高三数学数列综合练习题二

高三数学数列综合练习题二
高三数学数列综合练习题二

高三数学数列综合练习题一

1、在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=

( )

A .58

B .88

C .143

D .176

2.已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=

( )

A .7

B .5

C .-5

D .-7

3、已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N*,则S 10的值为( ) (A). -110

(B). -90 (C). 90

(D). 110

4、设n S 为等差数列{}n a 的前n 项和,若241,5a a ==,则5S 等于( )

A .7

B .15

C .30

D .31

5.夏季高山上气温从山脚起每升高100 m 降低0.7 ℃,已知山顶的气温是14.1 ℃,山脚的气温是26 ℃.那么,此山相对于山脚的高度是( )

A .1500 m

B .1600 m

C .1700 m

D .1800 m 6、公差不为零的等差数列{}n a 的前n 项和为n S ,若4a 是37a a 与的等比中项,832S =,则10S 等于( )

A .18

B .24

C .60

D .90

7 .公比为3

2等比数列{}n a 的各项都是正数,且31116a a =,则

( )

A .4

B .5

C .6

D .7 8.已知等比数列{a n }中,a 2=1,则其前3项的和S 3的取值范围是( )

A .(-∞,-1]

B .(-∞,0)∪(1,+∞)

C .[3,+∞)

D .(-∞,-1]∪[3,+∞)

9.满足*

12121,log log 1()n n a a a n +==+∈N ,它的前n 项和为n S ,则满足1025n S >的最小n

值是( )A .9 B .10 C .11 D .12 10.已知数列1,12,21,13,22,31,14,23,32,41,…,则5

6

是此数列中的( )

A .第48项

B .第49项

C .第50项

D .第51项

11、(2012江西理)设数列{}{},n n a b 都是等差数列,若11337,21a b a b +=+=,则

55a b +=_________

12.【2012粤西北九校联考理】在数列}{n a 中,3

11=a ,n S 为数列}{n a 的前项和且

n n a n n S )12(-=,则=n S ;

13.(2012广东理)已知递增的等差数列{}n a 满足11a =,2

324a a =-,则n a =_____________

14.(2012年高考(福建理))数列{}n a 的通项公式cos

12

n n a n π=+,前n 项和为n S ,则

2012S =___________.

题号 1 2 3 4 5 6 7 8 9 10 答案

13 14

15 16

15已知数列}{n a 是等差数列,22 , 1063==a a ,数列}{n b 的前n 项和是n S ,且13

1=+n n b S .

(I )求数列}{n a 的通项公式;(II )求证:数列}{n b 是等比数列;

16已知数列{}n a 满足:2,121==a a ,),2(2*

11N n n a a a n n n ∈≥+=+-,数列{}n b 满足

21=b ,n n n n b a b a 112++=.(Ⅰ)求数列{}n a 的通项n a ; (Ⅱ)求证:数列?

??

??

?n b n 为等比数列;并

求数列{}n b 的通项公式.

17.已知数列n a 满足)(2

222*1

3221N n n a a a a n n ∈=

+???+++-

(Ⅰ)求数列{}n a 的通项;(Ⅱ)若n

n a n b =求数列{}n b 的前n 项n S 和

18数列}{n a 的前n 项和记为n S ,t a =1,点1(,)n n S a +在直线31y x =+上,N n *∈.(Ⅰ)当实数

t 为何值时,数列}{n a 是等比数列?(Ⅱ)在(Ⅰ)的结论下,设41log n n b a +=,n n n c a b =+,

n T 是数列{}n c 的前n 项和,求n T 。

高三数学数列综合练习题一

1. B 在等差数列中,111111481111()

16,882

a a a a a a s ?++=+=∴=

= ,答案为B

2. D 472a a +=,56474784,2a a a a a a ==-?==-或472,4a a =-=

471101104,28,17a a a a a a ==-?=-=?+=- 471011102,48,17a a a a a a =-=?=-=?+=-

3、D

解:a 7是a 3与a 9的等比中项,公差为-2,所以a 72

=a 3?a 9,所以a 72

=(a 7+8)(a 7-4),所以a 7=8,所以a 1=20,所以S 10= 10×20+10×9/2×(-2)=110。故选D

4、B 由等差数列通项公式得:15,1,2,21551=-==+=S a d d

5、C

6、C 由2437a a a =得2

111(3)(2)(6)a d a d a d +=++得1230a d +=,

再由81568322

S a d =+

=得1278a d +=则12,3d a ==-, 所以1019010602

S a d =+

=.故选C.

7.B 2

9

311771672161616432log 5a a a a a a q a =?=?=?=?=?=

8.D 解析:设a 1=x ,且x ≠0,则S 3=x +1+1x ,由函数y =x +1

x 的图像知: x +1x ≥2或x +1

x ≤-2,∴y ∈(-∞,-1]∪[3,+∞). 9、

C 因为*

12121,log log 1()

n n a a a n +==+∈N ,所以

n

n a a 21=+,

1

2

-=n n a ,

1

2-=n

n S ,

则满足1025n S >的最小n 值是11; 10、C

将数列分为第1组一个,第2组二个,…,第n 组n 个,(11),(12,21),(13,22,31

),…,(1

n ,

2n -1

,…,n 1),则第n 组中每个数分子分母的和为n +1,则5

6为第10组中的第5个,其项数为

(1+2+3+…+9)+5=50

11、35

(解法一)因为数列{},{}n n a b 都是等差数列,所以数列{}n n a b +也是等差数列.

故由等差中项的性质,得()()()5511332a b a b a b +++=+,即()557221a b ++=?,解得

5535a b +=.

(解法二)设数列{},{}n n a b 的公差分别为12,d d ,

因为331112111212(2)(2)()2()72()21a b a d b d a b d d d d +=+++=+++=++=, 所以127d d +=.所以553312()2()35a b a b d d +=+++=. 12、21n n S n =+

因为)2()32)(1(,)12(11≥--=-=--n a n n S a n n S n n n n ,

两式相减得)2()32()12(,1≥-=+-n a n a n n n ,求得12,1

412

+=

-=

n n S n a n n

13. 21n -

解析:设公差为d (0d >),则有()2

1214d d +=+-,解得2d =,所以21n a n =-.

14、3018

由cos 12

n n a n π=+,可得2012(1021304120121)2012S =?-?+?+?++?+

(24620102012)2012250320123018=-+-+-++=?+=

15(1)由已知???=+=+.

225,

10211d a d a 解得

4

1为公比的等比数列

16.(Ⅰ) 112n n n a a a -+=+ ∴数列{}n a 为等差数列……3分又2,121==a a 所以21d a a =- 211,=-=数列{}n a 的通项1(1)1(1)1n a a n d n n =+-=+-?=…………6分

(Ⅱ)∵n a n =,∴n n b n nb )1(21+=+.∴n

b n b n n ?=++21

1.所以数列?

??

??

?n b n 是以

121

b =为首项,

2q =为公比的等比数列…………10分1

22

2n n

n n b b n n

-∴

=?∴=?

17(Ⅰ)2

111=

=a n 时 2

2

221

321n a a a a n n =

+???++- (1)

时2≥n 21-22212

321n a a a a n n =

+???++-- (2)

(1)-(2)得2

12

1

=

-n n a 即n

n a 2

1=

又2

11=

a 也适合上式∴n

n a 2

1=

(Ⅱ)2n

n b n =? n

n n S 22322213

2

?+???+?+?+?=

1

3

2

2

2)1(22212+?+?-+???+?+?=n n

n n n S 1

1

1

2

22

2

2

1)21(2+++?--=?---=

n n n n

n n

22

)1(1

+-=∴+n n n S

18(Ⅰ)∵点1(,)n n S a +在直线31y x =+上∴1131,

31,(1)n n n n a S a S n +-=+=+>...2分

113()3,n n n n n a a S S a +--=-=, ∴14,1n n a a n +=>......4分

211313131,

a S a t =+=+=+∴当t=1时,214,a a =数列}{n a 是等比数列。.....6分

(Ⅱ) 在(Ⅰ)的结论下, 14,

n n a a +=14,

n

n a +=...........8分

41log n n b a n +==,....9分14

n n n n c a b n -=+=+, .....10分

1

1122

1

...(41)(42) (4)

41(1)(144 (4)

)(123...)3

2

n n n n

n T c c c n n n n --=+++=++++++-+=+++++++++=

+

.......12分

数列综合测试题与答案

高一数学数列综合测试题 1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667 B .668 C .669 D .670 2.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A .33 B .72 C .84 D . 3.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8<a 4+a 5 D .a 1a 8=a 4a 5 4.已知方程(x 2 -2x +m )(x 2 -2x +n )=0的四个根组成一个首项为4 1 的等差数列,则|m -n |等于( ). A .1 B . 4 3 C . 2 1 D . 8 3 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .192 6.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大 自然数n 是( ). A .4005 B .4006 C .4007 D .4008 7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A .-4 B .-6 C .-8 D . -10 8.设S n 是等差数列{a n }的前n 项和,若35a a =9 5 ,则59S S =( ). A .1 B .-1 C .2 D . 2 1 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则2 1 2b a a -的值是( ). A . 2 1 B .- 2 1 C .- 21或2 1 D . 4 1 10.在等差数列{a n }中,a n ≠0,a n -1-2 n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ). A .38 B .20 C .10 D .9 二、填空题 11.设f (x )= 2 21+x ,利用课本中推导等差数列前n 项和公式的方法,可求得f (-5)+f (-4)+…+f (0)+…+ f (5)+f (6)的值为 . 12.已知等比数列{a n }中, (1)若a 3·a 4·a 5=8,则a 2·a 3·a 4·a 5·a 6= . (2)若a 1+a 2=324,a 3+a 4=36,则a 5+a 6= . (3)若S 4=2,S 8=6,则a 17+a 18+a 19+a 20= .

2016届高考数学经典例题集锦:数列(含答案)

数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+= . (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++++= , 所以证得31 2n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公差为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{}n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=. (2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况. 解:(1)已知212322a a a +++ (1) 2n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2) 128(1)n n a n --+=-(n ∈*N )②

高中数学数列专题大题训练

高中数学数列专题大题组卷 一.选择题(共9小题) 1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260 2.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D. 3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=() A.3×44B.3×44+1 C.44D.44+1 4.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D. 6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6 8.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=() A.n(n+1)B.n(n﹣1)C.D. 9.设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题) 10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.

数列综合测试附答案

复习综合测试 一.选择题(60分) 1.在等差数列{}n a 中,有()()35710133224a a a a a ++++=,则此数列的前13项之和为( ) A .52 B .26 C .13 D .156 2.等差数列}{n a 的前n 项和为n S ,若==--=1815183,18,6S S S S 则 ( ) A .36 B .18 C .72 D .9 3.已知等差数列}a {n 的公差0d <, 若24a a 64=?, 10a a 82=+, 则该数列的前n 项和 n S 的最大值为( ). A. 50 B. 45 C. 40 D. 35 4.已知等比数列{a n },a 2>a 3=1,则使不等式(a 1-11a )+(a 2-21a )+…+(a n -1n a )≥0成立的最大自然数n 是 A .4 B.5 C.6 D.7 5.已知等差数列{}n a 的前n 项和为n S ,且满足2:1:,4811311872==+++a a a a a a ,则 n n n S na 2lim ∞→等于 A.41 B.2 1 C.1 D. 2 6.等差数列}{ n a 中,12324a a a ++=-,18192078a a a ++=,则此数列前20项和等于 A .160 B .180 C .200 D .220 7.在等差数列{a n }中,a 1+a 2+…+a 50=200,a 51+a 52+…+a 100=2700,则a 1等于 A .-1221 B.-21.5 C.-20.5 D.-20 8.在正项等比数列{a n }中,a 1、a 99是方程x 2-10x + 16 = 0的两个根,则a 40·a 50·a 60的值为( ) A .32 B .64 C .±64 D .256 9.等比数列}{n a 的前n 项和为S n ,已知S 4=1,S 8=3,则20191817a a a a +++的值为 A. 32 B. 16 C. 8 D. 4 10.等差数列{}n a 的前n 项和记为S n ,若a 2+a 4+a 15=p (常数),则数列{}n S 中也是常数的项是( ) (A )S 7 (B )S 8 (C )S 13 (D )S 15 11.已知数列{log 3(a n +1)}(n ∈N *)为等差数列,且a 1=2,a 2=8,则

高考数学《数列》大题训练50题含答案解析

一.解答题(共30小题) 1.(2012?上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值; (2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k; (3)设,.当b1=1时,求数列{b n}的通项公式. 2.(2011?重庆)设{a n}是公比为正数的等比数列a1=2,a3=a2+4. (Ⅰ)求{a n}的通项公式; ( (Ⅱ)设{b n}是首项为1,公差为2的等差数列,求数列{a n+b n}的前n项和S n. 3.(2011?重庆)设实数数列{a n}的前n项和S n满足S n+1=a n+1S n(n∈N*). (Ⅰ)若a1,S2,﹣2a2成等比数列,求S2和a3. (Ⅱ)求证:对k≥3有0≤a k≤. 4.(2011?浙江)已知公差不为0的等差数列{a n}的首项a1为a(a∈R)设数列的前n 项和为S n,且,,成等比数列. (Ⅰ)求数列{a n}的通项公式及S n; ` (Ⅱ)记A n=+++…+,B n=++…+,当a≥2时,试比较A n与B n的大小. 5.(2011?上海)已知数列{a n}和{b n}的通项公式分别为a n=3n+6,b n=2n+7(n∈N*).将集合{x|x=a n,n∈N*}∪{x|x=b n,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,

(1)写出c1,c2,c3,c4; (2)求证:在数列{c n}中,但不在数列{b n}中的项恰为a2,a4,…,a2n,…; (3)求数列{c n}的通项公式. 6.(2011?辽宁)已知等差数列{a n}满足a2=0,a6+a8=﹣10 * (I)求数列{a n}的通项公式; (II)求数列{}的前n项和. 7.(2011?江西)(1)已知两个等比数列{a n},{b n},满足a1=a(a>0),b1﹣a1=1,b2﹣a2=2,b3﹣a3=3,若数列{a n}唯一,求a的值; (2)是否存在两个等比数列{a n},{b n},使得b1﹣a1,b2﹣a2,b3﹣a3.b4﹣a4成公差不为0的等差数列若存在,求{a n},{b n}的通项公式;若不存在,说明理由. 8.(2011?湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5. (I)求数列{b n}的通项公式; ] (II)数列{b n}的前n项和为S n,求证:数列{S n+}是等比数列. 9.(2011?广东)设b>0,数列{a n}满足a1=b,a n=(n≥2) (1)求数列{a n}的通项公式; (4)证明:对于一切正整数n,2a n≤b n+1+1.

数列求和方法和经典例题

数列求和方法和经典例题 求数列的前n 项和,一般有下列几种方法: 一、公式法 1、等差数列前n 项和公式 2、等比数列前n 项和公式 二、拆项分组求和法 某些数列,通过适当分组可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列求和公式求和,从而得出原数列的和。 三、裂项相消求和法 将数列中的每一项都分拆成几项的和、差的形式,使一些项相互拆消,只剩下有限的几项,裂项时可直接从通项入手,且要判断清楚消项后余下哪些项。 四、重新组合数列求和法 将原数列的各项重新组合,使它成为一个或n 个等差数列或等比数列后再求和 五、错位相减求和法 适用于一个等差数列和一个等比数列对应项相乘构成的数列求和 典型例题 一、拆项分组求和法 例1、求数列1111123,2482n n ??+ ???,,,,的前n 项和 例2、求和:222 221111n n x x x x x ??????++++++ ? ? ?????? ?

例3、求数列2211,12,122,,1222,n -+++++++的前n 项和 例4、求数列5,55,555,5555,的前n 项和 二、裂项相消求和法 例5、求和:()()11113352121n S n n =+++??-+ 例6、求数列1111,, ,,,12123123n +++++++的前n 项和 例7、求和:()11113242n S n n =+++??+

例8、数列{} n a 的通项公式n a =,求数列的前n 项和 三、重新组合数列求和法 例9、求2222222212345699100-+-+-++- 四、错位相减求和法 例10、求数列123,,,,,2482n n 的前n 项和 例11、求和:()23230n n S x x x nx x =++++≠

数列单元测试卷 含答案

数列单元测试卷 注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 2.答题前,考生务必将自己的姓名、准考证号等信息填涂在答卷相应位置. 第Ⅰ卷(选择题) 一.选择题:本大题共12小题,每小题5分,共60分。每小题给出的四个选项中,只有一 项是符合题目要求的. 1.数列3,5,9,17,33,…的通项公式a n等于( ) A.2n B.2n+1 C.2n-1 D.2n+1 2.下列四个数列中,既是无穷数列又是递增数列的是( ) A.1,1 2 , 1 3 , 1 4 ,… B.-1,2,-3,4,… C.-1,-1 2 ,- 1 4 ,- 1 8 ,… D.1,2,3,…,n 3..记等差数列的前n项和为S n,若a1=1/2,S4=20,则该数列的公差d=________.( ) A.2 B.3 C.6 D.7 4.在数列{a n}中,a1=2,2a n+1-2a n=1,则a101的值为( ) A.49 B.50 C.51 D.52 5.等差数列{a n}的公差不为零,首项a1=1,a2是a1和a5的等比中项,则数列的前10项之和是( ) A.90 B.100 C.145 D.190 6.公比为2的等比数列{a n}的各项都是正数,且a3a11=16,则a5=( ) A.1 B.2 C.4 D.8

7.等差数列{a n }中,a 2+a 5+a 8=9,那么关于x 的方程:x 2 +(a 4+a 6)x +10=0( ) A .无实根 B.有两个相等实根 C .有两个不等实根 D .不能确定有无实根 8.已知数列{a n }中,a 3=2,a 7=1,又数列?? ?? ?? 11+a n 是等差数列,则a 11等于( ) A .0 B.12 C.2 3 D .-1 9.等比数列{a n }的通项为a n =2·3 n -1 ,现把每相邻两项之间都插入两个数,构成一个新的 数列{b n },那么162是新数列{b n }的( ) A .第5项 B.第12项 C .第13项 D .第6项 10.设数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比 数列,则 A .1 033 B.1 034 C .2 057 D .2 058 11.设n S 为等差数列{}n a 的前n 项和,且28,171==S a .记[]n n a b lg =,其中[]x 表示不超过x 的最大整数,如[]09.0=,[]199lg =.则b 11的值为( ) A.11 B.1 C. 约等于1 D.2 12.我们把1,3,6,10,15,…这些数叫做三角形数,因为这些数目的点可以排成一个正三角形,如下图所示: 则第七个三角形数是( ) A .27 B.28 C .29 D .30

数列综合练习及答案、

景县育英学校数列部分综合练习题 考试部分:高一必修五数列练习题 一、选择题(本大题共12个小题,每小题5分,共60分.) 1.(文)(2011·山东)在等差数列{a n }中,已知a 1=2,a 2+a 3=13,则a 4+a 5+a 6等于() A .40 B .42 C .43 D .45 (理)(2011·江西)已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 22=1,则数列{a n }的公差是() A.1 2 B .1 C .2 D .3 2.(2011·辽宁沈阳二中检测,辽宁丹东四校联考)已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *)且a 2+a 4+a 6=9,则log 1 3(a 5+a 7+a 9)的值是() A .-5 B .-15 C .5 D.1 5 3.(文)已知{a n }为等差数列,{b n }为正项等比数列,公式q ≠1,若a 1=b 1,a 11=b 11,则() A .a 6=b 6 B .a 6>b 6 C .a 60,b >0,A 为a ,b 的等差中项,正数G 为a ,b 的等比中项,则ab 与AG 的大小关系是() A .ab =AG B .ab ≥AG C .ab ≤AG D .不能确定 4.(2011·潍坊一中期末)各项都是正数的等比数列{a n }的公比q ≠1,且a 2,1 2a 3,a 1成等差数列,则 a 3+a 4 a 4+a 5 的值为() A.1-52 B.5+12 C.5-12 D. 5+12或5-1 2 5.已知数列{a n }满足a 1=1,a 2=1,a n +1=|a n -a n -1|(n ≥2),则该数列前2011项的和等于() A .1341 B .669 C .1340 D .1339 6.数列{a n }是公差不为0的等差数列,且a 1、a 3、a 7为等比数列{b n }的连续三项,则数列{b n }的公比为() A. 2 B .4 C .2 D.1 2 7.(文)已知数列{a n }为等差数列,若a 11 a 10 <-1,且它们的前n 项和S n 有最大值,则使得S n >0的 最大值n 为() A .11 B .19 C .20 D .21 (理)在等差数列{a n }中,其前n 项和是S n ,若S 15>0,S 16<0,则在S 1a 1 ,S 2a 2 ,…,S 15 a 15 中最大的是() A.S 1a 1 B.S 8a 8 C.S 9a 9 D.S 15a 15 8.(文)(2011·天津河西区期末)将n 2(n ≥3)个正整数1,2,3,…,n 2填入n ×n 方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n 阶幻方.记f (n )为n 阶幻方对角线上数的和,如右表就是一个3阶幻方,可知f (3)=15,则f (n )=() A.1 2n (n 2+1) B.1 2n 2(n +1)-3 C.1 2n 2(n 2+1) D .n (n 2+1) (理)(2011·海南嘉积中学模拟)若数列{a n }满足:a n +1=1-1 a n 且a 1=2,则a 2011等于() A .1 B .-12 C .2 D.1 2 9.(文)(2011湖北荆门市调研)数列{a n }是等差数列,公差d ≠0,且a 2046+a 1978-a 22012=0,{b n }是等比数列,且b 2012=a 2012,则b 2010·b 2014=() A .0 B .1 C .4 D .8 (理)(2011·豫南九校联考)设数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则ab 1+ab 2+…+ab 10=() A .1033 B .1034 C .2057 D .2058 10.(文)(2011·绍兴一中模拟)在圆x 2+y 2=10x 内,过点(5,3)有n 条长度成等差数列的弦,最短 弦长为数列{a n }的首项a 1,最长弦长为a n ,若公差d ∈??? ?13,23,那么n 的取值集合为()

高中数学必修5 数列经典例题集锦

高中数学必修5数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足 1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+=Q . (2)证明:由已知1 13--=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=---Λ 1 2 1313 3 312n n n a ---+=++++=L , 所以证得312n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{ }n a 的通项公式; (Ⅱ)等差数列{ }n b 的各项为正, 其前n 项和为n T ,且315T =,又112233 ,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3n n a -= (Ⅱ)设{}n b 的公比为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且212322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{ }n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式, 可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=.

高考数学数列大题训练答案版

高考数学数列大题训练 1. 已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比 (Ⅰ)求n a ;(Ⅱ)设n n a b 2log =,求数列.|}{|n n T n b 项和的前 解析: (1)设该等差数列为{}n c ,则25a c =,33a c =,42a c =Q 533222()c c d c c -==- ∴2334()2()a a a a -=-即:223111122a q a q a q a q -=- ∴12(1)q q q -=-,Q 1q ≠, ∴121, 2q q ==,∴1164()2n a -=g (2)121log [64()]6(1)72n n b n n -==--=-g ,{}n b 的前n 项和(13)2n n n S -= ∴当17n ≤≤时,0n b ≥,∴(13)2 n n n n T S -== (8分) 当8n ≥时,0n b <,12789n n T b b b b b b =+++----L L 789777()()2n n n S b b b S S S S S =-+++=--=-L (13)422 n n -=- ∴(13)(17,)2(13)42(8,)2 n n n n n T n n n n -?≤≤∈??=?-?-≥∈??**N N 2.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ; (Ⅱ)求数列}{n a 的通项公式; (Ⅲ)求数列}{n a 的前n 项和n S 解:(1)由151241=+=-a a a n n 及知,1234+=a a 解得:,73=a 同理得.1,312==a a (2)由121+=-n n a a 知2211+=+-n n a a

第二章数列单元综合测试

第二章数列单元综合测试 一、选择题(每小题5分,共60分) 1.数列{2n +1}的第40项a 40等 于( ) A .9 B .10 C .40 D .41 2.等差数列{2-3n }中,公差d 等于( ) A .2 B .3 C .-1 D .-3 3.数列{a n }的通项公式是a n =2n ,S n 是数列{a n }的前n 项和,则S 10等 于( ) A .10 B .210 C .210-2 D .211-2 4.在等差数列{a n }中,前n 项和为S n ,若a 7=5,S 7=21,那么S 10等 于( ) A .55 B .40 C .35 D .70 5.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4等于( ) A .7 B .8 C .15 D .16 6.等差数列{a n }的前n 项和为S n, 若a 3+a 17= 10,则S 19的 值是( ) A .55 B .95 C .100 D .不确定 7.设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13 =( ) A .120 B .105 C .90 D .75 8.一个只有有限项的等差数列,它前5项的和为34,最后5项的和为146,所有项的和为234,则它的第7项等于( ) A .22 B .21 C .19 D .18 9.三个不同的实数a ,b ,c 成等差数列,又a ,c ,b 成等比数列,则a b 等于( ) A .-2 B .2 C .-4 D .4 10.已知等比数列{a n }满足a n >0,n =1,2,…,且a 5·a 2n -5= 22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1等 于( ) A .n (2n -1) B .(n +1)2 C .n 2 D .(n -1)2 11.在一直线上共插有13面小旗,相邻两面小旗之间距离为10 m ,在第一面小旗处有一个人,把小旗全部集中到一面小旗的位置上,每次只能拿一面小旗,要使他走的路程最短,应集中到哪一面小旗的位置上( ) A .7 B .6 C .5 D .4 12.若数列{a n }是等差数列,首项a 1>0,a 2007+a 2008>0,a 2007·a 2008<0,则使前n 项和S n >0成立的最大自然数n 是( ) A .4013 B .4014 C .4015 D .4016

数列综合练习题以及答案解析

数列综合练习题 一.选择题(共23小题) 1.已知函数f(x)=,若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是() A.[,4)B.(,4)C.(2,4) D.(1,4) 2.已知{a n}是递增数列,且对任意n∈N*都有a n=n2+λn恒成立,则实数λ的取值范围是()A.(﹣,+∞)B.(0,+∞)C.[﹣2,+∞)D.(﹣3,+∞) 3.已知函数f(x)是R上的单调增函数且为奇函数,数列{a n}是等差数列,a11>0,则f(a9)+f(a11)+f(a13)的值() A.恒为正数B.恒为负数C.恒为0 D.可正可负 4.等比数列{a n}中,a4=2,a7=5,则数列{lga n}的前10项和等于() A.2 B.lg50 C.10 D.5 5.右边所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,根据图中的数构成的规律,a所表示的数是() A.2 B.4 C.6 D.8 6.已知正项等比数列{a n}满足:a7=a6+2a5,若存在两项a m,a n,使得=4a1,则+的最小值为() A.B.C.D. 7.已知,把数列{a n}的各项排列成如图的三角形状,记A(m,n)表示第m行的第n个数,则A(10,12)=() A.B.C.D.

8.设等差数列{a n}满足=1,公差d∈(﹣1,0),若当且仅当n=9时,数列{a n}的前n项和S n取得最大值,则首项a1的取值范围是() A.(π,)B.[π,]C.[,]D.(,) 9.定义在(﹣∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{a n},{f (a n)},仍是等比数列,则称f(x)为“等比函数”.现有定义在(﹣∞),0)∪(0,+∞)上的如下函数: ①f(x)=3x,②f(x)=,③f(x)=x3,④f(x)=log2|x|, 则其中是“等比函数”的f(x)的序号为() A.①②③④B.①④C.①②④D.②③ 10.已知数列{a n}(n∈N*)是各项均为正数且公比不等于1的等比数列,对于函数y=f(x),若数列{lnf(a n)}为等差数列,则称函数f(x)为“保比差数列函数”.现有定义在(0,+∞)上的三个函数:①f(x)=;②f(x)=e x;③f(x)=;④f(x)=2x,则为“保比差数列函数”的是() A.③④B.①②④C.①③④D.①③ 11.已知数列{a n}满足a1=1,a n+1=,则a n=() A.B.3n﹣2 C.D.n﹣2 12.已知数列{a n}满足a1=2,a n+1﹣a n=a n+1a n,那么a31等于() A.﹣B.﹣C.﹣D.﹣ 13.如果数列{a n}是等比数列,那么() A.数列{}是等比数列B.数列{2an}是等比数列 C.数列{lga n}是等比数列D.数列{na n}是等比数列 14.在数列{a n}中,a n+1=a n+2,且a1=1,则=()A.B.C.D. 15.等差数列的前n项,前2n项,前3n项的和分别为A,B,C,则() A.A+C=2B B.B2=AC C.3(B﹣A)=C D.A2+B2=A(B+C) 16.已知数列{a n}的通项为a n=(﹣1)n(4n﹣3),则数列{a n}的前50项和T50=()

数列经典例题

类型一:迭加法求数列通项公式 1.在数列中,,,求. 解析:∵, 当时, , , , 将上面个式子相加得到: ∴(), 当时,符合上式 故. 总结升华: 1. 在数列中,,若为常数,则数列是等差数列;若不是一个常数,而是关于的式子,则数列不是等差数列. 2.当数列的递推公式是形如的解析式, 而的和是可求的,则可用多式累(迭)加法得. 举一反三: 【变式1】已知数列,,,求. 【答案】

【变式2】数列中,,求通项公式. 【答案】. 类型二:迭乘法求数列通项公式 2.设是首项为1的正项数列,且 ,求它的通项公式. 解析:由题意 ∴ ∵,∴, ∴, ∴,又, ∴当时, , 当时,符合上式 ∴. 总结升华: 1. 在数列中,,若为常数且 ,则数列是等比数列;若不是一个常数,而是关于的式子,则数列不是等比数列. 2.若数列有形如的解析关系,而

的积是可求的,则可用多式累(迭)乘法求得. 举一反三: 【变式1】在数列中,,,求. 【答案】 【变式2】已知数列中,, ,求通项公式. 【答案】由得,∴, ∴, ∴当时, 当时,符合上式 ∴ 类型三:倒数法求通项公式 3.数列中,

,,求. 思路点拨:对两边同除以得即可. 解析:∵,∴两边同除以得, ∴成等差数列,公差为d=5,首项, ∴, ∴. 总结升华: 1.两边同时除以可使等式左边出现关于和的相同代数式的差,右边为一常数,这样把数列的每一项都取倒数,这又构成一个新的数列,而 恰是等差数列.其通项易求,先求的通项,再求的通项. 2.若数列有形如的关系,则可在 等式两边同乘以,先求出,再求得. 举一反三: 【变式1】数列中,,,求. 【答案】

高三数学数列专题训练(含解析)

数列 20.(本小题满分12分) 已知等差数列{}n a 满足:22,5642=+=a a a ,数列{}n b 满足n n n na b b b =+++-12122 ,设数列{}n b 的前n 项和为n S 。 (Ⅰ)求数列{}{}n n b a ,的通项公式; (Ⅱ)求满足1413<

(1)求这7条鱼中至少有6条被QQ 先生吃掉的概率; (2)以ξ表示这7条鱼中被QQ 先生吃掉的鱼的条数,求ξ的分布列及其数学期望E ξ. 18.解:(1)设QQ 先生能吃到的鱼的条数为ξ QQ 先生要想吃到7条鱼就必须在第一天吃掉黑鱼,()177 P ξ== ……………2分 QQ 先生要想吃到6条鱼就必须在第二天吃掉黑鱼,()61667535 P ξ==?= ……4分 故QQ 先生至少吃掉6条鱼的概率是()()()1166735P P P ξξξ≥==+== ……6分 (2)QQ 先生能吃到的鱼的条数ξ可取4,5,6,7,最坏的情况是只能吃到4条鱼:前3天各吃掉1条青鱼,其余3条青鱼被黑鱼吃掉,第4天QQ 先生吃掉黑鱼,其概率为 64216(4)75335P ξ==??= ………8分 ()6418575335 P ξ==??=………10分 所以ξ的分布列为(必须写出分布列, 否则扣1分) ……………………11分 故416586675535353535 E ξ????= +++=,所求期望值为5. (12) 20.∵a 2=5,a 4+a 6=22,∴a 1+d=5,(a 1+3d )+(a 1+5d )=22, 解得:a 1=3,d=2. ∴12+=n a n …………2分 在n n n na b b b =+++-1212 2 中令n=1得:b 1=a 1=3, 又b 1+2b 2+…+2n b n+1=(n+1)a n+1, ∴2n b n+1=(n+1)a n+1一na n . ∴2n b n+1=(n+1)(2n+3)-n (2n+1)=4n+3,

数列综合练习题附答案

数列综合练习题 一、选择题:本大题共10个小题;每小题5分,共50分。 1、数列 的一个通项公式是 ( ) A. B . C . D . 2、若两数的等差中项为6,等比中项为10,则以这两数为根的一元二次方程是( ) A 、010062=+-x x B 、0100122=++x x C 、0100122=--x x D 、0100122=+-x x 3、已知-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数,则b 2(a 2-a 1)=( )A.8 B.-8 C.±8 D. 4、已知数列{}n a 是等比数列,若,a a a a 41813229=+则数列{}n a 的前30项的和 =30T ( ) A 、154, B 、15 2, C 、1521??? ??, D 、153, 5、已知等比数列{a n }的公比为2, 前4项的和是1, 则前8项的和为 ( ) A .15. B .17. C .19. D .21 6、已知等差数列}{n a 的前n 项和为n S ,若45818,a a S =-=则 ( ) (A )18 (B )36 (C )54 (D )72 7、已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为4 1的等差数列,则 |m -n|= ( )A .1 B .43 C .21 D .8 3 8、等差数列{a n }中,a 1+a 2+…+a 50=200,a 51+a 52+…+a 100=2700,则a 1等于( ) A .-1221 B .-21.5 C .-20.5 D .-20 9、设 {a n }是由正数组成的等比数列, 且公比q = 2, 如果a 1 · a 2 · a 3 · … · a 30 = 230, 那么a 3 · a 6 · a 9 · … · a 30 = ( ) A .210. B .215. C .220. D .216. 10、某人从1999年9月1日起,每年这一天到银行存款一年定期a 元,且每年到期的存款将本和利再存入新一年的一年定期,若年利率r 保持不变,到2003年9月1日将所有的存款和利息全部取出,他可取回的钱数为 A 、()51r a + B 、()()[]r r r a --+115 C 、 ()41r a + D 、()[] 115-+r r a 二、 填空题:本大题共4小题;每小题4分,共16分。 12)1(3++-=n n n a n n 12)3()1(++-=n n n a n n 121)1()1(2--+-=n n a n n 12)2()1(++-=n n n a n n ?--,924,715,58 ,18 9

高中数列经典题型 大全

高中数学:《递推数列》经典题型全面解析 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足211=a ,n n a a n n ++=+2 11 ,求n a 。 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1 n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。 例:已知31=a ,n n a n n a 2 3131 +-=+ )1(≥n ,求n a 。 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 变式:递推式:()n f pa a n n +=+1。解法:只需构造数列{}n b ,消去()n f 带来的差异. 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (1n n n a pa rq +=+, 其中p ,q, r 均为常数) 。 例:已知数列{}n a 中,65 1=a ,11)2 1(31+++=n n n a a ,求n a 。 类型5 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。 解法一(待定系数——迭加法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求数列{}n a 的通项公式。 解法二(特征根法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,的特征 方程是:02532=+-x x 。 32,121= =x x Θ,∴1 2 11--+=n n n Bx Ax a 1)3 2(-?+=n B A 。又由b a a a ==21,,于是 ???-=-=??? ? ? ?+=+=)(32332b a B a b A B A b B A a 故1)32)((323--+-=n n b a a b a 例:已知数列{}n a 中,11=a ,22=a ,n n n a a a 3 1 3212+=++,求n a 。

高考数学数列大题专题

高考数学数列大题专题 1. 已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比 (Ⅰ)求n a ;(Ⅱ)设n n a b 2log =,求数列.|}{|n n T n b 项和的前 2.已知数列}{n a 满足递推式)2(121≥+=-n a a n n ,其中.154=a (Ⅰ)求321,,a a a ; (Ⅱ)求数列}{n a 的通项公式; (Ⅲ)求数列}{n a 的前n 项和n S 3.已知数列{}n a 的前n 项和为n S ,且有12a =,11353n n n n S a a S --=-+(2)n ≥ (1)求数列n a 的通项公式; (2)若(21)n n b n a =-,求数列n a 的前n 项的和n T 。 4.已知数列{n a }满足11=a ,且),2(22*1N n n a a n n n ∈≥+=-且. (Ⅰ)求2a ,3a ;(Ⅱ)证明数列{n n a 2}是等差数列; (Ⅲ)求数列{n a }的前n 项之和n S

5.已知数列{}n a 满足31=a ,1211-=--n n n a a a . (1)求2a ,3a ,4a ; (2)求证:数列11n a ??? ?-?? 是等差数列,并写出{}n a 的一个通项。 622,,4,21121+=-===++n n n n n b b a a b a a . 求证: ⑴数列{b n +2}是公比为2的等比数列; ⑵n a n n 221-=+; ⑶4)1(2221-+-=++++n n a a a n n Λ. 7. .已知各项都不相等的等差数列}{n a 的前六项和为60,且2116a a a 和为 的等比中项. (1)求数列}{n a 的通项公式n n S n a 项和及前; (2)若数列}1{,3),(}{11n n n n n b b N n a b b b 求数列且满足=∈=-*+的前n 项和T n .

相关文档
最新文档