函数的极值和导数自己上课资料

函数的极值和导数自己上课资料
函数的极值和导数自己上课资料

2-5 第四次课:函数的极值和导数

问题一:极值概念:

一般地,设函数)(x f 在点0x 附近有定义,如果对0x 附近的所有的点,都有)(x f ﹤)(0x f ,我们就说)(0x f 是函数)(x f 的一个极大值,记作y 极大值=)(0x f ; 如果对0x 附近的所有的点,都有)(x f ﹥)(0x f ,我们就说)(0x f 是函数)(x f 的一个极小值,记作y 极小值=)(0x f .

问题二:求极大极小值步骤

(1)、求导数f'(x);

(2)、求方程f'(x)=0的根;

(3)、检查f'(x)在方程根的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正那么f(x)在这个根处取得极小值。

特别注意:f'(x)无意义的点也要讨论。即可先求出f'(x)=0的根和f'(x)无意义的点,再按定义去判别。

例题:求函数()3144f x x x =-+的极值

练习:求函数y=x^3-3x^2-9x+5的极值

例题:求函数y=(x-1)乘以(x^2开立方)的极值。

例题:设函数f(x)=x^3-3ax+b(a 不等于0)

(1) 若曲线在点(2,f(2))处与直线y=8相切,求a,b 的值

(2) 求函数的单调区间与极值点

问题三:已知函数极值求参数问题

解题思路:

1,求函数导函数

2,由极值点处的导数值为0,列出方程(组)求解参数

3,将解出的参数值带进函数解析式,检验在极值点处函数是否取得极值4,确定参数的值

例题:已知f(x)=x^3+3ax^2+bx+a^2在a=1时有极值0,求常数a,b的值

练习:已知函数f(x)=x-alnx(a属于r)

(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程

(2)求函数f(x)的极值

练习:1,函数f(x)=x^3-3bx+3b在(0,1)内有极小值,则参数b的取值范围是?

2,若函数f(x)=x^3+3ax^2+3(a+2)x+1有极大值和极小值,则实数a的取值范围是?

3,已知f(x)=x63+ax^2+bx+c,f(x)在点x=0处取得极值,并且在单调区间[0,2]和[4,5]上具有相反的单调性。(1)求实数b的值(2)求实数a的取值范围。

综合:

设函数y=f(x)=ax^3+bx^2+cx+d的图像与y轴的交点为p,且曲线在p点处的切线方程为24x+y-12=0,若函数在x=2处取得极值-16,试求函数的解析式,并确定函数的单调递减区间。

高中数学选修2-2精品教案 3.2 函数的极值与导数

§1.3.2函数的极值与导数(1课时) 【学情分析】: 在高一就学习了函数的最大(小)值,这与本小节所要研究的对象——函数极值有着本质区别的,学生容易产生混淆,易把极大值当做最大值,极小值当做最小值。在认识理解导数大小与函数单调性的关系后,结合函数图像直观地引入函数极值的概念,强化极值是描述函数局部特征的概念,使得学生对极值与最值的概念区分开来,也为下节“函数的最值与导数”做好铺垫。 【教学目标】: (1)理解极大值、极小值的概念. (2)能够运用判别极大值、极小值的方法来求函数的极值. (3)掌握求可导函数的极值的步骤 【教学重点】: 极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 【教学难点】: 极大、极小值概念的理解,熟悉求可导函数的极值的步骤 教学 环节 教学活动设计意图 创设情景 观察图3.3-8,我们发现,t a =时,高台跳水运动员距水面高度最大.那么,函数() h t在此点的导数是多少呢?此点附近的图像有什么特点?相应地,导数的符号有什么变化规律? 放大t a =附近函数() h t的图像,如图3.3-9.可以看出() h a ';在t a =,当t a <时,函数() h t单调递增,()0 h t'>;当t a >时,函数() h t单调递减,()0 h t'<;这就说明,在t a =附近,函数值先增(t a <,()0 h t'>)后减(t a >,()0 h t'<).这样,当t在a的附近从小到大经过a时,() h t'先正后负,且() h t'连续变化,于是有()0 h a '=. 对于一般的函数() y f x =,是否也有这样的性质呢? 附:对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号

函数极值与导数解析

函数的极值与导数练习 基础篇 1.函数f(x)的定义域为开区间(a,b),其导函数f′(x)在(a,b)内的图象如图1-3-10所示,则函数f(x)在开区间(a,b)内的极大值点有() 图1-3-10 A.1个B.2个 C.3个D.4个 【答案】B[依题意,记函数y=f′(x)的图象与x轴的交点的横坐标自左向右依次为x1,x2,x3,x4,当a<x<x1时,f′(x)>0;当x1<x<x2时,f′(x)<0;当x2<x<x4时,f′(x)≥0;当x4<x<b时,f′(x)<0.因此,函数f(x)分别在x=x1,x=x4处取得极大值,选B.] 2.函数y=x3-3x2-9x(-2<x<2)有() A.极大值5,极小值-27 B.极大值5,极小值-11 C.极大值5,无极小值 D.极小值-27,无极大值 【答案】C[由y′=3x2-6x-9=0,得x=-1或x=3. 当x<-1或x>3时,y′>0;由-1<x<3时,y′<0. ∴当x=-1时,函数有极大值5;3?(-2,2),故无极小值.] 3.已知a是函数f(x)=x3-12x的极小值点,则a=() A.-4 B.-2 C.4 D.2

【答案】D [∵f (x )=x 3-12x ,∴f ′(x )=3x 2-12,令f ′(x )=0,则x 1=-2,x 2=2. 当x ∈(-∞,-2),(2,+∞)时,f ′(x )>0,则f (x )单调递增; 当x ∈(-2,2)时,f ′(x )<0,则f (x )单调递减,∴f (x )的极小值点为a =2.] 4.当x =1时,三次函数有极大值4,当x =3时有极小值0,且函数过原点,则此函数是( ) 过(1,4)f ′(1)=0 过(3,0)f ′(3)=0 A .y =x 3+6x 2+9x B .y =x 3-6x 2+9x C .y =x 3-6x 2-9x D .y =x 3+6x 2-9x 【答案】B [∵三次函数过原点,故可设为 y =a x 3+bx 2+cx , ∴y ′=3x 2+2bx +c . 又x =1,3是y ′=0的两个根, ∴????? 1+3=-2b 31×3=c 3 ,即????? b =-6, c =9 ∴y =x 3-6x 2+9x , 又y ′=3x 2-12x +9=3(x -1)(x -3) ∴当x =1时,f (x )极大值=4 , 当x =3时,f (x )极小值=0,满足条件,故选B.] 5.函数f (x )=x 3-3bx +3b 在(0,1) ) A .00 D .b <1 2 【答案】A [f ′(x )=3x 2 -3b ,要使f (x )在(0,1)内有极小值,则? ?? ?? f ′(0)<0, f ′(1)>0,

函数的极值与导数教学设计一等奖

函数的极值与导数 作者单位:宁夏西吉中学作者姓名:蒙彦强联系电话: 一.教材分析 本节课选自高中数学人教A版选修2-2教材函数的极值与导数,就本册教材而言本节既是前面所学导数的概念、导数的几何意义、导数的计算、函数的单调性与导数等内容的延续和深化,又为下节课最值的学习奠定了知识与方法的基础,起着承上启下的作用.就整个高中教学而言,函数是高中数学主要研究的内容之一,而导数又是研究函数的主要工具,同时导数在化学、物理中都有所涉及可见它的重要性. 二.教学目标 1. 了解极大值、极小值的概念,体会极值是函数的局部性质; 2. 了解函数在某点取得极值的必要条件与充分条件; 3. 会用导数求函数的极值; 4. 培养学生观察、分析、探究、推理得出数学概念和规律的学习能力; 5. 感受导数在研究函数性质中的一般性和有效性,体会导数的工具作用.三.重点与难点 重点是会用导数求函数的极值. 难点是导函数的零点是函数极值点的必要不充分条件的理解. 四.学情分析 基于本班学生基础较差,思维水平参差不齐,所以备课上既要考虑到薄弱同学的理解与接受,又要考虑到其他同学视野的拓展,因此在本节课中我设置了许多的问题,来引导学生怎样学,以问答的方式来激发学生的学习兴趣,同时让更多的学生参与到教学中来.学生已经学习了函数的单调性与导数的关系,学生已经初步具备了运用导数研究函数的能力,为了进一步培养学生的这种能力,体会导数的工具作用,本节进一步研究函数的极值与导数. 五.教具教法 多媒体、展台,问题引导、归纳、类比、合作探究发现式教学 六.学法分析 借助多媒体辅助教学,通过观察函数图像分析极值的特征后,得出极值的定义;通过函数图像上极值点及两侧附近导数符号规律的探究,归纳出极值与导数的关系;通过求极值的问题归纳用导数求函数极值的方法与步骤. 七.教学过程 1.引入 让学生观察庐山连绵起伏的图片思考“山势有什么特点”并结合诗句“横看成岭侧成峰,远近高低各不同”,由此联想庐山的连绵起伏形成好多的“峰点”与“谷点”,这就是数学上研究的函数的极值引出课题. 【设计意图】从庐山美景出发并结合学生熟悉的诗句来激发学生学习兴趣,让学生在愉快中知道学什么.

6函数的极值与导数讲义

函数的极值与导数讲义 :点a 叫做函数y =f (x )的极小值点,f (a )叫做函数y =f (x )的极小值. (2)极大值点与极大值:点b 叫做函数y =f (x )的极大值点,f (b )叫做函数y x 0)=0时: (1)如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是. f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是. 一点附近的大小情况. (2)由函数极值的定义知道,函数在一个区间的端点处一定不可能取得极值,即端点一定不是函数的极值点. (3)极大值不一定比极小值大,极小值也不一定比极大(1)可导函数的极值点一定是导数为0的点,但导数为0的点不一定是函数的极值点. 如y =x 3,y ′(0)=0,x =0不是极值点. 问题1如图观察,函数y =f (x )在d 、e 、f 、g 、h 、i 等点处的函数值与这些点附近的函数值有什 么关系?y =f (x )在这些点处的导数值是多少?在这些点附近,y =f (x )的导数的符号有什么规律? 思考函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有________个极小值点. 【例1】求下列函数的极值. (1)f (x )=3x +3ln x ; (2)f (x )=2x x 2+1 -2. 【例2】已知函数f (x )=ax 3+bx 2+cx (a ≠0)在x =±1处取得极值,且f (1)=-1. (1)求常数a ,b ,c 的值;(2)判断x =±1是函数的极大值点还是极小值点,试说明理由,并求出极值. 【变式】已知函数f (x )=x 3+ax 2+bx +c ,且知当x =-1时取得极大值7,当x =3时取得极小值,试求函数f (x )的极小值,并求a 、b 、c 的值. 【例3】 (12分)设a 为实数,函数f (x ) =-x 3+3x +a .(1)求f (x )的极值;(2)是否存在实数a ,使得方程f (x )=0恰好有两个实数根?若存在,求出实数a 的值;若不存在,请说明理由.

(完整版)专题05导数与函数的极值、最值—三年高考(2015-2017)数学(文)真题汇编.doc

1. 【 2016 高考四川文科】已知函数的极小值点,则=( ) (A)-4 (B) -2 (C)4 (D)2 【答案】 D 考点:函数导数与极值. 【名师点睛】本题考查函数的极值.在可导函数中函数的极值点是方程但是极大值点还是极小值点,需要通过这点两边的导数的正负性来判断,在 的解,附近,如 果时,,时,则是极小值点,如果时,,时,,则是极大值点, 2. 【 2015 高考福建,文A.充分而不必要条 件12】“对任意 B.必要而不充分条件 ,”是“ C .充分必要条件 D ”的() .既不充分也不必 要条件 【答案】 B 【解析】当时,,构造函数,则 .故在单调递增,故,则;当时,不等式等价于,构造函数 ,则,故在递增,故 ”是“,则.综上 ”的必要不充分条件,选 所述,“ 对任 意B. ,

【考点定位】导数的应用. 【名师点睛】 本题以充分条件和必要条件为载体考查三角函数和导数在单调性上的应用, 根 据已知条件构造函数,进而研究其图象与性质,是函数思想的体现,属于难题. 3. (2014 课标全国Ⅰ,文 12) 已知函数 f ( x ) = ax 3 - 3 2 + 1,若 f ( ) 存在唯一的零点 x 0 ,且 x x x 0>0,则 a 的取值范围是 ( ) . A . (2 ,+∞ ) B . (1 ,+∞) C . ( -∞,- 2) D .( -∞,- 1) 答案: C 解析:当 a = 0 时, f ( x ) =- 3x 2+ 1 存在两个零点,不合题意; 当 a >0 时, f ′(x ) = 3ax 2- 6x = , 令 ′( ) = 0,得 x 1 = 0, , fx 所以 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一的零点,需 ,但这时零点 x 0 一定小于 0,不合题意; 当 a <0 时, f ′(x ) = 3ax 2- 6x = , 令 f ′(x ) = 0,得 x 1=0, ,这时 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一零点,应满足 ,解得 a <- 2( a > 2 舍去 ) ,且这时 零点 x 0 一定大于 0,满足题意,故 a 的取值范围是 ( -∞,- 2) . 名师点睛:本题考查导数法求函数的单调性与极值,函数的零点,考查分析转化能力,分类讨论思想, 较难题 . 注意区别函数的零点与极值点 . 4. 【 2014 辽宁文 12】当 时,不等式 恒成立,则实数 a 的取 值范围是()

利用导数求函数的单调区间、极值和最值

精锐教育学科教师辅导讲义 讲义编号____________________ 学员编号: 年 级: 课时数及课时进度:3(3/60) 学员姓名: 辅导科目: 学科教师: 学科组长/带头人签名及日期 课 题 利用导数学求函数单调区间、极值和最值 授课时间: 备课时间: 教学目标 1、能熟练运用导数求函数单调区间、判定函数单调性; 2、能用导数求函数的极值和最值。 重点、难点 考点及考试要求 教学内容 一、利用导数判定函数的单调性并求函数的单调区间 1.定义:一般地,设函数)(x f y =在某个区间内有导数,如果在这个区间内0)(' >x f ,那么函数)(x f y = 在 为这个区间内的增函数;如果在这个区间内 0)(' x f 解不等式,得x 的范围就是递增区间. ③令 0)('

二、利用导数求函数的极值 1、极大值 一般地,设函数)(x f 在点x 附近有定义,如果对 x 附近的所有的点,都有)( )(0 x f x f <,就说)(0 x f 是函数的一 个极大值,记作()x y f 0=极大值 ,x 0是极大值点 2、极小值 一般地,设函数)(x f 在x 附近有定义,如果对 x 附近的所有的点,都有)( )(0 x f x f >就说)(0 x f 是函数) (x f 的一个极小值,记作 ()x y f 0=极小值 ,x 0是极小值点 3、极大值与极小值统称为极值 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值请注意以下几点: (ⅰ)极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小.并不意味着它在函数的整个的定义域内最大或最小. (ⅱ)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个. (ⅲ)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示, x 1 是极大值点, x 4 是极小值点,而)()( 1 4 x x f f >. (ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点 f(x 2)f(x 4) f(x 5) f(x 3) f(x 1) f(b) f(a) x 5 x 4x 3x 2 x 1b a x O y 4、判别()x f 0 是极大、极小值的方法: 若 x 满足 0)(0' =x f ,且在x 0的两侧)(x f 的导数异号,则x 0是)(x f 的极值点,()x f 0是极值,并且如果 )(' x f 在 x 两侧满足“左正右负”,则x 是)(x f 的极大值点,()x f 0 是极大值;如果)(' x f 在x 0两侧满足“左负右正” ,则x 0是)(x f 的极小值点,()x f 是极小值 5、求可导函数)(x f 的极值的步骤: (1)确定函数的定义区间,求导数 )(' x f

(完整版)导数与函数的极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大. 【方法点评】 类型一 利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步 求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解析】

试题分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞U 【答案】B 【解析】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解析】 试题分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

用导数求函数的极值..

用导数来求函数的极值 例 求下列函数的极值: 1.x x x f 12)(3-=;2.x e x x f -=2)(;3..21 2)(2-+= x x x f 分析:按照求极值的基本方法,首先从方程0)(='x f 求出在函数)(x f 定义域内所有可能的极值点,然后按照函数极值的定义判断在这些点处是否取得极值. 解:1.函数定义域为R .).2)(2(3123)(2-+=-='x x x x f 令0)(='x f ,得2±=x . 当2>x 或2-'x f , ∴函数在()2,-∞-和()+∞,2上是增函数; 当22<<-x 时,0)(<'x f , ∴函数在(-2,2)上是减函数. ∴当2-=x 时,函数有极大值16)2(=-f , 当2=x 时,函数有极小值.16)2(-=f 2.函数定义域为R .x x x e x x e x xe x f ----=-=')2(2)(2 令0)(='x f ,得0=x 或2=x . 当0x 时,0)(<'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是减函数; 当20<'x f , ∴函数)(x f 在(0,2)上是增函数. ∴当0=x 时,函数取得极小值0)0(=f , 当2=x 时,函数取得极大值2 4)2(-=e f . 3.函数的定义域为R . .) 1() 1)(1(2)1(22)1(2)(2 2222++-=+?-+='x x x x x x x x f

令0)(='x f ,得1±=x . 当1-x 时,0)(<'x f , ∴函数)(x f 在()1,-∞-和()+∞,1上是减函数; 当11<<-x 时,0)(>'x f , ∴函数)(x f 在(-1,1)上是增函数. ∴当1-=x 时,函数取得极小值3)1(-=-f , 当1=x 时,函数取得极大值.1)1(-=f 说明:思维的周密性是解决问题的基础,在解题过程中,要全面、系统地考虑问题,注意各种条件 综合运用,方可实现解题的正确性.解答本题时应注意0)(0='x f 只是函数 )(x f 在0x 处有极值的必要条件,如果再加之0x 附近导数的符号相反,才能断定函数在0x 处 取得极值.反映在解题上,错误判断极值点或漏掉极值点是学生经常出现的失误. 复杂函数的极值 例 求下列函数的极值: 1.)5()(32-=x x x f ;2..6)(2 --=x x x f 分析:利用求导的方法,先确定可能取到极值的点,然后依据极值的定义判定.在函数)(x f 的定义域内寻求可能取到极值的“可疑点”,除了确定其导数为零的点外,还必须确定函数定义域内所有不可导的点.这两类点就是函数)(x f 在定义内可能取到极值的全部“可疑点”. 解:1..3) 2(533)5(2)5(32)(33323x x x x x x x x x f -=+-= +-= ' 令0)(='x f ,解得2=x ,但0=x 也可能是极值点. 当0x 时,0)(>'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是增函数; 当20<

(完整word版)函数的极值与导数导学案

§1.3.2函数的极值与导数 教学目标: 1.理解极大值、极小值的概念; 2.能够运用判别极大值、极小值的方法来求函数的极值; 3.掌握求可导函数的极值的步骤; 教学重点:极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 教学难点:对极大、极小值概念的理解及求可导函数的极值的步骤. 教学过程: 一.复习与思考 已知函数 3 2 ()267f x x x =-+ (1)求f(x)的单调区间,并画出其图象; (2)函数f(x)在x=0和x=2处的函数值与这两点附近的函数值有什么关系? 二.新课讲授 1、极值点与极值 (1)极小值点与极小值: 若函数y =f (x )在点x =a 的函数值f (a )比它在点x =a 附近其他点的函数值都小,f ′(a )= ,而且在点x =a 附近的左侧 ,右侧 ,就把 叫做函数y =f (x )的极小值点, 叫做函数y =f (x )的极小值. (2)极大值点与极大值: 若函数y =f (x )在点x =b 的函数值f (b )比它在点x =b 附近其他点的函数值都大,f ′(b )= , 而且在点x =b 附近的左侧 ,右侧 ,就把 叫做函数y =f (x )的极大值点, 叫做函数y =f (x )的极大值. (3)极大值点、极小值点统称为 ;极大值、极小值统称为 2.关于极值概念的几点说明 (1)极值是一个局部概念,反映了函数在某一点附近的大小情况; (2)极值点是自变量的值,极值指的是函数值 (3)函数的极大(小)值可能不止一个,而且函数的极大值未必大于极小值; (4)函数的极值点一定在区间的内部,区间的端点不能成为极值点。 (5)函数y=f(x)在一点的导数为0是函数在这点取极值的 条件。 3.函数的极值与单调性有什么联系? 【提示】 极值点两侧单调性必须相反,欲研究函数的极值,需先研究函数的单调性. 函数极值的求法 解方程f ′(x )=0,当f ′(x 0)=0时: (1)如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值. (2)如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值. 求下列函数的极值. (1)3 1()443 f x x x =-+

(整理)函数的极值与导数

1.3.2函数的极值与导数 安徽省桐城中学王思思 教学分析 本节内容是利用导数研究函数性质的继续深入,在教材中起到了承上启下的作用,是本章的重要知识点,也是导数应用的关键知识点。通过对函数极值的判定,使学生加深对函数单调性与其导数关系的理解;掌握函数极值的判别法,为学生下一节学习函数最大、最小值与导数内容铺平了道路。 三维目标 1 知识与技能 〈1〉结合函数图象,了解可导函数在某点取得极值的必要条件和充分条件 〈2〉理解函数极值的概念,会用导数求函数的极大值与极小值 2过程与方法 结合实例,借助函数图形直观感知,探索函数的极值与导数的关系。 3情感,态度与价值观 感受导数在研究函数性质中一般性和有效性,通过学习让学生体会极值是函数的 局部性质,增强学生数形结合的思维意识。 重点难点 教学重点:正确理解函数极值的概念,学会用导数判别函数极值的方法。 教学难点:函数在某点取得极值的必要条件和充分条件。 教学手段:多媒体辅助教学 教学流程: 二、教学基本流程

教学过程 一 情境导入 大家观看过高台跳水吗?是否被运动员在空中用身躯画出的完美曲线而折服?请同学们分析一下运动员从起跳到落水的运动状态的变化。 把以上实际生活问题抽象成数学模型,观察图表示高台跳水运动员的高度h 随时间t 变化的函数()h t =-4.9t 2+6.5t+10的图象。 (设计意图:数学来源于生活,激发学生兴趣。) 二 知识探究 问题 1、在点b a ,附近,函数)(x f y = 2、函数)(x f 在点b a ,的导数值为多少? (通过几何画板进行动画演示) 3、函数)(x f y =在点a 的函数值与这点附近的函数值的大小关系? (师生活动:教师引导学生应用上节课函数的单调性与导数的关系回答上面问题。以a,b 两点为例,我们可以发现,函数()x f y =在点a x =的函数值()a f 比它在点a x =附近其他点的函数值都小,()a f '=0;而且在点a x =附近的左侧()x f '<0, a o h t

导数与函数的极值专题

导数与函数的极值专题 1.函数的极值 (1)函数的极小值: 函数y=f (x )在点x=a 的函数值f (a )比它在点x=a 附近其他点的函数值都 ;,f ' (a )= ;而且在点x=a 附近的左侧 ,右侧 ,则 叫作函数y=f (x )的极小值点, 叫作函数y=f (x )的极小值. (2)函数的极大值: 函数y=f (x )在点x=a 的函数值f (a )比它在点x=a 附近其他点的函数值都 ;,f ' (a )= ;而且在点x=a 附近的左侧 ,右侧 ,则 叫作函数y=f (x )的极大值点, 叫作函数y=f (x )的极大值. 极小值点、极大值点统称为极值点,极大值和极小值统称为极值. 2、利用导数求函数极值的一般步骤: (1) 求导函数f /(x); (2) 求解方程f /(x)=0; (3)检查f /(x)在方程f /(x)=0的根的左右的符号,并根据符号确定极大值与极小值 题型1:极值与导数的关系: 1、已知定义在R 的函数f(x),则“0x 是函数 f(x)的极值点”是“0)(0='x f ”的( ) A. 充分不必要条件 B.必要不充分条件 C.充要条件 D.以上都不对 2、已知定义在R 的可导函数f(x),则“0x 是函数 f(x)的极值点”是“0)(0='x f ”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.以上都不对 3、已知函数f (x )=2e f '(e)ln x e x -(e 是自然对数的底数),则f (x )的极大值为( ) A .2e -1 B .e 1- C .1 D .2ln 2 4、设f (x )=12x 2-x+cos(1-x ),则函数f (x ) ( ) A .有且仅有一个极小值 B .有且仅有一个极大值 C .有无数个极值 D .没有极值

高中数学典型例题详解和练习-利用导数求函数的极值

利用导数求函数的极值 例 求下列函数的极值: 1.x x x f 12)(3-=;2.x e x x f -=2)(;3..21 2)(2-+=x x x f 分析:按照求极值的基本方法,首先从方程0)(='x f 求出在函数 )(x f 定义域内所有可能的极值点, 然后按照函数极值的定义判断在这些点处是否取得极值. 解:1.函数定义域为R .).2)(2(3123)(2-+=-='x x x x f 令0)(='x f ,得2±=x . 当2>x 或2-'x f , ∴函数在()2,-∞-和()+∞,2上是增函数; 当22<<-x 时,0)(<'x f , ∴函数在(-2,2)上是减函数. ∴当2-=x 时,函数有极大值16)2(=-f , 当2=x 时,函数有极小值.16)2(-=f 2.函数定义域为R .x x x e x x e x xe x f ----=-=')2(2)(2 令0)(='x f ,得0=x 或2=x . 当0x 时,0)(<'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是减函数; 当20<'x f , ∴函数)(x f 在(0,2)上是增函数. ∴当0=x 时,函数取得极小值0)0(=f ,

当2=x 时,函数取得极大值24)2(-=e f . 3.函数的定义域为R . .)1()1)(1(2)1(22)1(2)(2 2222++-=+?-+='x x x x x x x x f 令0)(='x f ,得1±=x . 当1-x 时,0)(<'x f , ∴函数)(x f 在()1,-∞-和()+∞,1上是减函数; 当11<<-x 时,0)(>'x f , ∴函数)(x f 在(-1,1)上是增函数. ∴当1-=x 时,函数取得极小值3)1(-=-f , 当1=x 时,函数取得极大值.1)1(-=f 说明:思维的周密性是解决问题的基础,在解题过程中,要全面、系统地考虑问题,注意各种条件 综合运用,方可实现解题的正确性.解答本题时应注意0)(0='x f 只是函数)(x f 在0x 处有极值的必要条 件,如果再加之0x 附近导数的符号相反,才能断定函数在0x 处取得极 值.反映在解题上,错误判断极值点或漏掉极值点是学生经常出现的失误. 复杂函数的极值 例 求下列函数的极值: 1.)5()(32-=x x x f ;2..6)(2--=x x x f 分析:利用求导的方法,先确定可能取到极值的点,然后依据极

导数与函数的极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大. 【方法点评】 类型一 利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步 求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18

D .17或18 【答案】C 【解析】 试题分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当? ??-==114b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞U 【答案】B 【解析】 考点:函数的极值.

《函数的极值与导数》教学设计

3.3.2 函数的极值与导数教学设计 一、教学目标 1 知识与技能 〈1〉结合函数图象,了解可导函数在某点取得极值的必要条件和充分条件 〈2〉理解函数极值的概念,会用导数求函数的极大值与极小值 2过程与方法 结合实例,借助函数图形直观感知,并探索函数的极值与导数的关系。 3情感与价值 感受导数在研究函数性质中一般性和有效性,通过学习让学生体会极值是函数的局部性质,增强学生数形结合的思维意识。 二、重点:利用导数求函数的极值 难点:函数在某点取得极值的必要条件与充分条件 三、教学基本流程 四、教学过程 〈一〉、创设情景,导入新课 1、通过上节课的学习,导数和函数单 调性的关系是什么? (提问学生回答)

2.观察图1.3.8 表示高台跳水运动员的高度h 随时间t 变化的函数()h t =-4.9t 2+6.5t+10的图象,回答以下问题 (1)当t=a 时,高台跳水运动员距水面的高度最大,那么函数()h t 在t=a 处的导数是多少呢? (2)在点t=a 附近的图象有什么特点? (3)点t=a 附近的导数符号有什么变化规律? 共同归纳: 函数h(t)在a 点处h /(a)=0,在t=a 的附近,当t <a 时,函数()h t 单调递增, ()'h t >0;当t >a 时,函数()h t 单调递减, ()'h t <0,即当t 在a 的附近从小到大经过a 时, ()'h t 先正后负,且()'h t 连续变化,于是h /(a)=0. 3、对于这一事例是这样,对其他的连续函数是不是也有这种性质呢? <二>、探索研讨 1、观察1.3.9图所表示的y=f(x)的图象,回答以下问题: (1)函数y=f(x)在a.b 点的函数值与这些点附近的函数值有什么关系? (2) 函数y=f(x)在a.b.点的导数值是多少? (3)在a.b 点附近, y=f(x)的导数的符号分别是什么,并且有什么关系呢? a o h t

专题2.13 利用导数求函数的单调性、极值、最值(解析版)

第十三讲 利用导数求函数的单调性、极值 、最值 【套路秘籍】 一.函数的单调性 在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在这个区间内单调递增;如果f ′(x )<0,那么函数y =f (x )在这个区间内单调递减. 二.函数的极值 (1)一般地,求函数y =f (x )的极值的方法 解方程f ′(x )=0,当f ′(x 0)=0时: ①如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值; ②如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值. (2)求可导函数极值的步骤 ①求f ′(x ); ②求方程f ′(x )=0的根; ③考查f ′(x )在方程f ′(x )=0的根附近的左右两侧导数值的符号.如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值. 三.函数的最值 (1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值. (2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值. 【套路修炼】 考向一 单调区间 【例1】求下列函数的单调区间: (1)3 ()23f x x x =-; (2)2 ()ln f x x x =-. (3))f (x )=2x -x 2. 【答案】见解析 【解析】(1)由题意得2 ()63f x x '=-. 令2 ()630f x x '=->,解得2x <- 或2 x >. 当(,2x ∈-∞- 时,函数为增函数;当)2 x ∈+∞时,函数也为增函数. 令2 ()630f x x '=-<,解得22x - <<.当(22 x ∈-时,函数为减函数.

导数与函数的极值与最值

y=xf '(x) -1 11 -1 o y x 导数与函数的单调性 题型1.导数与函数图象(,0)(>'x f 函数单调递增;,0)(<'x f 函数单调递减;即导数看正负,函数看增减。 1. 设函数()x f 在定义域内可导,()x f y =的图象如图2所示,则导函数()x f '可能为D 2. 设)(x f '是函数)(x f 的导函数,)(x f y '=的图象如图所示,则)(x f y =的图象最有可能的是C 3. )(x f '是)(x f 的导函数,)(x f '的图象如图所示,则)(x f 的图象只可能是D A B C D 4.已知函数)(x f x y '=的图像如右图所示,下面四个图象中)(x f y =的图象大致是(C ) 31 -2 1-122-2o y x 1-2 1 -122o y x 4 2 1 -2 o y x 42 2 -2 o y x 5. 设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是D x y O A x y O B x y O C y O D x x y O o y x -33 y x O y x O y x O y x O A . B . C . D . 6题图

6.如图为函数32()f x ax bx cx d =+++的图象,'()f x 为函数()f x 的导函数,则不等式 '()0x f x ?<的解集为__()() 3,03,?∞-__. 7.已知()f x 在R 上是可导函数,则 ()f x 的图象如图所示,则不 等 式 ()()2 230 x x f x '-->的解集为 ____________ 题型2.利用导数求单调区间(1.定义域2.求导3.令,0)(>'x f 求增区间;令,0)(<'x f 求减区间) 1. 函数13)(23+-=x x x f 是减函数的区间为 D A.),2(+∞ B.)2,(-∞ C.)0,(-∞ D.(0,2) 2. 函数x x x f ln 3)(+=的单调递增区间是C A.)1,0(e B.),(+∞e C.),1(+∞e D.(e 1 ,e ) 3. 函数x x y ln 82-=在区间)1,2 1 ()41,0(和内分别为 A A.单调递减,单调递增 B.单调递增,单调递增 C.单调递增,单调递减 D.单调递减,单调递减 题型3.由单调区间求参数取值范围(函数在区间(),a b 上增,,0)(≥'x f 恒成立; 函数在区间(),a b 上减,,0)(≤'x f 恒成立;) 1. 已知()321 233 y x bx b x =++++是R 上的单调增函数,则b 的范围D A.1b <-或2b > B.1b ≤-或2b ≥ C.21b -<< D.12b -≤≤ 2. 若m mx x x x f +++-=23)((m 为常数)在(-1,1)上是增函数,则m 的取值范围是D A.[)∞+,1 B.[]3,1 C.[]5,1 D. [)∞+,5 练2.【2014·全国卷Ⅱ(文11)】若函数()ln f x kx x =-在区间(1,+∞)单调递增,则k 的取值范围是( ) (A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞ 【答案】D 练3.)(3 24)(3 2R x x ax x x f ∈-+=在区间[-1, 1]上是增函数。则a 的范围是____}{11/≤≤-a a 3.(江西理科19)设.22 1 31)(23ax x x x f ++-= 若)(x f 在),3 2 (+∞上存在单调递增区间,求a 的取值范围; 解:已知()ax x x x f 221 3123++-=,()a x x x f 22++-='∴,函数()x f 在),3 2(+∞上存在单调递 增区间,即导函数在),3 2 (+∞上存在函数值大于零的部分,

用导数求函数的极值.

用导数来求函数的极值 例 求下列函数的极值: 1.x x x f 12)(3-=;2.x e x x f -=2)(;3..21 2)(2-+=x x x f 分析:按照求极值的基本方法,首先从方程0)(='x f 求出在函数)(x f 定义域内所有可能的极值点,然后按照函数极值的定义判断在这些点处是否取得极值. 解:1.函数定义域为R .).2)(2(3123)(2-+=-='x x x x f 令0)(='x f ,得2±=x . 当2>x 或2-'x f , ∴函数在()2,-∞-和()+∞,2上是增函数; 当22<<-x 时,0)(<'x f , ∴函数在(-2,2)上是减函数. ∴当2-=x 时,函数有极大值16)2(=-f , 当2=x 时,函数有极小值.16)2(-=f 2.函数定义域为R .x x x e x x e x xe x f ----=-=')2(2)(2 令0)(='x f ,得0=x 或2=x . 当0x 时,0)(<'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是减函数; 当20<'x f , ∴函数)(x f 在(0,2)上是增函数. ∴当0=x 时,函数取得极小值0)0(=f , 当2=x 时,函数取得极大值2 4)2(-=e f . 3.函数的定义域为R . .) 1()1)(1(2)1(22)1(2)(22222++-=+?-+='x x x x x x x x f

令0)(='x f ,得1±=x . 当1-x 时,0)(<'x f , ∴函数)(x f 在()1,-∞-和()+∞,1上是减函数; 当11<<-x 时,0)(>'x f , ∴函数)(x f 在(-1,1)上是增函数. ∴当1-=x 时,函数取得极小值3)1(-=-f , 当1=x 时,函数取得极大值.1)1(-=f 说明:思维的周密性是解决问题的基础,在解题过程中,要全面、系统地考虑问题,注意各种条件 综合运用,方可实现解题的正确性.解答本题时应注意0)(0='x f 只是函数 )(x f 在0x 处有极值的必要条件, 如果再加之0x 附近导数的符号相反,才能断定函数在0x 处取得极值.反映在解题上,错误判断极值点或漏掉极值点是学生经常出现的失误. 复杂函数的极值 例 求下列函数的极值: 1.)5()(32-=x x x f ;2..6)(2--=x x x f 分析:利用求导的方法,先确定可能取到极值的点,然后依据极值的定义判定.在函数)(x f 的定义域内寻求可能取到极值的“可疑点”,除了确定其导数为零的点外,还必须确定函数定义域内所有不可导的点.这两类点就是函数)(x f 在定义内可能取到极值的全部“可疑点”. 解:1..3)2(533)5(2)5(32 )(33323x x x x x x x x x f -=+-=+-=' 令0)(='x f ,解得2=x ,但0=x 也可能是极值点. 当0x 时,0)(>'x f , ∴函数)(x f 在()0,∞-和()+∞,2上是增函数; 当20<

相关文档
最新文档