2.5.4 在TPS系统中实现压缩机的防喘振控制

Honeywell China Users Group 2008
Power to Perform.
在TPS系统中实现压缩机的防喘振控制

在TPS系统中实现压缩机的防喘振控制
? 作者:刘建宇 ? 作者单位:大庆炼化公司机电仪厂 ? 文章摘要:大庆炼化公司180万吨/年ARGG装置备用风机的防喘 振控制采用美国TRICONEX公司的TS3000系统,编程软件为 MSW311。本文将防喘振控制的程序移到HONEYWELL公司TPS 系统中,用TPS系统中的RV、RC、Logic及CL程序等完整的建立 一套防喘振控制方案,并用Display Builder实现防喘振曲线图。 ? 关键词:轴流式压缩机、防喘振控制、程序移植、防喘振曲线图 、离线仿真
2

程序移植的历史背景及现实意义
? 大庆炼化公 司ARGG主 风机组(备 机)控制系 统
3

程序移植的历史背景及现实意义
序号 1 2 3 4 5 故障日期 2001.4.12 2001.4.27 2001.5.28 2001.7.15 2002.3.14 2002.4.27 2002.4.30 2002.4.8 2002.7 2003.10.10 2003.4.16 2003.4.17 故障现象 TRICON主处理器MP-C故障,MP-B状态灯灭。 TRICON主处理器MP-B故障。 TRICON主处理器MP-A故障。 UPS电源故障 TRICON系统AI卡故障 NCM故障 TRICON系统1#电源故障 TRICON系统3#电源故障 TRICON系统1#架AO卡故障 主风机停机导致装置ESD联锁触发备机安全运行 针对系统经常烧卡的问题集中解决 TRICON系统2#架DI卡故障 TRICON主处理器MP-A故障 TRICON处理器MP-A与I/O卡件通讯故障 生产正常 生产正常 生产正常 三机组停机、气压机停机。 导致三机组轴系仪表值最大,三机组波动1次 导致结果 故障处理 更换MP-C;热插拔MP-B。 无备件未处理 更换MP-A、MP-B。 修复UPS,但对控制系统造成一定的冲击。 AI 卡烧坏,更换AI卡。
6
未停机,生产波动
相应卡件和电源模块烧坏,更换新的。
7 8 9 10 11
主风机停机,装置生产波动 装置检修 生产正常 生产正常 生产正常
TRICON系统DO卡件故障,更换新的。 各专业检查2套系统的接地及供电,更换了UPS 电源,整改了系统的接地。 更换DI卡 插拔后正常 用备卡逐一激活各I/O卡件,但原因不清。 更换主机架卡笼箱,更换电源PS、DO卡、MP-A 处理器。同时借此机会更换喉部差压及出口压力 表共8块(由Smar改为Rosment),修改了PLC程 序,对喘振实现限位调节,彻底解决放空阀波动 的问题。 DO卡坏,更换新的。 清除软故障后正常 更换新的MP
12
2003.4
TRICON系统1个电源模块故障;1个DO模块故障 ;MP-A处理器故障。
ARGG停工抢修期间
13 14 15
2004.7.26 2004.8.7 2004.11.18
TRICON系统2#架DO卡故障 TRICON系统2#架DI卡故障 TRICON系统主处理器MP-2报警
未停机,DO不工作 生产正常 生产正常
4

防喘振控制的主要功能
? ? ? ? ? ? ? ? ? 喉部差压低选、出口压力高选 喉部差压温度补偿算法 实现放空阀的快开功能(比例增益的自整定折线法) 实现防空阀的慢关功能 防喘振线下移功能 可远程给定的PID运算 实现两个放空阀的分程控制 实现联锁停机放空阀自动打开控制 实现防喘振曲线图
5

防喘振性能曲线图
出口压力P KPa 喘振线 a b x c 工作点 d
防喘振线
喉部差压△P 0 KPa
6

防喘振控制方案
? 采用压缩机的入口流量、出口压力、入口温度这三变量算法。 ? 防喘振控制算法,是通过温度补偿后的喉部差压值(防喘振曲线的横 坐标X轴)经过折线运算得出的出口压力作为PID控制的设定值SP( 防喘振曲线的纵坐标Y轴),来控制测量值出口压力PV。 ? 风机正常运行时,它的工作点应该在防喘振线的下方,此时偏差e= PV-SP<0,调节器的作用方式为反作用。当工作点越过防喘振线 并在其上方时,即偏差e>=0时,则要求防喘振阀快速打开。由于防 喘振阀的打开,使工作点开始回到防喘振线以下时,阀的动作又应减 慢,即要求防喘振阀在开关时,是以变速动作的。在偏差e>=0时, 放空阀打开的快慢取决于PID参数比例度P的自适应能力(自动增大 或减小),P越小,则比例作用越强,放空阀打开速度初始最快,一 般要求在3秒钟之内全开; ? 而当喘振发生的趋势得以控制时,即操作点向防喘振线下方运行,放 空阀则以每周期输出增加0.1%渐进式缓慢关闭。
7

ARGG备机流程图
8

防喘振控制框图
出口压力 PT1841A/B 喉部差压 PDT1840A/B
高选 喘振检测 低选 P值 防喘振线 移动 比例增益 折线运算
注:积分保 持不变为4
PV值
温度补偿
折线运算
PID运算 SP值
入口温度TE1840 ASV1841 快开慢关 联锁停机信号 输出置0% 分程控制 (气关阀) ASV1840
9

防喘振控制方案
? 防喘振控制的偏差e=PV-SP即为出口压力的控制偏差。防喘振PID作用 为反作用,正常状况下偏差e<0,当e>=0时发生喘振倾向。 ? 防喘振检测:当入口流量(喉部差压)低于设定值或进行逆流试验时系统 发出喘振报警 ? 防喘振安全裕度:喘振线和防喘振线之间的安全裕度为7%;
? 防喘振线下移:当偏差e大于7%并且逆流报警存在,则防喘振线下移1% 。为了保证风机的功效,最多下移5次,还设置了手动复位功能。当防喘振线 下移时,此时的设定值SP为折线算出的SP’减去移动次数N乘以下移量1%。 即 SP= SP'-N×1%。
10

防喘振控制在TPS中的算法
LE PDI1840A.PV PDI1840B.PV EQUATIONA HILOAVG (LO) PDI1840.PV FLOWCOMP (EQB) SP.PV GENLIN PDC1840.PV XY1840 PC1841.PV Control Language PI1841A.PV PI1841B.PV PMESD SP Shutdown EQUATIONA HILOAVG (HI) PI1841.PV PV 主PID ASC1840.OP Control Language PM1840 XY1840.NN(4) SURGE.PV Control Language
P.PV TI1840.PV
GENLIN
PI1840.PV
CALCULTR SENT1840.OP 副PID
AUTO MAN AUTO MAN
ASV1840A.OP
PZ1841.PV CALCULTR P1841.PV Logic Block
ASV1840B.OP
ASC1840.P
11

防喘振控制在TPS中变量说明
序号 1 2 3 4 5 6 7 8 9 10 11 位号 PI1841A/B PI1841 PDI1840A/B PDI1840 PDC1840 PC1841 P1840 PZ1841 P1841 ASC1840 HIC1840A/B 点的功能描述 风机出口压力 高选后的风机出口压力 喉部差压 低选后的喉部差压 温度补偿后的喉部差压 折线运算后的出口压力 计算后的比例增益P 折线运算后的比例增益P 折线运算后的比例增益P 再计算 防喘振控制PID运算 放空阀手操器 点的类型 Analog Input Regulatory PV Analog Input Regulatory PV Regulatory PV Regulatory PV Regulatory PV Regulatory PV Regulatory PV Regulatory Control Regulatory Control 序号 12 13 14 15 16 17 18 19 20 21 位号 ASV1840A/B LG1841 PM1840 XY1840 PMESD ESD P SENT1840 SURGE ASCC 点的功能描述 放空阀输出 联锁停机比例增益P自 整定 CL语言控制放空阀快开 慢关 CL语言控制防喘振线下 移 停机CL语言控制放空阀 自动全开 停机信号 用于温压力补偿用的压 力(常压) 防喘振控制快开慢关传 递参数 喘振报警 防喘振曲线图 点的类型 Analog Output Logic Process Module Process Module Process Module Digital Input Numeric Regulatory Control Flag .PCT图形文件
12

防喘振控制线在TPS中的算法
折线函数算法: 在TPS系统中 Regulatory PV 运算模块中有 专门的折线函 数运算General Linearization( GENLIN)。 防喘振线和比例 度P自整定通过 GENLIN实现。
13

防喘振折线及比例度自整定折线函数坐标点
喘振线 序号 1 2 3 4 5 6 7 8 9 10 11 X轴 0.0 3.14 4.65 6.24 7.78 9.85 13.59 25.0 25.0 25.0 25.0 Y轴 0.0 95.0 143.545 187.53 229.52 255.36 268.66 268.66 268.66 268.66 268.66 X轴 0.0 0.5 0.6 0.7 0.8 1.0 1.2 1.4 1.6 1.8 100.0 比例增益 Y轴 0.0 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 100.0
14

TPS中比例度P自整定折线运算
比例度K 100 80
30 10 0 0.6 1.2 1.8 100 偏差e
比例增益的折线运算
15

放空阀快开(自整定比例增益法 )
PID参数比例增益K自整定运算: 是通过折线函数实现的,共11点坐标形成10段斜坡折线 得出K。在没有发生喘振情况下,当偏差e大于0.1%时(即喘振条 件具备)发生喘振,比例K通过折线运算,若偏差越大,则K越 大。 当偏差e 小于0.1%时,K值保持不变。在比例增益K值自动变 化过程,积分T1值始终为4,微分T2值始终为0。
16

TPS中比例增益自整定运算
L1 L2 ASC1840.PV ASC1840.SP Deadboad SO1 R1 R2 DB ON IF R1>=R2 L3 P1841.PV ENB
ASC1840.P
GE SO1 S1
PULSE SO2 1sec
1s pulse
FL(1) FL(2)
S1 S2 S3
SWITCH SO3
FL(1)=Always OFF FL(2)=Always ON L4 LG1841.NN(1)=90 ENB IF (S3=ON)THEN SO3=S1 ELSE SO3=S2
FL(2) FL(1)
S1 S2 S3
SWITCH SO4
17

在TPS系统中实现放空阀的慢关功能
? TRICON系统中: 放空阀的快开慢关的特性对压缩机而言尤为重要,是工艺及设 备的特性所决定的。原方案在 Tricon 系统中实现很容易,它根据 PID的输出趋势作成正常打开,缓慢关闭,而关闭是以0.1%递加而 得的。即当PID的输出是开(减小)的趋势时阀正常打开;反之, 即当PID的输出是关(增大)的趋势时阀的输出是以0.1%递加关闭 。源程序如下: ? IF (yBIC840 - yBIC841) >= 0.1 ? THEN yBIC840 = yBIC841 + 0.1; ? ENDIF; ? yBIC840 = CLAMP(yBIC840,100.0,0.0); ? yBIC841 = yBIC840;
18

在TPS系统中实现放空阀的慢关功能
TPS系统中: 关键是找到一个能将PID的输出与AO点的.OP参数相连,实现快开慢 关的功能。笔者经过反复实验:只有通过CL语言才能实现这种参数的连 接,但只是两个PID模块之间的参数连接,否则将无法实现。这就要求: ? A:主PID的输出连接置空(无连接) ? B:副PID的输入用Pull关系连入主PID的输出,但不参与控制,只用于显 示。副PID的输出 完全由CL语言控制,其始终处于P-MAN控制方式。 ? C:副PID的输出连接AO点的.OP参数。 ? D:CL语言要根据主PID的输出变化趋势来控制副PID的输出,实现快开 慢关功能。 但在实际测试中发现D项中的如何判断主PID的输出变化趋势是关键、 更是难点,其余三项很容易实现。
19

在TPS系统中实现放空阀的慢关功能
TPS系统中: 为此,笔者通过AI点的上一个周期采样值LastPV可推断PID的输出很可 能也有此参数。在查找了所有资料后笔者发现只有三个参数可以试运。 ? OPCMD=0 IDLE(Output is not being affected by Output Command) ? OPCMD=1 Lower(Output is being lowered) ? OPCMD=2 Raise(Output is being raised) 但在实际中发现三个参数达不到控制要求。 在经过反复实验后,最终不得不采用了下述方法,即在CL语言中每 隔0.1秒钟对主PID(ASC1840)的输出作一次采样。根据二次采样的差 值来判断主PID的输出是增大还是减小,来控制副PID(SENT1840)的 输出,进而得到完美解决。在整个控制过程中,副PID只是起到信号传递 作用。
20

循环气压缩机防喘振控制(内容充实)

循环气压缩机防喘振控制 摘要: 本文系统介绍TRICON系统在循环气压缩机机组防喘振控制的应用及控制原理。重点介绍防喘振系统的功能模块的构建,同时简述机组运行故障时的检修方法与分析思路。 关键词定义: 喘振机理喘振线防喘振控制安全裕量盘旋设定点 1、前言: 大型离心式压缩机组由于其高效,经济,在现代企业中应用广泛,成为工艺连续运行的“心脏”。但是由于其造价相对于往复式压缩机而言要高很多,控制系统复杂,而且占用的空间大等缺点,对于工艺成熟的企业一般不设置备用机组。喘振是离心式压缩机固有的特性,每一台离心式压缩机都有它一定的喘振区,因此只能采取相应的防喘振调节方案以防止喘振的发生。本文以天利高新技术公司醇酮厂的循环气压缩机C41101(SVK1-H型)为例,详细介绍TRICON三重化控制系统如何构建机组防喘振系统,并简述防喘振仪表常见故障的处理方法。 2、离心式压缩机喘振机理: 离心式压缩机的特性曲线与喘振 离心式压缩机的特性曲线是指压缩机的出口压力与入口压力之比(或称压缩比)与进口体积流量之间的关系曲线P2/P1~Q的关系,其压缩比是指绝对压力之比,特性曲线如图所示: 图2.1 离心式压缩机喘振曲线 由图2.1可见,其特性曲线随着转速不同而上下移动,组成一组特性曲线,而且每一条特性曲线都有一个最高点。如果把各条曲线最高点联接起来得到一条表征喘振的极限曲线,如图中虚线。所以,图中还有阴影部分称为喘振(或飞动)区;在虚线的右侧为正常工作区。实线与虚线之间是临界区,压缩机可以运行,但太靠近喘振区,应尽量避免长期工作。

图2.2固定转速机下的特性曲线 图2.2是一条某一固定转速机下的特性曲线,喘振时工作点由A-B-C-D-A反复迅速的突变。 喘振是一种危险现象,发生喘振时,可发现在入口管线上的压力表指针大幅度摆动,流量指示仪表也发生大幅度的摆动.喘振现象会损坏压缩机的各部件,轴承和密封也将受到严重损害,严重时造成轴向窜动,甚至打碎叶轮,烧轴,使压缩机遭受破坏。 喘振是离心式压缩机固有的特性,每一台都有它一定的喘振区,因此只能采取相应的防喘振调节方案以防喘振的发生。 3、工艺流程简介: 醇酮装置是利用环己烷(C6H12)在铁系催化剂的催化作用下与贫氧空气(氧含量:10%)中的氧组分发生氧化反应,生成环己醇(分子式:C6H11OOH)、环己酮(分子式:C6H10O)、还己基过氧化物(可分解为环己醇、环己酮),前两者合称醇酮。另外,由于反应温度、氧气含量的不同,会产生甲酸、二元酸等付产品。 循环气压缩机组是用于反应尾气的重复利用,与来自新鲜空气压缩机C41102的新鲜空气配制贫氧空气(氧含量:10%)。循环气机组部分的实时工艺流程如图3.1,流程说明如下: 4.5MPa中压蒸汽自管网来,经过减温减压后至4.1MPa,用于驱动汽轮机(杭汽大陆产:B0.3-4.1/1.1型)C41101/2,蒸汽凝结水直接排入地沟。汽轮机通过齿轮变速箱升速后驱动贫氧空气压缩机C41101/1,使之达到18831r/min。 经过醇酮反应器贫氧催化反应消耗掉贫氧空气中氧组分的尾气,通过洗涤工艺后主要成分为氮气(N2:95.52%),氧气(O2:3.44%)、微量CO、CO2、环己烷蒸汽等。经过贫氧空气压缩机入口气液分离器分离出凝结液体后进入压缩机升压,经出口气液分离后进入气气混合器R41103,与来自新鲜空气压缩机的新鲜空气混合调配成氧含量为不大于10%的贫氧空气,送往醇酮反应器进行贫氧催化反应。

预旋技术防喘振原理

预旋技术防喘振原理 旋转进口导流叶片和静叶片的防喘机理:通过旋转进口导流叶片,使其出气角改变,控制导流叶片出气角的大小和方向可以使流入第一级动叶的气流攻角处于正常位置,调节旋转前面级的静叶片出气角可以使这些静叶片后的动叶处于满意的工况下工作,因而可以避免喘振,并使压气机偏 离设计工况下仍能保持正常工作。 从速度三角形分析,用旋转静叶片防止喘振的方法,就是在非设计工况时改变压气机速度三 角形上的预旋(改变C1u)来改变冲角i,使气流速度W1的方向,保持在设计值附近,部分地消除喘振。在图2中给出了如果进口导流叶片不能转动,当工作轮转速不变,气流轴向速度C1a发生变化(即来流流量发生变化)时叶型上气流的冲角所发生的改变。从图中可以看出在流量大于或小于设计流量时,转子叶片的来流攻角将小于或等于0,此时叶片压、吸力面就会发生不同程度的分离, 严重时可能导致压气机喘振。 图3表示借助于适当的转动导流叶片安装角可以使气流流入工作轮叶片通道内的相对速度方向在流量变化时保持不变,这就保证了转子叶片在非设计工况下都可以工作在设计状态附近,从而消除了喘振[4]。 可调进口导流叶片和静叶叶片,作为多级轴流压气机的防喘措施之一,其优点突出,不仅达到防喘措施,而其非设计工况下效率高,同时还可以改善燃机的加速性,又适用于高增压比压气机,所以这种防喘调节机构广泛地应于80年代新发展的压气机设计中,同时在大型风机中也得到很好的应用,如陕西鼓风机厂在这种理论指导下已成功研制出全静叶可调的大型鼓风机。 鉴于该方法广泛的工程应用前景,国内外许多学者、专家都在这方面开展了大量的探索研究,并取得许多卓有成效的理论和试验成果。我国张健等[4]应用试验的方法,在设计转速下,通过试验调节一台三级轴流压气机各级组合,找到了压气机的一组最佳角度匹配。试验结果分析表明,静叶角度的改变对压气机性能有着极为明显的影响,采用最佳角度匹配,最高绝热效率提高了7.4个百分点,稳定工作裕度也有显著的增加。对于如何改善低速状态下的压气机性能,夏联等[5]进行了一台七级轴流高压压气机的静叶调节试验研究。试验结果分析表明:在低速状态下,通过静叶角度优化调节能有效地改善压气机性能,拓宽稳定工作范围;并且,压气机低速性能受静叶可调角度的配比影响很大。静叶角度调节技术与其他技术相结合,能更有效地改善压气机性能。楚武利等[6]通过试验研究了带导叶的单级轴流压气机在进口导叶无预旋、全叶高预旋2度和叶顶端部预旋2度时,压气机总性能、基元性能及失速边界的变化情况。对比分析了三种导叶在不同转速下的性能曲线,结果表明导叶预旋对压气机在非设计转速下有很好的扩稳效果;进一步研究发现:利用端弯技术可以推迟轴流压气机不稳定流动的发生,扩大压气机稳定工作范围。另外西北工业大学的范非达等也在这方面开展了大量工作并取得良好的效果[7~8]。 但这种防喘措施结构比较复杂,特别是对多级静叶调节实现起来更加困难。此外从气动方面来看,这种方法只能着重改善气流沿叶高某一半径上的流动情况,对整个叶片的三维流动不能很好的兼顾,例如照顾了平均半径就不能很好地照顾叶尖和叶根。

高炉轴流风机喘振分析及防喘振控制系统研究

高炉轴流风机喘振分析及防喘振控制系统研究 张红庆 陕西维远科技有限公司 710054 摘要:本文介绍了轴流风机喘振现象的形成机理、不同气温条件下喘振曲线的动态补偿方法,分析了常见的传统防喘振控制工艺中存在的不足,以及先进防喘振控制技术应用于高炉轴流风机的优化控制策略。 关键词:轴流鼓风机;防喘振;优化控制 引言 目前静叶可调式轴流风机在钢铁企业400~2000m3的高炉上已普遍使用。在高炉风机的控制系统中,防喘振控制系统是最核心的控制环节,必须综合考虑高炉生产、机组安全、节能降耗等多方面需求,如果在控制工艺中采用常规的简单、粗放的设计方法,不仅能耗浪费严重,也是极大的安全隐患。本文介绍的高精度防喘振控制系统,不仅可以更有效地保证机组和安全和稳定,同时也可以充份发挥机组的最大性能范围,对高炉安全性和产量的提高起到显著的促进作用。 轴流风机喘振现象的本质 为了更好地理解和设计防喘振控制系统,有必要对轴流压缩机形成发生喘振现象的本质原因加以说明。 轴流风机转子的叶片呈多级排列,每一级叶片环绕转子形成一组叶栅。空气流经过多级叶栅逐级压缩传递,最终经末级叶栅到达出口。在一定的静叶角度下,气体的流量与风机出口的压力有关,压力越高,流量越低。喘振是指风机达到出口压力极高、流量极低极限后的工况突变。

气流冲角及叶片背面表层气流脱离失速现象 气流沿轴向进入叶栅时,气流方向与风机叶片之间的夹角称为气流冲角。随着压力的增高,入口流量愈小,气流冲角也就愈大。当气流冲角增大到一定程度时,沿叶片的非工作面将发生气流脱离现象。这种现象称为脱流或失速。失速是叶轮式轴流输送设备都会遇到的一种现象,失速又叫旋转脱流,即由于气体对叶片的冲角过大而使得气流的流线脱离叶片表面,结果叶片表面处的气流变为紊流,同时可导致叶片颤振。失速区沿叶栅旋转传递和不断扩展,就会引起压缩机的工况突变,即喘振。 气流冲角增大至一定程度后,沿叶片背面形成气流脱离现象示意图 当风机发生喘振时,整个风机的管网系统气流周期性振荡现象,这时,轴流风机虽然仍在旋转,但对气体所做的功却不能提高风机的流量和压力,而是基本上转化为空气热能。风机的气动参数(流量、压力)将作大幅度的纵向脉动,且发出低沉的异常声音和震动。在轴流风机发生喘振时,纵向推力来回振荡会导致

压缩机防喘振系统出现的问题及防范措施

压缩机防喘振系统出现的问题及防范措施 离心式压缩机因其运行平稳、效率高、在正常运行条件下无脉动等特点,在企业中得到了广泛的应用。与往复压缩机相比,具有流量大、重量轻、运转率高、零部件薄弱、维修方便、风量控制范围广、压缩机排油量大等优点,对压力、流量、温度变化比较敏感。喘振是影响压缩机安全运行的重大隐患,持续的喘振会对压缩机造成内部损坏,造成严重的设备损坏。本文介绍了离心式压缩机防喘振措施及日常运行维护注意事项。 标签:压缩机;防喘振;问题;防范措施 当前,离心式压缩机被广泛地应用于化工、石油等行业内部,但它在流量、温度和气体压力的影响下很容易发生喘振现象。因此,接下来我们将具体分析离心式压缩机的喘振原因,并提出一些预防的策略,以保证压缩机机组的安全、稳定运行。 1 喘振现象的特征 (1)當机械零件、机身或轴承发生剧烈震动时,这表明压缩机具有更严重的喘振现象。(2)压缩机的流量和吐出压力周期性地变动,由于流量计和压力计的强振动而产生了喘振。(3)当人的耳朵能够听到周期性的空气的轰鸣时,这也是一种喘振现象。但是,人的耳朵,可能无法区分噪音多的环境和喘振现象。若有预测,可通过设备状态和操作参数的性能曲线检查喘振现象。 2 离心式压缩机喘振故障原因分析 (1)压缩机进气口温度变化。标准大气压-25℃中的压缩量,即离心压缩机的设计中的压缩量,由于过程气体的温度不受人的行为控制,所以经常变化。在定压下,当温度上升时,过程气体的密度就会下降,压缩机的实际压缩过程气体流量下降,压缩机的输出压不足,就会形成冲浪现象。实际上,夏季比起冬季,喘振发生的可能性更高。(2)压缩机扩散器的腐蚀。由于高速转弯因子的作用,过程气体会变得高速且高压。在静态扩散器中,由于在扩散器中特别设计的曲线腔壁,过程气体的流量减少,压力再次上升。在扩散器,压力通常增加1 / 3左右。当腐蚀和磨损严重时,扩散器内的特殊弯曲的腔壁容易形成滚动,降低吸气,降低空气压,降低压缩机的输出压力,容易产生冲击现象。(3)叶轮和扩压器间隙发生变化。离心压缩机非常严格,因此其间隙应保持合理的距离。如果叶轮和扩散器的间隙太小,处理气体的流量也会下降。此时,认真地磨练后端推力轴承的话,产生空气泄漏,空气流量下降。如上所述,如果叶轮和扩展器之间的间隙太大或太小,空气流变小,压缩机的输出压下降,就会造成冲击故障。(4)压缩机内叶轮磨损。为了增加工艺气体的速度和压力,需要通过曲线槽结构和高速旋转来实现压缩机高压。如果内螺旋桨的能力增加工艺气体的压力和速度,则内螺旋桨本身的曲线槽结构发生变化,从而导致内螺旋桨或过多的粘合剂的磨损。因此磨损性是压缩机的服务器破坏的原因。

压缩机控制系统

压缩机控制技术概述 概述 压缩机是石油、化工、冶金等行业工艺中重要的设备,对机组运行的稳定性,安全性,连续性要求比较高,这样,就需要由高度可靠、高度集成、高度专业的控制系统作为达到以上要求的保证。 概括而言,压缩机的控制系统主要分为以下几个方面: 机组的联锁保护及逻辑功能(ESD) 过程调节功能 压缩机的防喘振 汽轮机调速控制和超速保护 功能说明 一机组的联锁保护及逻辑功能(ESD) 1. 报警联锁保护 控制系统监测压缩机,汽轮机,油站等现场的温度,压力,振动,位移等信号,做出相应的高低报警及联锁停机。 2.启停车逻辑 系统能实现机组的开机启动顺序控制,包括机组启动前确认润滑油温度、润滑油压力、控制油压力、透平入口的蒸汽压力及温度达到启动值,防喘振阀全开位置,主气门全开,盘车停止等条件,全部条件满足后输出启动信号。正常停机的卸载控制。 3.油站的油泵控制( 两个油泵互为备用,控制系统可以实现主备油泵的选择,每个油泵可在手动自动方式切 换。如果润滑油压力或控制油压力低,可自动启动备用泵;如果润滑油压力开关动作,以三取二方式实现联锁停车逻辑。

4. 汽轮机的冷凝水泵控制( 两个冷凝水泵互为备用,控制系统可以实现主备冷凝水泵的选择,每个冷凝水泵可在手动自动方式切换。冷凝水泵主要是用于冷凝罐的排水泵,可根据液位设定值自动或手动启动停止水泵,两个水泵可同时或单独工作。另外,系统还会做相应的保护,比如,液位如果达到最大设定值,立即强制两个水泵同时运行,如果达到液位最低设定值,立即强制两个水泵同时停止,以保证冷凝罐内的水位正常。 二过程调节功能 汽轮机驱动的压缩机控制回路主要有: 1.油站的油压调节 根据需要,有的油站设计有两个油压调节回路,分别在油泵出口和油过滤器出口,可以根据相应管路的油压要求调节阀门,保证油压的稳定。 2.汽轮机的冷凝水的排放阀和循环阀控制 根据汽轮机的冷凝水液位,调节排放阀和循环阀以控制冷凝罐内的水位,冷凝水的排放阀和循环阀控制为分层调节,分层点由现场的实际情况来定,可以由用户在操作界面上设定分层点。 3.压缩机段间气液分离器液位控制 根据气液分离器液位调节出水阀控制液位。 三压缩机的防喘振 防喘振功能 喘振现象 喘振是涡轮机组特有的现象,我们可以从下图的简单模型来解释 这一特性,从图中可以看出,当容器中压力达到一定值时,压缩机运 行点由 D 沿性能曲线上升,到喘振点 A,流量减小压力升高,这一

高炉轴流风机防喘振控制系统优化及实验

高炉轴流风机防喘振控制系统优化及实验 摘要:针对萍钢4#高炉鼓风机存在的问题,阐明了防喘振控制优化的方案,包括工况点沿防喘线精确控制,入口温度对喉部差压、出口压力的补偿,提出了控制优化的具体实施方法,优化达到了预期目标。 【关键词】轴流风机防喘振优化实施 一、前言 高炉鼓风机是高炉炼铁生产的关键动力设备,为确保鼓风机的安全稳定运行,在其控制系统中必须配备防喘振自动控制,并应兼顾高炉生产、机组安全、节能降耗等各方因素,高炉作为鼓风机供风的负载,炉内状况瞬息万变,鼓风阻力发生扰动,控制系统将使防喘振阀动作,就会在高炉意外崩料和风机喘振之间处于两难的境地,本文以萍乡钢铁公司4#高炉鼓风机的防喘振控制优化为例,阐述控制系统在防喘振调节过程中如何保证送风压力的稳定性,在安全运行前提下充分发挥风机能力,进而为高炉稳产、高产奠定基础。 二、存在的问题 萍乡钢铁公司4#高炉采用AV45-13全静叶可调式轴流风机,由于防喘振控制侧重于保护鼓风机,加之防喘振控制品质不高,2010年投产以来,防喘振控制系统运行状况不甚理想,主要表现在以下几方面: 1)防喘阀开度基本在10%左右,轴流风机经常处于放风状态,造成大量无谓能量损失,放风噪声污染严重。 2)防喘振的控制品质有待提高:一旦高炉路况不顺,鼓风阻力增大使风机工况点进入调节区时,通常是采用人工紧急干预打开防喘阀使工况点回到稳定工作区,保守的安全意识使工况点总是远离防喘振线。 3)不同入口温度对风机喘振性能有较大影响,采用固定的喘振性能曲线不能真实地反映风机喘振性能,一方面可能影响风机的安全、稳定运行,另一方面可能制约风机供风能力的充分发挥。 三、防喘振控制优化方案 1.防喘振控制优化的先决条件 为了实现防喘振控制的优化,必须借助于性能优良的PLC系统。PLC的高速运算性能可使用户程序的扫描周期在10毫秒级,为有效克服鼓风阻力瞬变扰动成为可能;PLC丰富的运算和编程功能可以实现各种先进控制算法,达到预期的控制效果;PLC的高可靠性,实现风机控制系统的安全运行进而确保风机的安全可靠运行。4#高炉鼓风机采用西门子S7-400H PLC,配备冗余414CPU可很好地实现各项控制任务。 为了实现防喘振控制的优化,必须借助于性能优良的防喘振阀。防喘振阀具有可靠的快开性能,当一旦压力过高,可释放由于喘振引起的压力波动;防喘振阀应具有良好的调节性能,当运行点接近防喘振线时,能充分调节流量以防止起浪点;防喘阀应具备灵敏的阶跃响应,超调应限制在最小,可满足风机在启动和停车时的压力、流量变化。4#高炉鼓风机采用的fisher防喘阀可以较好地满足上述要求。 2. 工况点沿防喘线精确控制 (1)防喘振的基本控制方法以喉部差压为横坐标、以出口压力为纵坐标,建立了运行工况画面,画面包含喘振线(红线)、喘振报警线(黄线)和防喘振控制线(蓝线),黄线和蓝线分别设在红线下方97%和93.5%处,以实际运行工况下的喉部差压和出口压力坐标建立运行工况点,如下图所示。根据当前喉部差压(补偿后),在防喘线上查询对应的出口压力,作为防喘振控制的给定值SP,以当前风机出口压力作为防喘振控制的测量值PV,二者之偏差西门子STEP7的PID模块FB41进行控制运算,当工况点接近或越过蓝线时,PLC控制防喘阀打开一定角度,来减小压缩机出口的阻力,使工况点回到稳定工作区,以避免轴流风机喘振现象的发生。 在工况点接近喘振线时,要求轴流风机的防喘阀必须动作迅速,但防喘阀动作速度太快、动作幅度过大,势必会使风机出口压力、流量产生大幅度波动,影响高炉炉况的稳定。由于防喘振控制是以风机吸入气体流量和排气压力为调节对象,二者的变化都具有极强的瞬时性,而信号测量、计算输出、执行机构动作及工艺过程都不可避免会产生一定的时间滞后,在这样一个瞬时性非常强的闭环控制回路里,以滞后的测量信号为计算依据,采用的常规的PID运算,虽然可以在工况点跃过防喘线时迅速地打开放空阀,但无法使工况点在响应线附近被稳定控制,难以实现精确控制。

压缩机防喘振方案

压缩机防喘振方案 费希尔压缩机防喘振方案 压缩机大概是工艺系统中最关 键和昂贵的设备。保护压缩机免 受喘振损坏的任务由防喘振系 统完成,防喘振系统的关键部件 就是防喘振阀。 喘振可以定义为压缩机不能输 出足够压力克服下游阻力时发 生的流量不稳定现象。简而言 之,就是压缩机出口压力小于下游系统压 力。这会导致气量从压缩机出口反向涌入 压缩机。喘振也会由于进口流量不足引 发。 图1 所示为一组典型的压缩机曲线(也称 作压缩机图、性能曲线或叶轮图)。X 轴 表示流量,Y 轴表示出口压力。平行的一 组曲线表示压缩机在不同转速下的性能 曲线,连接这些曲线的最小流量点,就得到喘振极限曲线。压缩机操作点落在喘振 极限曲线左边会发生不稳定(喘振),操 作点落在曲线右边可稳定操作。 假设压缩机在稳定区域的A 点操作,当 阻力增加而压缩机转速不变时,操作点就 会向左方移动。当操作点移动到喘振极限 曲线,压缩机就会发生喘振。 喘振特征 ■ 快速逆流(毫秒级)。 ■ 压缩机振动剧增。 ■ 介质温度升高。 ■ 噪声。 ■ 可能导致压缩机“失效”。 喘振影响 ■ 压缩机寿命缩短。 ■ 效率降低。 ■ 压缩机出气量减少。 ■ 密封、轴承、叶轮等受到机械损坏。 通过防喘振阀将部分或全部压缩机出口气量再循环至进口通常可控制喘振。部分压缩机系统设计将

部分出口气量持续循环回进口。这是一种控制压缩机喘振的有效方法,但增加了能耗。 防喘振阀选用要求 ■流量——防喘振阀必须能够输送压缩机全部出口气量。不过通常给压缩机流量乘上一个系数。■噪声控制——在喘振过程中阀门承受的压降和流量会很高,将会引发过度噪声。这点必须在阀门选型时充分考虑,虽然在阀门整个行程范围内可能不需要噪声控制。极端喘振现象要求阀门在短时间(通常小于10秒)内全行程打开,如果阀门开启时间过长,压缩机将会由于其它原因停机(通常是高温或振动超标)。因此可能需要采用特性化阀笼。 ■速度——防喘振阀必须动作迅速(一般仅为开启方向)。例如阀门必须在0.75 秒内完成20 英寸的行程。这就必须采用大规格执行机构连接和流量增压器和快开排气阀。 ■失效方式——绝大部分压缩机循环阀要求失效时为开启状态。这可以通过采用合适的弹簧隔膜执行机构或活塞执行机构与气锁阀系统实现。 ■阀门特性——一般首选线性,也有选择等百分比。 艾默生提供针对苛刻的压缩机喘振场合设计的工程控制阀系统—费希尔优化防喘振阀。在这个控制阀系统中,每个部件都按照性能规范经过优化选择以具有要求的最佳性能,保证压缩机系统的可靠实用性。 压缩机防喘振——控制阀解决方案 费希尔专用定制 位于沙特阿拉伯的一套乙烯装置采用费希尔优化防喘振阀替换了原有系统。费希尔防喘振阀设计满足原有阀门的接口尺寸,与原有设备相比大大改善了流量、噪音衰减和可调节性方面的性能。详情访问https://www.360docs.net/doc/5c2808163.html, 中的D351140 × 12 。 费希尔优化 ■阀门内件具有高可调比特性(100:1 或更高)(如需要)。 ■利用多级、噪音衰减Whisper? 内件消除阀门噪音和振动。 ■平衡区域宽阔的阀芯和加衬垫的执行机构在长行程装置中减少了潜在的管道振动。 ■同传统系统比较,执行机构附件数量减半。 ■采用根据特殊防喘振控制和调节算法设计的FIELDVUE-ODV 配置。 ■安装和调节可在数分钟内远程完成,无需数小时。 ■提供在线的、不影响设备运转的诊断功能。包括性能诊断、触发诊断、定位诊断和部分行程测试。 基本技术 ■标准控制阀。 ■启动和操作点围绕标准阀门流量特性设计。 ■选用的执行机构和仪表适用于快开操作,一般小于两秒。 ■通过流道加工措施控制了噪音量。

离心式压缩机防喘振控制设计讲解

1 概述 1.1压缩机喘振及其危害 压缩机运行中一个特殊现象就是喘振。防止喘振是压缩机运行中极其重要的问题。许多事实证明,压缩机大量事故都与喘振有关。喘振所以能造成极大的危害,是因为在喘振时气流产生强烈的往复脉冲,来回冲击压缩机转子及其他部件;气流强烈的无规律的震荡引起机组强烈振动,从而造成各种严重后果。喘振会造成转子大轴弯曲;密封损坏,造成严重的漏气,漏油;喘振的出现轻则使压缩机停机,中断生产过程造成经济损失,重则造成压缩机叶片损坏,造成人员伤害;喘振使轴向推力增大,烧坏止推轴瓦;破坏对中与安装质量,使振动加剧;强烈的振动可造成仪表失灵;严重持久的喘振可使转子与静止部分相撞,主轴和隔板断裂,甚至整个压缩机报废。 1.2喘振的工作原理及防治 压缩机在运行中,当管路系统阻力升高时,流量将随之减小,有可能降低到允许值以下。防喘振系统的任务就是在流量降到某一安全下限时,自动地将通大气的放空阀或回流到进口的旁通阀打开,增大经过空压机的流量,防止进入喘振区。取流量安全下限作为调节器的规定值。当流量测量值高于规定值时,放空阀全关:当测量值低于规定值时,调节器输出信号,将放空阀开启,使流量增加。压缩机工作效率高,在正常工况条件下运行平稳,压缩气流无脉动,对其所输送介质的压力、流量、温度变化的敏感性相对较大,容易发生喘振造成严重事故。所以应尽力防止压缩机进入喘振工况。喘振现象是完全可以得到有效控制的,如图(1)所示,根据离心压缩机在不同工况条件下的性能曲线,只要我们把压缩机的最小流量控制在工作区(控制线内),压缩机即可正常工作。喘振的标志是一最小流量点,低于这个流量即出现喘振。因此需要有一个防止压缩机发生喘振的控制系统,限制压缩机的流量不会降低到这种工况下的最低允许值。即不会使压缩机进入喘振工况区域内。

综合透平压缩机控制系统ITCC 控制系统方案

综合透平压缩机控制系统ITCC 控制系统方案 概念 综合透平压缩机控制系统Integrated Turbo & Compressor Control System 英文缩写(ITCC)。功能 提供防喘振、联锁停机、电子调速、超速保护、硬件在线诊断、SOE顺序事件记录、 在线换卡、在线下装程序、为压缩机/ 汽轮机附属系统提供监测和保护功能,并且输出报警或停机和关机、对压缩机组实现全部操作和监控及保护,实现节省能源、保护机组的目的。 一. 登录画面 登录画面是用来选择操作员是以什么身份登陆系统,点击登录按钮会弹出以下窗口。 写入登录用户名和口令就可以登录了。登录后在主画面上会显示用户名和用户的级别。以管理员身份登录后,就可以操作画面下方的注销

用户、锁定键盘、解锁键盘操作,还可以点击退出按钮,退出INTOUCH 系统。 操作员可以根据需要点击,选择进入空压机流程画面或氮压机流程画面。 二.空压机流程 点击进入空压机流程主画面,会切换到如下主画面。 此画面显示为空压机气路流程。在画面的左上角为空压机控制主画面选择按钮。按钮右边是报警栏,在报警栏的右边是操作员级别和 身份显示。在操作员级别和身份显示栏右边有如下图案:。这是ITCC控制系统上位于下位之间通讯状态显示,通讯正常时会交替闪烁,如果长时间不闪烁,则表示通讯故障,此时此台操作站显示数据为虚假数据,所有操作失效,需要通知仪表车间检查故障。 在通讯状态显示左边有空压机组报警和氮压机组报警文本框,当

空压机组报警时,空压机组报警字符会交替闪烁,当氮压机组报警时,氮压机组报警字符会交替闪烁。 在画面内,如果通道有错误,在数据栏内,标签名会变为紫色。如下所示:。 在画面中有如下图形:,在方框中图形为空压机入口导叶闭锁显示,当为红色时,表示入口导叶闭锁,当变为绿色时表示闭锁解除。点击该图形,会弹出入口导叶操作画面,如下图所示: OP即为入口导叶的输出值,PV是入口导叶的测量值,点击上下箭头是开关入口导叶,也可以点击OP输出栏数据输入需要开得开度,回车即可(在机组运行期间建议使用按钮点击输入)。

轴流风机的防喘振控制..

长岭分公司关键机组防喘振控制 长岭分公司机动处李晖 一概述 透平式压缩机是利用高速旋转的叶轮(叶片组)对气体作功,将机械能加给气体,使气体压力升高,速度增大。在叶轮后部一般设置有面积逐渐扩大的扩压元件(扩压器),高速气体从叶轮流出后再流经扩压器,使气体的流速降低,将气体的速度能(动能)部分转变为压力能,压力继续提高。透平式压缩机气体的吸入、压缩和流出均是在连续流动的状况下进行的。 透平式压缩机按气流运动方向可分为三类: 离心式—气体在压缩机内沿离心方向流动 轴流式—气体在压缩机内沿与转轴平行方向流动 混流式—气体在压缩机内的流动方向介于离心式和轴流式之间 长岭分公司的关键机组分二种:离心式压缩机和轴流式压缩机,它们的原动机有三种:电动机,烟气轮机和蒸汽轮机,压缩机的主要作用是压缩空气和富气等工艺介质,使之达到工艺所需的流量、压力。关键机组是生产中的关键设备,它们的运行工况对压缩机安全、稳定、经济地运行和生产装置的正常运行十分重要,而在关键机组的诸多自控回路中,其防喘振控制是一项重要的安全保护措施。 二防喘振控制系统 喘振是透平压缩机的一种固有特性。 1.喘振的产生

压缩机的运行工况任何时候都可以用性能曲线来表示,通过性能曲线可以反映压缩机各种运行参数之间的关系并确定其性能,如图1所示的是反映压缩机出口压力与入口流量之间关系的性能曲线(入口温度、压力和转速不变)。当压缩机的流量沿着性能曲线减少流量达到其驼峰点流量(喘振点)时,在排出管内出现时大时小、时正时负的不稳定工况,在叶轮及扩压器的某一通道内还会发生时出现时消失的边界脱离涡流区,并且依次传给相邻的管道,产生一种低频率、高振幅的气流脉动,从而引起严重的振动和吼叫声,严重时可能引起压缩机和管道系统遭到破坏。 2. 喘振的机理 由于叶轮与叶片扩压器的形状及安装位置不可能完全对称及气流的不均匀性,当进气流量减小到某一个值时,进入叶栅的气流发生分离,这种分离首先发生在一个或几个叶片的流道中,影响进入相邻的流道的气流方向,由于进气冲角的变化及气流的分离区沿叶轮逆流旋转,以比叶轮旋转速度小的相对速度移动,在绝对运动中分离区沿叶轮旋转方向并以比叶轮旋转速度小的速度进行,即产生旋转分离。当旋转分离扩散到整个管道,压缩机出口压力突然下降,后面管路(或容器)中的气流倒流至压缩机内,瞬时弥补了压缩机流量的不足,恢复机组的正常工作,把倒流至压缩机内的气体压出处,又使压缩机流量减小, 入口流量 出口压力 1 图1 压缩机性能曲线图

2021年压缩机防喘振的两种方法

压缩机防喘振的两种方法 欧阳光明(2021.03.07) 压缩机防喘振的两种方法1 一、离心式压缩机喘振的原因1 二、防喘振自控系统的可行性分析1 三、防喘振自控系统的几种实现方法2 1.固定极限流量法2精品文档,超值下载 2.可变极限流量法2 四、防喘振控制系统的实现方法3 五、结束语5 一、离心式压缩机喘振的原因 喘振是离心式压缩机的固有特性。产生喘振的原因首先得从对象特性上找。从图1中可见压缩机的压缩比P2/P1与流量Q的曲线上都有一个P2/P1值的最高点。在此点右面的曲线上工作,压缩机是稳定的。在曲线左面低流量范围内,由于气体的可压缩性,产生了一个不稳定状态。当流量逐渐减小到喘振线时,一旦压缩比下降,使流量进一步减小,由于输出管线中气体压力高于压缩机出口压力,被压缩了的气体很快倒流入压缩机,待管线中压力下降后,气体流动方向又反过来,周而复始便产生喘振。喘振时压缩机机体发生振动并波及到相邻的管网,喘振强烈时,能使压缩机严重破坏。

二、防喘振自控系统的可行性分析 为使压缩机安全有效和经济运行,在低负荷下操作时,其气量应始终保持在喘振区右边并留有一定的安全裕量,一般控制线位于超过喘振极限流量的5%—10%之处。只要保证压缩机吸人流量大于临界吸入量Qp,系统就会工作在稳定区,不会发生喘振。即在生产降负荷时,须将部分出口气体,经出口旁路阀返回到入口或将部分出口气放空,保证系统工作在稳定区。 三、防喘振自控系统的几种实现方法 目前常采用两类防喘振方法,即固定极限流量(或称最小流量)法与可变极限流量法 1.固定极限流量法 固定极限流量的防喘振控制系统,就是使压缩机的流量始终保持大于某一定值流量,如图1中的Qp,从而避免进入喘振区运行。此法优点是控制系统简单,使用仪表较少。缺点是当压缩机转速降低,处在低负荷运行时,防喘振控制系统投用过早,回流量较大,能耗较大。 2.可变极限流量法 在压缩机负荷有可能通过调速来改变的场合,因为不同转速工况下,极限喘振流量是一个变数,它随转速的下降而变小,所以最合理的防喘振控制方法,应是留有适当的安全裕量,使防喘振调节器沿着喘振极限流量曲线右侧的一条安全控制线工作,这便是可变极限流量法。

压缩机防喘振控制方案

压缩机防喘振的两种方法 [分享]压缩机防喘振的两种方法 一、离心式压缩机喘振的原因 喘振是离心式压缩机的固有特性。产生喘振的原因首先得从对象特性上找。从图1中可见压缩机的压缩比P2/P1与流量Q的曲线上都有一个P2/P1值的最高点。在此点右面的曲线上工作,压缩机是稳定的。在曲线左面低流量范围内,由于气体的可压缩性,产生了一个不稳定状态。当流量逐渐减小到喘振线时,一旦压缩比下降,使流量进一步减小,由于输出管线中气体压力高于压缩机出口压力,被压缩了的气体很快倒流入压缩机,待管线中压力下降后,气体流动方向又反过来,周而复始便产生喘振。喘振时压缩机机体发生振动并波及到相邻的管网,喘振强烈时,能使压缩机严重破坏。 二、防喘振自控系统的可行性分析 为使压缩机安全有效和经济运行,在低负荷下操作时,其气量应始终保持在喘振区右边并留有一定的安全裕量,一般控制线位于超过喘振极限流量的5%—10%之处。只要保证压缩机吸人流量大于临界吸入量Qp,系统就会工作在稳定区,不会发生喘振。即在生产降负荷时,须将部分出口气体,经出口旁路阀返回到入口或将部分出口气放空,保证系统工作在稳定区。 三、防喘振自控系统的几种实现方法 目前常采用两类防喘振方法,即固定极限流量(或称最小流量)法与可变极限流量法 1.固定极限流量法 固定极限流量的防喘振控制系统,就是使压缩机的流量始终保持大于某一定值流量,如图1中的Qp,从而避免进入喘振区运行。此法优点是控制系统简单,使用仪表较少。缺点是当压缩机转速降低,处在低负荷运行时,防喘振控制系统投用过早,回流量较大,能耗较大。 2.可变极限流量法

在压缩机负荷有可能通过调速来改变的场合,因为不同转速工况下,极限喘振流量是一个变数,它随转速的下降而变小,所以最合理的防喘振控制方法,应是留有适当的安全裕量,使防喘振调节器沿着喘振极限流量曲线右侧的一条安全控制线工作,这便是可变极 限流量法。 常用控制方案有两种:一是采用测量压缩机转速,经函数发生器作为流量调节器给定值(图2)。二是根据防喘振控制线的数学表达式,用常规仪表来模拟表达式(1),控制流程如图3所示。近年来随着数字仪表和微处理器的发展,这样的控制系统已容易实现。 其中a、b由压缩机制造厂决定,C是一个常数。 式中M—分子量 z—压缩系数 R—气体常数 k—综合流量系数 四、防喘振控制系统的实现方法 水气厂一英格索兰空气压缩机,型号为C90M × 3,三级压缩,流量11942m3/h,进气压力(绝)0.09MPa,排气压力(绝)0.9MPa,功率1305kW。防喘振控制

压缩机的智能控制系统

压缩机的智能控制系统 一、需求简述 在原有系统稳定执行的基础上,增加系统故障分析功能、系统决策功能,以实现对压缩机状态参数的分析,对压缩机执行机构的智能控制决策,一是提升控制参数的性能,为用户、系统维护人员提供更好的操作体验;二是实现故障的自动分析判断,为维修人员提供直观的维修指导。 二、系统架构 2.1 硬件系统 如图1、图2所示,在原有PLC控制系统上需扩展串行通讯口,与工控PC进行通信。图2为工控PC的基本接口,其中VGA/HDMI可接现场显示器,USB扩展外设(数据更新、报表打印机等),RJ45和WIFI作为联网可选接口。 图1 系统连接 图2 工控PC的接口需求 2.2、软件系统框架

图3 软件系统总体架构图 系统模块功能: ●数据采集与显示模块 该模块使用Modbus协议,通过RS232或者RS485与PLC控制器进行通讯,获取压缩机运行状态信息,并在显示器上进行显示。 ●数据管理模块 该模块完成对设备运行状态数据的存储、查询和故障事件日记,可由用户或系统管理员更新管理数据。 ●异常现象的监测报警模块:终端设备一旦有异常情况,实现设备断电、故障报警等。 ●故障维修指示模块: 本部分主要根据诊断结果将要维修或调整的相关设备组件拆装图完成,并将动画或图片形式的故障维修策略显示到屏幕上,指导维修人员完成维修工作。 ●智能故障诊断专家系统:本部分是整个智能控制系统的核心部分,整个智能系统要求 具备开放性(扩展性)、自学性和智能性(即随着案例的累积,其故障判断越准,,需要采用相应的数据); 整个系统可分解成故障案例知识库的建立和最佳匹配案例的查找两部分。 核心关键是专家经验、知识的获取和表达,内容重点是:出现的故障情况----故障分析-----采取的故障解除策略。要求知识库部分将专家经验知识的自然语言描述转换为计算机语

陕鼓轴流压缩机控制系统

轴流压缩机自控系统 第一部分轴流压缩机概述 一、轴流压缩机 1.离心风机与轴流风机的区别 离心风机——轴向进气,径向排气。即:气流流动方向垂直轴线。 轴流风机——轴向进气,轴向排气。即:气流流动方向平行于轴线。

2、轴流压缩机产品型号含义 A 40——9 动叶级数 轮毂直径cm 静叶不可调轴流压缩机 A V 56——13 动叶级数 轮毂直径cm 全静叶可调轴流压缩机 3、轴流压缩机结构 AV型轴流压缩机主要件名称 机壳、静叶承缸、调节缸、主轴、动叶片、静叶片、轴承箱、支承轴承、止推轴承、进口圈、扩压器、液压伺服马达(或电动调节机构)、密封。

4、轴流压缩机机组配置形式1)汽轮机拖动

2)电机拖动 二、机组控制系统 1、分类 1)按作用分 ☆第二种配置形式:汽轮机拖动的两机组,由汽轮机+风机构成。 风机 汽机 低压端 高压端 进汽端 排汽端 控制系统 压缩机组监控保护 生产工艺调节

透平机组控制系统按其服务对象一般分为生产工艺调节和机组运行状态的监控及保护。 生产工艺调节主要是指为满足生产工艺需要,机组控制系统完成对机组运行参数的调整,它是生产的需要,是机组所服务的装置的工艺需要。 机组运行状态的监控及保护,是指为机组操作人员提供了解机组运行状况的界面同时提供保证机组能正常、安全、可靠地运行的监控与安全自保功能。工艺调节功能主要是对压缩介质的流量、压力的调整。调整的手段主要有:调整静叶(或进口导叶、进口节流门)角度、改变机组转速等。机组运行状态的监控及保护功能主要完成对机组运行过程中的各种运行参数的采集、显示、记录以及完成各种逻辑联锁与保护功能。 2)按专业分 2、自控系统组成

离心式压缩机的防喘振控制

编订:__________________ 审核:__________________ 单位:__________________ 离心式压缩机的防喘振控 制 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-5913-30 离心式压缩机的防喘振控制 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一、离心式压缩机的特性曲线与喘振 离心式压缩机的特性曲线通常指:出口绝对压力户2与人口绝对压力p1之比(或称压缩比)和入口体积流量的关系曲线;效率和流量或功率和流量之间的关系曲线。对于控制系统的设计而言,则主要用到压缩比和入口体积流量的特性曲线,见图6—20中实线。 离心式压缩机在运行过程中,有可能会出现这样一种现象,即当负荷降低到一定程度时,气体的排出量会出现强烈振荡,同时机身也会剧烈振动,并发出“哮喘”或吼叫声,这种现象就叫做离心式压缩机的“喘振”。 喘振是离心式压缩机的固有特性,而事实上少数离心泵也可能喘振。离心泵工作中产生不稳定工况需要两个条件:一是泵的玎—Q特性曲线呈驼峰状;二

压缩机控制系统资料

论文关键词:天然气压缩机组控制系统 论文提要:随着国际、国内油气工业的快速发展,特别是天然气工业的飞速发展,用于天然气增压的往复式天然气压缩机组被越来越多的使用,本文通过对L7044GSI/JGD4型往复式天然气压缩机组的控制系统进行分析,简单介绍了控制系统的结构组成与控制功能的实现。 前言 随着国际、国内油气工业的快速发展,特别是天然气工业的飞速发展,一种用于天然气增压的往复式天然气压缩机组(简称机组)被越来越多的用在长输管道增压输送,地下储气库高压注气,油田气举采油,油田天然气回注,煤层气处理,天然气发电,油气处理厂等场合,虽然不同应用场合下的机组的控制系统略有不同,本文通过对哈萨克斯坦KAM油田使用的美国HANOVER公司成撬的L7044GSI/JGD4型往复式天然气压缩机组控制系统WAHLE CONTROL SYSTEMS进行分析,简单介绍了控制系统的结构组成与控制功能的实现。 1.机组控制系统概述 机组控制系统(Unit Control System,简称UCS)或称机组就地控制系统(Unit Local Control System,简称LCS)通常以就地控制柜的形式安装在机组主撬上或机组主撬附近,由机组供应商成套提供。第一论文范文网https://www.360docs.net/doc/5c2808163.html,编辑。 机组控制系统主要由过程控制单元、操作员工作站、数据通信接口等构成,通常,过程控制单元采用可编程序逻辑控制器(PLC),做为人机界面的操作员工作站采用带触摸屏的计算机。因此,机组控制系统实际上是一套以PLC为控制核心,用于机组逻辑顺序控制,PID 控制,实时数据处理,报警停机保护,联网通讯的自动控制系统,可完成单台机组及其辅助系统(空冷器系统、仪表气系统等)的控制。机组控制系统自成体系,独立于站控系统(SCS)以外。 UCS自动、连续地监视和控制压缩机组及其辅助系统的运行,保证人身和设备安全。具体来说,该系统至少满足以下性能:根据命令或条件,按预定程序自动完成机组的启动、加载、卸载和停机/紧急停机等操作;在所有工况下执行对机组的保护;在系统故障或误操作的情况下避免不安全的因素发生;在触摸屏上显示各种工艺变量及其它有关参数;提供声光报警;与SCS交换信息;接受SCS的操作命令。

离心式压缩机的防喘振控制(正式版)

文件编号:TP-AR-L6485 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 离心式压缩机的防喘振 控制(正式版)

离心式压缩机的防喘振控制(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 一、离心式压缩机的特性曲线与喘振 离心式压缩机的特性曲线通常指:出口绝对压力户2与人口绝对压力p1之比(或称压缩比)和入口体积流量的关系曲线;效率和流量或功率和流量之间的关系曲线。对于控制系统的设计而言,则主要用到压缩比和入口体积流量的特性曲线,见图6—20中实线。 离心式压缩机在运行过程中,有可能会出现这样一种现象,即当负荷降低到一定程度时,气体的排出量会出现强烈振荡,同时机身也会剧烈振动,并发出“哮喘”或吼叫声,这种现象就叫做离心式压缩机的

“喘振”。 喘振是离心式压缩机的固有特性,而事实上少数离心泵也可能喘振。离心泵工作中产生不稳定工况需要两个条件:一是泵的玎—Q特性曲线呈驼峰状;二是管路系统中要有能自由升降的液位或其他能贮存和放出能量的部分。 因此,对离心泵的情况,当遇到具有这种特点的管路装置时,则应避免选用具有驼峰型特性的泵。 对离心压缩机,由于它的性能曲线大多呈驼峰型,并且输送的介质是可压缩的气体,因此,只要串联着的管路容积较大,就能起到贮放能量的作用,故发生不稳定跳动的工作情况便更为容易。连接离心式压缩机不同转速下的特性曲线的最高点,所得曲线称喘振极限线,其左侧部分称为喘振区,如图6—20中

CCC 压缩机防喘振控制技术

CCC 压缩机防喘振控制技术 作者:https://www.360docs.net/doc/5c2808163.html, 来源:本站发表时间:2010-6-5 17:27:55 点击:68 CCC 压缩机防喘振控制技术 1. 喘振现象 喘振是涡轮压缩机特有的现象,我们可以从下图的简单模型来解释这一特性,从图中可以看出,当容器中压力达到一定值时,压缩机运行点由D 沿性能曲线上升,到喘振点A ,流量减小压力升高,这一过程中流量减小压力升高,由A 点开始到B 点压缩机出现负流量即出现倒流,倒流到一定程度压缩机出口压力下降(B-C),又恢复到正向流动(C-D ),这样,气流在压缩机中来回流动就是喘振,伴随喘振而来的是压缩机振动剧烈上升,类似哮喘病人的巨大异常响声等,如果不能有效控制会给压缩机造成严重的损伤,喘振工况的发展非常快速,一般来讲在1-2 秒内就以发生,因而需要精确的控制算法和快速的控制算法才能实现有效的控制。 2. 喘振控制

通常压缩机都会有一系列的性能曲线图(如下图所示),其坐标是多变压头-入口流量,由于压缩机入口条件的不同(如温度、压力、分子量等)其喘振曲线是分散的多条曲线,给喘振的控制带来困难,CCC 根据压缩机的设计理论、喘振理论和自己的经验,开发出了一套计算方法和软件,可以将多变的入口条件的喘振曲线转化成与入口条件无关的曲线(如下图),这样就可以方便地确定喘振点,而一般来讲压缩机制造厂商提供的性能曲线,是计算值,会有一定偏差,特别是旧机组的性能会发生变化,或者没有性能曲线,为了精确控制,需要对喘振曲线做现场测试,传统的测试方法需要由经验丰富的测试工程师来进行测试,人为地判断压缩机是否到达喘振点,这样做带来了巨大的风险,因为人的判断无法保证100%的准确。而且由于到喘振点时,需要人来手动控制打开防喘振阀,往往会动作滞后或过早打开,难以避免给机组造成损伤或无法实现准确测量,CCC 的喘振算法和控制算法能够在自动状态下测量喘振曲线,从而避免了人为测量的风险,并能准确测量记录线,这一功能是CCC 的专利技术而且是世界独一无二的。

相关文档
最新文档