第二节可分离变量的微分方程

第二节可分离变量的微分方程
第二节可分离变量的微分方程

第二节 可分离变量的微分方程

教学目的:熟练掌握可分离变量的微分方程的解法 教学重点:可分离变量的微分方程的解法 教学难点:可分离变量的微分方程的解法 教学内容:

本节开始,我们讨论一阶微分方程

),(y x f y =' (1)

的一些解法.

一阶微分方程有时也写成如下的对称形式:

0),(),(=+dy y x Q dx y x P (2)

在方程(2)中,变量x 与y 对称,它既可以看作是以为x 自变量、y 为未知函数的方程

)

,(),(y x Q y x P dx dy -= )0),((≠y x Q , 也可看作是以x 为自变量、y 为未知函数的方程

)

,(),(y x P y x Q dy dx -= )0),((≠y x P ,

在第一节的例1中,我们遇到一阶微分方程

x dx

dy

2=, 或 .2xdx dy = 把上式两端积分就得到这个方程的通解:

C x y +=2。

但是并不是所有的一阶微分方程都能这样求解。例如,对于一阶微分方程

22xy dx

dy

= (3) 就不能像上面那样直接两端用积分的方法求出它的通解。原因是方程(3)的右端含有未知函数y 积分

?dx xy 22

求不出来。为了解决这个困难,在方程(3)的两端同时乘以

2y

dx

,使方程(3)变为 xdx y dy

22

=, 这样,变量x 与y 已分离在等式的两端,然后两端积分得

C x y

+=-

21

或 C

x y +-=2

1

(4) 其中C 是任意常数。

可以验证,函数(4)确实满足一阶微分方程(3),且含有一个任意常数,所以它是方

程(3)的通解。

一般地,如果一个一阶微分方程能写成

dx x f dy y g )()(= (5)

的形式,就是说,能把微分方程写成一端只含y 的函数和dy ,另一端只含x 的函数和dx ,那么原方程就称为可分离变量的微分方程。

假定方程(5)中的函数)(y g 和)(x f 是连续的,设)(x y ?=是方程的解,将它代入(5)

中得到恒等式

.)()()]([dx x f dx x x g ='??

将上式两端积分,并由)(x y ?=引进变量y ,得

??=dx x f dy y g )()(

设)(y G 及)(x F 依次为)(y g 和)(x f 的原函数,于是有

C x F y G +=)()( (6)

因此,方程(5)满足关系式(6)。反之,如果)(x y Φ=是由关系到式(6)所确定的隐函数 ,那么在0)(≠y g 的条件下,)(x y Φ=也是方程(5)的解。事实上,由隐函数的求导法可知,当0)(≠y g 时,

,)

()

()()()('y g x f y G x F x =''=

Φ 这就表示函数)(x y Φ=满足方程(5)。所以如果已分离变量的方程(5)中)(y g 和)(x f 是连续的,且0)(≠y g ,那么(5)式两端积分后得到的关系式(6),就用隐式给出了方程(5)的解,(6)式就叫做微分方程(5)的隐式解。又由于关系式(6)中含有任意常数,因此(6)式所确定的隐函数是方程(5)的通解,所以(6)式叫做微分方程(5)的隐式通解。 例1 求微分方程

xy dx

dy

2= (7) 的通解。

解 方程(7)是可分离变量的,分离变量后得

xdx y

dy

2= 两端积分

,2??=xdx y dy

得 ,ln 12

C x y += 从而 2

1

1

2x C C x e e e

y ±=±=+。

又因为1C

e ±仍是任意常数,把它记作C 便得到方程(7)的通解

2

x Ce y =。

例 2 放射性元素铀由于不断地有原子放射出微粒子而变成其它元素,铀的含量就不断减少,这种现象叫做衰变。由原子物理学知道,铀的衰变速度与当时未衰变的原子的含量M 成正比。已知0=t 时铀的含量为0M ,求在衰变过程中含量)(t M 随时间变化的规律。 解 铀的衰变速度就是)(t M 对时间t 的导数dt

dM

。由于铀的衰变速度与其含量成正比,得到微分方程如下

,M dt

dM

λ-= (8) 其中)0(>λλ是常数,叫做衰变系数。λ前的负号是指由于当t 增加时M 单调减少,即

0

dM

的缘故。 由题易知,初始条件为

00M M t ==

方程(8)是可以分离变量的,分离后得

.dt M dM

λ-= 两端积分 ().??-=dt M

dM

λ 以C ln 表示任意常数,因为0>M ,得

,ln ln C t M +-=λ

即 .t

Ce

M λ-=

是方程(8)的通解。以初始条件代入上式,解得

C Ce M o ==0

故得 .0t e M M λ-= 由此可见,铀的含量随时间的增加而按指数规律衰落减。

例3设降落伞从跳伞塔下落后,所受空气阻力与速度成正比,设降落伞离开跳伞塔时(0t =)速度为零,求降落伞下落速度与时间的函数关系.

解 设降落伞下落速度为()v t ,降落伞在空中下落时,同时受到重力P 与阻力R 的作用.重力大小为mg ,方向与v 一致;阻力大小为kv (k 为比例系数),方向与v 相反,从而降落伞所受外力为

F mg kv =-

根据牛顿第二运动定律

F ma =(其中a 为加速度)

得函数()v t 应满足的方程为

dv

m mg kv dt

=- (9) 按题意,初始条件为

00t v ==

方程(9)分离变量后得

dv dt

mg kv m

=-

两端积分得

1k

t kC m

mg kv e ---= (10)

将初始条件00t v ==代入(10)式得

mg

C k

=-

于是所求的特解为

(1)k t m

mg v e k

-=-

例4 有高1cm 的半球形容器,水从它的底部小孔流出,小孔横截面面积为1cm 2

(图12-1)。开

始时容器内盛满了水,求水从小孔流出过程中容器里水面的高度h (水面与孔 口中心间的距离)随时间t 变化的规律。 解 由水力学知道,水从孔口流出的流量(即通过孔口横截面的水的体积V 对时间t 的变化率)

Q 可用下列公式计算:

0.62dV

Q dt

=

=其中0.62 为流量系数,S 为孔口横截面面积,g 为重力加速度,现在孔口横截面面积

21cm S =,故

dV

dt

= 或

dV = (9) 另一方面,设在微小时间间隔[,]t t dt +内,水面高度由h 降至(0)h dh dh +<,则又可得到

2

,dV r dh π=- (10)

其中r 是时刻t 的水面半径(图12—3),右端置负号是由于0dh <,而0dV >的缘故。又因

r ==所以(10)式变成 2(200)dV h h dh π=--。 (11)

比较(9)和(11)两式,得

2(200),h h dh π=-- (12)

这就是未知函数()h h t =应满足得微分方程。

此外,开始时容器内的水是满的,所以未知函数()h h t =还应满足下列初始条件:

0|100t h ==。

(13) 方程(13)是可分离变量的。分离变量后得

1

322

)

dt h h dh =-

两端积分,得

1

32

2

(200),

t h h dh =-

即 35

224002

3

5t h h C ??=-+?? (14)

其中C 是任意常数。

把初始条件(13)代入(14)式,得

35

22

40020100100

35C ??=?-?+??

因此

54000002000001410

3

515C ?

=

-=??

? 把所得的C 值代入(14)式并化简,就得

3

553

22

10103)

t h h =

?-+。

补充例题

1.求方程

dy

dx

= 解

dx =

两边积分得x C + 通解为 22()y x C =+

此外,还有解y=0.无论C 取怎样的常数,解y=0均不能由通解表达式y=2()x c +得出,即直线y=0(x 轴)虽然是原方程的一条积分曲线,但它并不属于这方程的通解所确定的积分曲线族y=2()x c + (抛物线)内,称这样的解为方程的奇解.

2.2(1)'arctan (0)0x y x c

y ?+=+??=??

解初值问题

解 分离变量,得

2

arctan arctan (arctan )1x

dy dx xd x x

=

=+ 所以

21

(arctan )2

y x C =+

代入初始条件,得C =0,故所求特解为21

(arctan )2

y x =

小结与思考:可分离变量方程的解法为变量分离后再积分。

应用微分方程解决综合型问题的方法和思路是怎样的和思路是怎样的? 作业:作业见作业

用分离变量法解常微分方程

用分离变量法解常微分 方程 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

用 分离变量法解常微分方程 . 1 直接可分离变量的微分方程 形如 dx dy = ()x f ()y ? 的方程,称为变量分离方程,这里()x f ,()y ?分别是的连续函数. 如果?(y)≠0,我们可将()改写成 ) (y dy ?= ()x f ()x d , 这样,变量就“分离”开来了.两边积分,得到 通解:? )(x dy ?=? dx x f )(+c. 其中,c 表示该常数,? )(x dy ?,?dx x f )(分别理解为) (1y ?,()x f 的原函数.常数c 的取值必须保证()有意义.使()0=y ?的0y y =是方程的解. 例1 求解方程01122=-+-dx y dy x 的通解. 解:(1)变形且分离变量: (2)两边积分: c x dx y dy +-=-? ? 2 2 11 , 得 c x y +-=arcsin arcsin . 可以验证1±=y 也是原方程的解,若视x 和y 是平等的,则1±=x 也是原方程的解. 我们可以用这个方法来解决中学常见的一些几何问题.

例2 曲线L 上的点),(y x P 处的法线与x 轴的交点为Q ,且线段PQ 被y 轴平分.求曲线L 的方程. 分析:这是一个利用几何条件来建立微分方程的例子.先建立法线PQ 的方程,用大写的),(Y X 表示法线上的动点,用小写的表示曲线L 上的点,法κ为过点),(y x P 的法线的斜率. 解:由题意得 y '- =1法κ. 从而法线PQ 的方程为 )(1 x X y y Y -' - =-. 又PQ 被y 轴平分,PQ 与y 轴交点M 的坐标为?? ? ??2,0y ,代入上式,得 )0(1 2x y y y -' -=-. 整理后,得 x y y 2-=', 分离变量,解得 x +2 其中c 为任意正数,如图1. 2 变量可替换的微分方程 种可化为变量分离方程的类型: 齐次方程 形如 ?? ? ??=x y dx dy ?

第三章行波法与积分变换法教学提纲

第三章行波法与积分变换法 」 分离变量法,它是求解有限区域内定解问题常用的一种方法。 J 行波法,是一种针对无界域的一维波动方程的求解方法。 」 积分变换法,一个无界域上不受方程类型限制的方法。 作如下代换; X at, X at 利用复合函数求导法则可得 同理可得 2 a 2(£ 代入(1)可得 =0o u(x,t) F( ) G( ) F(X at) G(X at) 这里F,G 为二阶连续可微的函数。再由初始条件可知 F(X ) G(X ) (X ), aF (X ) aG (X ) (X ). X 2 u -2 )(」 2 2」 2 u ~2 先对求积分,再对 求积分,可得u(X,t)d 的一般形式 § 3.1 一维波动方程的达朗贝尔 (D 'alembert )公式 一、达朗贝尔公式 考察如下Cauchy 问题: 2 u 下 u 2 2 u a 2 , X (X), u 0, (1) (X ),- (2) 2 ■4), (3)

由(3)第二式积分可得 1 X F(x) G(x) - 0 (t)dt C , a 0 利用(3)第一式可得 所以,我们有 1 1 x at u(x,t) [ (x at) (x at)] (t)dt 2 2a x at 此式称为无限弦长自由振动的达朗贝尔公式。 二、 特征方程、特征线及其应用 考虑一般的二阶偏微分方程 AU xx 2BU xy CU yy DU x EU y Fu 0 称下常微分方程为其特征方程 A(dy)2 2Bdxdy C(dx)2 0。 由前面讨论知道,直线x at 常数为波动方程对应特征方程的积分曲线, 称为特征线。已知,左行波F(x at)在特征线x at G 上取值为常数值F(CJ , 右行波G(x at)在特征线x at C 2上取值为常数值G(C 2),且这两个值随着特 征线的移动而变化,实际上,波是沿着特征线方向传播的。称变换( 2)为特征 变换,因此行波法又称特征线法。 注:此方法可以推广的其他类型的问题。 三、 公式的物理意义 由 U(x,t) F (x at) G(x at) 其中F(x at)表示一个沿x 轴负方向传播的行波,G(x at)表示一个沿x 轴正方 向传播的行波。达朗贝尔公式表明:弦上的任意扰动总是以行波形式分别向两个 方向传播出去,其传播速度为a 。因此此法称为行波法。 四、 依赖区间、决定区域、影响区域 F(x) 1 2(X ) 2a (t)dt G(x) (x) 1 x 2a o (t)dt (4)

高数可分离变量的微分方程教案

§7. 2 可分离变量的微分方程 观察与分析: 1. 求微分方程y '=2x 的通解. 为此把方程两边积分, 得 y =x 2+C . 一般地, 方程y '=f (x )的通解为C dx x f y +=?)((此处积分后不再加任意常数). 2. 求微分方程y '=2xy 2 的通解. 因为y 是未知的, 所以积分? dx xy 22无法进行, 方程两边直 接积分不能求出通解. 为求通解可将方程变为 xdx dy y 212 =, 两边积分, 得 C x y +=-21, 或C x y +-=21, 可以验证函数C x y +-=21是原方程的通解. 一般地, 如果一阶微分方程y '=?(x , y )能写成 g (y )dy =f (x )dx 形式, 则两边积分可得一个不含未知函数的导数的方程 G (y )=F (x )+C , 由方程G (y )=F (x )+C 所确定的隐函数就是原方程的通解 对称形式的一阶微分方程: 一阶微分方程有时也写成如下对称形式: P (x , y )dx +Q (x , y )dy =0 在这种方程中, 变量x 与y 是对称的. 若把x 看作自变量、y 看作未知函数, 则当Q (x ,y )≠0时, 有 ) ,(),(y x Q y x P dx dy -=. 若把y 看作自变量、x 看作未知函数, 则当P (x ,y )≠0时, 有 ) ,(),(y x P y x Q dy dx -=.

可分离变量的微分方程: 如果一个一阶微分方程能写成 g (y )dy =f (x )dx (或写成y '=?(x )ψ(y )) 的形式, 就是说, 能把微分方程写成一端只含y 的函数和dy , 另一端只含x 的函数和dx , 那么原方程就称为可分离变量的微分方程. 讨论: 下列方程中哪些是可分离变量的微分方程? (1) y '=2xy , 是. ?y -1dy =2xdx . (2)3x 2+5x -y '=0, 是. ?dy =(3x 2+5x )dx . (3)(x 2+y 2)dx -xydy =0, 不是. (4)y '=1+x +y 2+xy 2, 是. ?y '=(1+x )(1+y 2). (5)y '=10x +y , 是. ?10-y dy =10x dx . (6)x y y x y +='. 不是. 可分离变量的微分方程的解法: 第一步 分离变量, 将方程写成g (y )dy =f (x )dx 的形式; 第二步 两端积分:??=dx x f dy y g )()(, 设积分后得G (y )=F (x )+C ; 第三步 求出由G (y )=F (x )+C 所确定的隐函数y =Φ(x )或x =ψ(y ) G (y )=F (x )+C , y =Φ (x )或x =ψ(y )都是方程的通解, 其中G (y )=F (x )+C 称为隐式(通)解. 例1 求微分方程xy dx dy 2=的通解. 解 此方程为可分离变量方程, 分离变量后得 xdx dy y 21=, 两边积分得 ??=xdx dy y 21, 即 ln|y |=x 2+C 1, 从而 2 112x C C x e e e y ±=±=+. 因为1C e ±仍是任意常数, 把它记作C , 便得所给方程的通解 2 x Ce y =. 例2 铀的衰变速度与当时未衰变的原子的含量M 成正比. 已知t =0时铀的含量为M 0, 求在衰变过程中铀含量M (t )随时间t 变化的规律.

北邮数理方程课件第三章的分离变量法

第三章 分离变量法 3。2 基础训练 3.2.1 例题分析 例1 解下列定解问题: ???? ?????=??-==??=><

其中A ,B 为积分常数,(7)代入(6)中边界条件,得 00 A B Ae +=???-+=?? (8) 由(8)得A=B=0,得X (x )=0,为平凡解,故不可能有0λ<。 (2) 当0λ=时,(6)式中方程的通解是 ()X x Ax B =+ 由边界条件得A=B=0,得X (x )=0,为平凡解,故也不可能有0λ=。 (3)当 02 >=βλ时,上述固有值问题有非零解.此时式(6)的通解为 x B x A x X ββsin cos )(+= 代入条件(6)中边界条件,得 0cos ,0==l B A β 由于 0≠B ,故 0cos =l β,即 ),2,1,0(212Λ=+= n l n πβ 从而得到一系列固有值与固有函数 2 2 24)12(l n n πλ+= ),2,1,0(2)12(sin )(Λ=+=n x l n B x X n n π 与这些固有值相对应的方程(3)的通解为 ),2,1,0(2)12(sin 2)12(cos )(Λ=+'++'=n t l a n D t l a n C t T n n n ππ 于是,所求定解问题的解可表示为 x l n t l a n D t l a n C t x u n n n 2)12(sin 2)12(sin 2)12(cos ),(0πππ+??? ? ? +++=∑∞ = 利用初始条件确定其中的任意常数n n D C ,,得 0=n D

第二章 分离变量法(§2.1)

第二章 分离变量法 偏微分方程定解问题常用解法,分离变量法。 解常微分方程定解问题时,通常总是先求出微分方程的特解,由线性无关的特解叠加出通解,而后用定解条件定出叠加系数 一阶线性偏微分方程的求解问题,基本方法也是转化为一阶线性常微分方程组的求解问题 对于二阶以及更高阶的偏微分方程定解问题,情况有些不同:即使可以先求出通解,由于通解中含有待定函数,一般来说,很难直接根据定解条件定出,因此,通常的办法就是把它转化为常微分方程问题 §2.1 有界弦的自由振动 什么是分离变量法?使用分离变量法应具备那些条件? 下面通过两端固定的弦的自由振动问题来说明。 定解问题:考虑长为l ,两端固定的弦的自由振动,其数理方程及定解条件为 .0 ),(u ),(u 0, ,0u ,0u 0, l,0 ,0 t 0022 222l x x x t t x x u a t u t t l x x ≤≤==>==><

2019年数学物理方程-第二章分离变量法.doc

2019年数学物理方程-第二章分离变量法.doc

第二章 分离变量法 分离变量法是求解偏微分方程定解问题最常用的方法之一,它和积分变换 法一起统称为Fourier 方法. 分离变量法的本质是把偏微分方程定解问题通过变量分离,转化为一个所谓的特征值问题和一个常微分方程的定解问题,并把原定解问题的解表示成按特征函数展开的级数形式. 本章介绍两个自变量的分离变量法,更多变量的情形放在其他章节中专门讨论. §2?1 特征值问题 2.1.1 矩阵特征值问题 在线性代数中,我们已学过线性变换的特征值问题. 设A 为一n 阶实矩阵,A 可视为n R 到自身的线性变换。该变换的特征值问题(eigenvalue problem )即是求方程: ,n Ax x x R λ=∈, (1.1) 的非零解,其中C λ∈为待定常数. 如果对某个λ,问题(1.1)有非零解n x R λ∈,则λ就称为矩阵A 的特征值(eigenvalue),相应的n x R λ∈称为矩阵A 的特征向量(eigenvector). 一般来讲,特征值问题(1.1)有不多于n 个相异的特征值和线性无关的特征向量. 但可证明: 任一n 阶矩阵都有n 个线性无关的广义特征向量,以此n 个线性无关的广义特征向量作为n R 的一组新基,矩阵就能够化为Jordan 标准型. 若A 为一n 阶实对称矩阵,在线性代数中有一个重要结果,即存在一个正交矩阵T 使得 1T AT D -=, (1.2) 其中D =diag 12(,,...,)n λλλ为实对角阵. 设12[ ... ]n T T T T =,i T 为矩阵T 的第i 列向量(1)i n ≤≤,则式(1.2)可写为如下形式 1212 [ ... ][ ... ]n n A T T T T T T D =, 或 , 1.i i i A T T i n λ=≤≤ (1.3) 上式说明,正交矩阵T 的每一列都是实对称矩阵A 的特征向量,并且这n 个特征向量是相互正交的. 由于此结论在一定意义下具有普遍性,我们以定理的形式给出. 定理1.1 设A 为一n 阶实对称矩阵,考虑以下特征值问题 ,n Ax x x R λ=∈, 则A 的所有特征值为实数,且存在n 个特征向量,1i T i n ≤≤,它们是相互正交的(正交性orthogonality ),可做为n R 的一组基(完备性completeness ). 特征值问题在线性问题求解中具有重要的意义,下面举例说明之. 为简单起见,在下面两个例子中取A 为n 阶非奇异实矩阵,故A 的所有特征值非零,并且假设A 有n 个线性无关的特征向量,i T 相应的特征值为, 1i i n λ≤≤. 例1.1 设n b R ∈,求解线性方程组 Ax b =. 解 由于向量组{1}i T i n ≤≤线性无关,故可做为n R 的一组基. 将,x b 按此

第二章 分离变量法(§2.2,§2.3)

§2.2 有限杆上的热传导 定解问题:一均匀细杆,长为l ,两端坐标为l x x == ,0。杆的侧面绝热,且在端点0=x 处温度为零,而在l x = 处杆的热量自由发散到周围温度为0的介质中。初始温度为)(x ?,求杆上的温度变化情况,即考虑下定解问题: .0 ),(u 0, ,0hu ,0u 0, l,0 ,0002 2 2l x x t x u t x x u a t u t l x x ≤≤=>=+??=><<=??-??===? 仍用分离变量法求解。此定解问题的边界条件为第三类边界条件。类似§2.1中步骤,设)()(),(t T x X t x u =,代入上面的方程可得 ?????=+=+?-==. 0)()(,0)()() ()()()( 2 ' '22'2 2'''x X x X t T a t T x T a x T x X x X βββ 从而可得通解 x B x A x X ββsin cos )(+= 由边界条件知 .0)()(,0)0('=+=l hX l X X 从而 ?? ???-=?=+=.tan 0sin cos , 0h l l h l A βββββ 令 αγ γαβγ=?- ==tan 1 ,hl l 上方程的解可以看作曲线γtan 1=y ,αγ=2y 交点的横坐标,显然他们有无穷多个,于是方程有无穷多个根。用下符号表示其无穷多个正根 ,,21n γγγ 于是得到特征值问题的无穷个特征值

1,2,3...) (n ,2 2 2== l n n γβ 及相应的特征函数 x B x X n n n βsin )(= 再由方程0)()(22'=+t T a t T β, 可得 t a n n n e A t T 2 2)(β-=, 从而我们得到满足边界条件的一组特解 x e C t x u n t a n n n ββsin ),(2 2-= 由于方程和边界条件是齐次的,所以 ∑∞ =-=1 sin ),(2 2n n t a n x e C t x u n ββ 仍满足此方程和边界条件。 下面研究一下其是否满足初始条件。 )(sin 1 x x C n n n ?β=∑∞ = 可以证明}{sin x n β在区域[0,l]上具有正交性,即 ?≠=l m n xdx x 0 n m ,0sin sin ββ 证明: ) )((sin cos cos sin ))((2)sin()()sin()( ) (2)sin()(2)sin( ))cos()(cos(2 1sin sin 00=+--- =+-+---+=++- --=--+- =??m n m n m n n m n m m n m n m n m n m n m n m n m n m n m n l m n m n l m n l l l l l l l l dx x x xdx x ββββββββββββββββββββββββββββββββββββ 完成。 令 ?=l n n n xdx x L 0 ,sin sin ββ 于是, ?= l n n n xdx x L C 0 sin )(1β ?

可分离变量的微分方程

可分离变量的微分方程 观察与分析: 1. 求微分方程y '=2x 的通解. 为此把方程两边积分, 得 y =x 2+C . 一般地, 方程y '=f (x )的通解为C dx x f y +=?)((此处积分后不再加任意常数). 2. 求微分方程y '=2xy 2 的通解. 因为y 是未知的, 所以积分? dx xy 22无法进行, 方程两边直 接积分不能求出通解. 为求通解可将方程变为 xdx dy y 212=, 两边积分, 得 C x y +=-21, 或C x y +-=21, 可以验证函数C x y +-=21是原方程的通解. 一般地, 如果一阶微分方程y '=?(x , y )能写成 g (y )dy =f (x )dx 形式, 则两边积分可得一个不含未知函数的导数的方程 G (y )=F (x )+C , 由方程G (y )=F (x )+C 所确定的隐函数就是原方程的通解 对称形式的一阶微分方程: 一阶微分方程有时也写成如下对称形式: P (x , y )dx +Q (x , y )dy =0 在这种方程中, 变量x 与y 是对称的. 若把x 看作自变量、y 看作未知函数, 则当Q (x ,y )≠0时, 有 ) ,(),(y x Q y x P dx dy -=. 若把y 看作自变量、x 看作未知函数, 则当P (x ,y )≠0时, 有 ),(),(y x P y x Q dy dx -=. 可分离变量的微分方程: 如果一个一阶微分方程能写成

g (y )dy =f (x )dx (或写成y '=?(x )ψ(y )) 的形式, 就是说, 能把微分方程写成一端只含y 的函数和dy , 另一端只含x 的函数和dx , 那么原方程就称为可分离变量的微分方程. 讨论: 下列方程中哪些是可分离变量的微分方程? (1) y '=2xy , 是. ?y -1dy =2xdx . (2)3x 2+5x -y '=0, 是. ?dy =(3x 2+5x )dx . (3)(x 2+y 2)dx -xydy =0, 不是. (4)y '=1+x +y 2+xy 2, 是. ?y '=(1+x )(1+y 2). (5)y '=10x +y , 是. ?10-y dy =10x dx . (6)x y y x y +='. 不是. 可分离变量的微分方程的解法: 第一步 分离变量, 将方程写成g (y )dy =f (x )dx 的形式; 第二步 两端积分:??=dx x f dy y g )()(, 设积分后得G (y )=F (x )+C ; 第三步 求出由G (y )=F (x )+C 所确定的隐函数y =Φ(x )或x =ψ(y ) G (y )=F (x )+C , y =Φ (x )或x =ψ(y )都是方程的通解, 其中G (y )=F (x )+C 称为隐式(通)解. 例1 求微分方程xy dx dy 2=的通解. 解 此方程为可分离变量方程, 分离变量后得 xdx dy y 21=, 两边积分得 ??=xdx dy y 21, 即 ln|y |=x 2+C 1, 从而 2 112x C C x e e e y ±=±=+. 因为1C e ±仍是任意常数, 把它记作C , 便得所给方程的通解 2 x Ce y =. 解 此方程为可分离变量方程, 分离变量后得

(整理)数学物理方程第二章分离变量法word版

第五讲补充常微分方程求解相关知识。

第二章 分离变量法 偏微分方程定解问题常用解法,分离变量法。 解常微分方程定解问题时,通常总是先求出微分方程的特解,由线性无关的特解叠加出通解,而后用定解条件定出叠加系数 一阶线性偏微分方程的求解问题,基本方法也是转化为一阶线性常微分方程组的求解问题 对于二阶以及更高阶的偏微分方程定解问题,情况有些不同:即使可以先求出通解,由于通解中含有待定函数,一般来说,很难直接根据定解条件定出,因此,通常的办法就是把它转化为常微分方程问题 (第六讲) §2.1 有界弦的自由振动 什么是分离变量法?使用分离变量法应具备那些条件? 下面通过两端固定的弦的自由振动问题来说明。 定解问题:考虑长为l ,两端固定的弦的自由振动,其数理方程及定解条件为 .0 ),(u ),(u 0, ,0u ,0u 0, l,0 ,0 t 0022 222l x x x t t x x u a t u t t l x x ≤≤==>==><

用分离变量法解常微分方程

用分离变量法解常微分方程 . 1直接可分离变量的微分方程 1.1形如 dx dy =()x f ()y ?(1.1) 的方程,称为变量分离方程,这里()x f ,()y ?分别是的连续函数. 如果?(y)≠0,我们可将(1.1)改写成 ) (y dy ?=()x f ()x d , 这样,变量就“分离”开来了.两边积分,得到 通解:?)(x dy ?=?dx x f )(+c. (1.2) 其中,c 表示该常数,?)(x dy ?,?dx x f )(分别理解为) (1y ?,()x f 的原函数.常数c 的取值必须保证(1.2)有意义.使()0=y ?的0y y =是方程(1.1)的解. 例1求解方程01122=-+-dx y dy x 的通解. 解:(1)变形且分离变量: (2)两边积分: c x dx y dy +-=-??2211, 得 c x y +-=arcsin arcsin . 可以验证1±=y 也是原方程的解,若视x 和y 是平等的,则1±=x 也是原方程的解. 我们可以用这个方法来解决中学常见的一些几何问题. 例2曲线L 上的点),(y x P 处的法线与x 轴的交点为Q ,且线段PQ 被y 轴平分.求曲线L 的方 程. 分析:这是一个利用几何条件来建立微分方程的例子.先建立法线PQ 的方程,用大写的),(Y X 表示法线上的动点,用小写的表示曲线L 上的点,法κ为过点),(y x P 的法线的斜率.

解:由题意得 y ' -=1法κ. 从而法线PQ 的方程为 )(1x X y y Y -'-=-. 又PQ 被y 轴平分,PQ 与y 轴交点M 的坐标为?? ? ??2,0y ,代入上式,得 )0(12x y y y -' -=-. 整理后,得 x y y 2-=', 分离变量,解得 c y x =+22 2 , 其中c 为任意正数,如图1. 2变量可替换的微分方程 通过上面的介绍,我们已经知道了什么方程是变量分离方程.下面,我们再介绍几种可化为变 量分离方程的类型: 2.1齐次方程 形如?? ? ??=x y dx dy ?(1.3) 的微分方程,称为齐次微分方程.这里)(u ?是u 的连续函数. 对方程(1.3)做变量变换 x y u =,(1.4) 即ux y =,于是 u dx du x dx dy +=.(1.5) 将(1.4),(1.5)代入(1.3),则原方程变为 )(u u dx du x ?=+, 图1

北邮数理方程课件 第三章 分离变量法

第三章 分离变量法 3。2 基础训练 3.2.1 例题分析 例1 解下列定解问题: ???? ?????=??-==??=><=βλ时,上述固有值问题有非零解.此时式(6)的通解为

x B x A x X ββsin cos )(+= 代入条件(6)中边界条件,得 0cos ,0==l B A β 由于 0≠B ,故 0cos =l β,即 ),2,1,0(21 2Λ=+= n l n πβ 从而得到一系列固有值与固有函数 2 2 24)12(l n n πλ+= ),2,1,0(2)12(sin )(Λ=+=n x l n B x X n n π 与这些固有值相对应的方程(3)的通解为 ),2,1,0(2)12(sin 2)12(cos )(Λ=+'++'=n t l a n D t l a n C t T n n n ππ 于是,所求定解问题的解可表示为 x l n t l a n D t l a n C t x u n n n 2)12(sin 2)12(sin 2)12(cos ),(0πππ+??? ? ? +++=∑∞ = 利用初始条件确定其中的任意常数n n D C ,,得 0=n D 3 32 02)12(322)12(sin )2(2ππ+- =+-=?n l xdx l n lx x l C l n 故所求的解为 x l n t l a n n l t x u n 2)12(sin 2)12(cos )12(132),(0 3 3 2 π ππ++?+- =∑∞ = 例2 演奏琵琶是把弦的某一点向旁边拨开一小段距离,然后放手任其自由振动。设弦 长为l ,被拨开的点在弦长的0 1 n (0n 为正整数)处,拨开距离为h ,试求解弦的振动,即求解定解问题

D微分方程的概念可分离变量的微分方程答案

第七章 微分方程 第一节 微分方程的基本概念 一、单项选择题 1. 下列各式中是常微分方程的为 B . A. 23y y += B. 2y y y '''+= C. 22xy y xy += D. x y x z z y ''++= 2. 微分方程3d d y x y x x =+的通解为y = B . A. 34x C x + B. 32x Cx + C. 33x C + D. 3 4 x Cx + 3. 函数y C x =-(C 为任意常数)是微分方程1xy y '''-=的 C . A. 通解 B. 特解 C. 是解,但既不是通解也不是特解 D. 不是解 4. 微分方程0y y ''+=的通解是y = D . A. sin A x B. cos B x C. sin cos x B x + D. sin cos A x B x + 5. 已知某微分方程的通解为212()e x y C C x =+,且满足01x y ='=,00x y ==, 则有 B . A. 2e x y = B. 2e x y x = C. 2(1)e x y x =+ D. 22e x y = 二、验证满足()ln y xy =的函数()y y x =是微分方程()220xy x y xy yy y '''''-++-=的解. 解:方程ln()y xy =两边同时对x 求导得11y y x y ''=+,整理得y y xy x '=-,两 边再对x 求导得() ()3223()(1) 22y xy x y y xy xy xy xy y xy x xy x ''--+--+-''==--,将,y y '''代入原 方程得()3223222()20()xy xy xy y y y xy x x y xy x xy x xy x xy x -+--++-=----.因此,由 ln()y xy =所确定的函数是微分方程的解.

第二章 分离变量法

第二章 分离变量法 §2.1 有界弦的自由振动 为了了解什么是分离变量法以及使用分离变量法应该具备什么条件,我们选取两端固定的弦的自由振动问题为例,通过具体地求解逐步回答这些问题。 讨论两端固定的弦的自由振动,归结求解下列定解问题: 22222000,0,0 (2.1)0,0,0 (2.2)(),(),0 (2.3)x x l t t u u a x l t t x u u t u u x x x l t ?ψ====???=<<>?????==>????==≤≤??? 这个定解问题的特点是:偏微分方程是线性齐次的,边界条件也是齐次的。求解这样的问题,可以运用叠加原理。我们知道,在求解常系数线性齐次常微分方程的初值问题时,是先求出足够多个特解(它们能构成通解),再利用叠加原理作这些特解的线性组合,使满足初始条件。这就启发我们,要解问题(2.1~2.3),先寻求齐次方程(2.1)的满足齐次边界条件(2.2)的足够多个具有简单形式(变量被分离的形式)的特解,再利用它们作线性组合使满足初始条件(2.3)。 这种思想方法,还可以从物理模型得到启示。从物理学知道乐器发出的声音可以分解成各种不同频率的单音,每种单音,振动时形成正弦曲线,其振幅依赖于时间t ,即每个单音可以表示成

(,)()sin u x t A t x ω= 的形式,这种形式的特点是:u (x ,t )中的变量x 与t 被分离出来。 根据上面的分析,现在我们就试求方程(2.1)的分离变量形式 (,)()()u x t X x T t = 的非零解,并要求它满足齐次边界条件(2.2),式中X (x ),T (t )分别表示仅与x 有关及仅与t 有关的待定函数。 由(,)()()u x t X x T t =得 2222()(),()()u u X x T t X x T t x t ??''''==?? 代入方程(2.1)得 2()()()()X x T t a X x T t ''''= 或 2()()()() X x T t X x a T t ''''= 这个式子左端仅是x 的函数,右端仅是t 的函数,只有它们均为常数时才能相等。令此常数为-λ,则有 2()()()() X x T t X x a T t λ''''==- 这样我们得到两个常微分方程: 2()()0T t a T t λ''+= (2.4) ()()0X x X x λ''+= (2.5) 再利用边界条件(2.2),由于u (x ,t )=X (x ) T (t ),故有 (0)()0,()()0X T t X l T t == 但T (t )不恒等于零,因为如果T (t )≡0,则u (x ,t )=0,这种解称

数学物理方程-第三章分离变量法2

第三章 贝塞尔函数 对两个自变量的情形,在第二章中比较系统地介绍了分离变量法的基本思想 以及求解偏微分方程定解问题的主要步骤. 本章讨论多于两个自变量的情形,其求解过程和两个自变量情形基本相同,区别仅在于特征值问题的求解要用到一类特殊函数—贝塞尔(Bessel )函数. 本章前两节围绕一类特征值问题的求解,比较系统地介绍二阶常微分方程的幂级数解法,以及Bessel 函数的一些基本性质. 第三节介绍多于两个自变量情形的分离变量法. §3?1 二阶线性常微分方程的幂级数解法 3.1.1 常系数线性方程的基解组 在高等数学中,同学们已学过常微分方程的一些求解方法. 对于常系数线性常微分方程,只要求出特征方程的根,就很容易写出齐次方程的基解组,由此可得齐次方程通解表达式. 例1.1 求解下列齐次微分方程 (1) '''320y y y -+=. (2) '''4130y y y ++=. (3) '''440y y y ++=. 解 (1) 特征方程为 2320λλ-+=, 特征根为121,2,λλ== 故基解组为 2{, }x x e e . (2)特征方程为 24130λλ++=, 特征根为1223, 23i i λλ=-+=--,是一对共轭复数,基解组为(23)(23){, }i x i x e e -+--, 这两个解为复值函数. 为得到实值函数的基解组,利用齐次微分方程解的线性性质得 2(23)(23)1 cos3 (+ )2x i x i x e x e e --+--=, 2(23)(23)1 sin 3 ( )2x i x i x e x e e i --+--=-, 这两个实值函数22cos3, sin3x x e x e x --也是方程(2)的解,由此得方程(2)的基解组为 22{cos3, sin3}x x e x e x --. (3)特征方程为 2440λλ++=,

分离变量法例题

分离变量法例题 例:两块半无限大接地平行于xz 平面的导体板,一块位于y = 0,另一块位于y = d ;平行板的有限端x = 0处被与之绝缘并保持常电势φ0的导体板封闭,如图所示。求导体板间的电势。 解:对于本问题,求解区域是x > 0的两平行板之间,区域内无电荷分布,因此电势满足拉普拉斯方程。区域的边界在y = 0、y = d 、x = 0、及x → ∞处。本问题实际是一个二维问题,即静电势与z 无关。因此,本定解问题: 20??= ( x > 0,0 < y < d ) (1) 0x ?→∞= (2) 00y ? == (x > 0) (3) 0y d ?== (x > 0) (4) 00x ??== (0 < y < d ) (5) (2)的条件是我们通常的选择。实际上(2)、(3)、(4)、(5)为边界条件。 因本问题为二维问题,(),x y ??=。(1)在直角坐标系中可写成: 2222 0x y ????+=?? 分离变量法的核心是将多维函数分解为多个一维函数的乘积。令 (,)()()x y X x Y y ?= 将其带入上式得: 2222d d 0d d X Y Y X x y += 将x 变量项和y 变量项整理为: 22221d 1d d d X Y X Y x y =- 上式坐标仅是x 的函数,而右边仅是y 的函数。这样,我们就将变量分离了。在上面的方程中,两半无限大接地平行导体板 y = d

对任意x 和y 成立,方程两边必等于常数。即: 222221d 1d d d X Y k X Y x y ==- (3-3-3) 式中k 为实数常数,称为分离常数。为什么我们将常数写为k 2而不是-k 2,后面我们将清楚这一点。上式可分为两个微分方程: 2221d d X k X x = 2221d d Y k Y y =- 我们知道上面的微分方程k 为非零时的解为: kx kx X Ae Be -=+ sin()cos()Y C ky D ky =+ 若k = 0,根据边界条件只能得出零解,因此,k 为非零值。式中A 、B 、C 、D 为积分常数,由边界条件确定。这样,我们得到: [][sin()cos()]kx kx Ae Be C ky D ky ?-=++ 由边界条件(2),我们得到A = 0及k > 0。这就是为什么我们将常数写为k 2而不是-k 2的原因。它可使电势φ在x 方向单调地增加或单调地减少而不是振荡。由边界条件(3),我们得到D = 0。而边界条件(4)给出: sin()0kd = 由此式及条件k > 0,我们得到: ,1,2,3,n k n d π==? 我们不取n = 0的原因是因为它给出的是零解。因此,我们得到对应n 值的电势解: (,)sin(),1,2,3,n x d n n n x y B e y n d ππ?-==? 其中C 已并入B n 。因拉普拉斯方程是线性方程,任何解的线性叠加也是方程的解。因此,我们将所有n 值的解叠加起来得到了更为一般的解: 1(,)sin()n x d n n n x y B e y d ππ?∞-==∑ 式中B n 为常数。此解满足边界条件(2)、(3)、(4)。由边界条件(5), 我们有 01sin( )n n n B y d π?∞==∑ 上式是一在[0,d ]区间展开的正弦傅里叶级数,其系数B n 为:

可分离变量的微分方程

第二节 可分离变量的微分方程 微分方程的类型是多种多样的,它们的解法也各不相同. 从本节开始我们将根据微分方程的不同类型,给出相应的解法. 本节我们将介绍可分离变量的微分方程以及一些可以化为这类方程的微分方程,如齐次方程等. 内容分布图示 ★ 可分离变量微分方程 ★ 例1 ★ 例2 ★ 例3 ★ 例4 ★ 例5 ★ 齐次方程 ★ 例6 ★ 例7 ★ 例8 ★ 例9 ★ 例10 ★ 可化为齐次方程的微分方程 ★ 例 11 ★ 例 12 ★ 例 13 ★ 例 14 ★ 内容小结 ★ 课堂练习 ★ 习题8-2 ★ 返回 内容要点: 一、可分离变量的微分方程 设有一阶微分方程 ),(y x F dx dy =, 如果其右端函数能分解成)()(),(x g x f y x F =,即有 )()(y g x f dx dy =. (2.1) 则称方程(2.1)为可分离变量的微分方程,其中)(),(x g x f 都是连续函数. 根据这种方程的特点,我们可通过积分来求解. 求解可分离变量的方程的方法称为分离变量法. 二、齐次方程:形如 ?? ? ??=x y f dx dy (2.8) 的一阶微分方程称为齐次微分方程,简称齐次方程.. 三、可化为齐次方程的方程:对于形如 ???? ??++++=222 111c y b x a c y b x a f dx dy 的方程,先求出两条直线 ,0111=++c y b x a 0222=++c y b x a 的交点),(00y x ,然后作平移变换

???-=-=00y y Y x x X 即 ? ??+=+=00y Y y x X x 这时,dX dY dx dy =,于是,原方程就化为齐次方程 ,2211???? ??++=Y b X a Y b X a f dX dY 例题选讲: 可分离变量的微分方程 例1(讲义例1)求微分方程xy dx dy 2=的通解. 例2(讲义例2)求微分方程ydy dx y xydy dx +=+2的通解. 注:在用分离变量法解可分离变量的微分方程的过程中, 我们在假定0)(≠y g 的前提下, 用它除方程两边, 这样得到的通解, 不包含使0)(=y g 的特解. 但是, 有时如果我们扩大任意常数C 的取值范围, 则其失去的解仍包含在通解中. 如在例2中,我们得到的通解中应该0≠C ,但这样方程就失去特解1±=y ,而如果允许0=C ,则1±=y 仍包含在通解22)1(1-=-x C y 中. 例3 已知,tan 2cos )(sin 22x x x f +=' 当10<

相关文档
最新文档