JAVA 链表 代码实现(基本操作)

JAVA 链表 代码实现(基本操作)
JAVA 链表 代码实现(基本操作)

package data_structure06;

//链表

public class LinkList {

// 第一个链接点的位置。

public Link first;

public LinkList() {

first = null;

}

// 插入数据:插入的新数据为链表的收割链接点,并且将下一个链接点的地址指向插入前的首数据。

public void insertFirst(int id, double dd) {

// 新链接点

Link link = new Link(id, dd);

// 将新链接点的关系子段 next 指向旧的首链接点。

link.next = first;

// 将链表的第一个链接点指向新增的链接点地址。

first = link;

}

// 删除:将当前first 指向第二个链接点断开和第一个链接点的连接,

public Link deleteFirst() {

Link temp = first;

first = first.next;

return first;

}

// 查询

public Link find(int key) {

// 将link

Link current = first;

// 如果当前link 不是要查询的数据,则通过它next 子段,查询到下一个链接点。

// 直到找到为止

while (current.iData != key) {

if (current.next != null) {

// 如果不是要查询的数据,则通过关系访问下一个链接点,

// 注意,这里没有下标的概念,所有查询通过关系来操作。

current = current.next;

} else {

System.out.println("没有找到数据");

current = null;

break;

}

}

return current;

}

// 删除:主需要将删除链接点的前一个链接点的next地址指向删除链接点的下一个链接点位置。

// 链表删除不需要考虑链表中的其他数据,之需要改变删除连接之前链接点的地址而已。

// 操作的对象只有删除链接点的前后两个链接点。其他链接点不需要操作,因为他们不像数

// 依靠位置来决定数据的,这里只是根据关系来操作,抽象说只是操作链接点指向,也就是改变关系。

public void deleteLike(int key) {

// 当前链接点

Link current = first;

// 前一个链接点

Link privous = first;

boolean isfind = true;

// 判断是否是要删除的链接点

while (current.iData != key) {

// 如果还有下一个链接点,更换当前的两个链接点

if (current.next != null) {

// 两个链接点均想后移动一位,继续判断

privous = current;

current = current.next;

} else {

System.out.println("no find the Data");

current = null;

isfind = false;

break;

}

}

// 判断是否找到要删除的数据

if (isfind == true) {

// 如果要删除的是首个链接点,则将first 指向当前链接点的下一个点,

first.next

if (current == first) {

first = first.next;

} else {

// 如果不是删除首链接点,则将要删除的链接点的前一个链接点的next地址指向

// 删除点的下一个链接点即可。

// 注意:删除操作只是改变的链接点的指向,并没有实际删除了数据。该数据将被回收机制处理。

privous.next = current.next;

}

} else {

System.out.println("no find the Data of delete");

}

}

public Link displayList() {

System.out.println("List (fist - -> last )");

Link top = first;

while (top != null) {

top.displayLink();

top = top.next;

}

;

return top;

}

public boolean isEmpty() {

return (first == null);

}

public static void main(String[] args) {

LinkList l = new LinkList();

// 增加

l.insertFirst(1, 1d);

l.insertFirst(2, 2d);

l.insertFirst(3, 3d);

l.displayList();

// 查询

Link findLink = l.find(6);

if (findLink != null) {

System.out.println(findLink.dData);

}

// 删除

l.deleteLike(7);

l.displayList();

}

}

// 链接点对象

class Link {

public int iData;

public double dData;

// 关系子段,用于存储下一个链接点的位置

public Link next;

public Link(int id, double dd) {

this.iData = id;

this.dData = dd;

}

public void displayLink() {

System.out.println("{" + iData + "," + dData + "}"); }

}

实验二 链表操作实现

实验二链表操作实现 实验日期: 2017 年 3 月 16 日 实验目的及要求 1. 熟练掌握线性表的基本操作在链式存储上的实现; 2. 以线性表的各种操作(建立、插入、删除、遍历等)的实现为重点; 3. 掌握线性表的链式存储结构的定义和基本操作的实现; 4. 通过本实验加深对C语言的使用(特别是函数的参数调用、指针类型的应用)。 实验容 已知程序文件linklist.cpp已给出学生身高信息链表的类型定义和基本运算函数定义。 (1)链表类型定义 typedef struct { int xh; /*学号*/ float sg; /*身高*/ int sex; /*性别,0为男生,1为女生*/ } datatype; typedef struct node{ datatype data; /*数据域*/ struct node *next; /*指针域*/ } LinkNode, *LinkList; (2)带头结点的单链表的基本运算函数原型 LinkList initList();/*置一个空表(带头结点)*/ void createList_1(LinkList head);/*创建单链表*/ void createList_2(LinkList head);/* 创建单链表*/ void sort_xh(LinkList head);/*单链表排序*/ void reverse(LinkList head);/*对单链表进行结点倒置*/ void Error(char *s);/*自定义错误处理函数*/ void pntList(LinkList head);/*打印单链表*/ void save(LinkList head,char strname[]);/*保存单链表到文件*/

数据结构 单链表基本操作代码

实验一单链表 #include "stdio.h" #include "stdlib.h" typedef int ElemType; typedef struct LNode { ElemType data; struct LNode *next; }LNode,*LinkList; void creatLNode(LinkList &head) { int i,n; LNode *p; head=(LNode*)malloc(sizeof(LNode)); head->next=NULL; printf("请输入链表的元素个数:"); scanf("%d",&n); for(i=n;i>0;i--) { p=(LNode*)malloc(sizeof(LNode)); printf("第%d个元素:",i); scanf("%d",&p->data); p->next=head->next; head->next=p; } } void InsertLNode(LinkList &L) { LNode *p=L; int i,j=0,e; printf("请输入你要插入的位置(超过链表长度的默认插在最后!):"); scanf("%d",&i); printf("请输入你要插入的元素:"); scanf("%d",&e); while (p->next&&jnext; ++j; }

LNode *s; s=(LNode*)malloc(sizeof(LNode)); s->data=e; s->next=p->next; p->next=s; } int DeleteLNode(LinkList &L,int i,int &e) { LNode *p; p=L; LNode *q; int j=0; while (p->next&&jnext; ++j; } if(!(p->next)||j>i-1) { printf("删除位置不合理!\n"); return 0; } q=p->next; p->next=q->next; e=q->data; free(q); return e; } void DeleteCF(LinkList &L) { LNode *p,*s,*r; p=L->next; while(p!=NULL) { r=p; s=r->next; while(s!=NULL) { if(p->data==s->data) { r->next=s->next; s=s->next;

Java 链表操作

链表是一种重要的数据结构,在程序设计中占有很重要的地位。C语言和C++语言中是用指针来实现链表结构的,由于Java语言不提供指针,所以有人认为在Java语言中不能实现链表,其实不然,Java语言比C和C++更容易实现链表结构。Java语言中的对象引用实际上是一个指针(本文中的指针均为概念上的意义,而非语言提供的数据类型),所以我们可以编写这样的类来实现链表中的结点。 class Node { Object data; Node next;// 指向下一个结点 } 将数据域定义成Object类是因为Object类是广义超类,任何类对象都可以给其赋值,增加了代码的通用性。为了使链表可以被访问还需要定义一个表头,表头必须包含指向第一个结点的指针和指向当前结点的指针。为了便于在链表尾部增加结点,还可以增加一指向链表尾部的指针,另外还可以用一个域来表示链表的大小,当调用者想得到链表的大小时,不必遍历整个链表。下图是这种链表的示意图: 链表的数据结构 我们可以用类List来实现链表结构,用变量Head、Tail、Length、Pointer来实现表头。存储当前结点的指针时有一定的技巧,Pointer并非存储指向当前结点的指针,而是存储指向它的前趋结点的指针,当其值为null时表示当前结点是第一个结点。那么为什么要这样做呢?这是因为当删除当前结点后仍需保证剩下的结点构成链表,如果Pointer指向当前结点,则会给操作带来很大困难。那么如何得到当前结点呢,我们定义了一个方法cursor(),返回值是指向当前结点的指针。类List还定义了一些方法来实现对链表的基本操作,通过运用这些基本操作我们可以对链表进行各种操作。例如reset()方法使第一个结点成为当前结点。insert(Object d)方法在当前结点前插入一个结点,并使其成为当前结点。remove()方法删除当前结点同时返回其内容,并使其后继结点成为当前结点,如果删除的是最后一个结点,则第一个结点变为当前结点。 链表类List的源代码如下:

数据结构(Java版)-线性表的实现与应用完整版

数据结构(Java版)-线性表的实现与应用完整版

实验报告 课程名称数据结构 实验项目线性表的实现及应用 实验仪器PC机一台 学院_____ 专业 班级/学号 姓名 实验日期 成绩 指导教师

北京信息科技大学 信息管理学院 (数据结构课程上机)实验报告 专业: 班级: 学号: 姓名: 成绩: 实验名称线性表的实现及应用实验地点实验时间 1.实验目的: (1)理解用顺序表实现线性表的特点;熟练掌握顺序表的基本操作;学会利用顺序表解决实际应用问题。 (2)熟练掌握单链表的使用;理解用链表实现线性表的特点;了解链表的多种形式;学会利用单链表解决实际应用问题。 2.实验要求: (1)学时为8学时; (2)能在机器上正确、调试运行程序; (3)本实验需提交实验报告; (4)实验报告文件命名方法:数据结构实验_信管16xx_学号_姓名.doc。 3.实验内容和步骤: 第一部分顺序表的实现与应用 (1)基于顺序表实现线性表的以下基本操作: public interface LList { //线性表接口,泛型参数T表示数据元素的数据类型 boolean isEmpty(); //判断线性表是否空 int size(); //返回线性表长度 T get(int i); //返回第i(i≥0)个元素 void set(int i, T x); //设置第i个元素值为x void insert(int i, T x); //插入x作为第i个元素 void insert(T x); //在线性表最后插入x元素 T remove(int i); //删除第i个元素并返回被删除对象 int search(T key); //查找,返回首次出现的关键字为key的元素的位序void removeAll(); //删除线性表所有元素 public String toString();//返回顺序表所有元素的描述字符串,形式为“(,)” } 要求:实现后应编写代码段对每个基本操作做测试。

实验三四 链表的实现和应用

江南大学物联网工程学院上机报告
课程名称 班 级 数据结构 上机名称 姓 名 链表的实现和应 用 上机日期 学 号 2016.3.11 上机报告要求 1.上机名称 2.上机要求 3.上机环境 4.程序清单(写明运行结果) 5.上机体会
1.上机名称
链表的实现和应用
2.上机要求
⑴定义线性表的链式存储表示; ⑵基于所设计的存储结构实现线性表的基本操作; ⑶编写一个主程序对所实现的线性表进行测试; ⑷线性表的应用:①设线性表 L1和 L2分别代表集合 A 和 B,试设计算法求 A 和 B 的并集 C,并用线 性表 L3代表集合 C;②设线性表 L1和 L2中的数据元素为整数,且均已按值非递减有序排列,试 设计算法对 L1和 L2进行合并,用线性表 L3保存合并结果,要求 L3中的数据元素也按值非递减 有序排列。 ⑸设计一个一元多项式计算器,要求能够:①输入并建立多项式;②输出多项式;③执行两个多项式 相加;④执行两个多项式相减;⑤(选做)执行两个多项式相乘。
3.上机环境
Visual C++ 6.0
4.程序清单(写明运行结果)
(1) #include #include typedef int datatype; typedef struct node { datatype data; struct node *next; }LinkList; LinkList *CREATLISTF(LinkList *L,int n) { intnum,i; LinkList *head,*s,*r; head=L; r=head; head->next=NULL;

单链表的基本操作

上机实验报告 学院:计算机与信息技术学院 专业:计算机科学与技术(师范)课程名称:数据结构 实验题目:单链表建立及操作 班级序号:师范1班 学号:201421012731 学生姓名:邓雪 指导教师:杨红颖 完成时间:2015年12月25号

一、实验目的: (1)动态地建立单链表; (2)掌握线性表的基本操作:求长度、插入、删除、查找在链式存储结构上的实现; (3)熟悉单链表的应用,明确单链表和顺序表的不同。 二、实验环境: Windows 8.1 Microsoft Visual c++ 6.0 三、实验内容及要求: 建立单链表,实现如下功能: 1、建立单链表并输出(头插法建立单链表); 2、求表长; 3、按位置查找 4、按值查找结点; 5、后插结点; 6、前插结点 7、删除结点; 四、概要设计: 1、通过循环,由键盘输入一串数据。创建并初始化一个单链表。 2、编写实现相关功能函数,完成子函数模块。 3、调用子函数,实现菜单调用功能,完成顺序表的相关操作。

五、代码: #include #include typedef char datatype; typedef struct node { datatype data; struct node *next; }linklist; linklist *head,*p; //头插法建立单链表 linklist *Creatlistf() { char ch; linklist *head,*s; head=NULL; ch=getchar(); printf("请输入顺序表元素(数据以$结束):\n"); while(ch!='$') { s=(linklist *)malloc(sizeof(linklist)); s->data=ch; s->next=head; head=s; ch=getchar(); } return head; } //求单链表的长度 void get_length(struct node *head) { struct node *p=head->next; int length=0;

单链表的基本操作 C语言课程设计

课程设计(论文) 题目名称单链表的基本操作 课程名称C语言程序课程设计 学生姓名 学号 系、专业信息工程系、网络工程专业 指导教师成娅辉 2013年6月6 日

目录 1 前言 (3) 2 需求分析 (3) 2.1 课程设计目的 (3) 2.2 课程设计任务 (3) 2.3 设计环境 (3) 2.4 开发语言 (3) 3 分析和设计 (3) 3.1 模块设计 (3) 3.2 系统流程图 (4) 3.3 主要模块的流程图 (6) 4 具体代码实现 (9) 5 课程设计总结 (12) 5.1 程序运行结果 (12) 5.2 课程设计体会 (12) 参考文献 (13) 致谢 (13)

1 前言 我们这学期学习了开关语句,循环语句、链表、函数体、指针等的应用,我们在完成课程设计任务时就主要用到这些知识点,本课题是单链表的简单操作,定义四个子函数分别用来创建链表、输出链表、插入数据以及删除数据,主函数中主要用到开关语句来进行选择调用哪个子函数,下面就是课程设计的主要内容。 2 需求分析 2.1 课程设计目的 学生在教师指导下运用所学课程的知识来研究、解决一些具有一定综合性问题的专业课题。通过课程设计(论文),提高学生综合运用所学知识来解决实际问题、使用文献资料、及进行科学实验或技术设计的初步能力,为毕业设计(论文)打基础。 2.2 课程设计任务 输入一组正整数,以-1标志结束,用函数实现:(1)将这些正整数作为链表结点的data域建立一个非递减有序的单链表,并输出该单链表;(2)往该链表中插入一个正整数,使其仍保持非递减有序,输出插入操作后的单链表;(3)删除链表中第i个结点,输出删除操作后的单链表,i从键盘输入。 2.3 设计环境 (1)WINDOWS 7系统 (2)Visual C++ 2.4 开发语言 C语言 3 分析和设计 3.1 模块设计 定义链表结点类型struct node表示结点中的信息,信息包括数据域data(用于存放结点中的有用数据)以及指针域next(用于存放下一个结点的地址),并将链表结点类型名改为NODE。如下所示:

双向链表基本操作

双向链表 输入一个双向链表,显示些双向链表并对此双向链表排序运行结果: 源程序: #include #include #include

typedef struct Link/*双向链表结构体*/ { int data; struct Link *lift; struct Link *right; }linkx,*linky; linky Init();/*建立双向链表*/ void PrLink(linky p);/*输出双向链表*/ linky Sort(linky head);/*对双向链表排序*/ linky Swap(linky head,linky one,linky two);/*任意交换双向链表两个结点的地址*/ void main(void) { linky head; head=Init(); head=Sort(head); PrLink(head); } linky (Init())/*建立链表*/ { linky p,q,head; int n=0; head=p=q=(linky)malloc(sizeof(linkx)); printf("排序前的链表: "); scanf("%d",&p->data);/*输入数据*/ head->lift=NULL; n++; while(n!=10)/*一直输入到规定的数字个数停止*/ { q=p;

p=(linky)malloc(sizeof(linkx)); scanf("%d",&p->data);/*输入数据*/ q->right=p; p->lift=q; n++; } p->right=NULL; return(head); } linky Swap(linky head,linky one,linky two)/*任意交换两个结点*/ {linky temp; if(one->lift==NULL&&two->right==NULL)/*首和尾巴的交换*/ { if(one->right==two)/*只有两个结点的情况下*/ { two->right=one; two->lift=NULL; one->lift=two; one->right=NULL; head=two; } else/*有间隔的首尾交换*/ { one->right->lift=two; two->lift->right=one; two->right=one->right; one->lift=two->lift; two->lift=one->right=NULL; head=two;/*尾结点成为头结点*/ }

JAVA数据结构——单链表的操作

单链表的操作方法一: package ch02; (1)建立结点类Node.java public class Node { public Object data;//存放结点数据值 public Node next;//存放后继结点 //无参构造函数 public Node(){ this(null,null); } //只有结点值的构造函数 public Node(Object data){ this(data,null); } //带有节点值和后继结点的构造函数 public Node(Object data,Node next){ this.data=data; this.next=next; } } (2)建立链表及操作LinkList.java package ch02; import java.util.Scanner;

public class LinkList implements IList{ public Node head;//单链表的头指针 //构造函数初始化头结点 public LinkList(){ head=new Node(); } //构造函数构造长度为n的单链表 public LinkList(int n,boolean Order) throws Exception{ this(); if(Order) create1(n); //头插法顺序建立单链表 else create2(n); //尾插法逆序建立单链表 } //头插法顺序建立单链表 public void create1(int n) throws Exception{ Scanner sc=new Scanner(System.in); System.out.println("请输入结点的数据(头插法):"); for(int i=0;i

单链表的建立及其基本操作的实现(完整程序)

#include "stdio.h"/*单链表方式的实现*/ #include "malloc.h" typedef char ElemType ; typedef struct LNode/*定义链表结点类型*/ { ElemType data ; struct LNode *next; }LNode,*LinkList;/*注意与前面定义方式的异同*/ /*建立链表,输入元素,头插法建立带头结点的单链表(逆序),输入0结束*/ LinkList CreateList_L(LinkList head) { ElemType temp; LinkList p; printf("请输入结点值(输入0结束)"); fflush(stdin); scanf("%c",&temp); while(temp!='0') { if(('A'<=temp&&temp<='Z')||('a'<=temp&&temp<='z')) { p=(LinkList)malloc(sizeof(LNode));/*生成新的结点*/ p->data=temp; p->next=head->next; head->next=p;/*在链表头部插入结点,即头插法*/ } printf("请输入结点值(输入0结束):"); fflush(stdin); scanf("%c",&temp); } return head; } /*顺序输出链表的内容*/ void ListPint_L(LinkList head) { LinkList p; int i=0; p=head->next; while(p!=NULL) { i++; printf("单链表第%d个元素是:",i);

链表的基本操作(基于C)

#include #include struct Student { char cName[20]; int iNumber; struct Student* pNext; }; int iCount; struct Student* Create() { struct Student* pHead=NULL; struct Student* pEnd,*pNew; iCount=0; pEnd=pNew=(struct Student*)malloc(sizeof(struct Student)); printf("please first enter Name ,then Number\n"); scanf("%s",&pNew->cName); scanf("%d",&pNew->iNumber); while(pNew->iNumber!=0) { iCount++; if(iCount==1) { pNew->pNext=pHead; pEnd=pNew; pHead=pNew; } else { pNew->pNext=NULL; pEnd->pNext=pNew; pEnd=pNew; } pNew=(struct Student*)malloc(sizeof(struct Student)); scanf("%s",&pNew->cName); scanf("%d",&pNew->iNumber); } free(pNew); return pHead; }

void Print(struct Student* pHead) { struct Student *pTemp; int iIndex=1; printf("----the List has %d members:----\n",iCount); printf("\n"); pTemp=pHead; while(pTemp!=NULL) { printf("the NO%d member is:\n",iIndex); printf("the name is: %s\n",pTemp->cName); printf("the number is: %d\n",pTemp->iNumber); printf("\n"); pTemp=pTemp->pNext; iIndex++; } } struct Student* Insert(struct Student* pHead) { struct Student* pNew; printf("----Insert member at first----\n"); pNew=(struct Student*)malloc(sizeof(struct Student)); scanf("%s",&pNew->cName); scanf("%d",&pNew->iNumber); pNew->pNext=pHead; pHead=pNew; iCount++; return pHead; } void Delete(struct Student* pHead,int iIndex) { int i; struct Student* pTemp; struct Student* pPre; pTemp=pHead; pPre=pTemp; printf("----delete NO%d member----\n",iIndex); for(i=1;i

用Java写一个链表数据

用Java写一个链表数据 Java代码 1.package arrayListTest; 2.//定义一个链表 3.public class Node{ 4. 5.private int m_Data;//链表中的数据 6.private Node m_Next;//链表中指针属性指向下个Node 对象的对象应用 7.Node(int data){ 8.m_Data=data; 9.m_Next=null; 10.} 11.Node(int data,Node next){ 12.m_Data=data; 13.m_Next=next; 14.} 15.void setData(int data){//修改节点中的数据 16.m_Data=data; 17. 18.} 19.int getData(){//获得节点中的数据 20.return m_Data; 21.} 22.void setNext(Node next){//修改节点的指针 23.m_Next=next; 24.} 25.Node getNext(){//获得节点中的指针指向的对象的引用 26.return m_Next; 27.} 28.} Java代码 1.package arrayListTest; 2.//修改链表 3.public class LinksList{ 4. 5.Node m_FirstNode;//链表中的第一个节点 6.//构造函数

7.LinksList(){ 8.m_FirstNode=null; 9.} 10.LinksList(int data){ 11.m_FirstNode=new Node(data); 12.} 13.String visitAllNode(){//遍历数据将数据串成一个字符 串返回一个S 14.Node next=m_FirstNode; 15.String s=""; 16.while(next!=null){ 17.s=s+next.getData()+";"; 18.next=next.getNext(); 19.} 20.return s; 21.} 22.void insertAtBegin(int data){//将数据插入到节点的前 面 23.if(m_FirstNode==null){//如果是空链表的话直接插入就可以 了 24.m_FirstNode=new Node(data);//把data做为第一个 节点传给Node对象 25.} 26.else{ 27.m_FirstNode=new Node(data,m_FirstNode);//把新节点 插入到第一个节点的前面并指向原来的第一个节点 28.} 29.} 30.void insertAfterId(int data,int id){//将数据data插入到 包含数据ID的节点后面若连接没有id则插入在整个链表的最后 31.Node next=m_FirstNode; 32.if(next==null){//对空链表直接插入 33.m_FirstNode=new Node(data); 34.}else{ 35.while(next.getNext()!=null&&next.getData()==id){ 36.next=next.getNext();//找到合适的插入位置 37.//Node i=next.getNext();//创建一个next的指 针 38.//Node next1=new Node(data,i);//创建Node的 对象把data插入到I的位置上 39.//next.setNext(next1); 40.next.setNext(new Node(data,next.getNext()));// 按照id来设置数据

链表的基本操作-数据结构实验报告

大学数据结构实验报告 课程名称数据结构实验第(四)次实验实验名称链表的基本操作 学生姓名于歌专业班级学号 实验成绩指导老师(签名)日期2018年10月01日 一、实验目的 1. 学会定义单链表的结点类型,实现对单链表的一些基本操作和具体 的函数定义,了解并掌握单链表的类定义以及成员函数的定义与调用。 2. 掌握单链表基本操作及两个有序表归并、单链表逆置等操作的实现。 二、实验要求 1.预习C语言中结构体的定义与基本操作方法。 2.对单链表的每个基本操作用单独的函数实现。 3.编写完整程序完成下面的实验内容并上机运行。 4.整理并上交实验报告。 三、实验内容: 1.编写程序完成单链表的下列基本操作: (1)初始化单链表La (2)在La中插入一个新结点 (3)删除La中的某一个结点 (4)在La中查找某结点并返回其位置 (5)打印输出La中的结点元素值 (6)清空链表 (7)销毁链表 2 .构造两个带有表头结点的有序单链表La、Lb,编写程序实现将La、 Lb合并成一个有序单链表Lc。 四、思考与提高: 1.如果上面实验内容2中合并的表内不允许有重复的数据该如何操作? 2.如何将一个带头结点的单链表La分解成两个同样结构的单链表Lb,Lc,使得Lb中只含La表中奇数结点,Lc中含有La表的偶数结点?五、实验设计 1.编写程序完成单链表的下列基本操作: (1)初始化单链表La LinkList InitList() {

int i,value,n; LinkList H=(LinkList)malloc(sizeof(LNode)); LinkList P=H; P->next=NULL; do{ printf("请输入链表的长度:"); scanf("%d",&n); if(n<=0) printf("输入有误请重新输入!\n"); }while(n<=0); printf("请输入各个元素:\n"); for(i=0; idata=value; P->next=NEW; NEW->next=NULL; P=NEW; } printf("链表建立成功!\n"); return H->next; } (2)在La中插入一个新结点 LinkList InsertList(LinkList L,int i,ElemType value) { LinkList h,q,t=NewLNode(t,value); int x=0; h=q=L; if(i==1) t->next=h, h=t; else { while(x++next; t->next=q->next; q->next=t; } printf("插入成功!\n"); return h; } (3)删除La中的某一个结点

链表基本操作实验报告

实验2 链表基本操作实验 一、实验目的 1. 定义单链表的结点类型。 2. 熟悉对单链表的一些基本操作和具体的函数定义。 3. 通过单链表的定义掌握线性表的链式存储结构的特点。 二、实验内容与要求 该程序的功能是实现单链表的定义和主要操作。如:单链表建立、输出、插入、删除、查找等操作。该程序包括单链表结构类型以及对单链表操作的具体的函数定义和主函数。程序中的单链表(带头结点)结点为结构类型,结点值为整型。 要求: 同学们可参考指导书实验2程序、教材算法及其他资料编程实现单链表相关操作。必须包括单链表创建、输出、插入、删除操作,其他操作根据个人情况增减。 三、 算法分析与设计。 头结点 ......

2.单链表插入 s->data=x; s->next=p->next; p->next=s; 3.单链表的删除: p->next=p->next->next;

四、运行结果 1.单链表初始化 2.创建单链表 3.求链表长度 4.检查链表是否为空 5.遍历链表 6.从链表中查找元素 7.从链表中查找与给定元素值相同的元素在顺序表中的位置

8.向链表中插入元素 插入元素之后的链表 9.从链表中删除元素 删除位置为6的元素(是3) 10.清空单链表 五、实验体会 经过这次单链表基本操作实验,自己的编程能力有了进一步的提高,认识到自己以前在思考一个问题上思路不够开阔,不能灵活的表达出自己的想法,虽然在打完源代码之后出现了一些错误,但是经过认真查找、修改,最终将错误一一修正,主要是在写算法分析的时候出现了障碍,经过从网上查找资料,自己也对程序做了仔细的分析,对单链表创建、插入、删除算法画了详细的N-S流程图。

单链表基本操作实验

实验2 链表的操作 实验容: 1)基础题:编写链表基本操作函数,链表带有头结点 (1)CreatList_h()//用头插法建立链表 (2)CreateList_t()//用尾插法建立链表 (3)InsertList()向链表的指定位置插入元素 (4)DeleteList()删除链表中指定元素值 (5)FindList()查找链表中的元素 (6)OutputList()输出链表中元素 2)提高题: (1)将一个头节点指针为heada的单链表A分解成两个单链表A和B,其头结点指针分别为heada和headb,使得A表中含有原单链表A中序号为奇数的元素,B表中含有原链表A中序号为偶数的元素,且保持原来的相对顺序。 (2)将一个单链表就地逆置。 即原表(a1,a2,。。。。。。 an),逆置后新表(an,an-1,。。。。。。。a1) /* 程序功能 :单链表基本功能操作 编程者 :天啸 日期 :2016-04-14 版本号 :3.0 */ #include #include typedef struct List { int data; struct List *next; }List; void CreatList_h(List *L) //头插法 { int i = 0; int n = 0; int goal; List *p; printf("请输入数据的个数:\n"); scanf("%d",&n); L -> next = NULL; for(i=0;i

{ printf("请输入第%d个数:\n",i+1); scanf("%d",&goal); p = (struct List*)malloc(sizeof(struct List)); p -> data = goal; p -> next = L->next; //将L指向的地址赋值给p; L -> next = p; } } void CreateList_t(List *L) //尾插法 { int i; int n; int goal; List *p; List *q=L; printf("请输入数据的个数:\n"); scanf("%d",&n); for (i=0;i data = goal; q -> next = p; q = p; } q -> next = NULL; } void InsList(List *L,int i,int e) //插入 { List *s; List *p = L; int j = 0; while (p&&jnext; ++j; } s = (struct List*)malloc(sizeof(struct List)); s -> data = e; //插入L中

《数据结构Java版》线性表之单链表的建立及操作

《数据结构Java》线性表之单链表的建立及操作 package sjjg3; //单链表结点类,T指定结点的元素类型 public class Node { public T data;//数据域,存储数据元素 public Node next;//地址域,引用后继结点 public Node(T data,Node next) {//构造结点,data指定数据元素,next指定后继结点 this.data=data;//T对象引用赋值 this.next=next;//Node对象引用赋值 } public Node() { this(null, null); } public String toString() {//返回结点数据域的描述字符串 return this.data.toString(); } } package sjjg3; //单链表类,实现ADT List声明方法,T表示数据元素的数据类型 public class SinglyList extends Object{ public Node head;//头指针,指向单链表的头结点 //(1)构造方法 public SinglyList() {//构造空单链表 this.head=new Node();//创建头结点,data和next值均为null } public SinglyList(T[] values) {//构造单链表,由values数组提供元素this();//创建空单链表,只有头结点 Node rear=this.head;//rear指向单链表最后一个结点 for(int i=0;i(values[i],null);//尾插入,创建结点链入rear结点之后 rear=rear.next;//rear指向新的链尾结点 } } public boolean isEmpty() {//判断单链表是否空,O(1) return this.head.next==null; } //(2)存取 public T get(int i) {//返回第i个元素,0<=i<表长度。若i越界,则返回null。O(n) Node p=this.head.next; for(int j=0;p!=null && j

链表基本操作实验报告

实验2 链表基本操作实验 一、实验目的 1.定义单链表的结点类型。 2.熟悉对单链表的一些基本操作和具体的函数定义。 3.通过单链表的定义掌握线性表的链式存储结构的特点。 二、实验内容与要求 该程序的功能是实现单链表的定义和主要操作。如:单链表建立、输出、插入、删除、查找等操作。该程序包括单链表结构类型以及对单链表操作的具体的函数定义和主函数。程序中的单链表(带头结点)结点为结构类型,结点值为整型。 要求: 同学们可参考指导书实验2程序、教材算法及其他资料编程实现单链表相关操作。必须包括单链表创建、输出、插入、删除操作,其他操作根据个人情况增减。 三、算法分析与设计。 1.创建单链表: 头结点L

...... 2.单链表插入

s s->data=x; s->next=p->next; p->next=s; 3.单链表的删除: p->next=p->next->next;

四、运行结果 1.单链表初始化 2.创建单链表 3.求链表长度 4.检查链表是否为空 5.遍历链表 6.从链表中查找元素 7.从链表中查找与给定元素值相同的元素在顺序表中的位置

8.向链表中插入元素 插入元素之后的链表 9.从链表中删除元素 删除位置为6的元素(是3) 10.清空单链表 五、实验体会 经过这次单链表基本操作实验,自己的编程能力有了进一步的提高,认识到自己以前在思考一个问题上思路不够开阔,不能灵活的表达出自己的想法,虽然在打完源代码之后出现了一些错误,但是经过认真查找、修改,最终将错误一一修正,主要是在写算法分析的时候出现了障碍,经过从网上查找资料,自己也对程

链表的基本操作

2.链表的基本操作 对链表施行的操作有很多种,最基本的操作是在链表中插入结点、在链表中删除结点、在链表中查找结点等。 (1) 链表结点的插入 ①在空链表中插入一个结点 空链表就是头指针为空的链表。 a)用如下语句申请一个new结点: new=(struct node)calloc(1,sizeof(struct node)); b)为new结点填充数据:将要存储的数据对应传递给new结点数据域的各个成员。 c)修改有关指针的指向:将new的next成员置空,使new结点成为链表的最后一个结点;将head指向new结点。 ②在链表的结点之后插入一个结点 要在链表head的C、D结点之间出入一个new结点,就是将new结点变成C结点的下一个结点,而new结点的下一个结点为D结点. 操作过程为: a) 使new的指针域存储结点D的首地址。 b) 使C结点的指针域存储结点new的地址。 例2 建立学生成绩链表,链表有3个结点。 #include #define N 3 struct s_node { char num[4]; int score;

struct s_node *next; }; main() { struct s_node *creat_node(void); /*生成链表结点的函数*/ struct s_node *creat_list(int n); /*建立链表的函数*/ void out_list(struct s_node *head); /*输出链表函数*/ struct s_node *head=NULL; head=creat_list(N); out_list(head); } struct s_node *creat_node(void) /*生成链表结点的函数*/ { struct s_node *p; int score; fflush(stdin); p=(struct s_node *)calloc(1,sizeof(struct s_node)); gets(p->num); scanf("%d",&score); p->score=score; p->next=NULL; return(p);

相关文档
最新文档