场依存_独立认知方式干扰抑制的比较

场依存_独立认知方式干扰抑制的比较
场依存_独立认知方式干扰抑制的比较

1引言

认知方式(cognitivestyle)是指个体组织和表征信息时表现出的偏好性的、习惯性的方式

[1]

。认

知方式理论提供了一个把认知和人格统一在共同框架中的方法,架起了连接二者的桥梁,是重要的个体差异变量。场认知方式被认为是个体使用外部或内部线索进行认知组织的程度的反映[2]

。在新近的研究中,赖丁等人

[3,4]

系统分析了30多种认知方式,将它们综合为两个主要的认知方式维度,即整体—分析维度和言语—表象维度,并且将场依存—独立性认知方式归类于整体—分析维度。这一维度表明的是个体是从整体上还是从局部上处理信息的倾向。场独立者(属分析型)具有较高的认知改组技能,能够对认知任务中的局部结构和信息进行有效的分析和加工;场依存者(属整体型)倾向于表面价值上接受知觉对象或符号性陈述,把信息组织成整体,在分析场的局部时较多的依赖整个场[1,5]。认知方式自提出以来,研究者对不同认知方式在诸多方面的特点差异及其教育应用展开了大量的研究,但对不同认知方式信息加工的内部机制研究还不够。认知方式是信息加工过程中的个体差异,不同认知方式信息加工内部机制的研究对于理解和解释不同认知方式诸多方面的差异具有更为根本的意义和作用。那么不同认知方式者的信息加工内部机制是否存在差异呢?国内尚没有关于此问题的研究。当前信息加工研究中,抑制机制成为研究热点

和解释个体差异的重要方面。因此本研究将对不同场认知方式的抑制机制特点作初步探讨。

在信息加工过程中,加工者不仅需要激活有关的目标信息,还必须抑制无关信息的干扰,才能实现对目标信息的准确有效的加工

[6,7]

。抑制是指阻止

干扰信息进入工作记忆或将已激活的干扰信息从工作记忆中清除出去的认知机制[8]。Tipper等人首先采用负启动范式研究选择性注意分心物加工特点

[6]

并作为人类信息加工存在抑制加工成分的证据。关于干扰和抑制的关系,目前越来越多的学者倾向于把二者区分开来,认为抑制是一种积极的压抑加工,是保持干扰信息于工作记忆之外的过程;而干扰是在多重刺激条件下,加工或反应之间的竞争

[9]

。这

说明干扰效应是抑制机制未能有效起作用的反映[10]。

Stroop干扰效应是指所呈现刺激中的颜色信息

(如红色)和词义信息(如“

绿”字)相互发生干扰的现象,是研究信息干扰效应的常用范式。在字词阅读中,字义是目标刺激,颜色是起干扰作用的分心信息;在颜色命名中,颜色是目标刺激,字词成为干扰信息。一般认为,字词阅读和颜色命名两种任务信息加工的自动化程度不同。字词阅读是自动加工过程,迅速而无意识,这种对字词阅读的高度自动化是个体长期实践过程中形成的。颜色命名的自动化程度低,是有意识的控制加工过程,占用较多的心理资源

[11]

。字词阅读和颜色命名发生反

应竞争,产生干扰效应,起干扰作用的Stroop刺激分心信息受到抑制。成人脑成像研究显示,Stroop

场依存—独立认知方式干扰抑制的比较

宋广文

韩树杰

(曲阜师范大学教育科学学院,曲阜

273165)(曲阜师范大学继续教育学院,曲阜

273165)

摘要采用镶嵌图形测验筛选出28名被试完成Stroop干扰任务,探讨场依存—独立认知方式的个体在信息加

工过程中对无关信息干扰抑制机制的特点和差异。结果表明:(1)场独立者在认知加工中具有较场依存者更强

的对无关信息干扰的抑制效能。(2)在Stroop任务中,对字色也存在自动化加工,只是自动化程度较低。

关键词场依存—独立认知方式,Stroop干扰效应,抑制机制。

分类号

B842.1

收稿日期:2007-1-16

作者简介:宋广文,男,曲阜师范大学教育科学学院教授,博士。Email:songgw@mail.qfnu.edu.cn。

心理与行为研究2007,5(2):100~104

StudiesofPsychologyandBehavior

100

第2期

和相关任务确实能反映任务指向的或执行的抑制过程。因此,在许多研究中,Stroop效应都被作为干扰抑制的一种指标

[12]

,以评价抑制机制的效能。

而Stroop任务中字色紧密结合在一个知觉场中这一特点,适合于针对本研究的对象即不同场认知方式的个体进行信息加工干扰抑制机制的研究,因此本实验采用此范式。

本实验假设:认知方式的个体差异及其表现与其内部信息加工的抑制机制有密切联系。场独立者能有效抑制无关信息的干扰,所以能摆脱对整个场的依赖进行局部分析和加工,易于从整体场信息(Stroop任务)中分离出目标刺激(念字或唱色),因此在Stroop任务中作业时间较短。场依存者倾向于采用整体线索组织和加工信息,易受场内无关信息的影响,即抑制干扰信息的效能较低,因而在

Stroop任务中的作业时间会较长。本实验的目的在

于验证以上假设,以期丰富场认知方式在信息加工中的抑制机制理论。

方法

2.1

被试

选取大学本科生80人,以小团体方式完成团

体镶嵌图形测验(GEFT,北京师范大学心理系修订,满分为24分),最终得到有效问卷71份。将高分(得分前20%,最低分为16分)确定为场独立组,低分(得分后20%,最高分为8.5分)确定为场依存组。最后确定场独立组14人,场依存组

14人,共28人,年龄在20 ̄22岁。被试裸视或矫

正视力正常,无色盲或色弱现象,无任何语言和听力障碍,且未参加过类似测验或实验。

2.2实验材料和仪器

实验采用北京大学心理系制作的WinPes心理

实验系统(2002版)中的Stroop效应实验。实验材料为有7项任务的中文色词测验表。每项任务包括12个色字符。其中任务1和任务2为念字任务,任务1为念黑字,任务2为念色字。任务3到任务

7为唱色任务,任务3呈现的字色矛盾的色字中,

字义系统与颜色系统相符(均为红、绿、黄、蓝)。任务4呈现无意义刺激斜十字叉号“Х”,任务5呈现与颜色无关的色字,任务6呈现容易引起颜色联想的色字,任务7呈现的字色矛盾色字中字义系统和颜色系统不相符(字义系列为棕、紫、灰、黑,显示色系列为红、绿、黄、蓝)。实验仪器为

Pentium4微机,15英寸彩色显示器。

表1

Stroop中文色词测验表样例

注:表中括号内为括号外色字的显示色。

2.3实验设计

本实验组间变量为场独立组、场依存组。组内

变量为7种实验处理条件。

本实验因变量为对不同任务(念字或唱色)的作业时间和错误率。

为避免可能的练习和疲劳影响,实验采用拉丁方设计。场独立被试14人和场依存被试14人分别随机分入7个组,每组有两类被试各2人。7个组分别接受不同顺序的7项Stroop实验处理。

2.4实验程序

实验在安静的房间里个别进行,被试坐在计

算机前50cm处,双眼平视屏幕中心。指导语如下:

实验有两种任务要你完成:一种是念字,即把屏幕上呈现的一行字从左向右然后再从右向

左一个一个的大声念出来;另一种是唱色,即把屏幕上呈现的一行字的书写颜色从左向右然后再从右向左一个一个的大声说出来。每次任务之前屏幕上会给出念字或唱色的指示。请做的又快又准。”实验需两名主试,一名主试控制实验过程,包括操作计算机,负责被试信息的输入、任务顺序的选择及任务的开始和停止。另一名主试在被试实验的同时对照色词表记录错误数。任务准备时间为2000ms,任务间隔时间为1000ms,背景颜色为灰色。每项任务在经过准备时间后,系统会给出提示音,同时呈现一行色字符(12个)并自动开始计时。任务完成后,主试立即按“停止”键停止计时,屏幕上给出作业时间(总时间/2,即每念一遍所用的时间),并且系统会自动存储数

红(黑)绿(蓝)绿(蓝)xx(红)心(蓝)蛋(蓝)棕(红)绿(黑)

红(绿)

红(绿)

xx(绿)

友(绿)

草(黄)

紫(绿)

任务1

念字

任务2

念字

任务3

唱色

任务4

唱色

任务5

唱色

任务6

唱色

任务7

唱色

101

第5卷

心理与行为研究表2

两组被试7种Stroop任务的平均作业时间和标准差(ms)

任务1

任务2

任务3

任务4

任务5

任务6

任务7

场独立

平均数

5053.865563.219171.506496.216785.007633.149812.29标准差775.521164.231544.29914.38982.93917.293276.04场依存

平均数

5315.366097.3611798.217107.508242.868418.2110890.93标准差

833.42

1771.66

2076.74

1329.05

1550.74

1101.10

2534.07

据,然后继续下一个任务。被试在正式实验之前要对各种处理条件进行充分练习。

结果与分析

场独立组与场依存组被试在7种Stroop任务处

理条件下的平均作业时间及标准差如表2所示。

由表2可以看出,场独立组7项Stroop任务的平均作业时间均小于场依存组。对表2结果进行方差分析显示:

(1)被试组间作业时间差异显著,F(1,26)

=8.877,p<0.01。这一结果说明场依存组的作业时

间大于场独立组的作业时间。这一点在表2的数据中也可看出,场依存组在7种任务中的作业时间均大于场独立组。

(2)被试内7种处理之间的作业时间差异显著,F(6,156)=56.14,p<0.001。说明由于不同

Stroop任务的性质不同,被试对不同任务的干扰信

息进行抑制的效率不同。

(3)被试间与被试内处理的交互作用不显著。

F(6,156)=2.09,p>0.05。说明不同Stroop任务之

间成绩的差异不受认知方式不同的影响,不同认知方式作业时间的差异也不受不同Stroop任务的影响。

由于组内差异显著而交互作用不显著,事后比较显示:在两项念字任务中,任务1(念黑字)和任务2(念色字)的作业时间差异显著(p<0.05),这表明字色对念字任务也会产生干扰。在五项唱色任务中,任务3与任务7差异不显著(p>0.05),任务3和任务7(均为色字矛盾任务)与其它三项唱色任务差异显著(p<0.001),任务4与任务5、任务5与任务6差异显著(p<0.05),任务4与任务6差异显著(p<0.001)。表明字色矛盾引起的干

扰大于颜色联想字所引起的干扰,颜色联想字引起的干扰又大于颜色无关字,而唱色任务中干扰最小的是无意义刺激组。念字任务(任务1和任务2)与各项唱色任务事后比较差异显著(p<0.001)。可见,颜色对念字任务的干扰量小于字义对唱色任务的干扰量。

两组被试在7种Stroop任务中错误次数和错误率如表3所示。

表3

两组被试在7种任务条件下错误次数及错误率(%)

任务1

任务2

任务3

任务4

任务5

任务6

任务7

场独立

次数

68396161127错误率1.792.3811.611.794.763.278.04场依存

次数

9543610923错误率

2.68

1.49

12.80

1.79

2.98

2.68

6.85

根据表3分别计算两组被试的平均错误率,场独立组的平均错误率为4.81%,场依存组的平均错误率为4.47%,全体被试平均错误率为4.64%。经百分数检验结果显示:两组被试平均错误率差异不显著(z=0.553<1.96,p>0.05)。可见,针对本实验任务,不同认知方式对被试在实验中的错误率没有显著影响。

讨论

本研究要探讨的主要问题是,场依存—独立认

知方式在信息加工过程中抑制干扰信息的效能是否存在差异及各有什么特点。本实验的作业时间结果和检验结果表明,场独立组各项Stroop任务的平均作业时间均显著低于场依存组,且两组被试平均错

102

第2期

误率差异不显著,说明在认知加工过程中,不同场认知方式的个体信息加工抑制机制存在明显差异。场独立组被试在各项Stroop任务中抑制干扰信息的效率明显高于场依存被试,对干扰信息的抑制能力较强,证实了引言中的假设。场认知方式说明的是对属于知觉场的一部分的结构和形式进行分析时个体对整个场的依赖性。在Stroop任务中,自动化程度不同的两种信息发生反应竞争而产生干扰效应。场独立者对干扰信息的抑制能力强,能够有效压抑或排除认知加工对象的整体场(如Stroop任务)中与目标刺激无关的干扰刺激的影响,更迅速有效的完成干扰任务作业。由于能够高效地抑制干扰,场独立者能够打破原有的认知结构,在认知任务中表现为具有较强的认知改组能力,倾向于摆脱对场提供的整体线索的依赖,使用内在加工线索按任务要求对材料进行加工。场依存者抑制干扰信息的效能较低,倾向于依赖场的整体信息,根据场提供的外部线索对信息进行组织和加工。在Stroop任务中表现出易受整个场(字义和颜色信息的整合场)的影响,较难压抑和排除对目标刺激之外的场内干扰信息的自动加工,即对无关信息干扰的抑制效能较低。与场独立者相比,其信息加工的控制性较弱。

实验结果还发现,在念字任务中(任务1和任务2),字色对念字任务也会产生干扰作用,也需要对起干扰作用的分心信息(字色)进行抑制。有研究者认为,颜色对念字任务不会产生干扰[13]。本实验结果表明,颜色也干扰念字任务。这一结果支持了Logan的观点,即自动化是一个程度的问题,既不是某种双重条件,也不是终点状态[14]。一般认为,Stroop效应是由信息加工的自动化造成的。自动化与练习实践有着密切的关系。人们在长期实践中形成了对字义加工的高度自动化,而颜色加工的自动化程度较低,因此,唱色时受到字义的干扰较强,而念字时受到颜色的干扰相对来说要弱的多,但这种干扰也是存在的。另外,对不同唱色任务的比较结果说明,干扰任务材料的不同性质影响了抑制效率,有意义的干扰信息比无意义的干扰信息更难被抑制。而对于有意义信息的干扰任务中,与目标刺激越相关的越难被抑制。这一结果支持了杨丽霞等人[7,15]的研究结论。

不同场认知方式抑制能力的差异是其信息加工内部机制的基本差异,可以解释场认知方式其他相关外在表现的不同。研究表明,随着个体生理和心理的发展,场认知方式水平也有所发展。在通常情况下,场独立性随年龄增长而有所增加,而在一定年龄阶段则具有相对稳定性,至成年则很少改变[16]。而抑制能力也随年龄增长而提高,成年抑制能力最强[8,17]。可见,场独立性的发展与信息加工抑制机制逐渐成熟,抑制效能逐渐增强有关。关于创造力的研究表明,场独立性强的人通常表现出较高的创造力水平[18]。他们较少受习惯、权威的影响可以从其信息加工抑制能力较强来解释。场独立性强的人能够对认知任务中已经形成一定程度自动化加工的习惯和定势等无关信息结构进行有效抑制,因此在分析和解决问题时能打破原先已组织好的场和已形成的知识结构,表现出创新能力。抑制有其生理基础,抑制机制是大脑额叶最基本的功能之一,且不同种类的干扰信息参与抑制的额叶功能区不同[19],这对于不同认知方式的生理机制的研究也具有一定意义。

认知方式属于个体差异的重要领域,对认知方式的信息加工机制的研究对于理解认知和人格的关系具有重要价值。随着认知方式研究的不断整合和进展,对其内部信息加工机制尤其是与抑制的密切关系的研究将会更加深入。

5结论

(1)不同场认知方式的个体抑制干扰信息的效能存在明显差异。场独立者表现出比场依存者更强的对无关信息干扰的抑制能力。

(2)在Stroop任务中,字色对念字任务也会产生干扰作用。说明自动化只是一个程度的问题,对字色的加工也存在自动化,只是自动化程度较低。

参考文献

1赖丁,雷纳.认知风格与学习策略—理解学习和行为中的风格差异.上海:华东师范大学出版社,2003

2WitkinHA,GoodenoughDR.Cognitivestyles:Essenceandori-gins.Madison,Conn.:InternationalUniversitiesPress,1981,38 ̄473RiningRJ,CheemaI.Cognitivestyles:Anoverviewandinte-gration.EducationalPsychology,1991,11:193 ̄215

4RaynerS,RidingR.Towardsacategorisationofcognitivestylesandlearningstyles.EducationalPsychology,1997,17:5 ̄28

5宋广文,李寿欣,伊焱.学生认知方式及其教育应用的研究与进展.华东师范大学学报(教育科学版),2000,18(4):50 ̄57

6TipperSP.Thenegativeprimingeffect:Inhibitoryprimingby

103

第5卷心理与行为研究

ignoredobjects.QuarterlyJournalofExperimentalPsychology,1985,37A:571 ̄590

7杨丽霞,陈永明.句子加工水平上对外在干扰的抑制机制.心理学报,2002,34(6):553 ̄560

8HarnishfegerKK,BjorklundDF.Theontogenyofinhibitionmech-anisms:Arenewedapproachtocognitivedevelopment.In:HoweML,PasnakRed.EmergingThemesinCognitiveDevelopment,Vol.1:Foundations.NewYork:Springer-Verlag.1993,28 ̄49

9HarnishfegerKK.Thedevelopmentofcognitiveinhibition:The-ories,definitions,andresearchevidence.In:DempsterFN,BrainerdCJed.InterferenceandInhibitioninCognition,Aca-demicPress,1995

10杨丽霞,傅小兰.视—听跨通道汉语词汇信息加工中的抑制机制.心理学报,2002,34(1):10 ̄15

11王甦,汪安圣.认知心理学.北京大学出版社.1992

12张卫,林崇德.抑制及其发展研究.心理科学,2001,24(4):

458 ̄461

13杨博民主编.心理实验纲要.北京:北京大学出版社,1989

14Logan,GD.Repetitionprimingandautomaticity:Commonun-derlyingmechanism?CognitivePsychology,1990,22:1 ̄35

15杨丽霞,陈永明,崔耀等.理解能力不同的个体抑制干扰信息的效率.心理学报,2002,34(2):120 ̄125

16WitkinHA,GoodenoughDR,KarpSA.Stabilityofcognitivestylefromchildhoodtoyoungadulthood.JournalofPersonalityandSocialPsychology,1967,7:291 ̄300

17HarnishfegerKK,PopeRS.Intendingtoforget:Thedevelop-mentofcognitiveinhibitionindirectedforgetting.Journalofex-perimentalchildpsychology,1996,62:292 ̄315

18李寿欣,李涛.大学生认知方式与人际交往及创造力之间关系的研究.心理科学,2000,23(1):119 ̄120

19罗劲,仁木和久,丁之光等.额叶皮层内知觉干扰与工作记忆干扰引起的抑制.心理学报,2003,35(4):427 ̄432

THEINHIBITORYMECHANISMOFDEPENDENT-INDEPENDENT

COGNITIVESTYLES

SongGuangwen,HanShujie

(FacultyofEducationScience,QufuNormalUniversity,Qufu273165;FacultyofContinningEducation,QufuNormalUniversity,

Qufu273165)

Abstract

Stroopinterferenceparadigmwasusedtoinvestigatethedifferencesoftheinhibitorymechanismbetweenthefileddependenctandfiledindependenctparticipants.ByusingGEFT(groupembeddedfigurestest),28partic-ipantswereselectedfrom71universitystudents,andtherewasequalnumberof14studentsinbothfield-de-pendentgroupandfield-independentgroup.Intheexperiment,theWinPesPhychologicalExperimentalSystemwasappliedtopresentStrooptask.Theresultsshowed:(1)Peopleoffield-dependentcognitivestyleinhibitedlessefficientlythedistractinginformationthanthoseofindependentstyle.(2)IntheStrooptask,automaticpro-cessingofthewordcolorshappened,buttheautomaticdegreewasrelativelylow.

Keywordsfielddependent-independentcognitivestyles,Stroopinterferenceeffect,inhibitorymechanism.

104

干扰处理方法

技术支持 干扰的来源及影响方式 闭路电视监控系统中传输信号的类型主要有两类:一类是模拟视频信号,传输路径由摄象机到矩阵,从矩阵再到显示器或录象机;一类是数字信号包括矩阵与摄象机之间的控制信息传输,矩阵中计算机部分的数字信号。一般设备成为干扰源的可能性很小,因此干扰主要通过信号传输路径进入系统。闭路电视监控系统的信号传输路径是能通过视频电缆和传输控制信号的双绞线耦合进系统的干扰有:各种高频噪声比如大电感负载启停,地电位不等引入的工频干扰,平衡传输线路失衡使抑噪能力下降将共频干扰转成了差模干扰,传输线上阻抗不匹配造成信号的反射使信号传输质量下降,静电放电沿传输线进入设备造成接口芯片损伤或损坏。具体表现如下:由于阻抗不匹配造成的影响在视频图象上表现为重影。在信号传输线上会将在脉冲序列的前后沿形成震荡。震荡的存在使高低电平间的阈值差变小,当震荡的幅值再大或有其他干扰引入时就无法正确分辨出脉冲电平值,导致通信时间变长或通信中断。接地和屏蔽不好会导致传输线抑制外部电磁干扰能力的下降,体现在视频图象就是雪花噪点、网纹干扰以及横纹滚动等;在信号传输线上形成尖峰干扰,造成通信错误。平衡传输线路失衡也会在信号传输线上形成尖峰干扰。静电放电除了会造成设备损坏外,还会影响存储器内的数据,使设备出现些莫名其妙的错误。 抗干扰的方法 从干扰源的分析了解到并没有特别的干扰源,消除或者减少上述干扰的理论探讨也有许多,如何针对闭路电视监控工程解决干扰问题,很少有文献涉及,下面就闭路电视监控工种中常见的干扰及解决方法进行些探讨。 视频信号的干扰 视频信号的干扰在图象上表现为地花点和50HZ横纹滚动,对于雪花点干扰是由于传输线上信号衰减以及耦合了高频干扰所致,这种干扰比较容易消除,在摄象机与控制矩阵之间合理位置增加一个视频放大器,将信号的受噪比提高,或者改变视频电缆的路径避开高频干扰源,高频干扰的问题可基本上得到解决。较难解决的是50HZ横纹滚动及进一步加高频干扰的情况,比如电梯轿厢内摄象机的输出图象。为了抑制上述干扰,首先分析一 下造成上述问题的原因。 摄象机要求的供电电源一般有三种:直流12V、交流24V或220V,大多数工程应用中不从电梯轿厢的供电电源上取,而是另外布设供电电源给摄象机供电,摄象机输出图象经过一条软性的视频电缆从井道的上方

电磁干扰(EMI)抑制技术

电磁干扰(EMI)抑制技术 时间:2012-08-14 11:38:34 来源:作者: 1 电磁干扰基本概念 在复杂的电磁环境中,任何电子及电气产品除了本身能够承受一定的外来电磁干扰(Electromagnetic Interference,EMI)而保持正常工作外,还不会对其他电子及电气设备产生不可承受的电磁干扰,该产品即具有电磁兼容性(Electromagnetic Compatibility,EMC)[1]。 21世纪将是信息爆炸的时代,信息的产生、传递、接收、处理和储存等都需要依赖电磁波作为载体。广义地说,声波、无线电波、光波均可作为信息载体,因此,广义的电磁兼容性概念也应拓展到声、光、电的广阔领域。 电子及电气产品的电磁干扰发射或受到电磁干扰的侵害都是通过产品的外壳、交/直流电源端口、信号线、控制线及地线而形成的。按照EMI的传播方式,可将其分为电磁辐射干扰和电磁传导干扰两大类。通常,辐射干扰出现在产品周围的媒体中,传导干扰则出现在各种导体中。一般来说,通过外壳发射的电磁干扰,或通过外壳侵入的干扰都是辐射干扰,而通过其它导体发射和入侵的干扰属于传导干扰。 2 人类必须关注电磁兼容问题 2.1 电磁环境不断恶化 20世纪中叶以来,电子技术的迅猛发展,使人类社会的进步和文明上了一个新的台阶,但是也给人们带来了一系列社会问题和环境问题。家用电器、通信、计算机及信息设备、电动工具、航空、航天等工业、科技、医学等各个领域的自动控制、测量仪器以及电力电子系统等的广泛普及、应用,深入千家万户之中,使得电磁污染问题日益突出,而电子设备的高频化、数字化,干扰信号的能量密度增大,使有限空间内的电磁环境更为恶化。 1996年3月,日本SAPIO杂志公布了日本家用电器电磁辐射的检测结果(表1)。瑞典等北欧三国于1993年所作的联合调查指出:人类长期受到2mG(毫高斯)以上的电磁辐射影响,患白血病的机会是正常人的2.1倍,患脑肿瘤的机会是正常人的1.5倍,其他疾病的发病概率也明显增加。 表1 家用电器电磁辐射检测结果(单位:mG)[2] 2.2 电磁污染危害不浅 电磁干扰和污染看不见、摸不着、听不到,因其无色、无味也无形,但它确实无处不在、危害不浅,威胁人体健康。德国专家指出,电磁污染能影响对人体生物钟起作用的激素和传达神经信息的激素,还能破坏细胞膜;美国科学家的研究表明,电磁污染可直接杀伤人

电磁干扰及其抑制方法的研究

弱电工程中电磁干扰及其抑制方法的研究 (葛洲坝通信工程有限公司方宏坤 151120) 【摘要】在弱电工程应用领域,强电与弱电交叉耦合,电磁干扰(EMI)错综复杂,严重影响弱电系统的稳定性和安全性。本文详细介绍了 EMI 产生的原因、分析EMI/RFI的特性,及其传输途径和危害,利用电磁理论和工程实践,分析并提出了一些在弱电工程领域行之有效的 EMI 抑制方法。 【关键词】弱电电磁干扰(EMI)射频干扰(RFI)干扰抑制 随着计算机技术,特别是网络技术的飞速发展,IT技术在弱电工程领域的广泛应用,IT设备日益精密、复杂,使得电子干扰问题日趋严峻。它可使系统的稳定性、可靠性降低,功能失效,甚至导致系统完瘫痪和设备损坏。特别是EMI/RFI(电磁干扰/射频干扰)问题,已成为近几年弱电工程领域的焦点。 1、电磁干扰分类和特性 生活中电磁干扰无处不在,其干好错综复杂。通常我们把电磁干扰主要划分为电磁干扰(EMI)、射频干扰(RFI)和电磁脉冲(EMP)三种,根据其来源可分为外界和内部两种,严格的说所有电子运行的元件均可看作干扰源。本文中所提EMI是对周围电磁环境有较强影响的干扰;RFI则从属于EMI;EMP 是一种瞬态现象,它可由系统内部原因(电压冲击、电源中断、电感负载转换等)或外部原因(闪电等)引起,能耦合到任何导线上,如电源线和通信电缆等,而与这些导线相连的电子系统可能受到瞬时严重干扰或使系统内的电子电路永久性损坏。图 1 给出了常见 EMI/RFI 的干扰源及其频率范围。

1.1 EMI特性分析 在电子系统设计中,应从三个方面来考虑电磁干扰问题:首先是电子系统产生和发射干扰的程度;其次是电子系统在强度为 1~10 V/m、距离为 3 米的电磁场中的抗扰特性;第三是电子系统内部的干扰问题。利用干扰三要素分析与EMI相关的问题需要把握EMI的五个关键因素,这五个关键因素是频率、幅度、时间、阻抗和距离。 在EMI分析中的另一个重要参数是电缆的尺寸、导线及护套,这是因为,当EMI成为关键因素时,电缆相当于天线或干扰的传输器,必须考虑其物理长度与屏蔽问题。 1.2 RFI特性分析 无线电发射源无处不在,如无线电台、移动通信、发电机、电动机、电锤等等。所有这些电子活动都会影响电子系统的性能。无论RFI的强度和位置如何,电子系统对RFI必须有一个最低的抗扰度。在通信、无线电工程中,抗扰度定义为设备承受每单位RFI功率强度的敏感度。从“干扰源—耦合途径—接收器”的观点出发,电场强度E 是发射功率、天线增益和距离的函数,即 E=5.5· P·G d 式中P为发送功率(mW/cm2),G为天线增益,d为电路或系统距干扰源的距离(m)。 由于模拟电路一般在高增益下运行,对RF场比数字电路更为敏感,因此,必须解决μV级和mV级信号的问题;对于数字电路,由于它具有较大的信号摆动和噪声容限,所以对RF场的抑制力更强。 1.3 干扰途径 任何干扰问题可分解为干扰源、干扰接收器和干扰的耦合途径三个方面,即所谓的干扰三要素。如表 2 所示。 表2 干扰源耦合途径干扰类型接收器 共地阻抗传导干扰 辐射场到互连电缆(共模)辐射干扰 微控制器辐射场到互连电缆(差模)辐射干扰 有源器件电缆间串扰(电容效应)感应干扰微控制器 静电放电电缆间串扰(电感效应)感应干扰通信接收器 通信发射机电缆间串扰(漏电导)传导干扰有源器件 电源电缆间串扰(场耦合)辐射干扰其他电子系统扰动电源线到机箱传导干扰 雷电辐射场到机箱辐射干扰

计算机控制系统中的抗干扰技术

第9章计算机控制系统中的抗干扰技术 ●本章的教学目的与要求 掌握各种干扰的传播途径与作用方式以及软硬件抗干扰技术。 ●授课主要内容 ●干扰的传播途径与作用方式 ●软硬件抗干扰技术 ●主要外语词汇 ●重点、难点及对学生的要求 说明:带“***”表示要掌握的重点内容,带“**”表示要求理解的内容,带“*”表示要求了解的内容,带“☆”表示难点内容,无任何符号的表示要求自学的内容 ●干扰的类型*** ●干扰的传播途径***☆ ●各类干扰的抑制方法*** ●辅助教学情况 多媒体教学课件(POWERPOINT) ●复习思考题 ●干扰的类型 ●干扰的传播途径 ●各类干扰的抑制方法 ●参考资料 刘川来,胡乃平,计算机控制技术,青岛科技大学讲义

干扰是客观存在的,研究抗干扰技术就是要分清干扰的来源,探索抑制或消除干扰的措施,以提高计算机控制系统的可靠性和稳定性。 9.1 干扰的传播途径与作用方式 干扰是指有用信号以外的噪声或造成计算机设备不能正常工作的破坏因素。产生干扰信号的原因称为信号源。干扰源通过传播途径影响的器件或系统称为干扰对象。干扰源、传播途径及干扰对象构成了干扰系统的三个要素。 9.1.1 干扰的来源 1.外部干扰 2.内部干扰 9.1.2 干扰传播途径 干扰传播途径主要有:静电耦合、磁场耦合、公共阻抗耦合。 1. 静电耦合 静电耦合是通过电容耦合窜入其他线路的。 2. 磁场耦合 在任何载流导体周围都会产生磁场,当电流变化时会引起交变磁场,该磁场必然在其周围的闭合回路中产生感应电势引起干扰,它是通过导体间互感耦合进来的。 3公共阻抗耦合 公共阻抗耦合干扰是由于电流流过回路间公共阻抗,使得一个回路的电流所产生的电压降影响到另一回路。 9.1.3 干扰的作用方式 按干扰作用方式的不同,可分为串模干扰、共模干扰和长线传输干扰。 1. 串模干扰 串模干扰是指叠加在被测信号上的干扰噪声,它串联在信号源回路中,与被测信号相加输入系统. 图9.6 串模干扰示意图图9.7 共模干扰示意图

常见干扰问题怎么解决

常见干扰问题怎么解决 说起视频干扰,要讲一下视频监控信号传输的传统方式视频基带传输。所谓的视频基带传输是指视频信号不经过频率变换等任何处理由图像摄取端通过同轴电缆直接传输到监视端的传输方式,图像在传输时直接利用同轴电缆的0~6MHz来传输,非常容易受到干扰,使图像出现网纹、横纹和噪点影响监视效果。对于基带传输视频干扰,从干扰源角度分为交流声干扰和空间电磁波干扰,从干扰切入方式分为传导式干扰和辐射式干扰。下面分析一下常见视频干扰现象及其原因。 1、工频干扰 干扰现象:图像出现雪花噪点、网纹或很宽暗横带持续不断滚动。 干扰原因:此现象是当摄像端与监控设备端同时接地时,由于地电阻及电缆外皮电阻的存在,在两地之间电力系统各相负载不平衡或接地方式不同引起50Hz电位差,从而产生工频干扰所致。地电位使两接地端存在电压降,电压降加在屏蔽层两端并与大地(地电阻)构成回路产生地电流,地电流经过线缆屏蔽层形成干扰电压,地电流的部分谐波分量落入视频芯线,致使芯线与屏蔽层之间产生干扰电位,使干扰信号加入视频信号中对监控图像形成干扰。 2、空间电磁波干扰 干扰现象:图像出现较密的斜形网纹,严重时会淹没图像。 干扰原因:当监控电缆在空中架设时,空中电磁波干扰信号所产生的空间电场会作用于监控传输线路,使线路两端而产生相当大的电磁干扰电压,其频率约在200Hz~2.3MHz。由于电缆中电位差的存在,使电缆屏蔽层产生干扰电流,而一般情况下摄像端和监控设备端均为接地状态,这就使干扰电流通过线缆两端接地点与大地形成回路,导致终端负载产生干扰电压,干扰信号耦合进视频信号中,产生图像干扰情况。 3、低频干扰(20Hz-nKHz低频噪声干扰) 干扰现象:图像出现静止水平条纹。 现象原因:由于声音、数据等信号属于低频信号,其频带狭窄在传输时只用到20Hz~nKHZ,几乎采用任何种类的电缆都可以传输,一般只受交流声干扰。用于传输视频信号的同轴电缆,其屏蔽层抗干扰曲线特性表明干扰信号频率越高其屏蔽性能越好,对于诸如载波电话、有线电台等低频率信号干扰反而显得苍白无力。低频干扰信号同样会在传输线缆上产生干扰电压,从而影响图像质量。 4、高频干扰 干扰现象:图像出现雪花点或高亮点。 现象原因:虽然视频传输所用同轴电缆抗高频干扰要比抗低频干扰性能强,但是强高频干扰信号还会对

开关电源中电磁干扰的产生及其抑制

开关电源中电磁干扰的产生及其抑制 摘要:电磁干扰对开关电源的效率和安全性及使用的影响日益成为人们关注的热点。本文分析了开关电源中电磁干扰产生的原因和传播的路径,并提出了抑制干扰的有效措施。 关键词:开关电源、电磁干扰、耦合通道、电磁屏蔽 1 引言 电磁兼容EMC是英文electro magnetic compatibility 的缩写。它包括两层含义,一是设备在工作中产生的电磁辐射必须限制在一定水平内,二是设备本身要有一定的抗干扰能力,它必须具备三个要素:干扰源、耦合通道、敏感体。给电子线路供电的开关电源对干扰的抑制对保证电子系统的正常稳定运行具有重要意义。本文通过分析开关电源中的干扰源和耦合通道,提出了抑制干扰的有效措施。并提出了开关电源中开关变压器的设计和制作方法。 2 开关电源中的干扰源和耦合通道 开关电源首先将工频交流电整流为直流电,然后经过开关管的控制变为高频,最后经过整流滤波电路输出,得到稳定的直流电压,因此,自身含有大量的谐波干扰。同时,由于变压器的漏感和输出二极管的反向恢复电流造成的尖峰,都会产生不同程度的电磁干扰。开关电源中的干扰源主要集中在电压、电流变化大(即dV/dt或dI/dt很大)的元器件上,尤其是开关管、输出二极管和高频变压器等。同时,杂散电容会将电网的噪声传导到电子系统的电源而对电子线路的工作产生干扰。 这里我们来分析一下几种干扰产生的原因及其耦合的路径。 2.1输入整流滤波电路产生的谐波干扰 开关电源输入端普遍采用桥式整流,电容滤波电路。由于整流二极管的非线性和滤波电容的储能作用,使得输入电流i成为一个时间很短、峰值很高的周期性尖峰电流,如图1所示。这种畸变的输入电流,它除了基波外,还含有丰富的高次谐波分量。

电磁干扰及抑制技术

电磁干扰及常用的抑制技术 摘要:各种干扰是机电一体化系统和装置出现瞬时故障的主要原因。电磁兼容性设计是目前电子设备及机电一体化系统设计时考虑的一个重要原则,它的核心是抑制电磁干扰。电磁干扰的抑制要从干扰源、传播途径、接收器三个方面着手,切断干扰耦合的途径,干扰的影响也将被消除。常用的方法有滤波、降低或消除公共阻抗、屏蔽、隔离等。 关键词:电磁干扰干扰抑制屏蔽接地 1.电磁干扰 电磁干扰(electro magnetic interference,EMI)是指系统在工作过程中出现的一些与有用信号无关的、并且对系统性能或信号传输有害的电气变化现象。构成电磁干扰必须具备三个基本条件:①存在干扰源;②有相应的传输介质;③有敏感的接收元件。只要除去其中一个条件,电磁干扰就可消除,这就是电磁抑制技术的基本出发点。 1.1 电磁干扰的分类 常见的各种电磁干扰根据干扰的现象和信号特征不同有以下分类方法。 1、按其来源分类 (1) 自然干扰。 自然干扰是指由于大自然现象所造成的各种电磁噪声。 (2) 人为干扰。

由于电子设备和其他人工装置产生的电磁干扰。 2、按干扰功能分类 (1) 有意干扰。 有意干扰是指人为了达到某种目的而有意识制造的电磁干扰信号。这是当前电子战的重要手段。 (2) 无意干扰。 无意干扰是指人在无意之中所造成的干扰,如工业用电、高频及微波设备等引起的干扰等。 3、按干扰出现的规律分类 (1) 固定干扰。 多为邻近电气设备固定运行时发出的干扰。 (2) 半固定干扰。 偶尔使用的设备(如行车、电钻等)引起的干扰。 (3) 随机干扰。 无法预计的偶发性干扰。 4、按耦合方式分类 (1) 传导耦合干扰。 传导耦合是指电磁噪声的能量在电路中以电压或电流的形式,通过金属导线或其他元件(如电容器、电感器、变压器等)耦合到被干扰设备(电路)。 (2) 辐射耦合干扰。 电磁辐射耦合是指电磁噪声的能量以电磁场能量的形式,通过空

串模干扰共模干扰概念以及抑制方法

串模干扰共模干扰概念以及抑制方法 发布日期:2010-03-11 仪表在工业生产的现场使用的条件常常是很复杂的。被测量的参数又往往被转换成微弱的低电平电压信号,并通过长距离传输至二次表或者计算机系统。因此除了有用的信号外,经常会出现一些与被测信号无关的电压或电流存在。这种无关的电压或电流信号我们称之为“干扰”(也叫噪声)。 干扰的来源有很多种,通常我们所说的干扰是电气的干扰,但是在广义上热噪声、温度效应、化学效应、振动等都可能给测量带来影响,产生干扰。在测量过程中,如果不能排除这些干扰的影响,仪表就不能够正常的工作。 根据仪表输入端干扰的作用方式,可分为串模干扰和共模干扰。串模干扰是指叠加在被测信号上的干扰;共模干扰是加在仪表任一输入端与地之间的干扰。 干扰来自于干扰源,它们在仪表内外都可能存在。在仪表外部,一些大功率的用电设备以及电力设备都可能成为干扰源,而在仪表内部的电源变压器、机电器、开关以及电源线等也均可能成为干扰源 1) 串模干扰的抑制 串模干扰与被测信号所处的地位相同,因此一旦产生串模干扰,就不容易消除。所以应当首先防止它的产生。防止串模干扰的措施一般有以下这些: * 信号导线的扭绞。由于把信号导线扭绞在一起能使信号回路包围的面积大为减少,而且是两根信号导线到干扰源的距离能大致相等,分布电容也能大致相同,所以能使由磁场和电场通过感应耦合进入回路的串模干扰大为减小。 * 屏蔽。为了防止电场的干扰,可以把信号导线用金属包起来。通常的做法是在导线外包一层金属网(或者铁磁材料),外套绝缘层。屏蔽的目的就是隔断“场”的耦合,抑制各种“场”的干扰。 屏蔽层需要接地,才能够防止干扰。 * 滤波。对于变化速度很慢的直流信号,可以在仪表的输入端加入滤波电路,以使混杂于信号的干扰衰减到最小。但是在实际的工程设计中,这种方法一般很少用,通常,这一点在仪表的电路设计过程中就已经考虑了。 以上的几种方法是主要是针对与不可避免的干扰场形成后的被动抑制措施,但是在实际过程中,我们应当尽量避免干扰场的形成。譬如注意将信号导线远离动力线;合理布线,减少杂散磁场的产生;对变压器等电器元件加以磁屏蔽等等,采取主动隔离的措施。

电磁兼容中差模与共模干扰及抑制技术

电磁兼容中差模与共模干扰及抑制技术 于 虹 (国家计算机外设质检中心,杭州310012) 摘 要 本文分析了引起差模和共模干扰现象的原因,提出了测量和确定辐射场源特性的方法,对差模干扰和共模干扰提出了抑制方法。 关键词 电磁兼容 差模干扰 共模干扰 一、引起差模与共模干扰的物理原因 电磁兼容辐射干扰问题主要来自电路中的电流突变产生的磁场变化或电压突变产生的电场变化;当把距辐射源的距离与波长λ作比较作为近场与远场区域的分界点(一般把距离λ的区域定义为近场区域,把距离 λ的区域定义为远场区域),若近场范围以磁场为主时,表明它与差模电流有密切关系,而电场与共模电流有密切关系。 电流的变化会引起电压的变化,反之亦然。但在实际电路中是其中之一占主导地位。辐射源的阻抗决定着近场是以磁场为主还是以电场为主。一般来讲,磁场是由仪器中某一局部回路产生的,这些回路可以分解为不同的模式。 电路中的阻抗概念是正确理解问题的一个重要概念,这里所提及的阻抗是指在特定辐射频率下的总的阻抗,这与通常所理解的阻抗概念有所不同。比如,电路中的连结器常被认为是低阻抗,但在高频条件下由于电路中的感应现象而实际上呈高阻抗。在一个电路中所有导线变为高阻抗的最常见方式就是线路中接地线显著的感应现象,在有些频率下,地线被感应成为高阻抗状态。对于整个线路来讲,地线实际上是以高阻抗状态与线路中其它线相串联起来了。在这种情形下,通过电容耦合形成回流。低阻场或者由电流产生的场,主要是磁场,在近场处以磁场为主。低阻场与低阻源相联系,也就是说与差模干扰有密切关系。 二、确定差模与共模干扰的诊断技术 低源阻抗引起电流变化的场,这决定了在近场区域以磁场为主,反之亦然,这就是确定辐射是否为差模干扰的基础。测量场阻的变化采用近场探头和频谱分析仪联合进行,其仪器配置及测试方法见图1所示。设E∶E场场强; H∶H场场强;P F∶探头性能因子;Z∶场阻抗;则H=Vh+P Fh-52;E=Ve+PFe;Z= 10(e-h)/20;若Z<377Ψ,那么d i/d t是主要的,辐射可能是差模;若Z>377Ψ,d v/d t是主要的,辐射可能是共模的 。 图1 在测量H场时要注意探头的取向,一般沿着源的两个径向测量,每个方向上测量2~6个点,点距为1~4m,在近场处间距要小一点。每个测量点上同时测出H场和E场的数据。 对于得到的实验数据采用两种方式处理均可:①作出H场和E场场强随距离变化的曲线,其中一个比另一个变化快。当H场变化较快时,为低阻抗源问题;当E场变化较快时为高阻抗源问题。②在同一测量点上(近场范围)利用Z=E/H来求出该测量点的场阻,并 25 计量技术 1997.№2

继电器电磁干扰的分析及抑制

摘要:本文主要介绍了对电气设备中继电器及其开关触点干扰抑制的机理,提出了抑制干扰的有效措施。 关键词:继电器电磁干扰分析抑制 1前言 随着科学技术的飞速发展,电子、电力电子、电气设备应用越来越广泛,它们在运行过程中会产生较强的电磁干扰和谐波干扰。其中,电磁干扰具有很宽的频率范围(从几百Hz 到MHz),又有一定的幅度,经过传导和辐射会污染电磁环境,对电子设备造成干扰,有时甚至危及操作人员的安全。特别是大功率中、短波广播发射中心,其周围电磁环境尤为复杂,要想保证设备安全稳定运行,电子设备及电源必须具有更高的电磁兼容性。 2电磁干扰的抑制 电磁干扰EMI(Electromagnetic Interference)是指由无用信号或电磁骚扰(噪声)对有用电磁信号的接收或传输所造成的损害。一个系统或系统内,某一线路受到电磁干扰的程度可以表示为如下关系式: N=G×C/I 其中:G为噪声源强度; I为受干扰电路的敏感程度;

C为噪声通过某种途径传导受干扰处的耦合因素。 从上式可以看出,电磁干扰抑制的技术就是围绕这三个要素所采取的各种措施,归纳起来就是: (1)抑制电磁干扰源; (2)切断电磁干扰耦合途径; (3)降低电磁敏感装置的敏感性。 2.1抑制电磁干扰源 首先必须确定干扰源在何处,越靠近干扰源的地方采取措施抑制效果越好,一般来说,电流电压瞬变的地方(即di/dt或du/dt)即是干扰源,如:继电器开合、电容充放电、电机运转、集成电路开关工作等都可能成为干扰源。另外,市电并非理想的50Hz正弦波,其中充满各种频率噪声,也是不可忽视的干扰源。 抑制干扰源就是尽可能的减小di/dt或du/dt,这是抗干扰设计时最优先和最重要的原则。减小di/dt的干扰源,主要是在干扰回路串联电感或电阻以及增加续流二极管来实现;减小du/dt的干扰源,则是通过在干扰源两端并联电容来实现。 抑制方法通常采用低噪声电路、瞬态抑制电路、稳压电路等,所选用的器件应尽可能采用低噪声、高频特性好、稳定性高的电子元件,特别要注意,抑制电路中不适当的器件选择可能会产生新的干扰源。

共模干扰抑制技术

开关电源的共模干扰抑制技术 0 引言 由于MOSFET及IGBT和软开关技术在电力电子电路中的广泛应用,使得功率变换器的开关频率越来越高,结构更加紧凑,但亦带来许多问题,如寄生元件产生的影响加剧,电磁辐射加剧等,所以EMI问题是目前电力电子界关注的主要问题之一。 传导是电力电子装置中干扰传播的重要途径。差模干扰和共模干扰是主要的传导干扰形态。多数情况下,功率变换器的传导干扰以共模干扰为主。本文介绍了一种基于补偿原理的无源共模干扰抑制技术,并成功地应用于多种功率变换器拓扑中。理论和实验结果都证明了,它能有效地减小电路中的高频传导共模干扰。这一方案的优越性在于,它无需额外的控制电路和辅助电源,不依赖于电源变换器其他部分的运行情况,结构简单、紧凑。 1 &n bsp; 补偿原理 共模噪声与差模噪声产生的内部机制有所不同:差模噪声主要由开关变换器的脉动电流引起;共模噪声则主要由较高的d/d与杂散参数间相互作用而产生的高频振荡引起。如图1所示。共模电流包含连线到接地面的位移电流,同时,由于开关器件端子上的d/d是最大的,所以开关器件与散热片之间的杂散电容也将产生共模电流。图2给出了这种新型共模噪声抑制电路所依据的本质概念。开关器件的d/d通过外壳和散热片之间的寄生电容对地形成噪声电流。抑制电路通过检测器件的d/d,并把它反相,然后加到一个补偿电容上面,从而形成补偿电流对噪声电流的抵消。即补偿电流与噪声电流等幅但相位相差180°,并且也流入接地层。根据基尔霍夫电流定律,这两股电流在接地点汇流为零,于是50Ω的阻抗平衡网络(LISN)电阻(接测量接收机的BNC端口)上的共模噪声电压被大大减弱了。 图1 CM及DM噪声电流的耦合路径示意图

信号抗干扰解决办法

信号抗干扰解决办法 The Standardization Office was revised on the afternoon of December 13, 2020

解决现场的信号干扰问题 时间:2010-04-24 22:30来源:作者:点击: 17次 生产过程监视和控制中要用到多种自动化仪表、计算机及相应执行机构,过程中的信号既有微弱到毫伏级的小信号,又有数十伏的大信号,而且还有高达数千伏、数百安培的信号要处理。从频率上讲,有直流低频范围的,也有高频/脉冲尖峰。设备、仪表间互扰成为系统调试中必须要解决的问题。除了电磁屏蔽之外,解决各种设备、仪表的“地”,也即信号参考点的电位差,将成为重要课题。因为不同设备、仪表的信号要互传互送,那就存在信号参考点问题。换句话说,要使信号完整传送,理想化的情况是所有设备、仪表中的信号有一个共同的参考点,也即共有一个“地”。进一步讲,所有设备、仪表的信号的参考点之间电位为“零”。但是在实际环境中,这一点几乎是不可及的,这里面除了各个设备、仪表“地”之间连线电阻产生的电压降之外,尚有各种设备、仪表在不同环境受到干扰不同,以及导线接点经受风吹雨淋,导致接点质量下降等诸多因素。致使各个“地”之间有差别。以示意图一为例. 图一 PLC与外接仪表示意图 图一中标明有两个现场设备仪表向PLC传送信号以及PLC向两台现场设备仪表发出信号。假定传送的均为0-10VDC信号。理想情况,PLC及两个现场设备“地”电位完全相等。传送过程中又没有干扰,这样从PLC输入来看,接收正确。但正如前所述,两个现场设备通常有“地”电位差,举例来讲,1#设备“地”与PLC“地”同电位,2#设备比它们的“地”电位高,这样1#设备给PLC的信号为0-10V,而2#设备给PLC的为误差就产生了,同时1#,2#设备的“地”线在PLC汇合联接。将电压施加在PLC地线条上,有可能损坏PLC局部“地”线,同时在显示错误数据,由此引起的问题在现场调试中屡有出现。例如某大型建材公司的生产线调试中,使用美国AB-PLC接国内某厂家手操器。AB-PLC的数据采集板有每八个通道,八个通道共用一个12位A/D,经过变换

开关电源防共模干扰的方法

开关电源防共模干扰的方法 开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IGBT和MOSFET构成。由于MOSFET及IGBT和软开关技术在电力电子电路中的广泛应用,使得功率变换器的开关频率越来越高,结构更加紧凑,但亦带来许多问题,如寄生元件产生的影响加剧,电磁辐射干扰加剧等,所以EMI问题是目前电力电子界关注的主要问题之一。 开关电源比线性电源会产生更多的干扰,对共模干扰敏感的用电设备,应采取接地和屏蔽措施, 共模噪声则主要由较高的dv/dt与杂散参数间相互作用而产生的高频振荡引起。如图1所示。 采用屏蔽技术可以有效地抑制开关电源的电磁辐射干扰。例如,功率开关管和输出二极管通常有较大的功率损耗,为了散热往往需要安装散热器或直接安装在电源底板上。器件安装时需要导热性能好的绝缘片进行绝缘,这就使器件与底板和散热器之间产生了分布电容,开关电源的底板是交流电源的地线,因而通过器件与底板之间的分布电容将电磁干扰耦合到交流输入端产生共模干扰,解决这个问题的办法是采用两层绝缘片之间夹一层屏蔽片,并把屏蔽片接到直流地上,割断了射频干扰向输入电网传播的途径。为了抑制开关电源产生的辐射,电磁干扰对其他电子设备的影响,可完全按照对磁场屏蔽的方法来加工屏蔽罩,然后将整个屏蔽罩与系统的机壳和地连接为一体,就能对电磁场进行有效的屏蔽。电源某些部分与大地相连可以起到抑制干扰的作用。例如,静电屏蔽层接地可以抑制变化电场的干扰;电磁屏蔽用的导体原则上可以不接地,但不接地的屏蔽导体时常增强静电耦合而产生所谓“负静电屏蔽”效应,所以仍以接地为好,这样使电磁屏蔽能同时发挥静电屏蔽的作用。电路的公共参考点与大地相连,可为信号回路提供稳定的参考电位。因此,系统中的安全保护地线、屏蔽接地线和公共参考地线各自形成接地母线后,最终都与大地相连。 在电路系统设计中应遵循“一点接地”的原则,如果形成多点接地,会出现闭合的接地环路,当磁力线穿过该回路时将产生磁感应噪声,实际上很难实现“一点接地”。因此,为降低接地阻抗,消除分布电容的影响而采取平面式或多点接地,利用一个导电平面(底板或多层印制板电路的导电平面层等)作为参考地,需要接地的各部分就近接到该参考地上。为进一步减小接地回路的压降,可用旁路电容减少返回电流的幅值。在低频和高频共存的电路系统中,应分别将低频电路、高频电路、功率电路的地线单独连接后,再连接到公共参考点上。

信号抗干扰解决办法

解决现场的信号干扰问题 时间:2010-04-24 22:30来源:作者:点击: 17次 生产过程监视和控制中要用到多种自动化仪表、计算机及相应执行机构,过程中的信号既有微弱到毫伏级的小信号,又有数十伏的大信号,而且还有高达数千伏、数百安培的信号要处理。从频率上讲,有直流低频范围的,也有高频/脉冲尖峰。设备、仪表间互扰成为系统调试中必须要解决的问题。除了电磁屏蔽之外,解决各种设备、仪表的“地”,也即信号参考点的电位差,将成为重要课题。因为不同设备、仪表的信号要互传互送,那就存在信号参考点问题。换句话说,要使信号完整传送,理想化的情况是所有设备、仪表中的信号有一个共同的参考点,也即共有一个“地”。进一步讲,所有设备、仪表的信号的参考点之间电位为“零”。但是在实际环境中,这一点几乎是不可及的,这里面除了各个设备、仪表“地”之间连线电阻产生的电压降之外,尚有各种设备、仪表在不同环境受到干扰不同,以及导线接点经受风吹雨淋,导致接点质量下降等诸多因素。致使各个“地”之间有差别。以示意图一为例.

图一PLC与外接仪表示意图 图一中标明有两个现场设备仪表向PLC传送信号以及PLC向两台现场设备仪表发出信号。假定传送的均为0-10VDC信号。理想情况,PLC及两个现场设备“地”电位完全相等。传送过程中又没有干扰,这样从PLC输入来看,接收正确。但正如前所述,两个现场设备通常有“地”电位差,举例来讲,1#设备“地”与PLC“地”同电位,2#设备比它们的“地”电位高0.1V,这样1#设备给PLC的信号为0-10V,而2#设备给PLC的为0.1V-10.1V,误差就产生了,同时1#,2#设备的“地”线在PLC汇合联接。将0.1V电压施加在PLC地线条上,有可能损坏PLC局部“地”线,同时在显示错误数据,由此引起的问题在现场调试中屡有出现。例如某大型建材公司的生产线调试中,使用美国AB-PLC接国内某厂家手操器。AB-PLC的数据采集板有每八个通道,八个通道共用一个12位A/D,经过变换后,由12个光耦实现与主机隔离。它的八个通道输入之间并没有隔离,致使八个通道输入信号每个单独接入采集板均正常,接入两个或多于两个外部信号时,显示数字乱跳,故障无法排除。又如航天某部门测试发动机各点温度,使用K型偶作为传感器,同上述相似,仅测试一点一切正常,但是向主机接入两点或两点以上温度时,显示的温度明显错误。这两种情况在接入隔离器后,均正常。隔离器之所以能起到这个作用,就是它具有使输入/输出在电气上完全隔离的特点。换句话讲,输入/输出之间没有共同“地”,外来信号不管是0-10V,或带着+10V干扰的10V-20V经隔离后均为0-10V,也即隔离后新建立的PLC“地”与外部设备、仪表“地”没关系。正是由于这个原因,也实现输入到PLC主机

电磁干扰及其抑制方法的研究

弱电工程中电磁干扰及其抑制方法的研究 (洲坝通信工程方宏坤 151120) 【摘要】在弱电工程应用领域,强电与弱电交叉耦合,电磁干扰(EMI)错综复杂,严重影响弱电系统的稳定性和安全性。本文详细介绍了 EMI 产生的原因、分析EMI/RFI的特性,及其传输途径和危害,利用电磁理论和工程实践,分析并提出了一些在弱电工程领域行之有效的 EMI 抑制方法。 【关键词】弱电电磁干扰(EMI)射频干扰(RFI)干扰抑制 随着计算机技术,特别是网络技术的飞速发展,IT技术在弱电工程领域的广泛应用,IT设备日益精密、复杂,使得电子干扰问题日趋严峻。它可使系统的稳定性、可靠性降低,功能失效,甚至导致系统完瘫痪和设备损坏。特别是 EMI/RFI(电磁干扰/射频干扰)问题,已成为近几年弱电工程领域的焦点。 1、电磁干扰分类和特性 生活中电磁干扰无处不在,其干好错综复杂。通常我们把电磁干扰主要划分为电磁干扰(EMI)、射频干扰(RFI)和电磁脉冲(EMP)三种,根据其来源可分为外界和部两种,严格的说所有电子运行的元件均可看作干扰源。本文中所提EMI是对周围电磁环境有较强影响的干扰;RFI则从属于EMI;EMP 是一种瞬态现象,它可由系统部原因(电压冲击、电源中断、电感负载转换等)或外部原因(闪电等)引起,能耦合到任何导线上,如电源线和通信电缆等,而与这些导线相连的电子系统可能受到瞬时严重干扰或使系统的电子电路永久性损坏。图 1 给出了常见 EMI/RFI 的干扰源及其频率围。

1.1 EMI特性分析 在电子系统设计中,应从三个方面来考虑电磁干扰问题:首先是电子系统产生和发射干扰的程度;其次是电子系统在强度为 1~10 V/m、距离为 3 米的电磁场中的抗扰特性;第三是电子系统部的干扰问题。利用干扰三要素分析与EMI相关的问题需要把握EMI的五个关键因素,这五个关键因素是频率、幅度、时间、阻抗和距离。 在EMI分析中的另一个重要参数是电缆的尺寸、导线及护套,这是因为,当EMI 成为关键因素时,电缆相当于天线或干扰的传输器,必须考虑其物理长度与屏蔽问题。 1.2 RFI特性分析 无线电发射源无处不在,如无线电台、移动通信、发电机、电动机、电锤等等。所有这些电子活动都会影响电子系统的性能。无论RFI的强度和位置如何,电子系统对RFI必须有一个最低的抗扰度。在通信、无线电工程中,抗扰度定义为设备承受每单位RFI功率强度的敏感度。从“干扰源—耦合途径—接收器”的观点出发,电场强度E 是发射功率、天线增益和距离的函数,即 式中P为发送功率(mW/cm2),G为天线增益,d为电路或系统距干扰源的距离(m)。 由于模拟电路一般在高增益下运行,对RF场比数字电路更为敏感,因此,必须解决μV级和mV级信号的问题;对于数字电路,由于它具有较大的信号摆动和噪声容限,所以对RF场的抑制力更强。 1.3 干扰途径 任何干扰问题可分解为干扰源、干扰接收器和干扰的耦合途径三个方面,即所谓的干扰三要素。如表 2 所示。 表2 干扰源耦合途径干扰类型接收器 共地阻抗传导干扰 辐射场到互连电缆(共模)辐射干扰 微控制器辐射场到互连电缆(差模)辐射干扰 有源器件电缆间串扰(电容效应)感应干扰微控制器 静电放电电缆间串扰(电感效应)感应干扰通信接收器 通信发射机电缆间串扰(漏电导)传导干扰有源器件 电源电缆间串扰(场耦合)辐射干扰其他电子系统扰动电源线到机箱传导干扰

浅谈基于EMC的共模干扰与差模干扰以及抑制方法

基于EMC的共模干扰与差模干扰以及抑制方法什么是共模与差模 电器设备的电源线,电话等的通信线, 与其它设备或外围设备相互交换的通讯线路,至少有两根导线,这两根导线作为往返线路输送电力或信号,在这两根导线之外通常还有第三导体,这就是"地线"。电压和电流的变化通过导线传输时有两种形态, 一种是两根导线分别做为往返线路传输, 我们称之为"差模";另一种是两根导线做去路,地线做返回传输, 我们称之为"共模"。 如上图, 蓝色信号是在两根导线内部作往返传输的,我们称之为"差模";而黄信号是在信号与地线之间传输的,我们称之为"共模"。 共模干扰与差模干扰 任何两根电源线或通信线上所存在的干扰,均可用共模干扰和差模干扰来表示:共模干扰在导线与地(机壳)之间传输,属于非对称性干扰,它定义为任何载流导体与参考地之间的不希望有的电位差;差模干扰在两导线之间传输,属于对称性干扰,它定义为任何两个载流导体之间的不希望有的电位差。在一般情况下,共模干扰幅度大、频率高,还可以通过导线产生辐射,所造成的干扰较大。差模干扰幅度小、频率低、所造成的干扰较小。

共模干扰信号 共模干扰的电流大小不一定相等,但是方向(相位)相同的。电气设备对外的干扰多以共模干扰为主,外来的干扰也多以共模干扰为主,共模干扰本身一般不会对设备产生危害,但是如果共模干扰转变为差模干扰,干扰就严重了,因为有用信号都是差模信号。 差模干扰信号 差模干扰的电流大小相等,方向(相位)相反。由于走线的分布电容、电感、信号走线阻抗不连续,以及信号回流路径流过了意料之外的通路等,差模电流会转换成共模电流。 共模干扰产生原因 1. 电网串入共模干扰电压。 2. 辐射干扰(如雷电,设备电弧,附近电台,大功率辐射源)在信号线上感应出共模干扰,原因是交变的磁场产生交变的电流,地线-零线回路面积与地线-火线回路面积不相同,两个回路阻抗不同等原因造成电流大小不同。 3.接地电压不一样,简单的说就电位差而造就了共模干扰。

电磁干扰及常用的抑制技术

电磁干扰及常用的抑制技术 刘宇媛 哈尔滨工程大学 摘要:各种干扰是机电一体化系统和装置出现瞬时故障的主要原因。电磁兼容性设计是目前电子设备及机电 一体化系统设计时考虑的一个重要原则,它的核心是抑制电磁干扰。电磁干扰的抑制要从干扰源、传播途径、接收器三个方面着手,切断干扰耦合的途径,干扰的影响也将被消除。常用的方法有滤波、降低或消除公共阻抗、屏蔽、隔离等。 关键词:电磁干扰干扰抑制屏蔽接地 1.电磁干扰 电磁干扰(electro magnetic interference,EMI)是指系统在工作过程中出现的一些与有用信号无关的、并且对系统性能或信号传输有害的电气变化现象。构成电磁干扰必须具备三个基本条件:①存在干扰源;②有相应的传输介质;③有敏感的接收元件。只要除去其中一个条件,电磁干扰就可消除,这就是电磁抑制技术的基本出发点。 1.1 电磁干扰的分类 常见的各种电磁干扰根据干扰的现象和信号特征不同有以下分类方法。 1、按其来源分类(1) 自然干扰。自然干扰是指由于大自然现象所造成的各种电磁噪声。 (2) 人为干扰。由于电子设备和其他人工装置产生的电磁干扰。 2、按干扰功能分类 (1) 有意干扰。有意干扰是指人为了达到某种目的而有意识制造的电磁干扰信号。这是当前电子战的重要手段。 (2) 无意干扰。无意干扰是指人在无意之中所造成的干扰,如工业用电、高频及微波设备等引起的干扰等。 3、按干扰出现的规律分类 (1) 固定干扰。多为邻近电气设备固定运行时发出的干扰。 (2) 半固定干扰。偶尔使用的设备(如行车、电钻等)引起的干扰。 (3) 随机干扰。无法预计的偶发性干扰。 4、按耦合方式分类 (1) 传导耦合干扰。传导耦合是指电磁噪声的能量在电路中以电压或电流的形式,通过金属导线或其他元件(如电容器、电感器、变压器等)耦合到被干扰设备(电路)。 (2) 辐射耦合干扰。电磁辐射耦合是指电磁噪声的能量以电磁场能量的形式,通过空间辐射传播,耦合到被干扰设备(或电路)。 1.2 电磁噪声耦合途径 干扰源对电子设备的干扰是通过一定耦合形式进行的,无论是内部干扰或外部干扰,都是通过“路”(传输线路或电路)或“场”(静电场或交变电磁场)耦合到被干扰设备中的。 1、电磁噪声传导耦合 (1)直接传导耦合。电导性直接传导耦合最简单、最常见,但它也是最易被人们忽视的一种耦合方式。在考虑电磁兼容性问题时,必须考虑导线不但有电阻足,而且有电感L,漏电阻R,以及杂散电容C。在实际使用中尤其是频率比较高时,这些分布参数对信号的传输有着十分重要的影响。如何考虑分布参数的影响与传输线的长度密切相关。根据传输线的长度与传输信号频率的关系可把传输线分为长线和短线,对短信号线不必进行阻抗匹配,而对长信号线应在终端进行阻抗匹配。 (2)公共阻抗耦合。当干扰源的输出回路与被干扰电路存在一个公共阻抗时,两者之间就会产生公共阻抗耦合。干扰源的电磁噪声将会通过公共阻抗耦合到被干扰电路而产生干扰。所谓“公共阻抗”通常不是人们故意接人的阻抗,而是由公共地线和公共电源线的引线电感所

电梯监控干扰解决方法方式

电梯监控抗干扰方式 内容题要:基于对电梯视频监控干扰产生原理的研究成果,对干扰形成和抗干扰技术合理分析取得了理论和实践统一的成果,提供了电梯监控系统设计与施工中更为实用的一些抗干扰技术措施。本文只涉及电梯监控工程中同轴视频传输的抗干扰技术,供设计和施工参考。 在闭路监控工程中,电梯监控视频干扰问题,一直是最常见、最难对付、也是最受关注的问题之一。本文阐明:只要掌握了干扰产生原理,电梯抗干扰工程问题也将迎刃而解。 一、掌握常用同轴电缆类型及特点 1. 考虑传输衰减:当楼层很高,距离监控中心又较远的情况下,应慎重考虑传输衰减问题。选择电缆时,大家都知道粗缆优于细缆,但还应了解SYWV物理发泡电缆优于实心SYV电缆,高编电缆优于低编电缆,铜芯缆优于"铜包钢"缆,铜编网优于铝镁合金编网; 2. 关注高频衰减:低频成分的亮度/对比度衰减容易发现和解决,电缆最重要的传输特性就是频率越高衰减越大,高频衰减主要影响清晰度和分辨率,要特别注意总结图像质量的观察方法。这方面电缆特点和规律是:粗缆优于细缆,发泡优于实心,但同型号的"高编和低编高频衰减一样"; 3. 考虑电缆寿命:软性电缆优于普通电缆,细缆优于粗缆;还有一个最易被忽视的问题:电缆各层间的粘合力,即当电缆各层之间纵向相反方向受力时,是否会发生相对滑动,高层电梯缆长可达100米垂直布线,电缆外护套固定在随行电缆上,这是一种"软固定",固定时不允许电缆变形(破坏同轴性),这样一来,在电梯反复运动中电缆内部层,在重力作用下,会逐渐"下滑",慢慢拉断编织网或芯线,表现为信号逐步减弱,干扰越来越大;目前还没有这项电缆技术标准,简单检查方法是取一米电缆,在一头剥开各层,一人用手握住电缆两端,另一人用钳子拉电缆的内层:依次拉芯线,绝缘层,编织网,体验粘合力的大小,做出合理估计,粘合力差、易滑动的尽量不选用。这项性能很多电缆并不好,应慎重选择。 二、干扰产生原理简介 1. 电梯井内通常布置了动力、照明、风扇、控制、通信等线缆,各种电缆都会产生电磁辐射。与天线接收原理相同,同轴电缆也会"接收"这些干扰,即干扰电磁场在电缆上产生干扰感应电流,这个干扰感应电流也就会在电缆外导体(编织网)纵向电阻上产生干扰感应电压(电动势),这个干扰感应电压刚好串联在视频信号传输回路"长长的地线"中,形成干扰; 2. 更重要的是这些随行电缆都是与视频电缆并行,且近距离捆扎在一起。这就形成了接近"最佳最有效的"干扰耦合关系。在一般工程中可以采用穿金属管

相关文档
最新文档