与体会 (21) 附录一元件清单 (22) 附录二参考文献. (23)

摘要 本课程设计以温度传感器LM35、运算放大器UA741、NE5532P及电压比较器LM339N 为电路系统的主要组成元件,扩展适当的接口电路,制作一个温度控制系统,通过室温的变化和改变设定的温度,来改变电压传感器上两个输入端电压的大小,通过三极管开关电路控制继电器的通断,来控制Tec制冷片的工作。这样循环往复执行这样一个周期性的动作,从而把温度控制在一定范围内。学会查询文献资料,撰写论文的方法,并提交课程设计报告和实验成品。 关键词:温度;测量;控制。

Abstract This course is designed to a temperature sensor LM35, an operational amplifier UA741, NE5532P and a voltage comparator LM339N circuit system of the main components. Extending the appropriate interface circuit, make a temperature control system. By changing the temperature changes and set the temperature to change the size of the two input ends of the voltage on the voltage sensor, an audion tube switch circuit to control the on-off relay to control Tec cooling piece work. This cycle of performing such a periodic motion, thus controlling the temperature in a certain range. Learn to query the literature, writing papers, and submitted to the curriculum design report and experimental products. Key words: temperature ; measure ;control

基于单片机的温控器

天津理工大学 课程设计报告 题目:基于单片机的温控器设计 学生姓名李天辉学号 20101009 届 2013 班级电气4班 指导教师专业电气工程及其自动化

说明 1. 课程设计文本材料包括设计报告、任务书、指导书三部分,其中 任务书、指导书由教师完成。按设计报告、任务书、指导书顺序装订成册。 2. 学生根据指导教师下达的任务书、指导书完成课程设计工作。 3. 设计报告内容建议主要包括:概述、系统工作原理、系统组成、设计内容、小结和参考资料。 4. 设计报告字数应在3000-4000字,采用电子绘图、采用小四号宋 体、1.25倍行距。 5.课程设计成绩由平时表现(30%)、设计报告(30%)和提问成绩(40%) 组成。

课程设计任务书、指导书 课程设计题目: Ⅰ.课程设计任务书 一、课程设计的内容和要求(包括原始数据、技术要求、工作量) 当今社会,温控器已经广泛应用于电冰箱、空调和电热毯等领域中。其优点是控制精度高,稳定性好,速度快自动化程度高,温度和风速全自动控制,操作简单可靠,对执行器要求低,故障率低,效果好。目前国内外生产厂家正在研究开发第三代智能型室温空调温控器,应用新型控制模型和数控芯片实现智能控制。现在已有国内厂家生产出了智能型室温空调温控器,并已应用于实际工程。 本课程设计要求设计温度控制系统,主要由温度数据采集、温度控制、按键和显示、通讯等部分组成。温度采集采用NTC或PTC热敏电阻(或由电位器模拟)或集成温度传感器、集成运算放大器构成的信号调理电路、AD转换器组成。温控部分采用交流开关BT136通过改变导通角进行调压限流达到控制加热丝温度的目的。 温度控制算法采用PID控制,可以采用普通PID或模糊PID。对控制PID参数进行整定,进行MATLAB仿真,说明控制效果。进行程序编制。 设计通讯协议,并能够通过RS485总线将数据传回上位机。2.课程设计的要求 1、选择相应元器件设计温度控制系统原理图并绘制PCB版图。 2、进行PID控制算法仿真,设计PID参数,或模糊PID规则。 3、系统功能要求:a要能够显示实时温度;b能够进行温度设置;c 能够进行PID参数设定;d能够把数据传回上位机;e可以设定本机地址。F温度控制范围0~99.9度。 4、编制程序并调试通过,并有程序流程图。

温度控制系统毕业设计

摘要 在日常生活及工农业生产中,对温度的检测及控制时常显得极其重要。因此,对数字显示温度计的设计有着实际意义和广泛的应用。本文介绍一种利用单片机实现对温度只能控制及显示方案。本毕业设计主要研究的是对高精度的数字温度计的设计,继而实现对对象的测温。测温系数主要包括供电电源,数字温度传感器的数据采集电路,LED显示电路,蜂鸣报警电路,继电器控制,按键电路,单片机主板电路。高精度数字温度计的测温过程,由数字温度传感器采集所测对象的温度,并将温度传输到单片机,最终由液晶显示器显示温度值。该数字温度计测温范围在-55℃~+125℃,精度误差在±0.5℃以内,然后通过LED数码管直接显示出温度值。数字温度计完全可代替传统的水银温度计,可以在家庭以及工业中都可以应用,实用价值很高。 关键词:单片机:ds18b20:LED显示:数字温度. Abstract In our daily life and industrial and agricultural production, the detection and control of the temperature, the digital thermometer has practical significance and a wide range of applications .This article describes a programmer which use a microcontroller to achieve and display the right temperature by intelligent control .This programmer mainly consists by temperature control sensors, MCU, LED display modules circuit. The main aim of this thesis is to design high-precision digital thermometer and then realize the object temperature measurement. Temperature measurement system includes power supply, data acquisition circuit, buzzer alarm circuit, keypad circuit, board with a microcontroller circuit is the key to the whole system. The temperature process of high-precision digital thermometer, from collecting the temperature of the object by the digital temperature sensor and the temperature transmit ted to the microcontroller, and ultimately display temperature by the LED. The digital thermometer requires the high degree is positive 125and the low degree is negative 55, the error is less than 0.5, LED can read the number. This digital thermometer could

基于单片机的温控系统设计

本科学年论文(设计) 蔬菜大棚温控系统设计 系别信管系专业电子信息工 程 届别2012级班级12级电子信息工程 学生姓名唐姣学号2012550525 指导教师刘超群职称副教授 二O一五年六月

摘要 温度控制是蔬菜大棚最重要的一个管理因素,温度过高或过低,都会影响蔬菜的生长。主要介绍一种基于ST89C52单片机的温室蔬菜大棚温度控制系统,系统利用DS18B20温度传感器实现对温室大棚温度的测量,通过按键设置需要报警的上下限值。实验证明,该系统具有性价比高,使用寿命长等优点,具有一定实用价值。 【关键词】温度控制;继电器;温度检测

Abstract Temperature control is the most important vegetable greenhouse management factor, the temperature is too high or too low, will affect the growth of vegetables. Mainly introduces a control system based on the temperature in of the vegetable greenhouses in SCM st89c52, system using DS18B20 temperature sensor to realize the greenhouse temperature measurement, through the key set to alarm limit value. Experiments prove that the system has the advantages of high performance ratio, long service life, etc., and has some practical value. [Keywords]Temperature control; Relay; Temperature detection

《基于单片机的温度控制系统的设计》

序号(学号):040930727 长春大学光华学院 毕业设计(论文) 姓名魏明岩 系别 专业 班级0409307 指导教师马春龙 年月日

目录 摘要 (1) 第一章前言 (3) 1.1课题背景和意义 (3) 1.2温度控制系统的使用 (3) 1.3毕业设计任务 (4) 第二章系统方案 (5) 2.1水温控制系统设计任务和要求 (5) 2.2水温控制系统部分 (5) 2.3控制方式 (7) 第三章系统硬件设计 (8) 3.1总体设计框图及说明 (8) 3.2外部电路设计 (8) 3.3单片机系统电路设计 (9) 第四章系统软件设计和调试 (13) 4.1 程序框架结构 (13) 4.2程序流程图及部分程序 (13) 4.3 系统安装调试和测试 (17) 第五章结论 (18) 致谢 (19) 参考文献 (20) 附件1(程序代码) (20) 附件2(电路原理图) (27)

基于单片机的水温控制系统 【摘要】温度是工业控制对象主要被控参数之一,在温度控制中,由于受到温度被控对象特性(如惯性大、滞后大、非线性等)的影响,使得控制性能难以提高,有些工艺过程其温度控制的好坏直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的。为了实现高精度的水温测量和控制,本文介绍了一种以Atmel公司的低功耗高性能CMOS单片机为核心,以PID算法控制以及PID参数整定相结合的控制方法来实现的水温控制系统,其硬件电路还包括温度采集、温度控制、温度显示、键盘输入以及RS232接口等电路。该系统可实现对温度的测量,并能根据设定值对温度进行调节,实现控温的目的。 【关键词】单片机AT89C51;温度控制;温度传感器PT1000;PID 调节算法 The summary: Temperature is the main control of industrial control of parameters,In temperature control, due to temperature controlled object properties (such as inertia big, big, lagging effect of nonlinear, etc.), to improve performance, some process temperature control of its direct impact on the quality of the product, and designed a kind of ideal temperature control system is a very valuable.In order to realize high precision temperature measurement and control, this paper introduces a meter taking Atmel company low-power high-performance CMOS chip as the core, and the PID control algorithm with PID parameters combination of control method to realize the temperature control system, the hardware circuit including temperature, temperature

基于51单片机的温度控制系统的设计

基于单片机的温度控制系统设计 1.设计要求 要求设计一个温度测量系统,在超过限制值的时候能进行声光报警。具体设计要求如下: ①数码管或液晶显示屏显示室内当前的温度; ②在不超过最高温度的情况下,能够通过按键设置想要的温度并显示;设有四个按键,分别是设置键、加1键、减1键和启动/复位键; ③DS18B20温度采集; ④超过设置值的±5℃时发出超限报警,采用声光报警,上限报警用红灯指示,下限报警用黄灯指示,正常用绿灯指示。 2.方案论证 根据设计要求,本次设计是基于单片机的课程设计,由于实现功能比较简单,我们学习中接触到的51系列单片机完全可以实现上述功能,因此可以选用AT89C51单片机。温度采集直接可以用设计要求中所要求的DS18B20。报警和指示模块中,可以选用3种不同颜色的LED灯作为指示灯,报警鸣笛采用蜂鸣器。显示模块有两种方案可供选择。 方案一:使用LED数码管显示采集温度和设定温度; 方案二:使用LCD液晶显示屏来显示采集温度和设定温度。 LED数码管结构简单,使用方便,但在使用时,若用动态显示则需要不断更改位选和段选信号,且显示时数码管不断闪动,使人眼容易疲劳;若采用静态显示则又需要更多硬件支持。LCD显示屏可识别性较好,背光亮度可调,而且比LED 数码管显示更多字符,但是编程要求比LED数码管要高。综合考虑之后,我选用了LCD显示屏作为温度显示器件,由于显示字符多,在进行上下限警戒值设定时同样可以采集并显示当前温度,可以直观的看到实际温度与警戒温度的对比。LCD 显示模块可以选用RT1602C。

3.硬件设计 根据设计要求,硬件系统主要包含6个部分,即单片机时钟电路、复位电路、键盘接口模块、温度采集模块、LCD 显示模块、报警与指示模块。其相互联系如下图1所示: 图1 硬件电路设计框图 单片机时钟电路 形成单片机时钟信号的方式有内部时钟方式和外部时钟方式。本次设计采用内部时钟方式,如图2所示。 单片机内部有一个用于构成振荡器的高增益反相放大器,引脚XTAL1和XTAL2分别为此放大器的输入端和输出端,其频率范围为~12MHz ,经由片外晶体振荡器或陶瓷振荡器与两个匹配电容一 起形成了一个自激振荡电路,为单片机提供时钟源。 复位电路 复位是单片机的初始化操作,其作用是使CPU 和系统中的其他部件都处于一个确定的初始状态,并从这个状态开始工作,以防止电源系统不稳定造成CPU 工作不正常。在系统中,有时会出现工作不正常的情况,为了从异常状态中恢复,同时也为了系统调试方便,需要设计一个复位电路。 单片机的复位电路有上电复位和按键复位两种形式,因为本次设计要求需要有启动/复位键,因此本次设计采用按键复位,如图3。复位电路主要完成系统 图2 单片机内部时钟方式电路 图3 单片机按键复位电路

基于单片机的温度控制器附程序代码

生产实习报告书 报告名称基于单片机的温度控制系统设计姓名 学号0138、0140、0141 院、系、部计算机与通信工程学院 专业信息工程10-01 指导教师 2013年 9 月 1日

目录 1.引言.................................. 错误!未定义书签。 2.设计要求.............................. 错误!未定义书签。 3.设计思路.............................. 错误!未定义书签。 4.方案论证.............................. 错误!未定义书签。方案一................................................. 错误!未定义书签。方案二................................................. 错误!未定义书签。 5.工作原理.............................. 错误!未定义书签。 6.硬件设计.............................. 错误!未定义书签。单片机模块............................................. 错误!未定义书签。 数字温度传感器模块 .................................... 错误!未定义书签。 DS18B20性能......................................... 错误!未定义书签。 DS18B20外形及引脚说明............................... 错误!未定义书签。 DS18B20接线原理图................................... 错误!未定义书签。按键模块............................................... 错误!未定义书签。声光报警模块........................................... 错误!未定义书签。数码管显示模块......................................... 错误!未定义书签。 7.程序设计.............................. 错误!未定义书签。主程序模块............................................. 错误!未定义书签。 读温度值模块.......................................... 错误!未定义书签。 读温度值模块流程图: ................................. 错误!未定义书签。

温度控制系统设计

温度控制系统设计 目录 第一章系统方案论证错误!未指定书签。 总体方案设计错误!未指定书签。 温度传感系统错误!未指定书签。 温度控制系统及系统电源错误!未指定书签。 单片机处理系统(包括数字部分)及温控箱设计错误!未指定书签。 算法原理错误!未指定书签。 第二章重要电路设计错误!未指定书签。 温度采集错误!未指定书签。 温度控制错误!未指定书签。 第三章软件流程错误!未指定书签。 基本控制错误!未指定书签。 控制错误!未指定书签。 时间最优的控制流程图错误!未指定书签。 第四章系统功能及使用方法错误!未指定书签。 温度控制系统的功能错误!未指定书签。 温度控制系统的使用方法错误!未指定书签。 第五章系统测试及结果分析错误!未指定书签。 硬件测试错误!未指定书签。 软件调试错误!未指定书签。 第六章进一步讨论错误!未指定书签。 参考文献错误!未指定书签。 致谢错误!未指定书签。 摘要:本文介绍了以单片机为核心的温度控制器的设计,文章结合课题《温度控制系统》,从硬件和软件设计两方面做了较为详尽的阐述。 关键词:温度控制系统控制单片机 : . : 引言: 温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的。本文设计了以单片机为检测控制中心的温度控制系统。温度控制采用改进的数字控制算法,显示采用静态显示。该系统设计结构简单,按要求有以下功能: ()温度控制范围为°; ()有加热和制冷两种功能 ()指标要求: 超调量小于°;过渡时间小于;静差小于℃;温控精度℃ ()实时显示当前温度值,设定温度值,二者差值和控制量的值。 第一章系统方案论证 总体方案设计 薄膜铂电阻将温度转换成电压,经温度采集电路放大、滤波后,送转换器采样、量化,量化后的数据送单片机做进一步处理;

基于单片机的电阻炉温度控制系统设计

基于单片机的电阻炉温度控制系统设计武汉理工大学《计算机控制技术》课程设计说明书 概 述. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 1 整体设计及系统原 理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 2 硬件设 计. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 2.1温度检测电 路. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 2.2键盘控制和显示电 路. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 2.3加热控制电 路. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 3 心得体 会. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 参考文 献. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 武汉理工大学《计算机控制技术》课程设计说明书

基于单片机的温度控制系统设计报告

智能仪器仪表综合实训 题目基于单片机的温度控制系统设计 学院 专业电子信息工程 班级 (仪器仪表) 学生姓名 学号 指导教师 完成时间:

目录 一、系统设计---------------------------------------------------------第 1 页 (一)系统总体设计方案----------------------------------------------第1 页(二)温度信号采集电路选择和数据处理--------------------------------第3 页(三)软件设计------------------------------------------------------第3 页二、单元电路设计-----------------------------------------------------第 5 页 (一)温度信号采集电路----------------------------------------------第5 页(二)步进电机电路------------------------------------------------- 第5 页(三)液晶显示模块---------------------------------------------------------- 第6 页(四)晶振复位电路--------------------------------------------------第7 页三、总结体会--------------------------------------------------------------------------------------第7 页 四、参考文献-------------------------------------------第8 页附录:程序清单------------------------------------------第8 页

基于单片机的温度控制系统设计

湖南科技大学潇湘学院 毕业设计(论文) 题目单片机温度控制系统 作者 系部信息与电气工程系 专业电气工程及其自动化 学号 指导教师 二〇一年月日

湖南科技大学学院 毕业设计(论文)任务书 信息与电气工程系电气工程及其自动化教研室 教研室主任:(签名)年月日 学生姓名: 学号: 专业: 电气工程及其自动化 1 设计(论文)题目及专题:单片机温度控制系统 2 学生设计(论文)时间:自年月日开始至年月日止 3 设计(论文)所用资源和参考资料: (1)单片机温度控制系统流程图(2)单片机程序设计基础 (3) protel se 99软件(4) 单片机使用接口技术 (5) 单片机程序设计基础(6)网上有关技术资料 4 设计(论文)应完成的主要内容: (1) 基于单片机温度控制系统的发展及应用 (2) 单片机温度控制系统设计包含的基本内容 (3) 单片机温度控制系统技术 (4) 单片机温度控制系统实现 (5) 全文总结 5 提交设计(论文)形式(设计说明与图纸或论文等)及要求: (1) 程序。要求:编译通过,基本能运行。 (2) 毕业论文。要求:正确,规范,通顺。 (3) 可供发表的研究论文(可选)。要求:规范,新意 均需提交电子版和纸质版。 6 发题时间:年月日 指导教师:(签名) 学生:(签名)

湖南科技大学学院 毕业设计(论文)指导人评语 指导人:(签名) 年月日指导人评定成绩:

湖南科技大学学院 毕业设计(论文)评阅人评语 评阅人:(签名) 年月日评阅人评定成绩:

湖南科技大学学院 毕业设计(论文)答辩记录 日期: 学生:学号:班级: 题目: 提交毕业设计(论文)答辩委员会下列材料: 1 设计(论文)说明书共页 2 设计(论文)图纸共页 3 指导人、评阅人评语共页 毕业设计(论文)答辩委员会评语: 答辩委员会主任:(签名) 委员:(签名) (签名) (签名) (签名)答辩成绩: 总评成绩:

(完整word版)基于51单片机的温度控制系统设计

基于51单片机的水温自动控制系统 0 引言 在现代的各种工业生产中 ,很多地方都需要用到温度控制系统。而智能化的控制系统成为一种发展的趋势。本文所阐述的就是一种基于89C51单片机的温度控制系统。本温控系统可应用于温度范围30℃到96℃。 1 设计任务、要求和技术指标 1.1任务 设计并制作一水温自动控制系统,可以在一定范围(30℃到96℃)内自动调节温度,使水温保持在一定的范围(30℃到96℃)内。 1.2要求 (1)利用模拟温度传感器检测温度,要求检测电路尽可能简单。 (2)当液位低于某一值时,停止加热。 (3)用AD转换器把采集到的模拟温度值送入单片机。 (4)无竞争-冒险,无抖动。 1.3技术指标 (1)温度显示误差不超过1℃。 (2)温度显示范围为0℃—99℃。 (3)程序部分用PID算法实现温度自动控制。 (4)检测信号为电压信号。 2 方案分析与论证 2.1主控系统分析与论证 根据设计要求和所学的专业知识,采用AT89C51为本系统的核心控制器件。AT89C51是一种带4K字节闪存可编程可擦除只读存储器的低电压,高性能CMOS 8位微处理器。其引脚图如图1所示。 2.2显示系统分析与论证 显示模块主要用于显示时间,由于显示范围为0~99℃,因此可采用两个共阴的数码管作为显示元件。在显示驱动电路中拟订了两种设计方案: 方案一:采用静态显示的方案 采用三片移位寄存器74LS164作为显示电路,其优点在于占用主控系统的I/O口少,编程简单且静态显示的内容无闪烁,但电路消耗的电流较大。 方案二:采用动态显示的方案 由单片机的I/O口直接带数码管实现动态显示,占用资源少,动态控制节省了驱动芯片的成本,节省了电 ,但编程比较复杂,亮度不如静态的好。 由于对电路的功耗要求不大,因此就在尽量节省I/O口线的前提下选用方案一的静态显示。

相关文档
最新文档