换元法学案

换元法学案
换元法学案

高中数学校本课程教案

课题: 高中数学解题基本方法——换元法

目标:熟练掌握代数变形的基本方法,能有效地进行新、旧元之间的代换,或将代数式的某一部分进行整体代换,形成换元的意识,培养学生的数感,提高学生代数变形的能力。

过程:

一、基本知识:换元的思想方法,就是指在解决数学问题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。

事实上,在初中,我们就已经接触并运用换元法解决了一些实际问题,以下是部分中考真题:

1. 解方程2(1)51)40x x ---+=(

2. 用换元法解方程222()x)6x x x +++=(

分析:如果设2x =y x +,那么原方程可变为260y y +-=

3. 已知实数x 满足2

2110x x x x +++=,那么1

x x += 4. 已知22222())120x y x y ++-=+(,求22x y +

5. 分解因式:

.16)4a 3a )(2a 3a (22-++-+ 提示:设m 2a 3a 2=-+,还可以设m a 3a 2=+,或m 4a 3a 2=++,或

m 1a 3a 2=++。运用换元法分解因式,是将原多项式中的某一部分巧用一个字母进行代换,从而使原多项式的结构简化,进而便于分解因式.)

二、新授:常用换元的方法有:

(一)局部换元、局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。

例1:已知函数2(1)4f x x x -=-,求函数()f x ,的解析式

分析:该题通常情况下一般都是从两个方面去考虑。

一是配凑法,将24x x -配凑成只含(1)x -的式子,

即22(1)4=1)2(1)3f x x x x x -=-----(,从而观察出函数的对应法则; 二是直接用换元法,令1=x t -,

总之,不管是用什么手段,都是把(1)x -看成一个整体,一个新元来解决的,这就是换元的思想方法.

跟踪练习:

1.若f (ln x )=3x +4,则f (x )的表达式为

2.已知f(x 3)=lgx (x>0),则f(4)的值为_____。

3. 已知22

1

1()f x x x x -=+,则()f x =

4.已知1)f x =+()f x =

例2. 已知10x -≤≤,求函数2234x x y +=-?的值域。

分析:令2x t =,因为10x -≤≤,所以

112

t ≤≤ 所以234y t t =-+,112t ≤≤ 利用换元法,将一个复合函数分解成两个简单的基本初等函数来求解,大大降低了解题的难度,达到了复杂的问题简单化的目的。

跟踪练习:

1. 已知函数232()2x x f x -+= ,试研究函数的定义域、值域、单调性。

2.已知函数22()log (32)f x x x =-+ ,试研究函数的定义域、值域、单调性。 3. 已知函数f (x )=4x -2x t +t +1在区间(0,+∞)上的图象恒在x 轴上方,则实数t 的取值范围是

4. 对于函数f (x )=4x -m ·2x +1,若存在实数x 0,使得f (-x 0)=-f (x 0)成立,则实数m 的取值范围是

5.求函数x x y 41332-+-=的值域。

6..函数y =3x +2-42-x 的最小值为

7.试求函数x x x x y cos sin cos sin ++=的值域。

(二)三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y =x +1-x 的值域

时,易发现[0,1]x ∈,设2sin x α=,[0,]2

πα∈,问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。如变量x y ,适合条件222=x y r +(0r >)时,则可作三角代换cos x r α=、sin y r α=化为三角问题。

例:已知224x y x +=,则x y +的范围是_________________

分析:将已知条件变形为圆的标准方程222)4x y -+=(,可以进行三角换元 22cos 2sin x y αα

=+??=? ,则2(sin cos )2x y αα+=++ 将代数问题转化为三角函数的值域问题。

(三)均值换元

均值换元,如遇到x y S +=形式时,设2S x t =+,2

S y t =-等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小

也不能扩大。如上几例中的0t > 和[0,]2

πα∈。

三、在高一学过的数列相关问题中,我们也经常遇到利用换元法,将未知的,不熟悉的数列问题转化为我们学过的等差数列、等比数列来研究

1.已知数列{a n }中,a 1=-1,a n +1·a n =a n +1-a n ,则数列通项a n =___________。

2:(等差型数列)在数列{}n a 中,若111,2n n a a a +==+,求该数列的通项公式n a 变式1:在数列{}n a 中,若11a =

2=,求该数列的通项公式n a 变式2:在数列{}n a 中,若22111,2n n a a a +=-=,求该数列的通项公式n a 变式3:在数列{}n a 中,若11a =,1112n n

a a +=+求该数列的通项公式n a 。 变式4:在数列{}n a 中,0n a >若11a =,1lg lg 2n n a a +-=,求该数列的通项公式n a 。

课后反思:通过本节课的学习,你对换元法有了怎样的认识?在你已经学习过的知识中,在解决哪些问题是经常用到换元法?

浅谈用换元法证明不等式

浅谈用换元法证明不等式 刘景 (茂名学院高州师范分院数学与计算机系 307数学1班) [摘要]换元法是数学中的一个基本方法。在不等式的证明过程中,按照所证不等式的结构特点,将不等式中的变量作适当的代换,可使不等式的结构明朗,从而使不等式变得容易证明,这种方法称为换元法。换元的目的是把合命题化简、化熟,把复杂的、不熟悉的命题化为简单的、熟悉的命题。换元法在许多实际问题的解决中可以起到化难为易、化繁为简的作用,有些问题直接证明较为困难,但若通过换元的思想与方法来解就很方便,换元法多用于条件不等式的证明中。 [关键词]换元;不等式;化繁为简 不等式的概念:作为表达同类量之间的大小关系的一种数学形式,不等式必须在定义了大小关系的有序集合上研究.由于复数域没有定义大小,所以不等式中的数或字母表示的数都是实数.用符号>或<联结两个解析式所成的式子,称为不等式.不等式的证明问题,由于题型多变、方法多样、技巧性强,加上无固定的规律可循,往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。要处理好不等式的证明,必须注意: 1、熟练地掌握不等式的基本性质、重要不等式。 2、扎实的掌握不等式证明的常规方法。 3、注意和其他知识联系和综合运用。 4、不断地总结证明不等式的规律和技巧,不断地从正反两方面汲取解题经验。 我们知道,无论在中学,还是在大学,不等式的证明都是一个难点。人们在证明不等式时创造了许多方法(比较法、综合法、分析法、辨别式法、构造函数法、反证法、放缩法等等),其中有换元法。

解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 不等式的证明有三难:证明入口难,条件使用难,变形方向难.如果用换元法,引进恰当的新元素,可将题目中分散的条件联系起来,或把隐含的条件显示出来,或把条件与结论联系起来,或变形为熟悉的问题.因此,换元法常常可以攻破三道难关。 下面我们探索怎样用换元法证明不等式的几种方法。 一、几何换元法 例1、在△ABC 中,b CA a BC c AB ===,,,内切圆交AB 、BC 、CA 分别于D 、E 、F ,如图1,则可设x z c z y b y x a +=+=+=,,,其中0,0,0>>>z y x 。几何换元法能达到利用等式反映出三角形任意两边之和大于第三边的不等关系的功效。 设c b a ,,为三角形三边,求证:3≥-++-++-+c b a c b c a b a c b a 图1 证明:设,,,x z c z y b y x a +=+=+=,其中0,,>z y x 则c b a c b c a b a c b a -++-++-+=y x z x z y z y x 222+++++ =?????????? ??++???? ??++??? ??+y x x y y z x y x z z x 21322221=??? ? ???+?+?≥y x x y y z z y x z z x 原不等式得证。

初中数学因式分解中的换元法学法指导

初中数学因式分解中的换元法学法指导 徐卫东 刘建英 因式分解是初中数学的重要内容之一,是多项式乘法的逆运算,在代数式的化简、求值、解方程等领域中都有着广泛、直接的应用。但当一个多项式的项数、字母较多,次数较高或还含有代数式乘积的项时,结构复杂,容易造成思路混乱,这时可对多项式中某些相同的部分设辅助元代换,达到减少项数、降低次数,便于分解因式。把复杂、繁难的问题变得简单、容易的目的。举例简解如下。 一、整体换元 例1 因式分解.2)1x x ()1x x (2424--++-+ 解:设A 1x x 24=-+,原式)1x x )(2x x ()2A )(1A (2A A 24242++-+=+-=-+= ). 1x x )(1x x ()2x )(1x )(1x (]x )1x )[(2x )(1x ()x 1x 2x )(2x x (2222222222424+-+++-+=-++-=-++-+= 例2 若βα、是方程0c bx x 2=++的两根。因式分解.c ]c x )1b (x [b ]c x )1b (x [222++++++++ 解:因为βα、是方程0c bx x 2=++的两根,所以.c ),(b αβ=β+α-= 设A c x )1b (x 2=+++,原式).A )(A (A )(A c bA A 22β-α-=αβ+β+α-=++= 但-αβ+β-α-+=α-αβ+β-α-+=α-+++=α-x x x x x )1(x c x )1b (x A 222 ),x )(1()1x ()1x (x )x ()x x x (2α-+β-α=+β-α-+β-=α+αβ-α-+β-=α 同理),x )(1x (A β-+α-=β- 所以原式).1x )(1x )(x )(x (+β-+α-β-α-= 二、局部换元 例3 因式分解.14)8x 5x )(5x 5x (22-++-+ 解:设,A x 5x 2=+ 原式14)8A )(5A (-+-= ). 9x 5x )(6x )(1x () 9x 5x )(6x 5x () 9A )(6A (54 A 3A 2222+++-=++-+=+-=-+= 例4 因式分解.x )6x 5x )(6x 7x (222+++++ 解:设A 6x 5x 2=++,原式.)6x 6x ()x A (x Ax 2A x )x 2A (A 222222++=+=++=++= 三、局部分解后,重组再换元 例5 因式分解.91)9x )(35x 4x 4(22---- 解:原式91)]3x )(5x 2[()]3x )(7x 2[(91)3x )(3x )(5x 2)(7x 2(--+?+-=--++-= ,A 21x x 291)15x x 2)(21x x 2(222=-------=设原式91A 6A 91)6A (A 2-+=-+= )8x x 2)(7x 2)(4x ()8x x 2)(28x x 2()13A )(7A (222--+-=----=+-=

换元法 (一)

年 级 五年级 学 科 奥数 版 本 通用版 课程标题 换元法 (一) 编稿老师 王刚 一校 林卉 二校 黄楠 审核 高旭东 某些计算求值问题,有这样的特点:相同的部分重复出现两次或多次,整个算式不适合用裂项去处理。这时候我们应该考虑用换元法。什么是换元法呢?就是用字母或者符号替代算式中重复出现的部分,将算式改写成更简洁的形式,然后再计算。 初学换元法应先学会找到重复出现的项,观察这些项出现的位置。 例如: )98.1031.9()1066.577.688.7()1098.1031.9()66.577.688.7(+?+++-++?++ 这个算式中有5个不同的小数,各出现两次,非常适合用换元法来解。设 98 .1031.966.577.688.7+=++=b a 这样就完成了换元。 例1 12011200920102+? 分析与解:

1 1 1 1 )1 ( )1 ( 1 )1 ( )1 ( 1 2011 2009 2010 2010 2 2 2 2 2 2 2 = = + - + - = + - + ? - = + + ? - = + ? = a a a a a a a a a a a a a a,则原式可以变形为: 设 例2 ) 23 .0 12 .0( ) 34 .0 23 .0 12 .0 1( ) 34 .0 23 .0 12 .0( ) 23 .0 12 .0 1(+ ? + + + - + + ? + + 分析与解: 34 .0 34 .0 34 .0 34 .0 ) 34 .0 1( ) 34 .0 ( ) 1( ) 23 .0 12 .0( ) 34 .0 23 .0 12 .0 1( ) 34 .0 23 .0 12 .0( ) 23 .0 12 .0 1( 23 .0 12 .0 2 2 = - - - + + + = ? + + - + ? + = + ? + + + - + + ? + + + = a a a a a a a a a a a,则原式可变形为: 设 例3) 4 1 2 1 ( ) 6 1 4 1 2 1 1( ) 6 1 4 1 2 1 ( ) 4 1 2 1 1(+ ? + + + - + + ? + + 分析与解:

高中数学解题基本方法 换元法

高中数学解题基本方法--换元法 高中数学解题基本方法--换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。例如解不等式:4+2-2≥0,先变形为设2=t(t 0),而变为熟悉的一元二次不等式求解和指数方程的问题。 三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y=+

的值域时,易发现x∈[0,1],设x=sinα,α∈[0,],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。如变量x、y适合条件x+y=r(r 0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题。 均值换元,如遇到x+y=S形式时,设x=+t,y=-t等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例中的t 0和α∈[0,]。 Ⅰ、再现性题组: 1.y=sinx??cosx+sinx+cosx的最大值是_________。 2.设 f x+1 =log 4-x (a 1),则 f x 的值域是_______________。 3.已知数列 a 中,a=-1,a??a=a-a,则数列通项a=___________。 4.设实数x、y满足x+2xy-1=0,则x+y的取值范围是___________。 5.方程=3的解是_______________。 6.不等式log 2-1 ??log 2-2 〈2的解集是_______________。 【简解】1小题:设sinx+cosx=t∈[-,],则y=+t-,对称轴t=-1,当t=,y=+; 2小题:设x+1=t t≥1 ,则f t =log[- t-1 +4],所以值域为-∞,log4];

用换元法分解因式

用换元法分解因式 我们的课本中介绍了对一个多项式进行因式分解的很多方法,比如提公因式法、运用公式法、分组分解法等等,这些方法都是最基础的因式分解方法.一些同学在解答课外题时,往往感到只用这些方法还是有点力不从心,于是他们纷纷找到李老师,请她“再传授几招,以便能够解答更多类型的因式分解题目”. 李老师欣然应允,当场就为同学们介绍了一种因式分解的常用方法——换元法.李老师把换元法分解因式分成了三种情况: 一、换单项式 例1分解因式x6+14x3y+49y2. 分析:注意到x6=(x3)2,若把单项式x3换元,设x3=m,则x6=m2,原式变形为 m2+14my+49y2 =(m+7y)2 =(x3+7y)2. 二、换多项式 例2分解因式(x2+4x+6)+(x2+6x+6)+x2. 分析:本题前面的两个多项式有相同的部分,我们可以只把相同部分换元,设x2+6=m,则x2+4x+6=m+4x,x2+6x+6=m+6x,原式变形为 (m+4x)(m+6x)+x2 =m2+10mx+24x2+x2 =m2+10mx+25x2 =(m+5x)2 =(x2+6+5x)2 =[(x+2)(x+3)]2 =(x+2)2(x+3)2.

以上这种换元法,只换了多项式的一部分,所以称为“局部换元法”.当然,我们还可以把前两个多项式中的任何一个全部换元,就成了“整体换元法”.比如,设x2+4x+6=m,则x2+6x+6=m+2x,原式变形为 m(m+2x)+x2 =m2+2mx+x2 =(m+x)2 =(x2+4x+6+x)2 =(x2+5x+6)2 =[(x+2)(x+3)]2 =(x+2)2(x+3)2. 另外,还可以取前两个多项式的平均数进行换元,这种换元的方法被称为“均值换元法”,可以借用平方差公式简化运算.对于本例,设m= [(x2+4x+6)+(x2+6x+6)]=x2+5x+6,则x2+4x+6=m-x,x2+6x+6=m+x, (m+x)(m-x)+x2 =m2-x2+x2 =m2 =(x2+5x+6)2 =[(x+2)(x+3)]2 =(x+2)2(x+3)2. 例3分解因式(x-1)(x+2)(x-3)(x+4)+24. 分析:这道题的前面是四个多项式的乘积,可以把它们分成两组相乘,使之转化成为两个多项式的乘积.无论如何分组,最高项都是x2,常数项不相等,所以只能设法使一次项相同.因此,把(x-1)(x+2)(x-3)(x+4)分组为[(x-1)(x+2)][(x-3)(x+4)]=(x2+x-2)(x2+x-12),从而转化成例2形式加以解决. 我们采用“均值换元法”,设m=[(x2+x-2)+(x2+x-12)]=x2+x-7,则x2+x-2=m+5,x2+x-2=m-5,原式变形为 (m+5)(m-5)+24 =m2-25+24 =m2-1

高中数学解题方法-换元法

高中数学解题方法 2013年高考数学二轮复习 换元法 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:代数换元、三角换元、均值换元等。例如解不等式:0224≥-+x x ,先变形为设)0(2>=t t x ,而变为熟悉的一元二次不等式求解和指数方程的问题。 三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y =x +1-x 的值域时,易发现[]1,0∈x ,设 α2sin =x ?? ????∈22,0α,问题变成了熟悉的求三角函数值域。如变量y x ,适合条件 )0(222>=+r r y x 时,则可作三角代换θθsin ,cos r y r x ==化为三角问题。 均值换元,如遇到S y x =+形式时,设t S y t S x -=+=2 ,2等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。 题型一:代数换元 例1:(1)方程1313 ++-x x =3的解是_______________ (2)x x x f --=2)(的值域是___________.

换元法的常见形式

已经投寄(2005-10-14) 换元法的常见形式 在数学解题过程中,根据已知条件的特征,引入新的变量,对题目进行转化,形成一个用新变量表达的问题,通过解决新问题,来达到解决原问题的目的,这种解题方法叫做换元法。换元法的形式很多,但它们有一个共同特点,改变问题的结构形成新问题,为解决问题提供可能性,它是数学中转化和化归思想的一个重要体现。下面举例说明换元法的常见形式的应用。 一、三角换元 例1 已知224a b +=,229x y +=,求ax by +的最大值。 解 由224a b +=,可设2cos ,2sin a b αα==; 由229x y +=,可设3cos ,3sin x y ββ==. 于是6cos cos 6sin sin 6cos()6ax by αβαβαβ+=+=-≤ 又当2()k k Z αβπ-=∈时,上式中等号成立。即ax by +的最大值是6. 一般地,题目中若有条件222(0)a b r r +=≥,常设cos ,sin a r b r αα==进行三角换元,将问题改变成一个三角函数有关的问题,再利用三角函数知识、方法进行解答,此方法称为三角换元。事实上,对于任意两个实数,x y ,在坐标平面上总有惟一的对应点A(,)x y 与之对应,设此点到原点的距离为r ,射线Ox 逆时针方向旋转到射线OA 时,所转过的最小正角为θ,则cos ,sin x r y θθ==。 例2 实数,x y 满足224545x xy y -+=,设22S x y =+,求S 的最大值和最小值。 解 设cos ,sin x r y θθ==,则2245cos sin 5r r θθ-=,2545cos sin r θθ =- 所以222 51045cos sin 85sin 2S x y r θθθ =+===-- 所以当sin 21θ=时,max 103S =;当sin 21θ=-时,min 1013S =. 二、增量换元 若题目的已知中有形如a b >的条件,则可考虑设,0a b t t =+>,将问题进行转化。此法称为增量换元,也叫设差换元。它的作用是将不等条件转化为相等条件,使得式子方便地进行运算变形。 例3 已知)1,0(,,∈z y x ,且2=++z y x . 1xy yz xz ++>求证

数学方法之换元法篇

数学方法之换元法篇 通过换元法可以把未知问题化为已知问题,把抽象问题化为具体问题,把较复杂的问题化为简单问题. 通过问题化为具体问题,把较复杂的问题化为简单问题. 通过换元可以清楚的认识问题的实质,迅速寻找和选择解决问题的途径的方法. 根据数式的特点常见的换元法有:(1)整体换元;(2)平均数换元法;(3)比值换元法;(4)三角代换法;(5)不等量换元法;(6)根式换元法;(7)倒数换元法;(8)相反数换元法;(9)坐标换元法等等. 一、整体换元 例1:求函数x x x x y cos sin cos sin ++=的最大值. 解析:设 ?? t x x ?y x x t .21 cos sin ),22(cos sin 2-=?≤≤-+=则 ? t t t y .1)1(2 12122-+=+-=故 当.22 1 ,2max +== ??y ?t 时 二、三角换元 例2:求函数2 5x x y -+=的值域. 解析:令????x ],2 ,2[,sin 5π πθθ- ∈=

). 4 sin(10cos 5sin 5|cos |5sin 5π θθθθθ+=+=+?=y 则 因为 2 2 π θπ ≤ ≤- ,所以 .4 34 4 π π θπ ≤ + ≤- 所以1)4 sin(22≤+≤- πθ,得 10 )4 sin(105≤+ ≤-π θ 所以函数的值域为[10 ,5?- ]. 三、平均数换元法 例3: 已知 正 数 .4 25 )1)(1(:,1,≥++=+y y x x ???y x y x?求证满足 证明:由题意可知x ,y 的平均数为2 1,令x =21+θ,y =21-θ(-21<θ<2 1), 则 .4 11625 23) 1)(1()1)(1(22422θθθ-+ += ++=++xy y x y y x x 显然分子 的值大于等于1625 , 分母的值大于0小于等于4 1,从而得证. 四、比值换元 例4:已知x ,y ,z 满足x -1=3 2 21-= +z y ,试问实数x ,y ,z 为何值时,x 2+y 2+z 2达到最

初中数学竞赛:换元法

初中数学竞赛:换元法 【内容提要】 1. 换元就是引入辅助未知数.把题中某一个(些)字母的表达式用另一个(些)字母的表达式来代换,这种解题方法,叫做换元法,又称变量代换法. 2.换元的目的是化繁为简,化难为易,沟通已知和未知的联系. 例如通过换元来降次,或化分式、根式为整式等.换元的关鍵是选择适当的式子进行代换. 3. 换元要注意新旧变元的取值范围的变化.要避免代换的新变量的取值范围被缩小;若新变量的取值范围扩大了,则在求解之后要加以检验. 4. 解二元对称方程组,常用二元基本对称式代换. 5. 倒数方程的特点是:按未知数降幂排列后,与首、末等距离的项的系数相等. 例如:一元四次的倒数方程ax 4+bx 3+cx 2 +bx+a=0. 两边都除以x 2,得a(x 2+2 1x )+b(x+x 1)+c=0. 设x+x 1=y, 那么x 2+21x = y 2-2, 原方程可化为ay 2+by+c -2=0. 对于一元五次倒数方程 ax 5+bx 4+cx 3+cx 2+bx+a=0, 必有一个根是-1. 原方程可化为 (x+1)(ax 4+b 1x 3+c 1x 2+b 1x+a)=0. ax 4+b 1x 3+c 1x 2+b 1x+a=0 ,这是四次倒数方程. 形如 ax 4-bx 3+cx 2+bx+a=0 的方程,其特点是: 与首、末等距离的偶数次幂项的系数相等,奇数次幂的系数是互为相反数. 两边都除以x 2, 可化为a(x 2+21x )-b(x -x 1)+c=0. 设x -x 1=y, 则x 2+21x =y 2+2, 原方程可化为 ay 2-by+c+2=0. 【例题】 例1. 解方程1112---++x x x =x.

1-3-5换元法.题库教师版

1-3-5换元法.题库教 师版

换元法 教学目标 对于六年级的同学来说,分数乘法算式的一些计算技巧必须开始掌握.这既与基础课程进度结合,更是小学奥数经典内容.裂项、换元与通项归纳这三项内容,通称“分数计算之三大绝招”.考察近年来的小升初计算部分,分数计算成为热点.可以这么说:“一道非常难的分数运算,要么是裂项,要么是换元,要么是通项归纳.如果都不是,那它一定是比较简单的分数小数混合运算.” 三、换元思想 解数学题时,把某个式子看成一个整体,用另一个量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,将复杂的式子化繁为简.

【例 1】 计算:1111111111(1)()(1)()2424624624 ++?++-+++?+ 【考点】换元法 【难度】2星 【题型】计算 【解析】 令1111246a +++=,111246b ++=,则: 原式1 1()()66a b a b =-?-?- 1166ab b ab a =--+ 1()6a b =-11166 =?= 【答案】16 【巩固】 11111111111111(1)()(1)()23423452345234 +++?+++-++++?++ 【考点】换元法 【难度】2星 【题型】计算 【解析】 设111234a = ++,则原式化简为:1111(1555a a a a +(+)(+)-+)= 【答案】15 【巩固】 计算:621739458739458378621739458378739458126358947358947207126358947207358947????????++?++-+++?+ ? ? ? ????????? 【考点】换元法 【难度】2星 【题型】计算 【解析】 令621739458126358947a ++=;739458358947b +=, 原式378378207207a b a b ????=?+-+? ? ?????()3786213789207126207a b =-?=?= 【答案】9 【巩固】 计算:(0.10.210.3210.4321+++)?(0.210.3210.43210.54321+++)- (0.10.210.3210.43210.54321++++)?(0.210.3210.4321++) 【考点】换元法 【难度】2星 【题型】计算 【解析】 设0.210.3210.4321x =++,0.210.3210.43210.54321y =+++, 原式=(0.1x +)y ?-(0.1y +)0.1x ?=?(y x -)0.054321= 【答案】0.054321 【巩固】 计算下面的算式 (7.88 6.77 5.66++)?(9.3110.9810++)-(7.88 6.77 5.6610+++)?(9.3110.98+) 例题精讲

数学解题方法换元法详解

二、换元法 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。例如解不等式:4x +2x -2≥0,先变形为设2x =t (t>0),而变为熟悉的一元二次不等式求解和指数方程的问题。 三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y =x +1-x 的值域时,易发现x ∈[0,1],设x =sin 2α ,α∈[0,π2 ],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。如变量x 、y 适合条件x 2+y 2=r 2(r>0) 时,则可作三角代换x =rcos θ、y =rsin θ化为三角问题。 均值换元,如遇到x +y =S 形式时,设x =S 2+t ,y =S 2 -t 等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例中的t>0和α∈[0,π2 ]。 例1. 实数x 、y 满足4x 2-5xy +4y 2=5 ( ①式) ,设S =x 2+y 2,求 1S m a x +1S min 的值。(93年全国高中数学联赛题) 【分析】 由S =x 2+y 2联想到cos 2α+sin 2 α=1,于是进行三角换元,设x S y S ==???? ?cos sin αα代入①式求S max 和S min 的值。 【解】设x S y S ==?????cos sin αα 代入①式得: 4S -5S ·sin αcos α=5 解得 S =10852-sin α ;

高中数学解题基本方法——换元法

高中数学解题基本方法——换元法 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。 换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。 换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通 过变形才能发现。例如解不等式:4x+2x-2≥0,先变形为设2x=t(t>0),而变为熟悉 的一元二次不等式求解和指数方程的问题。 三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y=x+1-x的值域时,易发现x∈[0,1],设x =sin2α,α∈[0,π 2 ],问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中 主要应该是发现值域的联系,又有去根号的需要。如变量x、y适合条件x2+y2=r2(r>0)时,则可作三角代换x=rcosθ、y=rsinθ化为三角问题。 均值换元,如遇到x+y=S形式时,设x=S 2 +t,y= S 2 -t等等。 我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例 中的t>0和α∈[0,π 2 ]。 Ⅰ、再现性题组: 1.y=sinx·cosx+sinx+cosx的最大值是_________。 2.设f(x2+1)=log a (4-x4) (a>1),则f(x)的值域是_______________。 3.已知数列{a n }中,a 1 =-1,a n+1 ·a n =a n+1 -a n ,则数列通项a n =___________。 4.设实数x、y满足x2+2xy-1=0,则x+y的取值范围是___________。 5.方程13 13 + + -x x =3的解是_______________。 6.不等式log 2(2x-1) ·log 2 (2x+1-2)〈2的解集是_______________。

小学思维数学:换元法-带答案解析

换元法 对于六年级的同学来说,分数乘法算式的一些计算技巧必须开始掌握.这既与基础课程进度结合,更是小学奥数经典内容.裂项、换元与通项归纳这三项内容,通称“分数计算之三大绝招”.考察近年来的小升初计算部分,分数计算成为热点.可以这么说:“一道非常难的分数运算,要么是裂项,要么是换元,要么是通项归纳.如果都不是,那它一定是比较简单的分数小数混合运算.” 三、换元思想 解数学题时,把某个式子看成一个整体,用另一个量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,将复杂的式子化繁为简. 【例 1】 计算:1111111111(1)()(1)()2424624624 ++?++-+++?+ 【考点】换元法 【难度】2星 【题型】计算 【解析】 令1111246a +++=,111 246b ++=,则: 原式11()()66 a b a b =-?-?- 1166ab b ab a =--+ 1()6a b =-11166=?= 【答案】16 【巩固】 11111111111111(1)()(1)()23423452345234 + ++?+++-++++?++ 【考点】换元法 【难度】2星 【题型】计算 【解析】 设111234a =++,则原式化简为:111 1(1555a a a a +(+)(+)-+)= 【答案】1 5 【巩固】 计算:621739458739458378621739458378739458126358947358947207126358947207358947???????? ++?++-+++?+ ? ? ? ????????? 【考点】换元法 【难度】2星 【题型】计算 【解析】 令621739458126358947a ++=;739458 358947 b +=, 原式378378207207a b a b ? ???=?+-+? ? ????? ()3786213789207126207a b =-? =?= 【答案】9 【巩固】 计算:(0.10.210.3210.4321+++)?(0.210.3210.43210.54321+++)- (0.10.210.3210.43210.54321++++)?(0.210.3210.4321++) 例题精讲 教学目标

配方法与换元法

中考数学复习专题:配方法与换元法 一、配方法与换元法的特点: 把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法. 配方法与换元法是初中数学中的重要方法,近几年的中考题中常常涉及。有时题中指定用配方法或换元法求解,而更多的则是隐含在题目当中,在分析题意的基础上,由考生自己确定选用配方法或换元法,把代数式配成完全平方式的形式,利用完全平方式的特性去求解,以达到快速解题的目的,这是种快捷也是很有效的方法,在初中代数中,占有很重要的地位和份量。 换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 二、配方法与换元法的方法: 配方法与换元法主要依据完全平方公式,由公式a 2±2ab+b 2=(a±b)2可知,如果一个多项式能够表达成“两个数的平方和,加上或减去这两个数的积的2倍,则这个多项式就可以写成这两个数的和或差的平方。”由完全平方式的性质可知,任何一个实数的平方都是非负数,即(a-b)2 ≥0,当a=b 时,(a-b)2 =0。利用这条性质,并可以解决很多与之有联系的数学问题。 配方法解题的关键是恰当的“凑配”,应具有整体把握题设条件的能力,即善于将某项拆开又重新分配组合,得到完全平方式.而配方法一般有两种形式,一是根据第一项和第二项的系数特点,确定第三项系数或常数项。如二次三项式4 x 2+6x+k 是完全平方式,试确定k 值。这一类的问题只有一解。而更多的是由第一项和第三项的系数特点,确定第二项的系数。如二次三项式4x 2+kxy+25 y 2是完全平方式,试确定k 值。这一类问题一定要考虑正、负值两种情况,结果应为两解才为正确,这一点为不少考生所忽视,一定要考虑周到方可取得好成绩。 三、例题精讲: 热身: 填空题: 1.将二次三项式x 2+2x -2进行配方,其结果为 。 2.方程x 2+y 2 +4x -2y+5=0的解是 。 3.已知M=x 2-8x+22,N=-x 2+6x -3,则M 、N 的大小关系为 。 4.用配方法把二次函数y=2x 2 +3x+1写成y=a(x+m)2 +k 的形式 。 5.设方程x 2+2x -1=0的两实根为x 1,x 2,则(x 1-x 2)2= 。 6.已知方程x 2-kx+k=0的两根平方和为3,则k 的值为 。 7.若x 、y 为实数,且1 1),32(332 +-+-=-+ x y x y x 则 的值等于 。 【例1】 分解因式:(1)a 2b 2-a 2+4ab-b 2+1 ;(2)(x 2+2x +4)(x 2+2x+6)-8 【例2】已知a ,b ∈R ,则不等式①a 2 +3>2a ,②a 2 +b 2 ≥2(a -b -1),③a 2 +b 2 >a b 中一定成立的有_______.

高中数学 换元法(附答案)

二、换元法(课时10) 一、知识提要 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化, 这叫换元法. 换元的方法有:局部换元、三角换元、均值换元等. 二、例题讲解 例1.(1)已知:x x f l g )12(=+,求)(x f . (2)设实数x 、y 满足0122=-+xy x ,则y x +的取值范围是_________. (3)方程2)22(log )12(log 122=+?++x x 的解集是______________. 解:(1))1)(1lg(2lg )(>--=x x x f ; (2)设k y x =+,则1044,0122 2≥?≥-=?=+-k k kx x 或1-≤k ; (3)令)12(log 2+x =t ,可得原方程的解集为}0{. 例2.(1)函数223 ) 1(x x x y +-=的值域是_____________. (2)已知:数列}{n a 的11=a ,前n 项和为n S ,241+=+n n a S .求}{n a 的通项公式. 解:(1)令θta n =x ,)2,2(π πθ-∈,则θθθθθθsi n )ta n 1(cos )ta n 1(ta n ta n 23223-=+-=y θθθθθθθθ4sin 412cos cos sin )sin (cos sin cos 22= ?=-=, ∴]4 1,41[-∈y . (2)由241+=+n n a S ,知)2(241≥+=-n a S n n ,

∴)2)((411≥-=--+n a a S S n n n n ,即)2)((411≥-=-+n a a a n n n ∴)2)(2(2211≥-=--+n a a a a n n n n ,令n n n a a b 21-=+,则)2(21≥=-n b b n n ∵11=a ,52=a ,∴31=b ,123-?=n n b ,即n n n a a 22311+?=-+. 两边除以12+n 得:432211=-++n n n n a a ,令n n n a c 2=,则有431=-+n n c c , ∴)13(41-=n c n ,代入n n n a c 2 =得: 22)13(-?-=n n n a . 例3.实数x 、y 满足4x 2-5xy +4y 2=5 ( ①式) ,设S =x 2+y 2,求m a x 1 s +m in 1s 的值.(93年全国高中数学联赛题) 方法1:设?????==α αsin cos s y s x 代入①式得: 4S -5S ·sin αcos α=5 解得 S =α 2sin 5810- ; ∵ -1≤sin2α≤1 ∴ 3≤8-5sin2α≤13 ∴ 1013≤1085-sin α≤103 ∴ m ax 1 s +m in 1s =310+1310=1610=85 方法2:由S =x 2+y 2,设x 2=2s +t ,y 2=2 s -t ,t ∈[-S 2,S 2], 则224t s xy -±=代入①式得:4S ±522 4 t s -=5, 移项平方整理得 100t 2+39S 2-160S +100=0 . ∴ 39S 2-160S +100≤0 解得:1013≤S ≤103 ∴ m ax 1 s +m in 1s =310+1310=1610=85

初中数学十大思想方法-换元法

初中数学思想与方法——换元法 一、内容提要 1. 换元就是引入辅助未知数.把题中某一个(些)字母的表达式用另一个(些)字母的表达式来代换,这种解题方法,叫做换元法,又称变量代换法. 2. 换元的目的是化繁为简,化难为易,沟通已知和未知的联系. 例如通过换元来降次,或化分式、根式为整式等.换元的关鍵是选择适当的式子进行代换. 3. 换元要注意新旧变元的取值范围的变化.要避免代换的新变量的取值范围被缩小;若新变量的取值范围扩大了,则在求解之后要加以检验. 4. 解二元对称方程组,常用二元基本对称式代换. 5. 倒数方程的特点是:按未知数降幂排列后,与首、末等距离的项的系数相等. 例如:一元四次的倒数方程ax 4+bx 3+cx 2+bx+a=0. 两边都除以x 2,得a(x 2+ 21x )+b(x+x 1)+c=0. 设x+x 1=y, 那么x 2+21x = y 2-2, 原方程可化为ay 2+by+c -2=0. 对于一元五次倒数方程 ax 5+bx 4+cx 3+cx 2+bx+a=0, 必有一个根是-1. 原方程可化为 (x+1)(ax 4+b 1x 3+c 1x 2+b 1x+a)=0. ax 4+b 1x 3+c 1x 2+b 1x+a=0 ,这是四次倒数方程. 形如 ax 4-bx 3+cx 2+bx+a=0 的方程,其特点是: 与首、末等距离的偶数次幂项的系数相等,奇数次幂的系数是互为相反数. 两边都除以x 2, 可化为a(x 2+21x )-b(x -x 1)+c=0. 设x -x 1=y, 则x 2+21x =y 2+2, 原方程可化为 ay 2-by+c+2=0. 二、例题 例1. 解方程1112---+ +x x x =x. 解:设11-++x x =y, 那么y 2=2x+212-x . 原方程化为: y - 21y 2=0 . 解得 y=0;或y=2.

换元法求函数值

换元法求函数值 函数求值问题涉及很多方面: 1.分段函数求值问题,关键在于准确确定与自变量对应的函数解析式。 2.利用函数性质求值的关键在于利用函数的奇偶性、周期性或对称性等将自变量转化到已知区间内求解。 3.对于自变量之间存在某种特殊关系的函数求值问题,要注意与自变量对应的函数值之间关系的建立。 这里我们重点研究换元法求函数值,请看下面例子: 【典例】 设x ∈R ,若函数f (x )为单调递增函数,且对任意实数x ,都有f (f (x )-e x )=e +1(e 是自然对数的底数),则f (ln2)的值等于( ) A .1 B .2 C .3 D .4 【解析】 因为f (x )为单调递增函数,且对任意实数x ,都有f (f (x )-e x )=e +1,所以f (x )-e x 必然是一个常数,设f (x )-e x =t (t 为常数),则f (x )=e x +t ,故f (t )=e t +t 。由已知可得f (t )=e +1,所以e t +t =e +1。又函数y =e x +x 在R 上是单调递增的,显然t =1,所以f (x )=e x +1,故f (ln2)=e ln2+1=3。故选C 。 【答案】 C 先利用换元法,根据已知求出函数f (x )的解析式,然后代入 求值。 【变式训练】 设定义在R 上的函数f (x )满足f (tan 2x )=1cos2x , 则f ? ????12 017+f ? ????12 016+…+f ? ????13+f ? ?? ??12+f (0)+f (2)+f (3)+…+f (2 016)+f (2 017)=________。 解析 设t =tan 2x ,则1cos2x =1cos 2x -sin 2x =cos 2x +sin 2x cos 2x -sin 2x =1+tan 2x 1-tan 2x =1+t 1-t ,所以f (t )=1+t 1-t 。故f (t )+f ? ????1t =1+t 1-t +1+1t 1-1t =1+t 1- t

相关文档
最新文档