A New Human Lung Adenocarcinoma Cell Line Harboring

A New Human Lung Adenocarcinoma Cell Line Harboring
A New Human Lung Adenocarcinoma Cell Line Harboring

A New Human Lung Adenocarcinoma Cell Line Harboring the EML4-ALK Fusion Gene

Hideko Isozaki 1,Masayuki Yasugi 2,Nagio Takigawa 3,Katsuyuki Hotta 2,Eiki Ichihara 2,Akihiko Taniguchi 2,Shinichi Toyooka 4,Shinsuke Hashida 4,Toshiaki Sendo 1,Mitsune Tanimoto 2and Katsuyuki Kiura 5,*

1

Department of Clinical Pharmaceutics,Okayama University Graduate School of Medicine,Dentistry,and

Pharmaceutical Sciences and Okayama University Hospital,Okayama,2Department of Hematology,Oncology and Respiratory Medicine,Okayama University Graduate School of Medicine,Dentistry,and Pharmaceutical Sciences and Okayama University Hospital,Okayama,3Department of General Internal Medicine 4,Kawasaki Hospital,Kawasaki Medical School,Okayama,4Department of Thoracic Surgery,Okayama University Graduate School of Medicine,Dentistry,and Pharmaceutical Sciences,Okayama and 5Department of Allergy and Respiratory Medicine (Thoracic Oncology),Okayama University Hospital,Okayama,Japan

*For reprints and all correspondence:Katsuyuki Kiura,Department of Allergy and Respiratory Medicine,Okayama University Hospital,2-5-1Shikata-cho,Kita-ku,Okayama 700-8558,Japan.E-mail:kkiura@md.okayama-u.ac.jp

Received April 3,2014;accepted July 18,2014

Objective:The echinoderm microtubule associated protein-like 4(EML4)-anaplastic lymph-oma kinase (ALK)fusion gene was identi?ed in patients with non-small cell lung cancer.To the best of our knowledge,there are only three cell lines harboring the EML4-ALK fusion gene,which have contributed to the development of therapeutic strategies.Therefore,we tried to es-tablish a new lung cancer cell line harboring EML4-ALK .

Methods:A 61-year-old Japanese female presented with chest discomfort.She was diagnosed with left lung adenocarcinoma with T4N3M1Stage IV.Although she was treated with chemo-therapy,her disease progressed with massive pleural effusion.Because the EML4-ALK rearrangement was found in a biopsied specimen using ?uorescence in situ hybridization,she was treated with crizotinib.She did well for 3months.

Results:Tumor cells were obtained from the malignant pleural effusion before treatment with crizotinib.Cells continued to proliferate substantially for several weeks.The cell line was designated ABC-11.The EML4-ALK fusion protein and genes were identi?ed in ABC-11cells using ?uorescence in situ hybridization and immunohistochemistry,respectively.ABC-11cells were sensitive to crizotinib and next-generation ALK inhibitors (ceritinib and AP26113),as determined by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.Phosphorylated ALK protein and its downstream signaling were suppressed by treatment with crizotinib in western blotting.Furthermore,we could transplant ABC-11cells subcutaneously into BALB/c nu/nu mice.

Conclusions:We successfully established a new lung adenocarcinoma cell line harboring the EML4-ALK fusion gene.This cell line could contribute to future research of EML4-ALK -positive lung cancer both in vivo and in vitro .

Key words:lung cancer –EML4-ALK –crizotinib

#The Author 2014.Published by Oxford University Press.All rights reserved.

For Permissions,please email:journals.permissions@https://www.360docs.net/doc/506252560.html,

Jpn J Clin Oncol 2014;44(10)963–968

doi:10.1093/jjco/hyu110

Advance Access Publication 28August

2014

at Wuhan University Library on October 9, 2014

https://www.360docs.net/doc/506252560.html,/Downloaded from

INTRODUCTION

The discovery in2007of the echinoderm microtubule asso-ciated protein-like4(EML4)-anaplastic lymphoma kinase (ALK)fusion gene in non-small cell lung cancer(NSCLC)(1) highlighted the importance of ALK tyrosine kinase inhibitors (TKIs).A?rst generation ALK-TKI,crizotinib,which was initially formulated as a c-MET inhibitor,caused dramatic responses in patients with EML4-ALK-positive tumors in early clinical trials(2).The US Food and Drug Administration approved crizotinib(Xalkori w,P?zer Inc.,NY,USA),4 years after the discovery of the fusion gene.Subsequently,cri-zotinib has resulted in superior progression-free survival com-pared with platinum-based chemotherapy(3).

Clinical samples have been employed in most ALK studies, including those assessing fusion gene variants,fusion genes with a positive ratio in?uorescence in situ hybridization (FISH),and mechanisms of resistance to crizotinib(4–7). The results of these studies suggest that ALK-positive lung cancers are heterogeneous.Therefore,ALK-positive lung cancers should be assessed in several different ways.To the best of our knowledge,only three cell lines harboring the EML4-ALK fusion gene have been reported:H2228 (EML4-ALK variant3a/b E6;A20),H3122and DFCI032 (EML4-ALK variant1E13;A20)(5).Therefore,additional ALK-positive cell lines are needed as tools for basic research to develop novel therapeutic strategies for this disease.In this study,we established a new cell line derived from a patient with NSCLC harboring the EML4-ALK fusion gene.This cell line could be useful for investigating ALK-positive lung cancer. PATIENTS AND METHODS

P ATIENT

A61-year-old Japanese female never-smoker presented with chest discomfort.She was diagnosed with left

lung

Figure1.Crizotinib showed remarkable response in a patient with non-small cell lung cancer harboring echinoderm microtubule associated protein-like

4-anaplastic lymphoma kinase(EML4-ALK)fusion gene.(A)the chest X-ray images at pre-crizotinib treatment(a)and at Days3,6and24after the beginning of treatment with crizotinib(b–d).Left pleural effusion had been markedly decreased.

964New lung cancer cells harboring EML4-ALK

at Wuhan University Library on October 9, 2014

https://www.360docs.net/doc/506252560.html,/

Downloaded from

adenocarcinoma with T4N3M1Stage IV.Her Eastern Cooperative Oncology Group performance status(PS)was one.Because her tumor cells did not harbor any epidermal growth factor receptor(EGFR)mutations,she was treated with chemotherapy consisting of carboplatin and pemetrexed. During this?rst-line chemotherapy,an EML4-ALK rearrange-ment in the tumor was detected using FISH.The tumor pro-gressed after three cycles of chemotherapy.Subsequently,she received docetaxel as a second-line therapy;however,her disease progressed rapidly.Her PS deteriorated to two,and her left pleural effusion was drained to relieve her respiratory condition.She was then treated with250mg crizotinib twice per day.During the few days after beginning the treatment,the pleural effusion increased on chest radiography.Her respira-tory distress then improved gradually,and the pleural effusion was reduced further at Day24(Fig.1A).However,the tumor regrew with massive pleural effusion3months after crizotinib treatment.Crizotinib was discontinued,and she received best supportive care.

E STABLISHING THE ALK-POSITIVE L UNG C ANCER C ELL L INE Pleural effusion was drained to control the patient’s respira-tory condition before crizotinib treatment was started. Numerous tumor clusters were observed cytologically in the effusion.Mononuclear cells were isolated from the malignant effusion using the Ficoll-Hypaque method and were washed twice with RPMI1640medium(8).The cells were suspended in a Petri dish in ACL-4,which is serum-free medium described by Gazdar et al.(9),and cultured for2months. Subsequently,the culture media were changed to RPMI1640 medium supplemented with10%fetal bovine serum and1% penicillin/streptomycin,and the cells were cultured at378C in a humidi?ed atmosphere with5%CO2.The cells began to grow within a week and proliferated consistently thereafter. The cell line was designated ABC-11.

C ELL L INES AN

D ALK I NHIBITORS

The lung adenocarcinoma cell lines,H2228(EML4-ALK variant3a/b E6;A20)and A549(KRAS G12S)were pur-chased from the American Type Culture Collection(ATCC; Manassas,VA,USA).PC-9(EGFR del E746_A750)was pur-chased from Immuno-Biological Laboratories(Takasaki, Gunma,Japan).Crizotinib and AP26113were purchased from Selleck Chemical(Houston,TX,USA).Ceritinib was pur-chased from Chemietek(Indianapolis,IN,USA).

M YCOPLASMA T ESTING

ABC-11,H2228,A549and PC-9cells were not contaminated with mycoplasma,con?rmed using the luminescent MycoAlert TM Mycoplasma Detection Kit(Lonza,Basel,Switzerland)and a compact luminometer Gene Light GL-200A(Microtec, Chiba,Japan),following the manufacturer’s instructions.N EXT-GENERATION S EQUENCING

Genomic DNAs were extracted from cell line using a QIA-

amp DNA Mini Kit(Qiagen,Valencia,CA,USA).The genomic DNAs were enriched using GeneRead DNAseq Targeted Panels V2(Human Lung Cancer Panel)(Qiagen)

and sequenced using Miseq(illumine,San Diego,CA,USA).

The data were analyzed using Illumine VariantStudio (illumina).

D RUG S ENSITIVITY A SSAY

Drug sensitivities were determined using a3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)assay(10).Cells were seeded on96-well plates at a density of3000cells per well and exposed continuously to

each drug for96h.Following treatment,cells were incubated

at378C with MTT reagent for4h,and the absorbance at

570nm was measured using a680Microplate Reader (Bio-Rad,Hercules,CA,USA).The absorbance values were expressed as a ratio of treated to untreated cells.The concen-tration required to inhibit the growth of tumor cells by50%

(IC50)was used to evaluate the effect of the drug.Assays were performed in triplicate,and the mean and standard error(SE)

were calculated.

I MMUNOBLOTTING

Cells were lysed using radioimmunoprecipitation assay buffer(1%Triton X-100,0.1%sodium dodecyl sulphate,

50mM Tris-HCl[pH7.4],150mM NaCl,1mM EDTA,

1mM EGTA,10mM glycerol-phosphate,10mM NaF

and1mM Na-orthovanadate)containing protease inhibitor tablets(Roche,Tokyo,Japan).Proteins were separated by electrophoresis on polyacrylamide gels and transferred

to nitrocellulose membranes.Subsequently,the membranes

were incubated with the appropriate antibodies overnight

at48C.The bands were then detected using ECL Plus(GE Healthcare,Fair?eld,CT,USA)and imaged using the

LAS-4000(Fuji?lm,Tokyo,Japan).

A NTIBODIES

Rabbit antisera against phospho-ALK(Tyr1604),STAT3, phospho-STAT3(Tyr705)(D3A7),Akt,phospho-Akt (pSer473),ERK1/2,phospho-ERK1/2(pT202/pY204)and GAPDH were purchased from Cell Signaling Technology (Danvers,MA,USA).Polyclonal antibodies against ALK

were purchased from Invitrogen(Carlsbad,CA,USA).

X ENOGRAFT M OUSE M ODEL

Female BALB/c nu/nu mice at7weeks of age were pur-chased from Japan Charles River Co.(Yokohama,Japan).

Cells(2?106)were injected subcutaneously into the backs

of the mice.

Jpn J Clin Oncol2014;44(10)965

at Wuhan University Library on October 9, 2014

https://www.360docs.net/doc/506252560.html,/

Downloaded from

RESULTS

C HARACTERISTICS OF ABC-11

The EML4-ALK fusion protein and gene were identi?ed in ABC-11cells by immunohistochemistry (anti-ALK anti-body (5A4)was purchased from Abcam (Cambridge,UK))and FISH,respectively (SRL,Tokyo,Japan)(Fig.2A).EML4-ALK was observed;speci?cally,exons 20–29of ALK were fused to exons 1–6b of EML4,variant 3b,as determined using multiplex reverse transcription-PCR and exon array ana-lyses (Mitsubishi Chemical Medience,Tokyo,Japan)(data not shown)(11).EGFR ,KRAS ,LKB1,TP53and p16INK4A mutations,which had been reported in NSCLC so far,

were

Figure 2.Characteristics of a new EML4-ALK -positive cell line,ABC-11.(A)Identi?cation of EML4-ALK in ABC-11cells.(a)Immunohistochemistry of ALK.ABC-11cells have abundant ALK protein.(b)Fluorescent in situ hybridization analysis of ALK gene (red,ALK30;green,ALK50).ABC-11cells harbor EML4-ALK fusion gene.(B)Morphologic observation.Cells were seeded (1?106per dish)and were cultured in medium.Microscopic image was taken after 6days.Scale bar,100m m.(C)Sensitivity to crizotinib.Cells (ABC-11and H2228were 3000cells;A549and PC-9were 2500cells)were seeded per well on 96well plates and were treated with various concentrations of crizotinib for 96h.The viable cells were assessed as described in Patients and Methods.Points,mean values of triplicate cultures;bars,standard error.(D)Effects of crizotinib on ALK and its downstream signaling.Cells were incubated with various concentrations of crizotinib for 4h.Lysates were analyzed by immunoblotting.Crizotinib suppressed pALK,pSTAT3,pAkt and pERK1/2.

Table 1.IC 50values of next-generation anaplastic lymphoma kinase-tyrosine kinase inhibitors (ALK-TKIs)

IC 50(m M)Ceritinib

AP26113ABC-110.13+0.0520.073+0.0097H22280.84+0.0210.19+0.016PC-9

2.19+0.21

0.25+0.0039

IC 50,50%inhibitory values of ALK TKIs in ABC-11,H2228and PC-9cells.

966New lung cancer cells harboring EML4-ALK

at Wuhan University Library on October 9, 2014

https://www.360docs.net/doc/506252560.html,/Downloaded from

not observed in ABC-11cells according to next-generation sequencing.

Microscopic images of ABC-11cells revealed that they exhibited an amoeboid form (Fig.2B).The IC 50value (mean +SE)of crizotinib in ABC-11cells was 0.17+0.018m m,which was similar to H2228cells (0.18+0.066m m)(Fig.2C).ABC-11cells were also sensitive to next-generation ALK-TKIs,ceritinib and AP26113(Table 1).The levels of pALK and its downstream proteins (pSTAT3,pAkt and pERK1/2)were suppressed in the presence of crizo-tinib (Fig.2D).

ABC-11cells that had been injected into the backs of the mice grew steadily.Figure 3A shows the tumors at 20days after injection.The tumor of the xenograft (Fig.3a)was

harvested and compared with the primary lesion of the patient (Fig.3b).Both samples were determined to be adenocarc-inomas.

DISCUSSION

We established a new lung adenocarcinoma cell line harboring the EML4-ALK fusion gene from the pleural effusion of an ALK-positive lung cancer patient.We also successfully estab-lished a mouse model bearing ABC-11cells xenografts.The cell line was sensitive to crizotinib as well as H2228cells.Recently,next-generation ALK-TKIs,including ceritinib (Novartis),alectinib (Chugai)and AP26113(Ariad),

have

Figure 3.Establishment of xenograft mouse bearing ABC-11.(A)A xenograft mouse.Subcutaneous tumor was observed at 20days after injection of ABC-11cells.(B)Light microscopic image of tumor tissues derived from a xenograft mouse and the patient.Samples were subjected to histological examination using hematoxylin-eosin staining.(a)Tumor from xenograft mouse was harvested at 20days after injection of ABC-11cells.(b)Primary tumor was obtained at diagno-sis.Scale bar,100m m.Both right small panels show high-power ?eld.

Jpn J Clin Oncol 2014;44(10)967

at Wuhan University Library on October 9, 2014

https://www.360docs.net/doc/506252560.html,/Downloaded from

been developed (12).The effectiveness of such novel com-pounds should be assessed using multiple cell lines including ABC-11cells.

The tumor in the patient initially responded very well to cri-zotinib;however,it progressed within 3months of the initial crizotinib treatment (Supplementary data,Figure S1).This suggests that ABC-11cells might possess the ability to acquire resistance to crizotinib.To date,mechanisms under-lying crizotinib resistance,such as ALK ampli?cation,ALK secondary mutations (L1197M,C1156Y,G1202R,S1206Y,1151Tins or G1269A),and the activation of alternative recep-tor tyrosine kinases (KIT ampli?cation,EGFR mutation or KRAS mutation)have been reported using preclinical models and clinical samples (4–6,13–16).Therefore,the ABC-11cell line will be a useful tool to investigate acquired resistance to crizotinib.We are currently planning to establish an ALK-TKI-resistant ABC-11cell line.

In conclusion,we established a new cell line derived from a patient with lung adenocarcinoma harboring an ALK fusion gene.This cell line could contribute to future studies of EML4-ALK -positive lung cancer both in vivo and in vitro .

Supplementary Data

Supplementary data are available at http://www.jjco.oxford https://www.360docs.net/doc/506252560.html,.

Acknowledgements

We thank the patient and her family,colleagues in our labora-tory for the useful discussions,Dr Koichi Ichimura (Department of Pathology,Okayama University Hospital,Okayama,Japan)for the pathological review,and Mr Takehiro Matsubara and Ms Yayoi Kubota (Department of Center for Innovative Clinical Medicine,Okayama University Hospital,Okayama,Japan)for next-generation sequencing technical support.

Funding

Ministry of Education,Culture,Sports,Science,and Technology,Japan grants 24591182(N.T.)and 23390221(K.K.).

Con?ict of interest statement

Katsuyuki Kiura received honoraria from Chugai pharmaceut-ical Co.,Ltd,P?zer Inc.,Japan and Novartis Pharma K.K.

Nagio Takigawa received honoraria from P?zer Inc.,Japan.Katsuyuki Hotta received honoraria from Chugai pharmaceut-ical Co.,Ltd.

References

1.Soda M,Choi YL,Enomoto M,et al.Identi?cation of the transforming EML4-ALK fusion gene in non-small-cell lung cancer.Nature 2007;448:561–6.

2.Camidge DR,Bang Y-J,Kwak EL,et al.Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer:updated results from a phase https://www.360docs.net/doc/506252560.html,ncet Oncol 2012;13:1011–9.

3.Shaw AT,Kim D-W,Nakagawa K,et al.Crizotinib versus chemotherapy in advanced ALK-positive lung cancer.N Engl J Med 2013;368:2385–9

4.

4.Choi YL,Soda M,Yamashita Y,et al.EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors.N Engl J Med 2010;363:1734–9.

5.Koivunen JP,Mermel C,Zejnullahu K,et al.EML4-ALK fusion gene and ef?cacy of an ALK kinase inhibitor in lung cancer.Clin Cancer Res 2008;14:4275–83.

6.Katayama R,Shaw AT,Khan TM,et al.Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers.Sci Transl Med 2012;4:120ra1

7.

7.Doebele RC,Pilling AB,Aisner DL,et al.Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer.Clin Cancer Res 2012;18:1472–82.

8.Boyum A.Isolation of mononuclear cells and granulocytes from human blood.Isolation of monuclear cells by one centrifugation,and of granulocytes by combining centrifugation and sedimentation at 1g.Scand J Clin Lab Invest Suppl 1968;97:77–89.

9.Gazdar AF,Oie HK.Correspondence re?Martin Brower et al.Growth of cell lines and clinical specimens of human non-small cell lung cancer in a serum-free de?ned medium.Cancer Res 1986;46:6011–2.

10.Mosmann T.Rapid colorimetric assay for cellular growth and survival:

application to proliferation and cytotoxicity assays.J Immunol Methods 1983;65:55–63.

11.Takeuchi K,Choi YL,Soda M,et al.Multiplex reverse transcription-PCR

screening for EML4-ALK fusion transcripts.Clin Cancer Res 2008;14:6618–24.

12.Tartarone A,Lazzari C,Lerose R,et al.Mechanisms of resistance to

EGFR tyrosine kinase inhibitors ge?tinib/erlotinib and to ALK inhibitor crizotinib.Lung Cancer 2013;81:328–36.

13.Katayama R,Khan TM,Benes C,et al.Therapeutic strategies to

overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK.Proc Natl Acad Sci USA 2011;108:7535–40.

14.Sasaki T,Okuda K,Zheng W,et al.The neuroblastoma-associated

F1174L ALK mutation causes resistance to an ALK kinase inhibitor in ALK-translocated cancers.Cancer Res 2010;70:10038–43.

15.Sasaki T,Koivunen J,Ogino A,et al.A novel ALK secondary mutation

and EGFR signaling cause resistance to ALK kinase inhibitors.Cancer Res 2011;71:6051–60.

16.Tanizaki J,Okamoto I,Okabe T,et al.Activation of HER family

signaling as a mechanism of acquired resistance to ALK inhibitors in EML4-ALK-positive non-small cell lung cancer.Clin Cancer Res 2012;18:6219–26.

968New lung cancer cells harboring EML4-ALK

at Wuhan University Library on October 9, 2014

https://www.360docs.net/doc/506252560.html,/Downloaded from

继电保护距离保护特性原理说明

三电网距离保护 1距离保护基本原理与构成 1.距离保护的概念 短路时,电压电流同时变化,测量到电压与电流的比值就反映了故障点到保护安装处的距离, 短路时:电流增大、电压变小、 阻抗与电流的关系:故障点与保护安装处越近,阻抗越小,短路电流越大。 阻抗与距离的关系:阻抗与距离成正比,阻抗的单位是欧姆/公里。 距离保护与电流保护的关系:电流保护的范围与距离保护的范围大致相同,电流保护的范围就是用距离来衡量的,电流的保护范围实际反映的是距离的范围。距离与电流是统一的。但是,电流保护只用电流值来判断是否故障,距离保护使用电压、电流2个物理量来判断,因此,距离保护更准确。 2.测量阻抗、负荷阻抗、短路阻抗、整定阻抗、动作阻抗概念辨析? 负荷阻抗:正常运行条件下,额定电压与负荷电流的比值; 短路阻抗:短路发生后,保护安装处的残压与流过保护的短路电流的比值(线路的阻抗值);短路阻抗总小于负荷阻抗。 测量阻抗:继电器测量到的电压除以电流,得到的阻抗值;正常运行时,测量阻抗就是负荷阻抗,短路时,测量阻抗就是短路阻抗。测量阻抗能反应出运行状态。整定阻抗:能使继电器动作的最大阻抗,是一个定值。测量阻抗小于整定阻抗,继电器就动作。阻抗继电器是一个欠量继电器,电流继电器是过量继电器,测量电流大于整定电流时动作。这是一对对偶关系。 动作阻抗:阻抗继电器动作时,测量到的阻抗值。比如:人为设置整定阻抗是20Ω,只要测量到的阻抗值小于20就可以动作,今天动作了一次,一查故障记录,动作阻抗是10Ω,说明动作准确无误。 3.一次阻抗、二次阻抗区别? 这里要对比一次电流和二次电流的概念,道理是一样的。

一次阻抗:一次电压与一次电流的比值, 二次阻抗:二次电压与二次电流的比值, 4.测量阻抗角、负荷阻抗角、短路阻抗角、整定阻抗角、动作阻抗角概念辨析测量阻抗角:测量电压与测量电流的夹角 负荷阻抗角:负荷电压与负荷电流的夹角 短路阻抗角:短路电压与短路电流的夹角 动作阻抗角:继电器动作时,加入继电器的电压与电流的夹角。 整定阻抗角:能够使保护动作的最大灵敏角,这是人为设置的,其余都是测量到的。 5.距离保护的原理 与电流保护一样,需要满足选择性要求,分正方向动作和反方向不动作, 正方向的时候,还判断测量阻抗值,区内动作,区外不动作。 6.测量阻抗怎么表示? 测量阻抗是保护安装处测量的电压与测量电流之比。电压和电流都是向量,带方向的。 阻抗是一个复数,可以用极坐标表示或者用直角坐标表示。 7.测量阻抗在短路前后的差别 短路前:测量到的为负荷阻抗,Z=U/I,负荷电流比短路电流小,额定电压比短路残压高,所以,负荷阻抗值很大,阻抗角较小,功率因数不低于0.9,对应阻抗角不大于25.8度,以电阻性质为主。

距离保护基本原理

距离保护的基本原理线路正常运行时:Z=U/I= Z1L+Z L d≈Z L d Z=U/I=Z1L+Z L d≈Z L d为负荷阻抗值大角度在30°左右 线路故障时:Z=U/I=Z1L k=Z k 为故障点到保护安装处的线路阻抗即短路阻抗值小角度在60°~90°左右 利用线路故障时阻抗下降的特点构成 低阻抗保护习惯称距离保护 ?特点: 保护区基本不受系统运行方式的影响 能够区分短路与负荷状态?应用: 110K V及以上线路 基本原理?概念 距离保护-反应故障点至保护安装处的阻抗(距离)并根据阻抗的大小(距离的远近) 确定动作时限的保护。用符号表示。 测量阻抗-保护安装处母线电压与流过保护的电流的比值。又称为感受阻抗。Z M=U/I 整定阻抗-当Φs e t=Φz L 时保护区末端至保护安 装处的线路阻抗。用符号Z s e t表示?基本原理①线路正常运行时:Z M=Z L d>Z s e t保护不启动 ②线路故障时:Z M=Z1L k =Z k>Z s e t保护不启动Z M=Z1L k=Z k≤Z s e t 保护启动 ③启动后的保护动作时限与距离有关保护1:Z M1=Z A B+Z1L k=Z1(L A B+L k) 保护2:Z M2=Z1L k 距离长时限长,距离短时限短,从而保证选 择性 ?基本原理 ①线路正常运行时:Z M=Z L d>Z s e t保护不启动 ②线路故障时:Z M=Z1L k =Z k>Z s e t保护不启动 Z M=Z1L k=Z k≤Z s e t保护启动③启动后的保护动作时限 与距离有关保护1:Z M1 =Z A B+Z1L k= Z1(L A B+L k) 保护2:Z M2=Z1L k 距离长时限长,距离 短时限短,从而保证选 择性三段式距离保 护?组成 距离Ⅰ段:ZⅠs e t.1= K r e l×Z A B K r e l-可靠 系数取0.8~0.85 可保护线路全长的 (80~85)%瞬时动作 距离Ⅱ段:Z Ⅱ s e t.1= K r e l×(Z A B+Z Ⅰ s e t.2) t Ⅱ 1=t Ⅰ 2+ Δt=0.5s 可保护线路全长及下 级线路始端的一部分 距离Ⅲ段:整定阻抗按躲 过线路的最小负荷阻抗整 定 动作时 限按阶梯时限原则确定 保护区较广包括 本级、下级甚至更远 一般Ⅰ、Ⅱ段作为主保 护,Ⅲ段作为后备保护 ?主要元件及其作用 1.电压二次回路断线闭锁 元件:TV二次断线时将 保护闭锁 2. 起动元件:被保护线路 发生短路时立即起动保 护,判断是否是保护范围 内的故障。 3.测量元件:测量短路点 到保护安装处的阻抗,决 定保护是否动作。 4. 振荡闭锁元件:也可以 理解为故障开放元件。在 系统振荡时将保护闭锁。 5.时间元件:设置必要的 延时以满足选择性。?工作 情况 ①正常运行时 起动元件及测 量元件ZⅠ、ZⅡ、ZⅢ均 不动作,距离保护可靠不 动作。 ②线路故障时 起动元件动 作,振荡闭锁元件开放, 测量元件ZⅠ、ZⅡ、ZⅢ 测量至保护安装处的阻 抗,在其保护范围内时动 作,保护出口跳闸。 ③T V二次断线 闭锁保护并发 出断线信号 ④系统振荡 起动元件不动 作,振荡闭锁元件不开放, 将保护闭锁

距离保护

距离保护 距离保护是指利用阻抗元件来反应短路故障的保护装置。 目录 概念 距离保护是反应故障点至保护安装地点之间的距离(或阻抗)。并根据距离的远近而确定动作时间的一种保护装置。该装置的主要元件为距离(阻抗)继电器,它可根据其端子上所加的电压和电流测知保护安装处至短路点间的阻抗值,此阻抗称为继电器的测量阻抗。当短路点距保护安装处近时,其测量阻抗小,动作时间短;当短路点距保护安装处远时,其测量阻抗增大,动作时间增长,这样就保证了保护有选择性地切除故障线路。 用电压与电流的比值(即阻抗)构成的继电保护,又称阻抗保护,阻抗元件的阻抗值是接入该元件的电压与 距离保护 电流的比值:U/I=Z,也就是短路点至保护安装处的阻抗值。因线路的阻抗值与距离成正比,所以叫距离保护或阻抗保护。距离保护分为接地距离保护和相间距离保护等。 距离保护分的动作行为反映保护安装处到短路点距离的远近。与电流保护和电压保护相比,距离保护的性能受系统运行方式的影响较小。

特性 当短路点距保护安装处近时,其量测阻抗小,动作时间短;当短路点距保护安装处远时,其量测阻抗大,动作时间就增长,这样保证了保护有选择性地切除故障线路。距离保护的动作时间 (t)与保护安装处至短路点距离(l)的关系t=f(l),称为距离保护的时限特性。为了满足继电保护速动性、选择性和灵敏性的要求,目前广泛采用具有三段动作范围的时限特性。三段分别称为距离保护的Ⅰ、Ⅱ、Ⅲ段,它们分别与电流速断、限时电流速断及过电流保护相对应。 距离保护的第Ⅰ段是瞬时动作的,它的保护范围为本线路全长的80~85%;第Ⅱ段与限时电流速断相似,它的保护范围应不超出下一条线路距离第Ⅰ段的保护范围,并带有高出一个△t的时限以保证动作的选择性;第Ⅲ段与过电流保护相似,其起动阻抗按躲开正常运行时的负荷参量来选择,动作时限比保护范围内其他各保护的最大动作时限高出一个△t。 组成 (1)测量部分,用于对短路点的距离测量和判别短路故障的方向。 (2)启动部分,用来判别系统是否处于故障状态。当短路故障发生时,瞬时启动保护装置。有的距离保护装置的启动部分兼起后备保护的作用。 (3)振荡闭锁部分,用来防止系统振荡时距离保护误动作。 (4)二次电压回路断线失压闭锁部分,当电压互感器(TV)二次回路断线失压时,它可防止由于阻抗继电器动作而引起的保护误动作。但当TV断线时保护可以选择投/退“TV断线相过流保护”。 (5)逻辑部分,用来实现保护装置应有的性能和建立各段保护的时限。 装置构成 一般情况下,距离保护装置由以下4种元件组成。①起动元件:在发生故障的瞬间起动整套保护,并可作 距离保护

什么是距离保护,距离保护原理

什么是距离保护,距离保护原理 系统在正常运行时,不可能总工作于最大运行方式下,因此当运行方式变小时,电流保护的保护范围将缩短,灵敏度降低;而距离保护,顾名思义它测量的是短路点至保护安装处的距离,受系统运行方式影响较小,保护范围稳定。常用于线路保护。 距离保护的具体实现方法是通过测量短路点至保护安装处的阻抗实 现的,因为线路的阻抗成正比于线路长取?BR>在前面的分析中大家已经知道:保护安装处的电压等于故障点电压加上线路压降,即UKM=UK+△U;其中线路压降△U并不单纯是线路阻抗乘以相电流,它等于正、负、零序电流在各序阻抗上的压降之和,即△U=IK1*X1+ IK2*X2+ IK0*X0 。 接下来我们先以A相接地短路故障将保护安装处母线电压重新推导一下。 因为在发生单相接地短路时,3IO等于故障相电流IKA;同时考虑线路X1=X2 则有: UKAM=UKA+IKA1* X LM1+ IKA2* X LM2+ IKA0* X LM0 =UKA+IKA1*X LM1+ IKA2*X LM1+ IKA0*X LM0+ (IKA0* X LM1-IKA0* X LM1) =UKA+ X LM1(IKA1+ IKA2+ IKA0)+ IKA0(X LM0-X LM1) =UKA+X LM1*IKA+ 3IKA0(X LM0-X LM1)*X LM1/3X LM1 =UKA+X LM1*IKA[1+(X LM0-X LM1)/3X LM1] 令K=(X LM0-X LM1)/3X LM1

则有UKAM=UKA+IKA*X LM1(1+K) 或UKAM=UKA+IKA*X LM1(1+K) =UKA+X LM1(IKA+KIKA) =UKA+X LM1(IKA+K3I KA0) 同理可得UKBM=UKB+ X LM1(IKB+K3I KB0) UKCM=UKC+ X LM1(IKC+K3I KC0) 这样我们就可得到母线电压计算得一般公式: UKΦM=UKΦ+ X LM1(IKΦ+K3I0) 该公式适用于任何母线电压的计算,对于相间电压,只不过因两相相减将同相位的零序分量K3I KC0减去了而已。 一、接地阻抗继电器的测量阻抗 我们希望,故障时加入阻抗继电器的电压、电流测量值ZJ=UJ/IJ正好成正比于保护安装处至短路点的线路阻抗Z LM 对于单相接地阻抗继电器来说,如果按相电压、相电流方式接线,则故障时继电器的测量阻抗 ZJ=UJ/IJ =Z LM(IKΦ+K3I0)/IKΦ 当金属性单相接地短路时UKΦ=0 = (1+K)Z LM 它不能正确反映保护安装处至短路点的线路阻抗Z LM 那么为了使阻抗继电器测量阻抗ZJ正好等于保护安装处至短路点的线路阻抗Z LM我们可以在构成阻抗继电器上做文章,使 ZJ=Z LM(IKΦ+K3I0)/(IKΦ+K3I0)=Z LM

继电保护教程 第三章 距离保护

第三章 电网的距离保护 第一节 距离保护的作用原理 一﹑基本概念 电流保护的优点:简单﹑可靠﹑经济。缺点:选择性﹑灵敏性﹑快速性很难满足要求(尤其35kv 以上的系统)。 距离保护的性能比电流保护更加完善。 Z d U d . . . . 1f e f d d d ld I U Z I U Z Z = <= =,反映故障点到保护安装处的距离——距离保护,它基 本上不说系统的运行方式的影响。 二﹑距离保护的时限特性 距离保护分为三段式: I 段:AB I dz Z Z )85.0~8.0(1=,瞬时动作 主保护 II 段:)(21I dz AB II K II dz Z Z K Z +=,t=0.5’’ III 段:躲最小负荷阻抗,阶梯时限特性。————后备保护 第二节 阻抗继电器 阻抗继电器按构成分为两种:单相式和多相式 单相式阻抗继电器:指加入继电器的只有一个电压U J (相电压或线电压)和一个电流I J (相电流或两相电流之差)的阻抗继电器。

J J J I U Z . . = ——测量阻抗 Z J =R+jX 可以在复平面上分析其动作特性 它只能反映一定相别的故障,故需多个继电器反映不同相别故障。 多相补偿式阻抗继电器:加入的是几个相的补偿后的电压。它能反映多相故障,但不能利用测量阻抗的概念来分析它的特性。 本节只讨论单相式阻抗继电器。 一﹑阻抗继电器的动作特性 PT l d PT l l PT J J J n n Z n n I U n I n U I U Z ?=? = = = 1 . 1. 1. 1. . . BC 线路距离I 段内发生单相接地 故障,Z d 在图中阴影内。 由于1)线路参数是分布的, Ψd 有差异 2)CT,PT 有误差 3)故障点过渡电阻 4)分布电容等 所以Z d 会超越阴影区。 因此为了尽量简化继电器接线,且便于制造和调试,把继电器的动作特性扩大为一个圆,见图。 圆1:以od 为半径——全阻抗继电器(反方向故障时,会误动,没有方向性) 圆2:以od 为直径——方向阻抗继电器(本身具有方向性) 圆3:偏移特性继电器 另外,还有椭圆形,橄榄形,苹果形,四边形等 二﹑利用复数平面分析阻抗继电器 它的实现原理:幅值比较原理 B A U U . . ≥ J

距离保护原理

距离保护原理 系统在正常运行时,不可能总工作于最大运行方式下,因此当运行方式变小时,电流保护的保护范围将缩短,灵敏度降低;而距离保护,顾名思义它测量的是短路点至保护安装处的距离,受系统运行方式影响较小,保护范围稳定。常用于线路保护。 距离保护的具体实现方法是通过测量短路点至保护安装处的阻抗实现的,因为线路的阻抗成正比于线路长度。 在前面的分析中大家已经知道:保护安装处的电压等于故障点电压加上线路压降,即UKM=UK+△U;其中线路压降△U并不单纯是线路阻抗乘以相电流,它等于正、负、零序电流在各序阻抗上的压降之和,即△U=IK1*X1+ IK2*X2+ IK0*X0 。 接下来我们先以A相接地短路故障将保护安装处母线电压重新推导一下。 因为在发生单相接地短路时,3IO等于故障相电流IKA;同时考虑线路X1=X2 则有:UKAM=UKA+IKA1* X LM1+ IKA2* X LM2+ IKA0* X LM0 =UKA+IKA1*X LM1+ IKA2*X LM1+ IKA0*X LM0+ (IKA0* X LM1-IKA0* X LM1) =UKA+ X LM1(IKA1+ IKA2+ IKA0)+ IKA0(X LM0-X LM1) =UKA+X LM1*IKA+ 3IKA0(X LM0-X LM1)*X LM1/3X LM1 =UKA+X LM1*IKA[1+(X LM0-X LM1)/3X LM1] 令K=(X LM0-X LM1)/3X LM1 则有UKAM=UKA+IKA*X LM1(1+K) 或UKAM=UKA+IKA*X LM1(1+K) =UKA+X LM1(IKA+KIKA) =UKA+X LM1(IKA+K3I KA0) 同理可得UKBM=UKB+ X LM1(IKB+K3I KB0) UKCM=UKC+ X LM1(IKC+K3I KC0) 这样我们就可得到母线电压计算得一般公式: UKΦM=UKΦ+ X LM1(IKΦ+K3I0) 该公式适用于任何母线电压的计算,对于相间电压,只不过因两相相减将同相位的零序分量K3I KC0减去了而已。 一、接地阻抗继电器的测量阻抗 我们希望,故障时加入阻抗继电器的电压、电流测量值ZJ=UJ/IJ正好成正比于保护安装处至短路点的线路阻抗Z LM 对于单相接地阻抗继电器来说,如果按相电压、相电流方式接线,则故障时继电器的测量阻抗 ZJ=UJ/IJ =Z LM(IKΦ+K3I0)/IKΦ 当金属性单相接地短路时UKΦ=0 = (1+K)Z LM 它不能正确反映保护安装处至短路点的线路阻抗Z LM 那么为了使阻抗继电器测量阻抗ZJ正好等于保护安装处至短路点的线路阻抗Z LM我们可以在构成阻抗继电器上做文章,使 ZJ=Z LM(IKΦ+K3I0)/(IKΦ+K3I0)=Z LM 也就是说使继电器的计算用电压等于相电压、计算用电流等于IKΦ+K3I0,常规继电器构成上可以采用IKΦ+K3I0复合滤序器实现,微机保护更简单,直接通过软件算法实现。ZJ=UJ/(IKΦ+K3I0)的接线方式称为带零序电流补偿的接地阻抗继电器。接地阻抗保护一般采用该种接线。

第一节 距离保护的基本原理

第一节距离保护的基本原理 大多电流电压保护,其保护范围要随系统运行方式的变化而变化。对长距离、重负荷线路,由于线路的最大负荷电流可能与线路末端短路时的短路电流相差甚微,采用电流电压保护,其灵敏性也常常不能满足要求。距离保护是广泛运用在110KV及以上电压输电线路中的一种保护装置。 一、距离保护的基本原理 4.1 距离保护的基本原理 前面介绍的各种电流电压保护,其保护范围要随系统运行方式的变化而变化。对长距离、重负荷线路,由于线路的最大负荷电流可能与线路末端短路时的短路电流相差甚微,采用电流电压保护,其灵敏性也常常不能满足要求。距离保护是广泛运用在110KV及以上电压输电线路中的一种保护装置。 一、距离保护的基本原理 输电线路的长度是一定的,其阻抗也基本一定。在其范围内任何一点故障,故障点至线路首端的距离都不一样,也就是阻抗不一样,都会小于总阻抗。 距离保护就是反应故障点至保护安装处之间的距离,并根据该距离的大小确定动作时限的一种继电保护装置。距离保护的核心元件阻抗继电器。

程度更加显著,因此距离保护比电流保护或电压保护的灵敏度更高,其他性能也更完善。 距离保护的核心元件是阻抗继电器。阻抗继电器是通过输入电压值和电流值来获取阻抗的大小及相位角。 故障时阻抗继电器测量的阻抗ZK 与故障点到保护装置安装处的这段链路的阻抗值成正比,而此阻抗值又与这段路线的距离l 成正比,因此阻抗保护又称为距离保护。 阻抗继电器是带有方向性判断的元件,其测量阻抗ZK=R+jK ,可以在R 与jX 建立的复平面内进行矢量特性分析,以便于对故障时所测量的阻抗值进行大小和方向的判断。 当被保护线路上发生短路故障时,阻抗继电器的测量阻抗为Zm 设阻抗继电器的工作电压为U U I =- 阻抗继电器的整定阻抗 Z 是指保护安装处至保护末端的阻抗。 由此可见:保护区内短路故障,工作电压小于0;而保护外或反方向短路故障,工 作电压大于0。 二、距离保护的时限特性 距离保护时限特性与三段式电流保护相似。 第二节 距离保护的特性及组成 由起动元件、方向元件、测量元件、时间元件和执行部分组成。

输电线路距离保护原理及组成

输电线路距离保护原理及组成 什么是距离保护? 距离保护有时也称阻抗保护。它是一种反应保护安装处至故障点的距离或阻抗,并根据距离的远近而确定动作时限的微机保护装置。测量保护安装处至故障点的距离,实际上是测量保护安装处至故障点之间的阻抗大小,故有时又称阻抗保护。路点距保护安装处近时,其测量阻抗小,动作时间短;当短路点距保护安装处远时,其测量阻抗增大,动作时间增长,这样就保证了保护有选择性地切除故障线路。距离保护Ⅰ、II、III段的保护范围是怎样划分的? 一般第Ⅰ段保护线路全长约80%-85%,无时限动作。 第Ⅱ段与相邻保护的第Ⅰ段或第Ⅱ段配合整定,动作时限为0.5秒,第Ⅰ、Ⅱ构成主保护。 第Ⅲ段按躲过最大负荷电流整定,作为后备保护,时间与相邻线路配合整定。 三段式距离保护的阶梯型时限特性原理图: 三段式距离保护的工作原理图 距离保护是怎么实现的呢? 距离保护又称为阻抗保护,主要原理根据故障点和电源之间阻抗来确定故障点的距离,依据为故障电流的大小。距离保护装置的具体实现方法是通过测量短路点至保护安装处的阻抗实现的,因为线路的阻抗成正比于线路长。 取?BR>在前面的分析中大家已经知道:

保护安装处的电压等于故障点电压加上线路压降,即UKM=UK+△U; 其中线路压降△U并不单纯是线路阻抗乘以相电流,它等于正、负、零序电流在各序阻抗上的压降之和,即△U=IK1*X1+IK2*X2+ IK0*X0。 距离保护的整定与计算: 无论采用何种继电器构成三段式电流保护中的电流速速保护,其整定的原则都是要躲开电动机起动时的起动电流和瞬间过负荷。 继电器一次动作电流的保护定值一般按下式计算:I=KIS式中:K —可靠系数。对于DL型取1.4~1.6,对于GL型取1.8~2.0IS—电动机起动电流,一般取额定电流的5~7倍在整定中,可靠系数和起动倍率如果掌握不好,往往容易造成继电器误动作或拒动,一般情况下,可按以下原则掌握。可靠系数整定主要考虑两个因素。一是电动机是否容易过负荷,容易过负荷的取大值;反之,则取小值。二是电动机与继电器电流测量元件的电气距离 距离保护由哪几部分组成? 距离保护一般由启动、测量、振荡闭锁、电压回路断线闭锁、配合逻辑和出口的等几个部分组成。 1、启动部分。启动部分用来判别电力系统是否发生故障。 2、测量部分。测量部分是距离保护的核心,对它的要求是在系统故

相关文档
最新文档