还原氧化石墨烯修饰Bi2WO6提高其在可见光下的光催化性能

还原氧化石墨烯修饰Bi2WO6提高其在可见光下的光催化性能
还原氧化石墨烯修饰Bi2WO6提高其在可见光下的光催化性能

[Article]

https://www.360docs.net/doc/538894135.html,

物理化学学报(Wuli Huaxue Xuebao )

Acta Phys.?Chim.Sin .2011,27(6),1482-1486

June

Received:January 18,2011;Revised:March 23,2011;Published on Web:May 9,2011.?

Corresponding authors.SHI Zu-Jin,Email:zjshi@https://www.360docs.net/doc/538894135.html,;Tel:+86-10-62751495.YANG Shang-Feng,Email:sfyang@https://www.360docs.net/doc/538894135.html,;Tel:+86-551-3601750.

The project was supported by the National Natural Science Foundation of China (20771010,20801052),National Key Basic Research Program of China (973)(2011CB932601),National High Technology Research and Development Program of China (863)(2007AA03Z311),and “100Talents Program of Chinese Academy of Sciences ”(A1010).

国家自然科学基金(20771010,20801052),国家重点基础研究发展规划项目(973)(2011CB932601)国家高技术研究发展计划项目(863)(2007AA03Z311)和中国科学院百人计划(A1010)资助

?Editorial office of Acta Physico ?Chimica Sinica

还原氧化石墨烯修饰Bi 2WO 6提高其在可见光下的光催化性能

红1,2王志永2郭政铎2施祖进2,*杨上峰1,*

(1中国科学技术大学材料科学与工程系,合肥微尺度物质科学国家实验室,中国科学院能量转换材料重点实验室,合肥

230026;

2

北京大学化学与分子工程学院,稀土材料化学与应用国家重点实验室,北京分子科学国家实验室,北京100871)摘要:

通过两步水热法合成了一种新型的还原氧化石墨烯(RGO)修饰的Bi 2WO 6(Bi 2WO 6-RGO),结果表明其

在可见光下的光催化性能得到了显著的提高.研究了RGO 在Bi 2WO 6-RGO 中的含量对其光催化性能的影响,从而确定出RGO 相对于Bi 2WO 6的最佳掺杂质量比值为1%.通过扫描电镜(SEM)研究发现,RGO 并没有改变Bi 2WO 6光催化剂的结构和形貌.Bi 2WO 6-RGO 在可见光下的光催化性能得以提高可以归功于RGO.其可能的

机理是石墨烯的存在有利于光生载流子(激子)的分离,从而导致产生更多的O 2●-用于有机染料污染物(如罗丹明

B (RhB))的降解.RhB 分子在石墨烯上的有效吸附可能也是导致Bi 2WO 6-RGO 光催化性能提高的另一原因.关键词:

Bi 2WO 6;石墨烯;水热法;光催化剂;有机染料污染物

中图分类号:

O643;O645

Reduced Graphene Oxide-Modified Bi 2WO 6as an Improved

Photocatalyst under Visible Light

YING Hong 1,2

WANG Zhi-Yong 2

GUO Zheng-Duo 2

SHI Zu-Jin 2,*

YANG Shang-Feng 1,*

(1Key Laboratory of Materials for Energy Conversion,Chinese Academy of Sciences,Hefei National Laboratory for Physical Sciences at Microscale,Department of Materials Science and Engineering,University of Science and Technology of China,Hefei 230026,P .R.China ;2Beijing National Laboratory for Molecular Sciences,State Key Laboratory of Rare Earth Materials Chemistry and Applications,College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,P .R.China )

Abstract:A new and improved photocatalyst,reduced graphene oxide (RGO)-modified Bi 2WO 6(Bi 2WO 6-RGO),was synthesized by a two-step hydrothermal process.The effect of RGO content on photoactivity was investigated and the optimum mass ratio of RGO to Bi 2WO 6was determined to be 1%.Based on scanning electron microscopic study,RGO does not change the structure and morphology of the Bi 2WO 6photocatalyst.Therefore,the improvement in the photoactivity of the Bi 2WO 6-RGO composite is undoubtedly ascribed to RGO.The presence of graphene can facilitate the dissociation of photogenerated

excitons,which leads to more O 2●-to degrade dye pollutants like rhodamine-B (RhB).Moreover,the efficient adsorption of RhB molecules on graphene is another reason for the improved photoactivity.Key Words:Bi 2WO 6;Graphene;

Hydrothermal process;

Photocatalyst;

Dye pollutant

1482

YING Hong et al.:Reduced Graphene Oxide-Modified Bi2WO6as an Improved Photocatalyst under Visible Light No.6

1Introduction

In the past decade much attention have been paid to semicon-ductor as photocatalyst to degrade organic dye pollutant,1 which was difficult to be biodegraded.2Nowadays,titanium di-oxide(TiO2)has gained particular interest in this research field.3In spite of the success in converting light to chemical en-ergy,TiO2could not be used widely and practically in the solar environment because its activation is limited to UV light.To utilize solar energy sufficiently especially those within visible region,intensive research has been concentrated on photo-catalysts with high photocatalytic activity such as Bi2WO6,4-6 BiVO4,7and CaIn2O4,8etc.In particular,Bi2WO6,with a high degree of mineralization and layered by WO6and[Bi2O2]2+lay-ers,can lead to generation of active O2?-to decompose dye pol-lutant efficiently under visible light.4-6Bi2WO6with different structures,like three dimensional(3D)nanoparticles and two dimensional(2D)nanoplates,which could be synthesized through hydrothermal process by adjusting the pH value of the solution,shows diverse efficiency of photodegradation.9Lin et al.10reported that the efficiency of photodegradation was affect-ed by the separation of photoexcited electron-hole and adsorp-tion of organic molecules.In order to promote the separation of photogenerated electron-hole pairs,Zhu et al.11modified Bi2WO6with C60and found the synergetic effect of Bi2WO6 photocatalyst with C60could enhance photoactivity efficiently. Li et al.12modified Bi2WO6with low cost carbon and improved the photocatalytic performance due to the enhanced photogene-rated electron-hole separation and more RhB adsorption associ-ated with carbon.

Graphene,as a new member of carbon family,is a zero-bandgap semiconductor owing to its two-dimensional platelike structure.13In general,graphene has unique electronic proper-ties,large specific surface area,and high transparency.13-15The reducing of graphene oxide(GO)is an easy and widely-used route to obtain graphene sheets,16named reduced graphene ox-ide(RGO).Graphene has been incorporated with photocatalyst as enhanced photodegradation composite under visible light.17-20TiO2-RGO composites were obtained through a sim-ple hydrothermal process,and the excellent degradation of dye pollutants was ascribed to graphene?s adsorptivity,transparen-cy,and conductivity.17Graphene-Au exhibited high visible-light photocatalytic activity for dye degradation.18Recently, BiVO4was incorporated with RGO to enhance photoelectro-chemical water splitting reaction.19More recently,Wang et al.20 synthesized graphene-Bi2WO6composite via in situ hydrother-mal reaction and found the enhanced photocatalytic activity.

In this study,we have synthesized RGO-modified Bi2WO6 (Bi2WO6-RGO)as an improved photocatalyst via a two-step hy-drothermal process.A series of Bi2WO6-RGO with different loading ratios of RGO was prepared and their photocatalytic activity towards the photodegradation of rhodamine-B(RhB) under visible light(≥420nm)was investigated.2Experimental

2.1Preparation of Bi2WO6-RGO

2.1.1Synthesis of Bi2WO6

All chemical reagents were of analytical grade without fur-ther purification.Bi(NO3)3·5H2O,Na2WO4·2H2O,HNO3,and NaOH were used as the starting materials.Bi2WO6was synthe-sized by the hydrothermal method.Na2WO4·2H2O and Bi(NO3)3·5H2O(the molar ratio is1:2)were mixed together in deionized water(80mL),followed by ultrasonication for20min.After that,the pH value of the solution was adjusted to2by adding 0.5mol·L-1NaOH/HNO3.Then80mL of the final solution was transferred into a100mL Teflon-lined stainless steel auto-clave.The autoclave was sealed and maintained at180°C for 20h.After the reaction,yellowish product was collected via re-peated centrifugation and dispersion in water until pH value of the supernatant is7and then dried in an oven at80°C.

2.1.2Synthesis of GO

GO was prepared with the modified Hummers method.16 Briefly,graphite was mixed with NaNO3and H2SO4in an ice-water bath with stirring.KMnO4was added slowly into the pre-vious mixture with stirring for2h again.After that,stirring vig-orously for5days at room temperature was continued.With H2O2added into,the mixture was rinsed with a mixed aqueous solution of H2SO4/H2O2.Finally,the product was obtained after drying in an oven at80°C.

2.1.3Synthesis of Bi2WO6-RGO

Yellowish product Bi2WO6(1g)was dispersed in50mL de-ionized water and then ultrasonicated for1h.Different content of GO(0.5%,1%,2%,mass ratio of GO to Bi2WO6)was dis-persed rapidly in30mL ethanol with ultrasonic.Then the two solutions were mixed in a beaker under ultrasonic for30min and stirred for another3h to get a homogeneous suspension. Thereafter the80mL solution was transferred into the100mL Teflon-lined stainless steel autoclave and maintained in160°C for4h.Then the light gray product was collected by filtration, rinsed some times by deionized water,and dried in an oven at 80°C.For comparison,blank Bi2WO6(without RGO)for pho-tocatalytic experiment experienced this hydrothermal process again under the same condition without the addition of GO.

2.2Characterization

High-resolution transmission electron microscopy(HR-TEM)observations were carried out on Tecnai F20(America) with an accelerating voltage of300kV.The transmission elec-tron microscopy(TEM)images were obtained by Hitachi H-9000(Japan)instrument.X-ray photoelectron spectroscopy (XPS)data were obtained using an ESCALab250electron spec-trometer from Thermo Scientific Corporation(America)with monochromatic150W Al Kαradiation and the base pressure was about6.5×10-8Pa.The binding energies were referenced to the C1s line at284.8eV from alkyl or adventious carbon. Scanning electron microscope(SEM)images were carried out on FEI NanoSEM430instrument(America).The information of crystalline structures of Bi2WO6and Bi2WO6-RGO were ob-

1483

Acta Phys.?Chim.Sin .2011

V ol.27

tained by an X-ray diffractometer (XRD)(Rigaku Dmax2000,Japan).UV-visible absorption spectra were recorded on a UV-Vis spectrophotometer (Hitachi UV-3100,Japan)in the wavelength range of 400-700nm.2.3Photocatalytic experiment

Photocatalytic activities of the Bi 2WO 6and Bi 2WO 6-RGO were evaluated by degradation of RhB under visible irradiation of a solar simulator (Newport 91160-1000,America)with a cal-ibrated illumination power density of 100mW ·cm -2.The visi-ble light was obtained through putting a cutoff filter (λ≥420nm)between the lamp and the solution.In this experiment,0.1g photocatalysts was added into 100mL RhB solution (5×10-6mol ·L -1).After stirring for 10min in dark,the solution was ex-posed to visible light irradiation with stirring.Then 3mL RhB solution was extracted each 30min for UV-Vis absorption spec-troscopic measurement.For comparison,the degradation of RhB irradiated without the addition of Bi 2WO 6-RGO under vis-ible light (λ≥420nm)and the degradation with the addition of Bi 2WO 6-RGO under dark condition were also measured as two reference experiments.

3Results and discussion

Fig.1shows the X-ray diffraction patterns of Bi 2WO 6with and without RGO,both of which exhibit characteristic peaks of Bi 2WO 6.Nearly identical peaks can be observed from the comparative figure of Bi 2WO 6and Bi 2WO 6-RGO (1%),indicat-ing that the crystalline structure of Bi 2WO 6does not change during the reduction of GO in 160°C for 4h.No any peak of RGO was observed in the XRD pattern of the Bi 2WO 6-RGO (1%)because of the small content of graphene used.

Fig.2shows the C 1s XPS spectra of GO and Bi 2WO 6-RGO (1%).C 1s XPS spectrum generally contains three characteris-tic peaks corresponding to nonoxygenated C ―C bond (284.5eV),C ―O (epoxy and hydroxyl)(286.6eV),and carboxylate C =O from carboxylic acid (288.9eV),respectively.19Fig.2in-dicates that GO,which was prepared with the modified Hum-mers method,has a considerable degree of graphene oxidation.After 160°C hydrothermal process for 4h in water and etha-nol,obvious decrease of the intensities of C ―O and C =O peaks of C 1s were observed for Bi 2WO 6-RGO (1%),indicat-

ing that efficient deoxygenation of GO occurred through the second hydrothermal process.

It has been reported that the photocatalytic activity of Bi 2WO 6for degradation of RhB under visible-light irradiation is dependent on the shape,size,and structure of the Bi 2WO 6.92D platelike structure could be changed to 3D flowerlike super-structure with the pH control or addition of surfactant.9From the low-magnification SEM image of Bi 2WO 6without RGO (Fig.3(a)),we can observe flowerlike spheres with coarse sur-face.The diameter of the flowerlike spheres is about 3μm.For comparison,SEM image of Bi 2WO 6-RGO (1%)was given in Fig.3(b).The similar shape,diameter,and structure of macro-spheres did not changed obviously from these images.Howev-er,while Bi 2WO 6precursor was transformed into crystal struc-ture in hydrothermal process,existence of GO may disturb the crystalline structure and lead to different photocatalytic activi-ty.6In our work,in order to exclude this additional influence,Bi 2WO 6with considerable photocatalytic activity would be ob-tained firstly and then modified with RGO for its excellent con-ductivity and transparency.According to the macroscopic shape of SEM images of these samples,the structure of Bi 2WO 6did not changed at all after RGO was attached to Bi 2WO 6.GO were adsorbed onto Bi 2WO 6plates or spheres first-ly and then transformed to RGO with the reduction of ethanol and water via hydrothermal process.As the content of RGO was very low,the platelike structure of the graphene could not be observed in these SEM images.

More structure details of the Bi 2WO 6-RGO were obtained from TEM and HRTEM observations (Fig.4).The “

graphene

1XRD patterns of Bi 2WO 6and Bi 2WO 6-RGO

(1%)2C 1s XPS spectra of GO and Bi 2WO 6-RGO

(1%)

Fig.3SEM images of Bi 2WO 6(a)and Bi 2WO 6-RGO (1%)(b)

1484

YING Hong et al .:Reduced Graphene Oxide-Modified Bi 2WO 6as an Improved Photocatalyst under Visible Light

No.6

cloth ”(RGO looks like a cloth)tangling with the Bi 2WO 6parti-cle was observed in the low magnification TEM image (Fig.4a).The high-magnification HRTEM image (inset of Fig.4b)exhibits a group of clear parallel crystal planes,which ascribe to (200)faces with interspacing of 0.272nm.And the poorly-crystallized carbon layer adhering to the surface of Bi 2WO 6particle is very clear in the HRTEM image (Fig.4b).From these TEM and HRTEM images we can infer that Bi 2WO 6was modified by RGO and the composite photocata-lyst was obtained.The presence of these “graphene cloth ”is important to improve the photoactivity because the excited electron of Bi 2WO 6in the visible irradiation could be trans-ferred to graphene rapidly.

The photocatalytic activity of Bi 2WO 6-RGO with different contents of RGO was evaluated by the degradation of RhB in aqueous solution under visible light.RhB showed a major ab-sorption band at 553nm.Before irradiation,the photocatalyst and RhB solution mixture were stirred for 10min,then the ad-sorption equilibrium of RhB on photocatalyst was reached.As the irradiation time increases,RhB is de-ethylated step by step.21During this process,the absorption intensity of 533nm peak decreases gradually and the characteristic peaks shifts to shorter wavelength with the color changing from pink to light green.Photocatalytic degradation of RhB by Bi 2WO 6with dif-ferent mass ratios of RGO to Bi 2WO 6(0%,0.5%,1%,2%)un-der visible irradiation was presented in Fig.5a.With the in-crease of the content of RGO,the photoactivity towards degra-dation of RhB is enhanced gradually at first for 0.5%-1%load-ing ratio but decreased with the higher loading ratio of 2%.With irradiation,Bi 2WO 6-RGO (1%)photocatalyst shows the highest velocity of photodegradation among different photocat-alysts under visible light.This result is similar to C 60-modified Bi 2WO 6,for which the optimum synergetic effect of C 60and Bi 2WO 6is reported at a mass ratio of 1.25%(C 60to Bi 2WO 6).11Fig.5b shows the UV-Vis absorption spectra of RhB during the photodegradation with Bi 2WO 6-RGO (1%)as the photocatalyst under visible light for different irradiation time.Graphene with appropriate content could accept the photogenerated elec-trons of Bi 2WO 6,and reduce O 2to O 2

?-rapidly which promotes the degradation of dyes.11

Meanwhile,graphene enhances the adsorption of RhB,which also improves the degradation of

dye pollutants.However,when the mass ratio of RGO to Bi 2WO 6reaches to 2%,the degradation of RhB slows down dramatically.This phenomena is interpreted by two reasons.First and mainly,thick and dense graphene layer could inhibit the inherent optical absorption of Bi 2WO 6and finally reduce the photoactivity.12Second,the excess GO could not be re-duced entirely during the hydrothermal process,and thus the ex-cited electron of Bi 2WO 6,which can reduce O 2to O 2?-,is used to reduce C =O and C ―O of the remnants GO.22

In order to identify the role of RGO in improving the photo-catalytic activity of Bi 2WO 6,the experiments should be carried out between pure Bi 2WO 6and Bi 2WO 6-RGO composite with identical crystal structure and macroscopic shape of Bi 2WO 6.It should be noted that,recently,Wang et al .20synthesized gra-phene-Bi 2WO 6composite through a similar hydrothermal meth-od and found much more enhanced photocatalytic activity to-wards photodegradation of RhB in terms of the shorter degra-dation time.The nano size of Bi 2WO 6is the main reason for shortening degradation time to several minutes.Nevertheless,the major difference between the work in Ref.20and our pres-ent work is that the Bi 2WO 6crystal in Ref.20is formed in the presence of GO (in situ ).It is known that the structure and

mor-

Fig.4TEM (a)and HRTEM (b)images of

Bi 2WO 6-RGO (1%)

Inset is the magnification of labeled

area.

5(a)Photocatalytic degradation of Bi 2WO 6-RGO with different mass ratios of RGO under visible light irradiation

C 0and C are the initial concentration of RhB under adsorption equilibrium and

the concentration of RhB at different irradiation time,respectively.For comparison,“dark ”is photodegradation curve of Bi 2WO 6-RGO (1%)in dark,“photolysis ”is photodegradation curve without the addition of any photocatalyst

under visible light.(b)UV-Vis absorption spectra of RhB during the photodegradation with Bi 2WO 6-RGO (1%)as the photocatalyst under visible

light for different irradiation time

1485

Acta Phys.?Chim.Sin.2011V ol.27

phology of Bi2WO6would be changed with an additive like sur-factant.9GO,as a water-soluble additive,might also change the structure and morphology of Bi2WO6and thereby lead to a dif-ferent photoactivity.Besides,Bi3+as metal ion would be ad-sorbed by carboxylic acid functional groups of the GO easily.23 Consequently,GO would be aggregated in the existence of Bi3+ between graphene layers.The aggregated graphene might de-crease light absorption of Bi2WO6.To exclude the possibility that different photoactivity is originated from different struc-ture of Bi2WO6instead of graphene modification,Bi2WO6was preferably prepared first and RGO was introduced in the second-step hydrothermal process in our work.Hence in this way the improvement of photoactivity of Bi2WO6-RGO can be undoubt-edly ascribed to RGO.

4Conclusions

Bi2WO6-RGO was synthesized by a two-step hydrothermal process:the first step is to obtain Bi2WO6with controllable mi-crostructure,and in the second step GO is reduced and at-tached to Bi2WO6.The application of Bi2WO6-RGO in photo-catalytic degradation of RhB is studied.The modification of RGO does not affect the structure and morphology of Bi2WO6 as confirmed from XRD and SEM studies,which is important for elucidating the role of RGO.Graphene accepts photogene-rated electrons of Bi2WO6efficiently under visible light and promotes the dissociation of photogenerated excitons of Bi2WO6.More electrons on the graphene lead to faster reduc-tion of O2to O2?-which promotes the degradation of RhB.More-over,the existence of RGO on the surfaces of Bi2WO6particles can enhance the adsorption of RhB.Effect of content of RGO on the photoactivity was discussed and the optimum loading ra-tio was determined to be1%(mass ratio of RGO to Bi2WO6). Nevertheless,the photoactivity decreases when the mass ratio of RGO to Bi2WO6is2%,which may be caused mainly by the decrease of optical absorption of photocatalyst under visible light.The RGO-modified Bi2WO6with improved photoactivity prepared in this work has a high potential as the photocatalyst in environment remediation.

References

(1)Hoffmann,M.R.;Martin,S.T.;Choi,W.Y.;Bahnemannt,D.

W.Chem.Rev.1995,95,69.

(2)Raffainer,I.I.;von Rudolf,R.P.Ind.Eng.Chem.Res.2001,40,

1083.

(3)Agrios,A.G.;Pichat,P.J.Appl.Electrochem.2005,35,655.

(4)Kudo,A.;Hijii,S.Chem.Lett.1999,28,1103.

(5)Tang,J.W.;Zou,Z.G.;Ye,J.H.Catal.Lett.2004,92,53.

(6)Zhang,C.;Zhu,Y.F.Chem.Mater.2005,17,3537.

(7)Kudo,A.;Omori,K.;Kato,H.J.Am.Chem.Soc.1999,121,

11459.

(8)Tang,J.W.;Zou,Z.G.;Ye,J.H.Chem.Mater.2004,16,1644.

(9)Zhang,L.S.;Wang,W.Z.;Zhou,L.;Xu,H.L.Small2007,3,

1618.

(10)Lin,X.P.;Huang,T.;Huang,F.Q.;Wang,W.D.;Shi,J.L.

J.Mater.Chem.2007,17,2145.

(11)Zhu,S.B.;Xu,T.G.;Fu,H.B.;Zhao,J.C.;Zhu,Y.F.Environ.

Sci.Technol.2007,41,6234.

(12)Li,Y.Y.;Liu,J.P.;Huang,X.T.;Yu,J.G.Dalton Trans.2010,

39,3420.

(13)Kamat,P.V.J.Phys.Chem.Lett.2010,1,520.

(14)McAllister,M.J.;Li,J.L.;Adamson,D.H.;Schniepp,H.C.;

Abdala,A.A.;Liu,J.;Herrera-Alonso,M.;Milius,D.L.;Car,

R.;Prud?homme,R.K.;Aksay,I.A.Chem.Mater.2007,19,

4396.

(15)Nair,R.R.;Blake,P.;Grigorenko,A.N.;Novoselov,K.S.;

Booth,T.J.;Stauber,T.;Peres,N.M.R.;Geim,A.K.Science

2008,320,1308.

(16)Hontoria-Lucas,C.;Lopez-Peinado,A.J.;Lopez-Gonzaiez,J.

D.;Rojas-Cerantes,M.L.;Martin-Aranda,R.M.Carbon1995,

33,1585.

(17)Zhang,H.;Lv,X.J.;Li,Y.M.;Wang,Y.;Li,J.H.ACS Nano

2009,4,380.

(18)Xiong,Z.G.;Zhang,L.L.;Ma,J.Z.;Zhao,X.S.Chem.

Commun.2010,46,6099.

(19)Ng,Y.H.;Iwase,A.;Kudo,A.;Amal,R.J.Phys.Chem.Lett.

2010,1,2607.

(20)Gao,E.P.;Wang,W.Z.;Shang,M.;Xu,J.H.Phys.Chem.

Chem.Phys.2011,13,2887.

(21)Li,Y.Y.;Liu,J.P.;Huang,X.T.Nanoscale Res.Lett.2008,3,

365.

(22)Williams,G.;Seger,B.;Kamat,P.V.ACS Nano2008,2,1487.

(23)Zhang,L.;Wang,W.Z.;Shang,M.;Sun,S.M.;Xu,J.H.

J.Hazard.Mater.2009,172,1193.

1486

氧化石墨烯的结构及应用

氧化石墨烯的结构及应用 2004年,英国曼彻斯特大学物理学家安德烈?海姆(Andre Geim)和康斯坦丁?诺沃肖洛夫(Konstantin Novoselov)成功地从石墨中分离出一层碳原子构成的石墨烯,两人也因“在二维石墨烯材料的开创性实验”,共同获得2010年诺贝尔物理学奖。自此,石墨烯由于其突出的导热性、室温高速载流子迁移率、透光性和力学性能等,同时具有完美的量子隧道效应、半整数的量子霍尔效应、从不消失的电导率等一系列性质,受到了世界各界的广泛关注,也成为科研领域的新兴宠儿。 氧化石墨烯是石墨粉末经化学氧化后的产物,它是一种性能优异的新型碳材料,具有较高的比表面积和表面丰富的官能团。氧化石墨烯复合材料包括聚合物类复合材料以及无机物类复合材料更是具有广泛的应用前景,因为成为研究的又一重点。 一、氧化石墨烯的分子结构 石墨被强氧化剂氧化,氧原子进入到石墨层间,结合л电子,使层面内的二键断裂,并以C=O,C-OH, -COOH等官能团与密实的碳网面中的碳原子结合,形成共价键型石墨层间化合物。氧化石墨烯的理想结构组成为C400H,也有文献报道其组成为C X+(OH)Y-(H20)2,其中C、H、O等各元素的含量随氧化程度不同而发生改变,一般范围为C7O4H2-C24O13H9,目前,普遍认为氧化石墨是一个准二维固体物质。氧化石墨烯由尺寸不定的未被氧化的芳香“岛”组成,而这些“岛”则被含有醇羟基、环氧基团和双键的六元脂环所分开,芳香环、双键和环氧基团使得碳原子点阵格式近乎处于同一平面,仅有连接到羟基基团的碳原子有较轻微的四面体构型畸变,导致了一些层面的卷翘。官能团处于碳原子点阵格子的上下,形成了不同密度的氧原子分布。 干燥的氧化石墨在空气中稳定性较差,很容易吸潮而变成水合氧化石墨,层间距也会随其含水量的高低而有所不同。随含水量的增加,层间距从0.6nm增加到1.1nm,从而导致X射线(100)衍射峰的位置的变化。 鉴于氧化石墨烯在石墨烯材料领域中的地位,许多科学家试图对氧化石墨烯的结构进行详细和准确的描述,以便有利于石墨烯材料的进一步研究,虽然已经利用了计算机模拟、拉曼光谱,核磁共振等手段对其结构进行分析,但由于种种原因(不同的制备方法,实验条件的差异以及不同的石墨来源对氧化石墨烯的结构都有一定的影响),氧化石墨烯的精确结构还无法得到确定。 二、氧化石墨烯的制备方法 氧化石墨烯的制备方法主要有Brodie、Staudenmaier和Hummers三种方法,它们都是用无机强质子酸(如浓硫酸、发烟硝酸或它们的混合物)处理原始石墨,将强酸小分子插入石墨层问,再用强氧化剂(如KMnO4、KC104等)对其进行氧化。 1、Brodie法 1898年Brodie采用发烟HNO3体系,以KC103为氧化剂,反应体系的温度需先维持在0℃,然后,不断搅拌反应20-24h。洗涤后获得的氧化石墨的氧化程度较低,需进行多次氧化处理以提高氧化程度,反应时间相对较长。该法的优点是其氧化程度可利用氧化时间进行控制,合成的氧化石墨结构比较规整。但因采用KC103作氧化剂,有一定的危险性。

石墨烯的制备与表征综述

氧化石墨烯还原的评价标准 摘要还原氧化石墨烯(RGO)是一种 有趣的有潜力的能广泛应用的纳米 材料。虽然我们花了相当大的努力 一直致力于开发还原方法,但它仍然 需要进一步改善,如何选择一个合适 的一个特定的还原方法是一个棘手 的问题。在这项研究中,还原氧化石 墨烯的研究者们准备了六个典型的 方法:N2H4·H2O还原,氢氧化钠还 原,NaBH4还原,水浴还原 ,高温还原以及两步还原。我们从四个方面系统的对样品包括:分散性,还原程度、缺陷修复程度和导电性能进行比较。在比较的基础上,我们提出了一个半定量判定氧化石墨烯还原的评价标准。这种评价标准将有助于理解氧化石墨烯还原的机理和设计更理想的还原方法。 引言 单层石墨烯,因为其不寻常的电子性质和应用于各个领域的潜力,近年来吸引了巨大的研究者的关注。目前石墨烯的制备方法,包括化学气相沉积(CVD)、微机械剥离石墨,外延生长法和液相剥离法。前三种方法因为其获得的石墨烯的产品均一性和层数选择性原因而受到限制。此外,这些方法的低生产率使他们不适合大规模的应用。大部分的最有前途生产的石墨烯的路线是石墨在液相中剥离氧化然后再还原,由于它的简单性、可靠性、大规模的能力生产、相对较低的材料成本和多方面的原因适合而适合生产。这种化学方法诱发各种缺陷和含氧官能团,如羟基和环氧导致石墨烯的电子特性退化。与此同时,还原过程可能导致发生聚合、离子掺杂等等。这就使得还原方法在化学剥离法发挥至关重要的作用。 到目前为止,我们花了相当大的努力一直致力于开发还原的方法。在这里我们展示一个简单的分类:使用还原剂(对苯二酚、二甲肼、肼、硼氢化钠、含硫化合物、铝粉、维生素C、环六亚甲基四胺、乙二胺(EDA) 、聚合电解质、还原糖、蛋白质、柠檬酸钠、一氧化碳、铁、去甲肾上腺素)在不同的条件(酸/碱、热处理和其他类似微波、光催化、声化学的,激光、等离子体、细菌呼吸、溶菌酶、茶溶液)、电化学电流,两步还原等等。这些不同的还原方法生成的石墨烯具有不同的属性。例如,大型生产水分散石墨烯可以很容易在没有表面活性稳定剂的条件下地实现由水合肼还原氧化石墨烯。然而,水合肼是有毒易爆,在实际使用的过程中存在困难。水浴还原方法可以减少缺陷和氧含量的阻扰。最近,两个或更多类型的还原方法结合以进一步提高导电率或其他性能。例如,水合肼还原经过热处理得到的石墨烯通常显现良好的导电性。

选择性还原氧化石墨烯

文章编号: 1007?8827(2014)01?0061?06 选择性还原氧化石墨烯 徐 超1, 员汝胜1, 汪 信2 (1.福州大学光催化研究所福建省重点实验室?国家重点实验室培育基地,福建福州350002; 2.南京理工大学教育部软化学与功能材料重点实验室,江苏南京210094) 摘 要: 还原氧化石墨烯已被广泛用于制备基于石墨烯的材料三目前,还原处理方法均是尽可能地将氧化石墨烯中的功能团去除,恢复石墨烯的电子结构三由于氧化石墨烯中氧基功能团(如羟基二羧基及环氧基)不同的反应活性,氧化石墨烯是可能通过分步的方法进行还原三利用醇溶剂如乙醇二乙二醇二丙三醇还原氧化石墨烯,并采用不同分析手段对样品进行表征三结果发现,在一定条件下这些醇可选择性地还原氧化石墨烯三经这些醇的处理后,氧化石墨烯中环氧功能团被大部分去除,而其他的功能团如羟基和羧基仍被保留三这种选择性去除氧化石墨烯表面功能团的方法可利于有效地控制氧化石墨烯的还原程度二获得具有特定功能团的石墨烯衍生物,从而扩大这类材料的使用范围三 关键词: 氧化石墨烯;氧化功能团;醇;选择性还原 基金项目:国家自然科学基金(21201036,21077023);福建省自然科学基金(2010J01035,2012J01039). 作者简介:徐 超,博士,讲师.E?mail:cxu@https://www.360docs.net/doc/538894135.html, Selective reduction of graphene oxide XU Chao1, YUAN Ru?sheng1, WANG Xin2 (1.Research Institute of Photocatalysis,Fujian Provincial Key Laboratory of Photocatalysis??State Key Laboratory Breeding Base,Fuzhou University,Fuzhou350002,China; 2.Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education,Nanjing University of Science and Technology,Nanjing210094,China) Abstract: The reduction of graphene oxide has been widely used to control the properties of graphene?based materials.Traditional methods thoroughly remove oxygenated functional groups in graphene oxides.We show that ethanol,ethylene glycol and glycerol can se?lectively reduce epoxy groups in graphene oxide while hydroxyl and carboxyl groups remain unchanged.Hydrazine hydrate can reduce ox?ygen functional groups except carboxyl groups.These selective removals can be used to control the reduction degree of graphene oxides and their properties.The electrical conductivity of the reduced graphene oxides with different types of oxygen functional groups varied sig?nificantly and increased with the degree of reduction. Keywords: Graphene oxide;Oxygenated functional groups;Alcohols;Selective reduction CLC number: TQ127.1+1Document code: A Received date:2013?07?10; Revised date:2013?12?22 Corresponding author:XU Chao,Ph.D,Lecturer.E?mail:cxu@https://www.360docs.net/doc/538894135.html, Foundation items:National Natural Science Foundation of China(21201036,21077023);Natural Science Foundation of Fujian Province (2010J01035,2012J01039). English edition available online ScienceDirect(http:∕∕https://www.360docs.net/doc/538894135.html,∕science∕journal∕18725805). DOI:10.1016/S1872?5805(14)60126?8 1 Introduction Graphene oxide(GO),utilized as precursor for a large?scale production of graphene?based materials,has attracted a great deal of attention in recent years[1?5]. GO sheets are electrically insulating,owing to their oxygenated functional groups(hydroxyl,carboxyl and epoxy groups)on surface,which usually need further treatments to restore the electrical conductivity for spe?cific applications[6].A lot of methods,such as chemi?cal reduction[7?9],laser irradiation[10,11],microwave ir?radiation[12,13],photocatalysis[14,15],solvothermal re?duction[16,17],have been explored to remove these atta?ched groups thoroughly and to recover graphene net?works of sp2bonds. Actually,researchers recently have found that the reduction degree of graphene oxide or oxidation degree of graphene has certain influences on their properties,such as electrical conductivity,catalysis activity and semi?conductive band positions[18?20]. Among these research work,the reduction degree of  第29卷 第1期 2014年2月新 型 炭 材 料 NEW CARBON MATERIALS Vol.29 No.1 Feb.2014

氧化石墨烯的制备及表征

氧化石墨烯的制备及表征 文献综述 材料0802班 李琳 200822046

氧化石墨烯的制备及表征 李琳 摘要:石墨烯(又称单层石墨或二维石墨)是单原子厚度的二维碳原子晶体,被认为是富勒烯、碳纳米管和石墨的基本结构单元[1]。石墨烯可通过膨胀石墨经过超声剥离或球磨处理来制备[2,3],其片层厚度一般只能达到30~100 nm,难以得到单层石墨烯(约0.34 nm),并且不容易重复操作。所以寻求一种新的、容易和可以重复操作的实验方法是目前石墨烯研究的热点。而将石墨氧化变成氧化石墨,再在超声条件下容易得到单层的氧化石墨溶液,再通过化学还原获得,已成为石墨烯制备的有效途径[4]。通过述评氧化石墨及氧化石墨烯的制备、结构、改性及其与聚合物的复合,展望了石墨烯及其复合材料的研究前景。 关键词:氧化石墨烯,石墨烯,氧化石墨,制备,表征 Oxidation of graphite surfaces preparation and Characterization LI Lin Abstrat:Graphite surfaces (also called single graphite or 2 d graphite )is the single atoms thickness of the 2 d carbon atoms crystal, is considered fullerenes, carbon nanotubes and graphite basic structure unit [1].Graphite surfaces can through the expanded graphite after ultrasonic stripping or ball mill treatment topreparation [2,3], a piece of layer thickness normally only up to 30 to 100 nm, hard to get the single graphite surfaces (about 0.34 nm), and not easy to repeated operation. So to search a new, easy to operate and can be repeated the experiment method of the graphite surfaces is the focus of research. And will graphite oxidization into oxidation graphite, again in ultrasonic conditions to get the oxidation of the single graphite solution, again through chemical reduction get, has become an effective way of the preparation of graphite surfaces [4]. Through the review of graphite oxide and oxidation graphite surfaces of the preparation, structure, modification of polymer and the

氧化石墨烯的绿色还原方法

龙源期刊网 https://www.360docs.net/doc/538894135.html, 氧化石墨烯的绿色还原方法 作者:肖祖萍 来源:《学校教育研究》2018年第14期 石墨烯是一种单原子层的碳二维纳米材料,它是由碳六元环组成的二维蜂窝状点阵结构,碳原子的排列与石墨原子层排列相同。地球上不缺少石墨材料,为制备石墨烯材料提供了充足的原材料。目前常用的石墨烯只要由两大类方法制备,一种是将石墨氧化为氧化石墨烯,再通过化学方法将氧化石墨烯还原为石墨烯。另一种是通过化学方法或某些操作将石墨直接转化为石墨烯。在本文主要研究第一种方法中的绿色还原方法。本文中的石墨烯都是由氧化石墨烯通过还原得到的。石墨烯是由碳原子按六边形晶格整齐排布而成的碳单质,结构非常稳定。因为石墨烯的晶格结构,常会被误认为它很僵硬,但实际上却并非如此。例如,石墨烯作为目前已知的力学强度最高的材料,并有可能作为添加剂广泛应用于新型高强度复合材料之中;石墨烯良好的导电性及其对光的高透过性又让它在透明导电薄膜的应用中独具优势,而这类薄膜在液晶显示以及太阳能电池等领域的应用至关重要。 一、氧化石墨烯的制备 氧化石墨烯即石墨烯的氧化物,它是由石墨粉末经化学氧化及剥离后的产物。氧化石墨烯一般由石墨经强酸氧化而得。主要有三种制备氧化石墨的方法:Brodie法、Staudenmaier法和Hummers法。其中Hummers法的制备过程的时效性相对较好而且制备过程中也比较安全。目前最常用的制取氧化石墨烯的方法是由一个修改过的Hummer方法制备的。 二、氧化石墨烯的还原 1.绿色还原法 随着社会的发展和人们都环境的关注,我们越来越需要研究一些绿色的还原方法。绿色的还原方法即在还原氧化石墨烯的过程中不使用有毒的还原剂或不产生对环境产生危害的物质。绿色还原法对环境不会有危害或危害几乎可以不计,并可以得到较好的石墨烯。但有些绿色还原法还存在无法大规模生产的弊端,无法在应用到工业生产中去。目前常见的绿色还原方法有水热热还原氧化石墨烯、电化学还原氧化石墨烯、柠檬酸钠还原氧化石墨烯法、超声辅助镍粉绿色还原制备石墨烯、氧化石墨热解膨胀氢气还原法等。下面我们对这几种绿色还原方法做一个介绍。 (1)水热热还原氧化石墨烯 水热热还原氧化石墨烯是指在密封的压力容器中,以水为溶剂,在高温、高压的条件下进行的化学反应。将氧化石墨烯溶解于溶剂中,在液相或超临界条件下,反应物分散且变得活

石墨烯的氧化还原法制备及结构表征

实验目的: (1)了解石墨烯的结构和用途。 (2)了解氧化后的石墨烯比纯石墨烯的性能有何提升 (3)了解Hummers法的原理 一、实验原理: 天然石墨需要进行先氧化,得到氧化石墨,再经过水合肼的作用下还原,才能得到在水相条件下稳定分散的石墨烯。 石墨的氧化过程采用浓硫酸和高锰酸钾这两种强氧化剂,氧化过程中先加浓硫酸,搅拌均匀后再加高锰酸钾,氧化过程从石墨的边沿进行,然后再到中间,氧化程度与持续时间有关。氧化过程中要增加石墨的亲水性,以便于分散,分散一般使用超声分散法。 氧化后的氧化石墨烯需要进行离心处理,使得pH值在6到7之间,目的是洗去氧化石墨烯的酸性,根本原因是研究表明氧化石墨烯和石墨烯在碱性条件下可以形成稳定的悬浮液。 氧化石墨烯的还原有多种方法,化学还原和热还原等,化学还原采用水合肼,热还原采用作TGA后,加热到200℃,一般大部分的含氧官能团都能除去。 二、实验内容: 1、利用氧化还原法制备石墨烯 2、对制得的石墨烯进行结构表征 三、实验过程: 实验利用Hummers法进行实验: 1、在三颈瓶外覆盖冰块,制造冰浴环境,并在三颈瓶内放入搅拌磁石; 2、将冰状天然石墨4g和硝酸钠2g倒入三颈瓶中; 3、将92ml浓硫酸倒入三颈瓶中; 4、开启磁力搅拌器,把溶液搅拌均匀后再缓慢加入高锰酸钾12g,在冰浴环境下搅拌3h; 5、升温至35℃,保持搅拌0.5h或1h,此时是对石墨片层中间进行氧化作用,氧化程度与持续时间有关; 6、加入去离子水184ml,缓慢滴加,保持温度低于100℃,升温至90℃,保温3h,溶液变红; 7、加300ml去离子水和30%的双氧水溶液10ml,使得高锰酸钾反应掉,静置一晚,倒掉上层清液; 8、对溶液进行离心操作7-8次,使得pH值在6-7; 9、减压蒸馏,进行还原反应得到石墨烯; 10、对得到的产物进行结构表征。

还原氧化石墨烯横向尺寸分布影响因素初探_张天友

还原氧化石墨烯横向尺寸分布影响因素初探* 张天友,张东 (同济大学材料科学与工程学院,上海200092) 摘要:化学还原剥离氧化石墨法制备的还原氧化石墨烯具有诸多优异性能,但所得还原氧化石墨烯横向尺度差异较大。利用化学还原法制备了还原氧化石墨烯,基于还原氧化石墨烯的AFM观测结果,初步统计分析了静置、磁力搅拌、离心和超声处理及它们的次序对还原氧化石墨烯横向尺寸分布的影响,结果表明后述3个步骤及次序是影响斑点状(横向尺寸< 100nm@100nm)和树叶状(横向尺寸>500nm@ 500nm)还原氧化石墨烯横向尺寸分布的主要因素。 关键词:化学法;还原氧化石墨烯;磁力搅拌;超声处理;离心处理 中图分类号:TQ127.1文献标识码:A 文章编号:1001-9731(2009)10-1695-04 1引言 石墨烯是由碳原子构成的二维晶体,碳原子的排列方式与石墨中单原子层一致;该新型二维碳材料具有诸多优异的性能,自2004年被发现以来引起了研究人员的广泛关注[1,2]。目前常用的制备方法包括:微机械剥离法[3]、外延生长法[4]和化学法[5,6]。其中化学法的生产成本相对低廉,且可实现大量生产,成为目前研究的热点之一。该方法的基本思路是,在一定条件下剥离分散在某些极性介质氧化石墨为氧化石墨烯(gr aphene ox ide[7],GO),再经化学还原处理得到还原氧化石墨烯(reduced gr aphene oxide[8],RGO)。近期的研究结果表明,化学制备的RGO是一种p型半导体材料[9,10],使得RGO不仅可以用作纳米复合材料的增强相[2],而且有望用作纳米电子器件的原料[1,9,10]。但是由化学法生产的还原氧化石墨烯横向尺度差异较大,从几十纳米到数千纳米[5,7]。Ritter等人[11]的研究表明石墨烯形貌影响其能带结构,进而影响石墨烯在纳米电子器件领域中的应用,所以需对化学法制备的还原氧化石墨烯进行分离,以满足不同的应用需求。因此,对RGO横向尺寸影响因素的探讨,有助于缩小RGO横向尺寸分布方法的发现。本文利用化学法制备RGO,研究了静置、磁力搅拌、超声、离心处理以及它们的次序对RGO横向尺寸分布的影响。2实验 2.1主要试剂 浓硫酸(98%,CR),盐酸(AR),双氧水30% (AR),高锰酸钾(AR),鳞石墨(500目),水合肼85% (CR)。 2.2主要仪器 超声波细胞粉碎机(KS-600),台式低速离心机(80-2),电热恒温水浴锅(DK-S22)。 RGO的制备过程主要包括4个部分:(1)配制氧化石墨和去离子水的混合液(150ml,1mg/ml),并在磁力搅拌和静置处理不同阶段取样,得到样品?、ò和ó(图1);(2)制备GO溶胶,调整离心(10min,4000r/ min)和超声(10min)处理次序,得到样品A,B和C(图2);(3)以水合肼为还原剂在一定温度下还原所得GO 溶胶,得到样品A.、B.和C.(图3);(4)制备对比样品D.(图4)。实验所用氧化石墨由改进后的H umm er s 法[12] 制得。 图1样品?、ò、ó的制备流程图 Fig1The flow char t of preparing sample?,ò, ó 图2样品A、B、C的制备流程图 Fig2T he flow chart of preparing sample A,B, C 图3样品A.、B.、C.的制备流程图 Fig3The flo w chart of preparing sample A.,B.,C. *基金项目:国家高技术研究发展计划(863计划)资助项目(2009A A05Z419);教育部新世纪优秀人才支持计划资助项目(NCET-07-0626);上海市/科技创新行动计划0国际合作资助项目(0816*******) 收到初稿日期:2009-03-30收到修改稿日期:2009-08-03通讯作者:张东 作者简介:张天友(1981-),男,山东聊城人,在读博士,师承张东教授,从事纳米材料研究。

石墨烯氧化还原法

四:石墨烯的氧化还原法制备及结构表征 摘要:采用改进的 Hummers 法对天然鳞片石墨进行氧化处理制备氧化石墨,经超声分散,然后在水合肼的作用下加热还原制备了在水相条件下稳定分散的石墨烯。用红外光谱、拉曼光谱、扫描探针显微镜和ζ电位仪对样品进行了结构、谱学、形貌和ζ电位分析。结果表明,石墨被氧化后形成以 C=O、C-OH、-COOH 和 C-O-C 等官能团形式的共价键型石墨层间化合物;还原氧化石墨后形成的石墨烯表面的官能团与石墨的相似;氧化石墨烯和石墨烯在碱性条件下可形成稳定的悬浮液;氧化石墨烯和石墨烯薄片厚度为 1.0 nm 左右。考察并讨论了还原过程中水合肼用量,体系反应温度、反应时间和 pH 值对石墨烯还原程度和稳定性的影响,水合肼用量和反应时间是影响石墨烯还原程度的主要因素;pH 值对石墨烯稳定性影响较大。 实验部分 1.1原料:天然鳞片石墨(~74 μm);高锰酸钾,浓硫酸,水合肼 (50%),均为化学纯,市售;5% H2O2溶液,0.05mol · L-1HCl 溶液,体系的 pH 值用 0.1mol · L-1NaOH溶液调节。 1.2制备 氧化石墨制备:将 10 g 石墨、230 mL 98%浓硫酸混合置于冰浴中,搅拌 30 min,使其充分混合,称取 40 g KMnO4加入上述混合液继续搅拌 1 h 后,移入 40 ℃中温水浴中继续搅拌 30 min;用蒸馏水将反应液(控制温度在 100 ℃以下)稀释至 800~1 000mL 后加适量 5% H2O2,趁热过滤,用 5% HCl 和蒸馏水充分洗涤至接近中性,最后过滤、洗涤,在 60℃下烘干,得到氧化石墨样品。石墨烯制备:称取上述氧化石墨 0.05 g,加入到100 mL pH=11 的 NaOH 溶液中;在 150 W 下超声90 min 制备氧化石墨烯分散液;在 4000 r· min-1下离心 3 min 除去极少量未剥离的氧化石墨;向离心

石墨烯的制备方法

一.文献综述 随着社会的发展,人们对材料的要求越来越高,碳元素在地球上分布广泛,其独特的物理性质和多种多样的形态己逐渐被人类发现、认识并利用。1924年 确定了石墨和金刚石的结构;1985年发现了富勒烯;1991年发现了碳纳米管;2004年,曼彻斯特大学Geim等成功制备的石墨烯是继碳纳米管被发现后富勒烯 家族中又一纳米级功能性材料,它的发现使碳材料领域更为充实,形成了从零维、一维、二维到三维的富勒烯、碳纳米管、石墨烯以及金刚石和石墨的完整系统。而2004年至今,关于氧化石墨烯和石墨烯的研究报道如雨后春笋般涌现,其已 成为物理、化学、材料学领域的国际热点课题。 制备石墨烯的方法有很多种,如外延生长法,氧化石墨还原法,CVD法, 剥离-再嵌入-扩涨法以及有机合成法等。在本文中主要介绍氧化石墨还原法。 除此之外,还对其的一些性能进行表征。 二.石墨烯材料 2.1石墨烯材料的结构和特征 石墨烯(gr即hene)是指碳原子之间呈六角环形排列的一种片状体,由一层 碳原子构成,可在二维空间无限延伸,可以说是严格意义上的二维结构材料,同时,它被认为是宇宙上最薄的材料[`2],也被认为是有史以来见过的最结实的材料。 ZD结构的石墨烯具有优异的电子特性,且导电性依赖于片层的形状和片层数,据悉石墨烯是目前已知的导电性能最出色的材料,可运用于导电高分子复合 材料,这也使其在微电子领域、半导体材料、晶体管和电池等方面极具应用潜力。有专家指出,如果用石墨烯制造微型晶体管将能够大幅度提升计算机的运算速度,其传输电流的速度比电脑芯片里的硅元素快100倍。近日,某科技日报称,mM的 研究人员展示了由石墨烯材料制作而成的场效应晶体管(FET),经测试,其截止频率可达100吉赫兹(GHz),这是迄今为止运行速度最快的射频石墨烯晶体管。石 墨烯的导热性能也很突出,且优于碳纳米管。石墨烯的表面积很大,McAlliste: 等通过理论计算得出石墨烯单片层的表面积为2630扩/g,这个数据是活性炭的 2倍多,可用于水净化系统。

化学还原法制备石墨烯的研究进展

化学还原法制备石墨烯的研究进展近年来,研究人员利用多种方法开展了石墨烯的制备工作,主要包括化学剥离法、金属表面外延法、SiC表面石墨化法和化学还原法等[1]。目前应用最广泛的合成方法是化学还原法。石墨烯在氧化的过程中会引入一些化学基团,如羧基(-COOH)、羟基(-OH)、羰基(-C = O)和环氧基(-C-O-C)等,这些基团的生成改变了C-C之间的结合方式,导致氧化石墨烯的导电性急剧下降,并且使具有的各种优异性能也随之消失。因此,对氧化石墨烯进行还原具有非常重要的意义,主要是先将氧化石墨烯分散(借助高速离心、超声等)到水或有机溶剂中形成稳定均相的溶胶,再按照一定比例用还原剂还原,得到单层或者多层石墨烯。还原得到的石墨烯有望在电子晶体管、化学传感器、生物基因测序以及复合材料等众多领域广泛应用。 目前,制备氧化石墨烯的技术已经相当成熟,其层间距(0.7~1.2 nm)较原始石墨烯层间距大,更有利于将其他物质分子插入。研究表明氧化石墨烯表面和边缘有大量的羟基、羧基等官能团,很容易与极性物质发生反应,得到改性氧化石墨烯。氧化石墨烯的有机改性可使其表面由亲水性变为亲油性,表面能降低,从而提高与聚合物单体或聚合物之间的相容性,增强氧化石墨烯与聚合物之间的粘接性。如果使用适当的剥离技术(如超声波剥离法、静电斥力剥离法、热解膨胀剥离法、机械剥离法、低温剥离法等),那么氧化石墨烯就能很容易的在水溶液或有机溶剂中分散成均匀的单层氧化石墨烯溶液,使利用其反应得到石墨烯成为可能。氧化还原法最大的缺点是制备的石墨烯有一定的缺陷,因为经过强氧化剂氧化得到的氧化石墨烯,并不一定能被完全还原,可能会损失一部分性能,如透光性、导热性,尤其是导电性,所以有些还原剂还原后得到的石墨烯在一定程度上存在不完全性,即与严格意义上的石墨烯存在差别。但氧化还原方法价格低廉,可以制备出大量的石墨烯,所以成为目前最常用制备石墨烯的方法。

氧化还原法制备石墨烯的方法概述

(2) (2) Abstract (2) Key words (2) I (3) (3) 2.1 GO (4) 2.1.1Brodie (5) 2.1.2 Staudenmaier (6) 2.1.3 Hummers (6) 2.2 GO (6) 2.2.1 (6) 2.2.2 (7) 2.2.3 . (7) 2.2.4 (7) (9) (10) (13)

, The Summarize of oxidation-reduction method for graphene Shaoqing Ma , Zhongai Hu (Northwest normal university, chemical engineering college, lanzhou, 730070) Abstract : In recent years, graphene with its unique structure and the outstanding performance, caused wide interests in the chemical, physical and material fields. People have made positive progress in the preparation of graphene,and have provided raw material guarantee for graphene of basic research and application development. This paper largely applied the latest references in recent years , reviewed the legal system with oxidation-reduction method for graphene and presented the development prospects. Key words : graphite oxide, graphene, oxidation-reduction method I

电化学法制备石墨烯

电化学法制备石墨烯 石墨烯(Graphene,GN)是由sp2杂化C原子组成的具有蜂窝状六边形结构的二维平面晶体。石墨烯独特的结构特征使其具有优异的物理、化学和机械等性能,在晶体管太阳能电池传感器、锂离子电池、超级电容器、导热散热材料、电发热膜、场发射和催化剂载体等领域有着良好的应用前景。石墨烯的制备方法对其品质和性能有很大影响,低成本、高品质、大批量的制备技术是石墨烯能得到广泛应用的关键。现有制备石墨烯的方法有很多,包括机械剥离石墨法、液相剥离法、溶剂热合成法、化学气相沉积法、外延生长法和电化学法等。其中,电化学方法因其成本低、操作简单、对环境友好、条件温和等优点而越来越受到人们的关注。据最新研究报道,通过电化学方法制备的石墨烯可以达到克量级,这为石墨烯的工业化生产带来了曙光。 电化学制备技术则是通过电流作用进行物质的氧化或还原,不需要使用氧化剂或还原剂而达到制备与提纯材料的目的,具有生产工艺简单、成本低、清洁环保等优点,已在冶金、有机与聚合物合成、无机材料制备等方面得到广泛应用。而且通过电化学电场作用,可以实现外在电解液离子(分子)对一些层状材料的插入,如锂离子电池石墨负极充电时就是锂离子在石墨层间的插入及石墨层间化合物的电化学制备。根据电化学原理主要有两种路线制备石墨。 1、通过电化学氧化石墨电极可得氧化石墨烯,再通过电化学还原以实 现电化学或化学氧化的氧化石墨烯的还原而得到石墨烯材料。 2、采用类似液相剥离,但施以电场力作用驱动电解液分子以电化学方式直接对石墨阴极进行插层,使石墨层间距变大,层间范德华力变弱,以非氧化方式直接对石墨片层进行电化学剥离制备得到石墨烯。 电化学法制备石墨烯的优势主要为:1)与普通化学氧化还原法相比,不需要用到强氧化剂、强还原剂及有毒试剂,成本低,清洁环保;2)通过电化学方式,在氧化时可以更多地以离子插入方式剥离而减少氧化程度降低对石墨烯结构的破坏,电化学还原时则能更彻底还原,因此制得的石墨烯具有更好的物理化学性质;3)以石墨工作电极为阴极进行非氧化直接剥离时,石墨片层结构没有受到破坏,可以得到与液相或机械剥离法一样高品质的石墨烯片,但因为电化学的强电场作用,比单纯的溶剂表面作用力或超声作用力要大得多,剥离的效率更高,与液相或机械剥离法相比,电化学剥离易实现高品质石墨烯批量制备;4)电化学制备过程中,电流与电压很容易精确控制,因此容易实现石墨烯的可控制备与性能调控,而且电化学法工艺过程与设备简单,容易操作控制;5)与CVD 及有机合成法相比,电化学法采用石墨为原料,我国石墨产量居世界前列,原料丰富成本低廉,不需要用到烯类等需大量进口的高价石化原料。 一、石墨阳极氧化剥离制备石墨烯 阳极氧化剥离制备石墨烯就是将石墨作为阳极,电源在工作时电解质中的阴离子向阳极移,进而进入阳极石墨导致石墨被插层而体积膨胀,当阳极石墨的体积增加到一定程度时,就会由于层间范德华作用力的减小而最终从块体上脱落下来,形成层状具有一定含氧官能团的石墨烯或氧化石墨烯(包括单层和2~10层的少层氧化石墨烯)。石墨由于电化学氧化和酸性阴离子的插层导致表面体积剧烈膨胀,这种现象在很早之前就有报道。近年来提出了电化学法阳极氧化石墨制备石墨烯的机理,在进行电化学反应时电解液中的阴离子会向阳极迁移,由于石

还原氧化石墨烯横向尺寸分布影响因素初探

还原氧化石墨烯横向尺寸分布影响因素初探3 张天友,张 东 (同济大学材料科学与工程学院,上海200092) 摘 要: 化学还原剥离氧化石墨法制备的还原氧化石墨烯具有诸多优异性能,但所得还原氧化石墨烯横向尺度差异较大。利用化学还原法制备了还原氧化石墨烯,基于还原氧化石墨烯的A FM观测结果,初步统计分析了静置、磁力搅拌、离心和超声处理及它们的次序对还原氧化石墨烯横向尺寸分布的影响,结果表明后述3个步骤及次序是影响斑点状(横向尺寸< 100nm×100nm)和树叶状(横向尺寸>500nm×500nm)还原氧化石墨烯横向尺寸分布的主要因素。 关键词: 化学法;还原氧化石墨烯;磁力搅拌;超声处理;离心处理 中图分类号: TQ127.1文献标识码:A 文章编号:100129731(2009)1021695204 1 引 言 石墨烯是由碳原子构成的二维晶体,碳原子的排列方式与石墨中单原子层一致;该新型二维碳材料具有诸多优异的性能,自2004年被发现以来引起了研究人员的广泛关注[1,2]。目前常用的制备方法包括:微机械剥离法[3]、外延生长法[4]和化学法[5,6]。其中化学法的生产成本相对低廉,且可实现大量生产,成为目前研究的热点之一。该方法的基本思路是,在一定条件下剥离分散在某些极性介质氧化石墨为氧化石墨烯(grap hene oxide[7],GO),再经化学还原处理得到还原氧化石墨烯(reduced grap hene oxide[8],R GO)。近期的研究结果表明,化学制备的R GO是一种p型半导体材料[9,10],使得R GO不仅可以用作纳米复合材料的增强相[2],而且有望用作纳米电子器件的原料[1,9,10]。但是由化学法生产的还原氧化石墨烯横向尺度差异较大,从几十纳米到数千纳米[5,7]。Ritter等人[11]的研究表明石墨烯形貌影响其能带结构,进而影响石墨烯在纳米电子器件领域中的应用,所以需对化学法制备的还原氧化石墨烯进行分离,以满足不同的应用需求。因此,对R GO横向尺寸影响因素的探讨,有助于缩小R GO横向尺寸分布方法的发现。本文利用化学法制备R GO,研究了静置、磁力搅拌、超声、离心处理以及它们的次序对R GO横向尺寸分布的影响。2 实 验 2.1 主要试剂 浓硫酸(98%,CR),盐酸(A R),双氧水30% (AR),高锰酸钾(A R),鳞石墨(500目),水合肼85% (CR)。 2.2 主要仪器 超声波细胞粉碎机(KS2600),台式低速离心机(8022),电热恒温水浴锅(D K2S22)。 R GO的制备过程主要包括4个部分:(1)配制氧化石墨和去离子水的混合液(150ml,1mg/ml),并在磁力搅拌和静置处理不同阶段取样,得到样品Ⅰ、Ⅱ和Ⅲ(图1);(2)制备GO溶胶,调整离心(10min,4000r/ min)和超声(10min)处理次序,得到样品A,B和C(图2);(3)以水合肼为还原剂在一定温度下还原所得GO 溶胶,得到样品A’、B’和C’(图3);(4)制备对比样品D’(图4)。实验所用氧化石墨由改进后的Hummers 法[12]制得 。 图1 样品Ⅰ、Ⅱ、Ⅲ的制备流程图 Fig1The flow chart of p reparing sampleⅠ,Ⅱ, Ⅲ 图2 样品A、B、C的制备流程图 Fig2The flow chart of preparing sample A,B, C 图3 样品A’、B’、C’的制备流程图 Fig3The flow chart of preparing sample A’,B’,C’ 3基金项目:国家高技术研究发展计划(863计划)资助项目(2009AA05Z419);教育部新世纪优秀人才支持计划资助项目(NCET20720626);上海市“科技创新行动计划”国际合作资助项目(0816*******) 收到初稿日期:2009203230收到修改稿日期:2009208203通讯作者:张 东 作者简介:张天友 (1981-),男,山东聊城人,在读博士,师承张东教授,从事纳米材料研究。

氧化石墨烯

氧化石墨烯在热还原中的非常规红外吸收机理 高分子科学与工程一班 3008208022 裴庆丽在固体中,原子和分子的振动红外吸收会通过非绝热的相互作用被电子作用所影响,如Fano效应。通常情况下,红外吸收的谱线形状被修改,或者红外禁止模是可以作为电子吸收调制被探测到的。与这种已知现象相反,在还原的氧化石墨烯中观察到巨大的红外吸收带,这来源于一种尚未被报告的结构的不对称延伸构型的电子态耦合,该结构含有聚集在缺陷边界的氧原子。自由电子被氧原子移动所诱导(感应),产生了一个强烈的红外吸收,它与声子模式同相。当所有的含氧化学物质,包括羟基,羧基,环氧和酮官能团,从洁净石墨烯补丁的相邻边界区域除去时,这种新的现象才是唯一可能的。 石墨烯,带有sp2-杂化蜂窝状二维炭晶格,由共轭六角形晶胞组成,由于其维数和独特的电子能带结构,石墨烯显示出特别的性能。石墨烯是带有线性色散的半金属碳材料,因为它的载流子表现为狄拉克费米子(零有效质量),这抑制了载流子反向反射。因此,有趣的物理性能已得到证明,比如高的本征载流子迁移率(3,000and-200,000cm2 V-1s-1),在亚微米尺度上的室温弹道输运,并带有大的平均自由行程,增强的库仑相互作用,弱本地化抑制和绝热玻恩-奥本海默近似偏差抑制。 实际设备使用的石墨烯取决于制造有限尺寸结构和控制化学稳定的边界形成的能力,因此非常需要了解一系列石墨烯材料的化学和物理性质。石墨烯氧化(或者甚至水合)是众所周知的去除费米能级状态的例子,从而生成一种绝缘体。因此预测附着在石墨烯上,任何形式(环氧基,羟基,羧基和酮式功能组)的氧,都会在基面和边界上降低费米能级的电子态,即导电性,如实验所示。石墨烯的确是一种良好的绝缘体,它在还原时只部分恢复弱的导电性。即使在高温热处理(800-1,100℃)后,会有一些残余氧(约8-10%)留在部分还原的单层氧化石墨烯中,此氧化石墨烯含有接近20%的sp3-杂化碳原子。因此,部分还原的氧化石墨烯不可能存在任何可测量的性质,包括自由电子。 我们在这里报告观察到一个意外强烈的红外吸收峰,它仅在氧化石墨烯还原时出现。该光谱归属于一个以前未报告的氧化物结构的特定模式(不对称的 C-O-C延伸),其中包含处于还原的氧化石墨烯(即清洁石墨烯区域)缺陷区域

氧化还原法制备石墨烯

创新实验课报告 题目:石墨烯的制备 专业…………………学生……… 学号……………指导教师……… 日期2014.05.09 哈尔滨工业大学

目录 1.绪论 (3) 1.1纳米技术概述 (3) 1.2碳纳米结构概述 (3) 1.3石墨烯的结构 (4) 1.4石墨烯的性能简介 (4) 2.实验目的及意义 (7) 3. 实验方案与实验步骤 (8) 3.1氧化还原法制备石墨烯概述 (8) 3.2 实验设备和实验试剂 (9) 3.3 制备氧化石墨烯 (10) 3.4 制备石墨烯 (11) 3.5 实验操作注意事项 (13) 4. 实验结果和分析 (15) 4.1 石墨烯的SEM分析 (15) 4.2 石墨烯的IR分析 (16) 4.2 石墨烯的Raman分析 (16) 5. 课程体会与建议 (18)

1.绪论 1.1纳米技术概述 纳米技术被称为第四世界的难题和21世纪的化学难题。纳米技术的重要意义在于,其技术应用尺度在0.1nm数量级至10nm数量级间,这属于量子尺度和静电尺度的模糊边界。从而导致纳米材料具有很特殊的性质,这种特殊性比较全面的表现在材料的物理性质和化学性质的各个方面。例如表面效应,在进行纳米尺度堆垛时,表面原子所占的比例越大的情况下堆垛体的直径越小。 1.2碳纳米结构概述 在石墨烯被发现后,碳纳米结构形成了一个从零维到三维的完整的体系。包括富勒烯,碳纳米管和石墨烯。 1.2.1 富勒烯 富勒烯即为,是第三种形式的单质碳。富勒烯这一名字来源于一次世博会上类 似的结构,在英文中也被称为Bucky Ball。在富勒烯被发现的过程中,有很多有趣的设想和实验。如Kroto设想红巨星附近的碳长链分子是一种碳团聚。Rice大学利用TOF-MS (飞行时间质谱仪)发现了峰。1985年《Science》上一篇文章的发表表明富勒烯的发现,但更伟大的意义在于这一事件标志着纳米技术的开端。 富勒烯由12个五边形和20个六边形构成,满足“定点数+面数-棱数=2”,D=0.7nm。这是一种完美的对称结构,在科研上具有很大的价值。例如富勒烯是一个可装入金属离子的绝缘体,有开发吵到材料的潜力,这也是笼中化学的范畴。但是富勒烯由于难以大量生产,实际应用的意义收到了很大限制。 1.2.2 碳纳米管 碳纳米管在1991年的时候由日本名城大学的S.Iijima发现,93年的时候,单壁碳纳米管被制备出来。碳纳米管是一种一维结构,在一维方向上具有非常高的强度和韧性,可以作为一种“超级纤维”使用。同时可以功能化为公家碳纳米管和非共价碳纳米管。 1.2.3 石墨烯 石墨烯狭义上指单层石墨,厚度为0.335nm,仅有一层碳原子,但实际上10层以内的石墨结构也可称作石墨烯。而10层以上的则被称为石墨薄膜。在石墨烯发现前,科学界已经有无法制备出石墨烯的结论。从传统的物理学来讲,越薄的材料越易气化;朗道物理学中的观点是:在有限温度下,任何二维晶格体系都不能稳定存在。也就是说除非绝对零度,石墨烯不会存在,然而绝对零度是不可能达到的,也就是说无法得到稳定存在的石墨烯。即使这样,依旧有科学家不断尝试制备出石墨烯:在99年的时候,

相关文档
最新文档