一道高考数学建模题求解探讨

一道高考数学建模题求解探讨
一道高考数学建模题求解探讨

一道高考数学建模题求解探讨

姚志华

(达州市矿务局一中,四川达州635000)

摘 要 本文是根据2001年北京市春季高考一道数学建模题,运用数学优化理论和数学建模知识,探索出它的各种解答。

关键词 函数;距离;运费最省;折射率[中图分类号]G633 6

[文献标识码]A [文章编号]1008-4886(2002)02-0102-02

关于这一道数学建模题,我们不能以能作出来为标准,应当掩卷想一想,是否有别的方法?是否可用所学的数学优化论和数学建模知识来解决?从而对提高运用知识能力,

扩大解题的知识面大有好处。

图1该数学建模题叙述如图1,由A 地运货到B 地,先走一段水路AD,再走公路BD,已知每吨货物每千米水路运费与公路运费之比为3 5,且水路长AC =100km ,B 地与水路的垂直距离BC =20km,问转运码头D 应建在何处

可以使运费最省?

分析:设1吨货物每千米水路运费是3a 元,则根据题

意,1吨货物每千米公路运费是5a 元,A 运到B 的运费为:

y =3a AD +5a BD,得y 5a =3

5

AD +BD 最小时的D

点的位置,以下几种解题策略实质上都是围绕求3

5

AD +

BD (或3AD +5BD )的最小值而展开的。

方法1 (从函数思考)

设AD =xkm,则u =3AD +5BD =3x +5(100-x)2+202 分析:对于 式,常见的函数(方程)策略往往是换元,但这里换元碰到了一定的困难,咋办?把3x 移项,通过两边平方转化为关于x 的一元二次方程来解即可。过程: 式即:u -3x =5(100-x )2+202

化为:16x 2-(5000-6u )x +25 10400-u 2=0,根据问题的实际意义,可以判定上述方程有实根,因此 0,u 380或u 220,此时,x 85或x 115,显然当x 115,即u 380应舍去,所以x 85,u 220,而当x =85时,u =220取最小值,由此得:转运码头D 应建在离C 地

15千米的地方可以使运费最省。

方法2(从三角思考)

图2

设CD =xkm,则u =3

5

AD

+BD =3

5

(100-x)+x 2+202

分析:考虑到根号内被开方式的特征,常见的解题方法是利用三角换元法把 转化为三角函数式来求解。

如图2,设 DBC = ,则u =35(100-20tan )+20cos =60+4(5-3sin )cos ,令t =5-3sin cos ,得9+t 2 sin ( + )=5(tan =t

3

),得t 4(因为t >0),所以当tan =34时,t 取最小值4,即3

5AD

+BD 取最小值,此时,DC =20 3

4

=15,即转运码头D 应

建在离C 地15千米的地方可以使运费最省。

方法3(从平面几何思考)

分析:如果能够把3

5

AD 转化,问题即有可能解决,经

过思考、分析,可得到平面几何解题策略如下。

图3如图3,作 C AM =a rc sin 3

5,在AC 上任取一点D ,过D 作D E AM =E ,则D E =35AD ,35

AD +BD =D E +BD ,作BH AM =H ,则显然BH D E +BD ,因此,所求的转运码头(点D)即为BH 与AC 的交

102

[来稿日期]2002 3 13

[作者简介]姚志华(1978 ),男,四川遂宁市人,达竹矿务局第一中学青年教师。

第12卷第2期达县师范高等专科学校学报(自然科学版)

2002年6月Vol.12 No.2 Journal of Daxian Teachers C ollege(Natural Science Edition)Jun.2002

点,因为 C AM =arc sin 35,所以 AD H =arcsin 45

,即 BDC =a rc sin

4

5

,在Rt BDC 中,由BC =20得DC =15,即转运码头D 应建在离C 地15千米的地方可以使运费最省。

方法4(从解析几何思考

)图4

如图4,以AC 为x 轴,A 为原点,1km 为单位长度建立直角坐标系,设D 点坐标为(x ,0),则B 点为(100,20),所

以u =3

5

|AD |+|BD |=

35

x +(100-x)2+202(x [0,100]) 分析:由于 式中的

(100-x)2+202是P 点到B

点的距离,现在的问题是如何把3

5

x 表示成距离?通过分

析,要把它表成两点间的距离不可能,是否有希望把它表示成点线距离?设这条直线为l :y =k x +b,则P 点到l 的

距离为|k x +b |k 2+1,由|k x +b |k 2+1

=35x 对一切x [0,100]

都成立,则k =34,b =0,即l 的方程为:y =-3

4

x ,由此

产生如下解题过程。

式即为P 点到直线l 的距离和它到B 点的距离之和,显然最小值应是B 点到l 的距离|B H |,H 为垂足,此

时B H 的斜率为43,BH 的方程为y-20=4

3

(x -100)。令

y =0得x =85,即转运码头D 应建在离C 地15千米的地方可以使运费最省。

方法5(从数形结合思考)

设CD =x km ,则u =35AD +BD =3

5(100-x)+

x 2+202=x 2+202

-35

x +60

分析:考虑到 式的结构,把u 转化为二个函数的差,可运用数形结合求解。

图5在同一直角坐标系中分别作出y =

x 2+202和y =3

5

x 的图象,如图5,作

x =x 。分别交两图象于M 、N 点,由此,求 的最小值即为求|MN |的最小值,

设直线y =3

5

x+b 与y =x 2+202相

切得b =16,此时x =15,|EF |=b =

16是|MN |的最小值,即转运码头D 应

建在离C 地15千米的地方可以使运费最省。

方法6(从物理角度思考)

分析:图1中,公路BD 与水路AD 上的每吨货物每千米的运费之比,可看作光线在两种不同介质中的速度之比,即折射率之比,这样原题可转化为光从光疏介质到光密介质的折射问题,进而转化光从光密介质进入光疏介质的全反射问题。

由物理学中光的折射定律得:sin =3

5

( 为入射角,

它大小等于 B ),在Rt BDC 中,DC =BC tan =20

3

4

=15(km ),根据光学原理:遵循折射定律的光程最短,即转运码头D 应建在离C 地15千米的地方可以使运费最省。

103

姚志华:一道高考数学建模题求解探讨2002年第2期

数学建模期末试卷A及答案

2009《数学建模》期末试卷A 考试形式:开卷 考试时间:120分钟 姓名: 学号: 成绩: ___ 1.(10分)叙述数学建模的基本步骤,并简要说明每一步的基本要求。 2.(10分)试建立不允许缺货的生产销售存贮模型。 设生产速率为常数k ,销售速率为常数r ,k r <。 在每个生产周期T 内,开始一段时间(00T t ≤≤) 边生产边销售,后一段时间(T t T ≤≤0)只销售不 生产,存贮量)(t q 的变化如图所示。设每次生产开工 费为1c ,每件产品单位时间的存贮费为2c ,以总费用最小为准则确定最优周期T ,并讨论k r <<和k r ≈的情况。 3.(10分)设)(t x 表示时刻t 的人口,试解释阻滞增长(Logistic )模型 ?????=-=0)0()1(x x x x x r dt dx m 中涉及的所有变量、参数,并用尽可能简洁的语言表述清楚该模型的建模思想。 4.(25分)已知8个城市v 0,v 1,…,v 7之间有一个公路网(如图所示), 每条公路为图中的边,边上的权数表示通过该公路所需的时间. (1)设你处在城市v 0,那么从v 0到其他各城市,应选择什么路径使所需的时间最短? (2)求出该图的一棵最小生成树。 5.(15分)求解如下非线性规划: 20 s.t.2 122 2 121≤≤≤+-=x x x x x z Max 6.(20分)某种合金的主要成分使金属甲与金属乙.经试验与分析, 发现这两种金属成分所占的百分比之和x 与合金的膨胀系数y 之间有一定的相关关系.先测试了12次, 得数据如下表:

的模型。 7.(10分)有12个苹果,其中有一个与其它的11个不同,或者比它们轻,或者比它们重,试用没有砝码的天平称量三次,找出这个苹果,并说明它的轻重情况。 《数学建模》模拟试卷(三)参考解答 1. 数学模型是对于现实世界的某一特定对象,为了某个特定目的,作出一些必要的简化和假设,运用适当的数学工具得到的一个数学结构。它或者能解释特定现象的现实状态,或者能预测对象的未来状态,或者能提供处理对象的最优决策或控制。 数学建模方法 一般来说数学建模方法大体上可分为机理分析和测试分析两种。 机理分析是根据客观事物特征的认识,找出反应内部机理的数量规律,建立的数学模型常有明确的物理意义。 测试分析是将研究对象看作一个"黑箱"(意即内部机理看不清楚),通过对测量数据的统计分析,找出与数据拟合得最好的模型。 数学建模的一般步骤 (1)模型准备:首先要了解问题的实际背景,明确题目的要求,收集各种必要的信息。 (2)模型假设:为了利用数学方法,通常要对问题做出必要的、合理的假设,使问题的主要特征凸现出来,忽略问题的次要方面。 (3)模型构成:根据所做的假设以及事物之间的联系,构造各种量之间的关系,把问题化为数学问题,注意要尽量采用简单的数学工具。 4)模型求解:利用已知的数学方法来求解上一步所得到的数学问题,此时往往还要作出进一步的简化或假设。 (5)模型分析:对所得到的解答进行分析,特别要注意当数据变化时所得结果是否稳定。 (6)模型检验:分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果不够理想,应该修改、补充假设,或重新建模,不断完善。 (7)模型应用:所建立的模型必须在实际应用中才能产生效益,在应用中不断改进和完善。 2. 单位时间总费用 k T r k r c T c T c 2)()(21-+= ,使)(T c 达到最小的最优周期 )(2T 21*r k r c k c -= 。当k r <<时,r c c 21*2T = ,相当于不考虑生产的情况;当k r ≈时,∞→*T ,因为产量被售量抵消,无法形成贮存量。 3. t ——时刻; )(t x ——t 时刻的人口数量; r ——人口的固有增长率; m x ——自然资源和环境条件所能容纳的最大人口数量;

什么是数学模型与数学建模

1. 什么是数学模型与数学建模 简单地说:数学模型就是对实际问题的一种数学表述。 具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。 更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。 数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。 2.美国大学生数学建模竞赛的由来: 1985年在美国出现了一种叫做MCM的一年一度大大学生数学模型(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其所写均为MCM)。这并不是偶然的。在1985年以前美国只有一种大学生数学竞赛(The william Lowell Putnam mathematial Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA--即Mathematical Association of America的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。该竞赛每年2月或3月进行。 我国自1989年首次参加这一竞赛,历届均取得优异成绩。经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。

高中数学模型解题法

高中数学模型解题法 高中数学模型解题理念 数学模型解题首先需要明确以下六大理念(原则): 理念之一——理论化原则。解题必须有理论指导,才能由解题的必然王国走进解题的自由王国,因为思维永远高于方法,伟大的导师恩格斯在100多年前就指出:一个名族要屹立于世界名族之林,就一刻也不能没有理论思维!思维策略永远比解题方法重要,因为具体解题方法可以千变万化,而如何想即怎样分析思考这一问题才是我们最想也是最有价 值的!优秀的解题方法的获得有赖于优化的思维策略的指导,没有好的想法,要想获得好的解法,是不可能的! 理论之二——个性化原则。倡导解题的个性张扬,即要学会具体问题具体分析,致力于追求解决问题的求优求简意识,但是繁复之中亦显基础与个性——通性通法不可丢,要练扎实基本功!具有扎实的双基恰恰是我们的优势,因为万变不离其宗,只有基础打得牢了才可以盖得起知识与思维的坚固大厦。因此要求同学们,在具体的解题过程中,要学会辩证地使用解题模型,突出其灵活性,并不断地体验反思解题模型的有效性,以便于形成自己独特的解题个性风格与特色。 理论之三——能力化原则。只有敢于发散(进行充分地联想和想象,即放得开),才能有效地聚合,不会发散,则无力

聚合!因此,充分训练我们的发散思维能力,尽情地展开我们联想与想象的翅膀,才能在创新的天空自由地翱翔! 理论之四——示范化原则。任何材料都是给我们学生自学方法的示范,因此面对任何有利于增长我们的知识与智慧的机会,我们要应不失时机地抓住,并从不同的角度、不同的层次、甚至通过不同的训练途径、用不同时间段来认识、理解,并不断深化,以达到由表知里、透过现象把握问题本质与规律的目的。关于学思维方法,我们应当经过两个层次:一是:学会如何解题;二是:学会如何想题。 理论之五——形式化原则。哲学上讲内容与形式的辩证形式,内容决定形式,形式反映内容,充实寓于完美的形式之中,简洁完美的形式是充实而有意义的内容的有效载体,一个好的解题设想或者灵感,必然要通过解题的过程来体现,将解题策略设计及优化的解题过程程序化,形成可供我们在解题时遵循的统一形式,就是解题模型。 理论之六——习惯性原则。关于数学的解题,有三个层次:第一个层次,正常的解题,就是按照已知、求解、作答等等。这是我们大多数同学的解题情况,解出来,高兴得不得了,也不再做深层次的追求与思考,解不出来,就一头露水,而且很郁闷,不知其所以然。第二个层次,有思考的解题,主要就是发散和聚合,简单点说就是一题多解和对于解题“统一”模型的思考。第三个层次,主动的解题,就是对题

数学建模入门试题极其答案

1.你要在雨中从一处沿直线走到另一处,雨速是常数,方向不变。 你是否走得越快,淋雨量越少呢? 2.假设在一所大学中,一位普通教授以每天一本的速度开始从图书 馆借出书。再设图书馆平均一周收回借出书的1/10,若在充分长的时间内,一位普通教授大约借出多少年本书? 3.一人早上6:00从山脚A上山,晚18:00到山顶B;第二天,早 6:00从B下山,晚18:00到A。问是否有一个时刻t,这两天都在这一时刻到达同一地点? 4.如何将一个不规则的蛋糕I平均分成两部分? 5.兄妹二人沿某街分别在离家3公里与2公里处同向散步回家,家 中的狗一直在二人之间来回奔跑。已知哥哥的速度为3公里/小时,妹妹的速度为2公里/小时,狗的速度为5公里/小时。分析半小时后,狗在何处? 6.甲乙两人约定中午12:00至13:00在市中心某地见面,并事先 约定先到者在那等待10分钟,若另一个人十分钟内没有到达,先到者将离去。用图解法计算,甲乙两人见面的可能性有多大? 7.设有n个人参加某一宴会,已知没有人认识所有的人,证明:至 少存在两人他们认识的人一样多。 8.一角度为60度的圆锥形漏斗装着10 端小孔的 面积为0.5 9.假设在一个刹车交叉口,所有车辆都是由东驶上一个1/100的斜

坡,计算这种情 下的刹车距离。如果汽车由西驶来,刹车距离又是多少? 10. 水管或煤气管经常需要从外部包扎以便对管道起保护作用。包扎时用很长的带子缠绕在管道外部。为了节省材料,如何进行包扎才能使带子全部包住管道而且带子也没有发生重叠。 1.解:把人体简化为长方柱,表面积之比为前:侧:顶=1:a:b ,选坐标系将人的速度表示为(v,0,0),即人沿x 周方向走,v>0,而设语雨速为(x,y,z ),行走距离为L ,则淋雨量Q 的表达式为: Q=[ Q=|x-a|+a|y|+b|z|]*L/v 记q=a|x|+b|z|,则 L( 1q -+v x ),v≤x Q(v)= L(v x -q +1),v>x 收回书的1/10,设教授已借出书的册数是时间t 的函数小x(t)的函数, 其授借出数的册数为0。

数学建模课心得体会

第一次接触数学建模是在高二的时候,那时候参加全国第二届“赛先生”数学知识竞赛,笔试取得了一等奖的成绩,复试是自己选题建模,现在回想起来那时候真是天真,以为数学建模就是简单问题复杂化的弄,好比一个简单应用题偏偏要弄成几千字的论文。但是,也是那次的接触,是我对数学有了更浓厚的兴趣,也是我想到了大学要参加数学建模比赛这回事。 抱着对数学建模的憧憬,这学期的选修课,我选择了《数学建模》课程,去上课后发现老师并不给我们讲数学建模,而是讲软件MATLAB,原本有点失望的,但是自从认真听完第一次课,我的失望就全都一扫而光,因为MATLAB太强大了,不仅能解决我们微积分、线性代数上的问题,还能画出我们想不清楚的各种立体图。并且,还知道了在数学建模中,大都采取MATLAB来编程计算,于是,我下定决心要学好MATLAB。 MATLAB给我带来了很多意想不到的东西。第一就是是我对计算机的兴趣更加浓厚了,还记得安装MATLAB时就费了老大功夫,还改变了电脑系统盘某些参数,放在从前这是我想都不敢想的事,安装成功那会,真是特别开心。第二就是通过MATLAB我结交到了一些好朋友,尤其是天津一网友。因为我想学好MATLAB,于是我加入了MATLAB贴吧,再通过贴吧加入了一个MATLAB交流学习群,但后来发现在那个群上愿意帮人解决问题的并不多,有一次,有个人提了一个简单的问题,他的程序有错误,但仅仅是矩阵乘除、乘方时没有加点,于是我就顺手告诉了他,然后他就加上了我,原来他是天津一大学的大二的学生,他正好要参加学校的数学建模比赛,要用到MATLAB,但是他也只是才接触,还没上手,于是他遇到问题就会找我,我就会尽力想去帮他解决,当我不会的时候,我会查阅书籍或者翻出老师的PPT课件仔细研究,就那样几次交流我们成了好朋友,后来他正式比赛了,他都把他的论文中程序发给我要我帮他看是否能改进之类的,还把他的建模论文发给我看,并且一再鼓励我一定要学好MATLAB以后参加比赛就不会那么着急。直到现在,我们都一直保持着联系,一起探讨交流MATLAB、数学(他是学数学的)上的各种问题。第三就是意外得解决了一些问题。记得前不久一同学叫我帮他在网上做份题,原本说是高中的题,但我后来发现都是微积分的题目,偏偏好多积分微分我都觉得会比较花时间,于是我想到了MATLAB,当即我就决定能用MATLAB编程解决的问题我就用MATLAB解决,果然,试卷我完成的又快又好,当我给那同学说的时候讲得他一愣一愣的,只剩下崇拜。 在我学习MATLAB的时候,也遇到了很多问题。第一次做老师给的题时,前几题我就花了几个小时,当我后来回过头总结的时候发现,基本上我出错的地方提示的错误都是一致的:Inner matrix dimensions must agree或者是Matrix must be square,后来我懂得这是矩阵乘除、乘方维数不一致等导致的,我得出结论关于矩阵的乘除、乘方运算必须是点运算,之后就很少出现这样的错误了。还记得刚开始画三维图的时候,总是出现一个错误Matrix dimensions must agree, not rendering mesh,其实原因很简单,只是我漏了一句话:[x,y]=meshgrid(x,y),也正因为这个,更加是我坚定了不能不拘小节这一思想。就在几天前,画一个分段函数的图 像,我原本只是这样编的程序: x1=1.1:0.02:3.3; x2=-1.1:0.02:1.1; x3=-3.3:0.02:-1.1; y1=1.1; y2=x2; y3=-1.1; plot(x1,y1,x2,y2,x3,y3)

数学建模常用方法

数学建模常用方法 建模常用算法,仅供参考: 1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必 用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用M a t l a b作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通 常使用L i n d o、L i n g o软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种 暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计 算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文 中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用M a t l a b进行处理) 一、在数学建模中常用的方法: 1.类比法 2.二分法 3.量纲分析法 4.差分法 5.变分法 6.图论法 7.层次分析法 8.数据拟合法 9.回归分析法 10.数学规划(线性规划、非线性规划、整数规划、动态规划、目标规划) 11.机理分析 12.排队方法

数学建模题目及答案

09级数模试题 1. 把四只脚的连线呈长方形的椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然后稍微挪动几次,就可以使四只脚同时着地,放稳了。试作合理的假设并建立数学模型说明这个现象。(15分) 解:对于此题,如果不用任何假设很难证明,结果很 可能是否定的。 因此对这个问题我们假设: (1)地面为连续曲面 (2)长方形桌的四条腿长度相同 (3)相对于地面的弯曲程度而言,方桌的腿是足够长的 (4)方桌的腿只要有一点接触地面就算着地。 那么,总可以让桌子的三条腿是同时接触到地面。 现在,我们来证明:如果上述假设 条件成立,那么答案是肯定的。以长方 桌的中心为坐标原点作直角坐标系如图 所示,方桌的四条腿分别在A、B、C、D 处,A、、D的初始位置在与x轴平行,再 假设有一条在x轴上的线,则也与A、B,C、D平行。当方桌绕中心0旋转时,对角线与x轴的夹角记为θ。 容易看出,当四条腿尚未全部着地时,腿到地面的距离是不确定的。为消除这一不确定性,令() fθ为A、B离地距离之和,

()g θ为C 、D 离地距离之和,它们的值由θ唯一确定。由假设(1), ()f θ,()g θ均为θ的连续函数。又由假设(3) ,三条腿总能同时着地, 故()f θ()g θ=0必成立(?θ)。不妨设(0)0f =(0)0g >(若(0)g 也为0,则初始时刻已四条腿着地,不必再旋转),于是问题归结为: 已知()f θ,()g θ均为θ的连续函数,(0)0f =,(0)0g >且对任意θ有00()()0f g θθ=,求证存在某一0θ,使00()()0f g θθ=。 证明:当θ=π时,与互换位置,故()0f π>,()0g π=。作()()()h f g θθθ=-,显然,()h θ也是θ的连续函数,(0)(0)(0)0h f g =-<而()()()0h f g πππ=->,由连续函数的取零值定理,存在0θ,00θπ<<,使得0()0h θ=,即00()()f g θθ=。又由于00()()0f g θθ=,故必有00()()0f g θθ==,证毕。 2.学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。学生 们要组织一个10人的委员会,试用合理的方法分配各宿舍的委员数。(15分) 解:按各宿舍人数占总人数的比列分配各宿舍的委员数。设:A 宿舍的委员数为x 人,B 宿舍的委员数为y 人,C 宿舍的委员数为z 人。计算出人数小数点后面的小数部分最大的整数进1,其余取整数部分。 则 10; 10=235/1000;

数学模型期末考试试题及答案

试卷学期《数学模型》期末考试A山东轻工业学院08/09学年II 页)本试卷共4< 题说明总号考次开试分考卷试,参加考试的同学可以携带任何资料,可以 使用计算器,但上述物品严禁相互借用。16分,每小题8分)一、简答题<本题满分得分)式,写出与§2.2录像机计数器的用途中,仔细推算一下<11、在阅卷人<2)式的差别,并解释这个差别;中不允许缺货的存储模型中为什么没有考虑生产 费用,在什么条件下可2、试说明在§3.1 以不考虑它;8分)二、简答题<本题满分16分,每小题得分1阅卷人?s)(ti的变化情时、对于1§5.1传染病的SIR 模型,叙述当0?况并加以证明。 E 2、在§6.1捕鱼业的持续收获的效益模型中,若单位捕捞强度的费用为捕捞强度的减函数,)0?0,b?c?a?bE,(a即,请问如何达到最大经济效益?本题满分16分,每小题8分)三、 简答题<得分s程是法图解说明为什么方策、1在§9.3 随机存储略中,请用)S?(x)?cI(I的最小正根。阅卷人0、请结合自身特点谈一下如何培养数学建模 的能力?2 分)四、<本题满分20得分219人,二年级有某中学有三个年级共1000名学生,一年级有人。现要选20名校级优秀学生,请用下列办316人,三年级有465 阅卷人Q ;<2))按比例加惯例的方法法分配各年级的优秀学生名额:<1值法。另外如果校级优秀学个,重新进行分配,并按照席位分配的理想生名额增加 到21化准则分析分配结果。得分分)16五、<本题满分阅

卷人大学生毕业生小李为选择就业岗位建立了层次分析模型,影响就业的因素考虑了收入情况、发展空间、社会声誉三个方面,有三个层次结构图如图,已知准则层。 选可业就岗位供择对目标层的成对比较矩阵1 / 4 选择就业岗位 71/1/43511????????23111/2/AB??41,比较矩阵分别为成,方案层对准则层的对 ????1????22171/51/1????117463????????3112/B?3B?1/41。,JhYEQB29bj ????32????1/21/6111/71/3????请根据层次分析方法为小李确定最佳的工作岗位。 16分)六、<本题满分得分某保险公司欲开发一种人寿保险,投保人需要每年缴纳一定数的阅卷人<额保险费,如果投保人某年未按时缴纳保费则视为保险合同终止保险公司需要对投保人的健康、疾病、死亡和退保的情况作出评估,从而制退保)。 定合适的投保金额和理赔金额。各种状态间相互转移的情况和概率如图。试建立马氏链模型分析在投保人投保时分别为健康或疾病状态下,平均需要经过多少年投保人就会出现退保或死亡的情况,以及出现每种情况的概率各是多少?5Y944Acbad 退保死亡II 学期《数学模型》期末考试A试卷解答山东轻工业 学院08/09学年0.05 0.03 分)分,每小题8一、简答题<本题满分160.15 0.07 m(m?1)???2mr?vt2?)得4分1、答:由<1,。。。。。。。。。。。。。。。。。。。。20.1 健康疾病2???knk2?)t?2r?n?(knm?代入得。。。。。。。。。。。。。。。。。。。。,6分将 vv0.6 ???2r?r2??r,则得<2因为)。所以。。。。。。。。。。。。。。。。。。。。8分 crc,每天的平均费用是,则平均每天的生产费用为2、答:假设每件产品的生产费用为 33ccrT112??crC(T)?4分,。。。。。。。。。。。。。。。。。。。。 1132T1)TdC()TdC(11)T(TC?下面求最小,发现使,所以111dTdT12c1??TT,与生产费用无关,所以不考虑。。。。。。。。。。。。。。。。。。。。。81cr2分 二、简答题<本题满分16分,每小题8分) 1di??s?),(1s??i,1、答:由<14若)0?dtdi1s)(t??s,?0i时,4增 加; 。。。。。。。。。。。。。。。。。。。。分当0?dtdi1?i(ts),?0i时,达到最大值当;

数学建模感想

学习数学建模心得体会 这学期参加数学建模培训,使我感触良多:它所教给我们的不单是一些数学方面的知识,更多的其实是综合能力的培养、锻炼与提高。它培养了我们全面、多角度考虑问题的能力,使我们的逻辑推理能力和量化分析能力得到很好的锻炼和提高。它还让我了解了多种数学软件,以及运用数学软件对模型进行求解。 到目前为止,我们已经学习科学计算与数学建模这门课程半个学期了,渐渐的对这门课程有点了解了。我觉得开设数学建模这一门学科是应了时代的发展要求,因为随着科学技术的发展,特别是计算机技术的飞速发展和广泛应用,科学研究与工程技术对实际问题的研究不断精确化、定量化、数字化,使得数学在各学科、各领域的作用日益增强,而数学建模在这一过程中的作用尤为突出。在前一阶段的学习中我了解到它不仅仅是参加数学建模比赛的学生才要学的,也不仅仅是纯理论性的研究学习,这门课程是在实际生产生活中有很大的应用,突破了以前大家对数学的误解,也在一定程度上培养了我们应用数学工具解决实际问题的能力。具体结合教材内容说,在很多时候课本里的都是引用实际生产生活的例子,这样我们更能够切切实实感受到这门课程对实际生产生活的帮助,而并非是我们空想着学这门课有什么作用啊,简直是浪费时间啊什么的。现在我就说说我到目前为止学到了什么,首先,我知道了数学建模的基本步骤:第一步我们肯定是要将现实问题的信息归纳表述为我们的数学模型,然后对我们建立的数学模型进行求解,这一步也可以说是数学模型的解答,最后一步我们要需要从那个数学世界回归到现实世界,也就是将数学模型的解答转化为对现实问题的解答,从而进一步来验证现实问题的信息,这一步是非常重要的一个环节,这些结果也需要用实际的信息加以验证。 这个步骤在一定程度上揭示了现实问题和数学建模的关系,一方面,数学建模是将现实生活中的现象加以归纳、抽象的产物,它源于现实,却又高于现实,另一方面,只有当数学模型的结果经受住现实问题的检验时,才可以用来指导实践,完成实践到理论再回归到实践的这一循环。 数学模型主要是将现实对象的信息加以翻译,归纳的产物。通过对数学模型的假设、求解、验证,得到数学上的解答,再经过翻译回到现实对象,给出分析、决策的结果。其实,数学建模对我们来说并不陌生,在我们的日常生活和工作中,经常会用到有关建模的概念。例如,我们平时出远门,会考虑一下出行的路线,以达到既快速又经济的目的;一些厂长经理为了获得更大的利润,往往会策划出一个合理安排生产和销售的最优方案……这些问题和建模都有着很大的联系。而在学习数学建模训练以前,我们面对这些问题时,解决它的方法往往是一种习惯性的思维方式,只知道该这样做,却不很清楚为什么会这样做,现在,我们这种陈旧的思考方式己经在被数学建模训练中培养出的多角度、层次分明、从本质上区分问题的新颖多维的思考方式所替代。这种凝聚了许多优秀方法为一体的思考方式一旦被你把握,它就转化成了你自身的素质,不仅在你以后的学习工作中继续发挥作用,也为你的成长道路印下了闪亮的一页。 数学建模所要解决的问题决不是单一学科问题,它除了要求我们有扎实的数学知识外,

[高中数学解题技巧]高中数学模型解题法

竭诚为您提供优质的服务,优质的文档,谢谢阅读/双击去除 [高中数学解题技巧]高中数学模型解题 法 高中数学教学中,提升数学学习水平的关键是教师要教会学生解题的技巧和方法,好的解题技巧和方法能使学生的解题效率得到提升。接下来小编为你整理了高中数学解题技巧,一起来看看吧。 高中数学解题技巧之19条铁律 铁律1 函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。

铁律2 如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法。 铁律3 面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是…… 铁律4 选择与填空中出现不等式的题目,优选特殊值法。

铁律5 求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法。 铁律6 恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏。 铁律7 圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,

与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式。 铁律8 求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点)。 铁律9 求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可。 铁律10

数学建模模拟试题及答案.pdf

数学建模模拟试题及答案 一、填空题(每题5分,共20分) 1. 若,, x z z y ∝∝则y 与x 的函数关系是. 2. 在超级市场的收银台有两条队伍可选择,队1有1m 个顾客,每人都买了1n 件商品,队2有2m 个顾客,每人都买了2n 件商品,假设每个人付款需p 秒,而扫描每件商品需t 秒,则加入较快队1的条件是 . 3. 马尔萨斯与罗捷斯蒂克两个人口增长模型的主要区别是假设了 4. 在研究猪的身长与体重关系时,我们通过与已知其相关性质的的弹性梁作 的方法建立了模型. 二、分析判断题(每小题15分,满分30分) 1. 要为一所大学编制全校性选修课程表,有哪些因素应予以考虑?试至少列出5种. 2. 一起交通事故发生3个小时后,警方测得司机血液中酒精的含量是 ),m l /m g (100/56 又过两个小时,含量降为),m l /m g (100/40试判断,当事故发生时,司 机是否违反了酒精含量的规定(不超过80/100)m l /m g (. (提示:不妨设开始时刻为)(,0t C t =表示t 时刻血液中酒精的浓度,则依平衡原理,在时间间隔],[t t t ?+内酒精浓度的改变量为 t t kC t C t t C ??=??+)()()( 其中0>k 为比例常数,负号则表示了浓度随时间的推移是递减的.) 三、计算题(每题25分,满分50分) 1. 一个毛纺厂使用羊毛、兔毛和某种纤维生产甲、乙两种混纺毛料,生产一个单位产品甲需要的三种原料依次为3、2、8个单位,产值为580元;生产一个单位产品乙需要的三种原料依次为2、3、5个单位,产值为680元,三种原料在计划期内的供给量依次为90、30和80单位.试建立线性规划模型以求一个生产方案,使得总产值达到最大,并由此回答: (1) 最优生产方案是否具有可选择余地?若有请至少给出两个,否则说明理由. (2) 原材料的利用情况.

数学建模期末考试2018A试的题目与答案

实用标准文案 华南农业大学期末考试试卷(A卷)2012-2013学年第二学期考试科目:数学建模 考试类型:(闭卷)考试考试时间:120 分钟 学号姓名年级专业 一、(满分12分)一人摆渡希望用一条船将一只狼,一只羊,一篮白菜从河岸一边带到河岸对面,由于船的限制,一次只能带一样东西过河,绝不能在无人看守的情况下将狼和羊放在一起;羊和白菜放在一起,怎样才能将它们安全的带到河对岸去? 建立多步决策模型,将人、狼、羊、白菜分别记为i = 1,2,3,4,当i在此岸时记x i = 1,否则为0;此岸的状态下用s =(x1,x2,x3,x4)表示。该问题中决策为乘船方案,记为d = (u1, u2, u3, u4),当i在船上时记u i = 1,否则记u i = 0。 (1) 写出该问题的所有允许状态集合;(3分) (2) 写出该问题的所有允许决策集合;(3分) (3) 写出该问题的状态转移率。(3分) (4) 利用图解法给出渡河方案. (3分) 解:(1) S={(1,1,1,1), (1,1,1,0), (1,1,0,1), (1,0,1,1), (1,0,1,0)} 及他们的5个反状(3分) (2) D = {(1,1,0,0), (1,0,1,0), (1,0,0,1), (1,0,0,0)} (6分)

(3) s k+1 = s k + (-1) k d k (9分) (4)方法:人先带羊,然后回来,带狼过河,然后把羊带回来,放下羊,带白菜过去,然后再回来把羊带过去。 或: 人先带羊过河,然后自己回来,带白菜过去,放下白菜,带着羊回来,然后放下羊,把狼带过去,最后再回转来,带羊过去。(12分) 1、二、(满分12分)在举重比赛中,运动员在高度和体重方面差别很大,请就 下面两种假设,建立一个举重能力和体重之间关系的模型: (1)假设肌肉的强度和其横截面的面积成比例。6分 (2)假定体重中有一部分是与成年人的尺寸无关,请给出一个改进模型。6分 解:设体重w(千克)与举重成绩y (千克) (1)由于肌肉强度(I)与其横截面积(S)成比例,所以y∝I∝S 设h为个人身高,又横截面积正比于身高的平方,则S ∝ h2 再体重正比于身高的三次方,则w ∝ h3 (6分)(2)a, 则一个最粗略的模型为 ( 12分) 三、(满分14分) 某学校规定,运筹学专业的学生毕业时必须至少学习过两门数学课、三门运筹学课和两门计算机课。这些课程的编号、名称、学分、所属类别和先修课要求如下表所示。那么,毕业时学生最少可以学习这些课程中哪些课程?

体会:数学建模的学习心得体会

数学建模的学习心得体会 通过对专题七的学习,我知道了数学探究与数学建模在中学中学习的重要性,知道了什么是数学建模,数学建模就是把一个具体的实际问题转化为一个数学问题,然后用数学方法去解决它,之后我们再把它放回到实际当中去,用我们的模型解释现实生活中的种种现象和规律。 知道了数学建模的几点要求:一个是问题一定源于学生的日常生活和现实当中,了解和经历解决实际问题的过程,并且根据学生已有的经验发现要提出的问题。同时,希望同学们在这一过程中感受数学的实用价值和获得良好的情感体验。当然也希望同学们在这样的过程当中,学会通过实际上数学探究本身应该说在平时教学当中,老师有些在课堂上也是这样教学的,他更重要的意义就是引导老师增加一种教学方式,首先就是这个问题就是有点儿全新性,解决的方案不是很明了,这样学生要有一个尝试,一个探索的过程查询资料等手段来获取信息,之后采取各种合作的方式解决问题,养成与人交流的能力。 实际上数学探究本身应该说在平时教学当中,老师有些在课堂上也是这样教学的,他更重要的意义就是引导老师增加一种教学方式,首先就是这个问题就是有点儿全新性,解决的方案不是很明了,这样的话学生要有一个尝试,一个探索的过程。数学探究活动的关健词就是探究,探究是一个活动或者是一个过程,也是一种学习方式,我们比较强调是用这样的方式影响学生,让他主动的参与,在这个活动当中得到更多的知识。 探究的结果我们认为不一定是最重要的,当然我们希望探究出来一个结果,通过这种活动影响学生,改变他的学习方式,增加他的学习兴趣和能力。我们也关心,大家也可以看到在标准里面,有非常突出的数学建模的这些内容,但是它

系统的描述与数学建模

系统的描述与数学建模 [摘要]数学建模就是利用数学方法将系统的文字语言描述转化成数学方式表达。由于影响系统的因素多种多样,当用数学表达系统时,我们要求尽可能要使得数学建模既能从本质上反映系统,又能使得系统的数学模型具有简单性。 [关键词]系统的建模数学建模 数学建模就是利用数学方法将系统的文字语言描述转化成数学方式表达。由于影响系统的因素多种多样,当用数学表达系统时,我们要求尽可能要使得数学建模既能从本质上反映系统,又能使得系统的数学模型具有简单性。一个极其复杂的数学模型对于分析系统毫无帮助。 为了说明这种数学建模的方法,我们举一个简单的例子。比如我们研究某一地区人口的健康状况。假定在我们的研究时段内没有人口的自然死亡,按照自然规律人口总是以一定的概率,变成亚健康、或者患上某种轻疾病、或者患上重疾病。在一定的环境和医疗条件下,部分亚健康者和患者会得以康复,这是一种简单运算的系统描述,并没有具体地给出定量表达。为了能用数学的方法表达这个描述,我们按照以下方式将人口分类:(1)健康人。(2)亚健康人。(3)患轻病人。(4)患重病人。 根据上面的关系和一些假定条件,我们可以得到相应的微分方程,至于方程的详细导出我们以后再讨论。这里我们需要指出,前面我们只是一种说明性的举例,在实际建模过程中,要依赖于系统所在的环境,按照前面方法得到的应是确定性模型,在随机环境中,上面所述的量应当对应成相应状态的概率。 再比如排队系统,是最常见的一种系统,这类系统主要描述顾客到达,接受服务然后离开这一过程。系统由顾客与服务员两个单元组成。这类问题主要由以下四个因素决定:(1)顾客来到窗口的频率。(2)窗口的个数。(3)排队规则。(4)服务时间分布;所以我们必须对它们作适当的假定。 在单个服务台的排队系统模型M/M/1,即系统只设一个服务台床的情况。假定顾客是相互独立地到达系统,而且顾客到达系统的间隔时间服从负指数分布 F(t)=1-e -λt (输入过程),又服务窗为每一位顾客的服务时间也同时服从负指 数分布H(t)=1-e -μt (运行方式)。对这种最简单的排队模型,我们将依照不同的系统规则确定排队系统所满足的微分方程。 M/M/1损失制排队模型是指系统内只设一个服务窗,系统容量为1(即有一个排队位置而无排队等待位置),顾客到达和窗口服务时间均为负指数分布,且

高中数学通用模型解题方法技巧总结

高中数学通用模型解题方法 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 中元素各表示什么? A表示函数y=lgx的定义域,B表示的是值域,而C表示的却是函数上的点的轨迹 2 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 显然,这里很容易解出A={-1,3}.而B最多只有一个元素。故B只能是-1或者3。根据条件,可以得到a=-1,a=1/3. 但是,这里千万小心,还有一个B为空集的情况,也就是a=0,不要把它搞忘记了。 3. 注意下列性质: 要知道它的来历:若B为A的子集,则对于元素a1来说,有2种选择(在或者不在)。同样,对于元素a2, a3,……a n,都有2种选择,所以,总共有种选择,即集合A有个子集。 当然,我们也要注意到,这种情况之中,包含了这n个元素全部在何全部不在的情况,故真子集个数为,非空真子集个数为 (3)德摩根定律: 有些版本可能是这种写法,遇到后要能够看懂 4. 你会用补集思想解决问题吗?(排除法、间接法) 的取值范围。 注意,有时候由集合本身就可以得到大量信息,做题时不要错过;如告诉你函数f(x)=ax2+bx+c(a>0) 在上单调递减,在上单调递增,就应该马上知道函数对称轴是x=1.或者,我说在上,也应该马上可以想到m,n实际上就是方程的2个根 5、熟悉命题的几种形式、 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和“非” ∨∧? ()()().

命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。) 原命题与逆否命题同真、同假;逆命题与否命题同真同假。 6、熟悉充要条件的性质(高考经常考) 满足条件,满足条件, 若;则是的充分非必要条件; 若;则是的必要非充分条件; 若;则是的充要条件; 若;则是的既非充分又非必要条件; 7. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,允许B中有元素无原象。) 注意映射个数的求法。如集合A中有m个元素,集合B中有n个元素,则从A到B 的映射个数有n m个。 如:若,;问:到的映射有个,到的映射有个;到的函数有个,若,则到的一一映射有个。 函数的图象与直线交点的个数为个。 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备) 9. 求函数的定义域有哪些常见类型? 函数定义域求法: ●分式中的分母不为零; ●偶次方根下的数(或式)大于或等于零; ●指数式的底数大于零且不等于一; ●对数式的底数大于零且不等于一,真数大于零。 ●正切函数 ●余切函数 ●反三角函数的定义域 函数y=arcsinx的定义域是[-1, 1],值域是,函数y=arccosx的定义域是[- 1, 1] ,值域是[0, π] ,函数y=arctgx的定义域是R ,值域是.,函数y=arcctgx 的定义域是R ,值域是(0, π) . 当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。

数学建模实践心得

数学建模实践心得 大学以来的第一个暑假,我参加了数学建模培训, 来作为一次暑期社会实践。或许并不像其他社会实践队可以走出校园,接触社会,但我们可以通过这次的培训,更系统化,更具体化地学习数学建模,并进一步理解其所体现的一些思想和精神。 数学建模是接触实际科学问题的第一步,利用所学的知识,利用各种数学和计算机工具,为某一具体问题建立抽象模型,并解决问题、最后撰写论文,给出客观的评价。 在两个星期的数学建模培训的过程中,我学到了很多知识,比如 LINGO软件、MATLAB软件和一些算法,可以说,这是迄今为止任何一门课程都无法比拟的,各种从未接触过的高级数学软件,令人眼花缭乱的编程和神秘的多维图像。 当初参加校级数学建模比赛的时候,起初我和我的队友都激情高昂的,但是随着三天的建模下来,我们的斗志越来越低迷,出于对数学建模的不了解,可以说,无从下手,自然最后只能草草结束。经过那次的接触后,我明白首先我们要加强建模技能和拓展课外知识面;再者,态度也是主导因素之一,态度决定一切,如果抱着试一试的态度,是不会有什么结果的。 其实,数学建模的一些思想和为人处世之道是相通的。在生活中,无论做什么事情,我们都要端正自己的态度,时常给自己一点鼓励,要相信自己的潜力,把自己融入激情之中,不要越做越懈怠。江南春曾说过“最终你相信什么,就能成为什么”。 在数学建模的培训中,我接触到一些参加过国赛的学长和学姐。执着和认真,是我在建模时从他们候身上找到的共同点。认真的人改变自己,执着的人改变命运。的确,在数学建模的过程中,只有驱除浮躁,踏实做事,全神贯注,注重每一个细节,才能把事情做好。

在和他们交流的过程中,曾有一位学姐说道,要想有进步,就要踏踏实实学好理论、弄懂原理、看会例题、做好练习,而不是浮在面上。参加数学建模培训,还要放正心态,急功近利的想法是要不得的。数学建模的思想是在潜移默化中作用于你,而非立竿见影。所以要真正学到有益的知识和思想才是最重要的,而非顾于是否获奖之类的。 数学建模,通过利用数学知识,对一些生活中的实际问题建立模型。所以,它需要的不仅仅是数学的逻辑思维,还需要计算机编程能力,论文写作能力,其实更重要的是团队协作能力。我想,这对以后的工作与生活,有非常大的帮助的,对人生更是如此。 在建模的三天里,初看题目,感觉摸不着头脑,没有相关理论的基础,没有高人 的指点,三个伙伴只能借助唯一的网络,去找寻找问题的入手点。在反复的搜索之后,我们终于有了初步的理解。写论文的过程,我们可以说是“痛并快乐的”。当然,在数学方法上,我们很多地方也感觉困难重重,所以不断地查询资料,理解它们的含义,让比赛的过程成为我们学习的动力。虽然最终没有取得预期的结果, 但是,过程带来的快乐,远远超越了结果。令我感触最深的是,知识的扩充,和 交识了一些新朋友。 与我建模的两位同学,可以说,初次接触,不了解对方。相对于其他建模小组而言,我们还需要在短暂的几天内去了解彼此。不过,还好,我们都是随和的性子,很快就熟悉起来。在建模的过程中,我们仨一同讨论,一同努力,一同交上一份尽心尽力的答卷。可以说,我们合作的过程也可以算是一种锻炼,怎样才能更好的沟通,怎样才能各抒己见,但最终可以把各自的观点融于一体,也算是一种挑战。学会与他人合作,在相互的谦虚中学习彼此的长处,汲取对方的优点,接收别人的建议。或许,三天的交流,并不长,也并不深入,但起码,我们成为了朋友,曾经一起为数学建模奋斗过。我想,这也是数学建模的另一番魅力所在。短短的三天,可以拉近三个性格迥异的人。

相关文档
最新文档