水库淤积

水库淤积
水库淤积

水库淤积

一、水库是如何淤积的?

二、水库淤积带来的问题

三、水库淤积速度

四、水库淤积的防治措施

五、水库内淤积泥沙的处理方法

六、实例分析及教训

水库淤积是水库设计和管理中的一个难题。在河道上兴建水库会改变河流的水流条件和泥沙运动状态,使泥沙在水库库区内淤积,从而降低水库的使用效益,甚至导致水库失效报废。因此,人类在修建水库时不能不认真考虑泥沙淤积和水库寿命问题。根据1986年的资料,世界上水库的总造价计为六千亿美元,单个水库的平均寿命约为二十二年。到该年为止,全世界各种类型水库的总库容约为四万九千亿立方米,相当于河流年径流总量的百分之十三,其中库容超过五十亿立方米的水库的总库容约为四万零五百亿立方米。这些水库的总库容因泥沙淤积每年约减少百分之一,即五百亿立方米,换言之,泥沙淤积所造成的损失平均每年相当于六十亿美元。就我国情况而言,北方河流含沙量一般较高,淤积严重,如青铜峡水库运行17年,水库淤积了总库容的87% ,而旧城水库运行了11年,水库已经全部淤满;南方河流含沙较少,淤积情况轻微,如新安江水库运行16年,水库淤积仅占总库容的0.1 % 。水库淤积不仅会影响水库的综合效益,而且还会造成其他严重后果。

在本文中,我们将先从理论上分析水库淤积的原因、后果和防治措施,然后以中国的黄河三门峡水库淤积资料,说明水库淤积可能带来的严重问题。

一、水库是如何淤积的?

水库淤积与许多因素有关,其中最主要的原因是,水库蓄水后,库区和回水段的水深及过水断面积都增大了,水面坡度减小,导致库水的流速减缓,输沙能力降低,其挟带的泥沙就部份或全部地在水库库底沉积下来。虽然,人们可以采取适当措施减缓淤积的速度,但是,水库淤积通常是很难根治的。

河流中的泥沙运移和淤积是地球表面泥沙运动的一个组成部份。地球表面的泥沙运动可分为侵蚀、搬运和沉积三个过程,其动力有水、风、冰和重力等,泥沙运动和地球的内应力作用一起塑造着地球的外貌。当谈到泥沙运动时,侵蚀是指岩石或土壤被剥离(或溶蚀)、并被移走的过程,侵蚀所产生的土壤或岩石颗粒即称为泥沙;如果按照搬运方式来划分,泥沙有两种,悬浮在水流中运动的是悬移质泥沙,而沿河底滚动、滑动或跃移的为推移质泥沙;当泥沙由运动状态变为静止状态时称为泥沙的沉积,泥沙在水库中沉积就形成了水库淤积。

泥沙在水库中淤积的过程是,当水流进入库尾时,粗沙首先沉积下来,逐渐形成三角洲;同时异重流挟带着细沙向坝前推进,并沿途不断扩散,这样细沙将沉积在整个水库范围内,其中大部份沉积在坝前;坝前主河道内的淤积物称为底积层,原河漫滩上的称河漫滩淤积。由于水库回水的影响,在水库库尾以上的河道内还会发生泥沙淤积,称为回水区淤积。

水库按其功能可分为蓄水库和滞洪水库,前者是将水拦蓄下来用于水利目的,后者只用于防洪,即拦截洪水、延缓洪水下泄量、防止下游出现洪涝灾害。河水在滞洪水库中停留时间较短,而在蓄水库中则可能停留相当长的时间。水库内悬移质泥沙的沉沙率与滞水时间呈正相关,所以,滞洪水库能排走大部份悬移质泥沙,而蓄水库则无法避免泥沙沉积,如果不采取排沙措施,大部份通常淤积在库尾的悬移质就沉积下来了。

水库淤积的最明显徵兆是在库尾露出水面的三角洲,它由粗沙组成、呈发瓣形,上面生长杂草灌木。三角洲的发展速度与河流流量、泥沙颗粒级配、河道纵坡和水库水位变幅等有关,美国的米德湖三角洲的发展速度在1939-1948年约为每年三百米。

水库的淤积将减少水库的有效库容,水库的库容损失取决于淤积量和淤积泥沙的容重,而淤积泥沙的容重与泥沙粒径、淤积时间等有关。泥沙的颗粒径愈大,则容重愈大;淤积时间愈长,泥沙被压缩得愈紧密,则其容重也愈大;泥沙粒径愈小,容重受淤积时间的影响就愈大。所以水库库容损失率通常是逐渐降低的。

水库的有效库容减少就会缩短水库的寿命,水库的寿命(又称使用年限)是指水库从开始运用到因泥沙淤积而失效的时间,通常是按水库的死库容除以年泥沙淤积量来计算,这种方法是假设淤积的泥沙先在库底最低的地方沉积,把水库的死库容先填满。但这样的计算方法不尽合理,因为淤积的泥沙不是移动到库底最低的地方沉积,因此不会在库底造成一个水平的淤积面;泥沙是从进入库区开始就沿途沉积,所以会在水库库底形成一定的坡度,通常,沉积形成的三角洲的表面坡度是原河道坡度的三分之一至二分之一。

因此,尽管许多水库的死库容尚未淤满,其库尾地段的有效库容就因淤积而大大减少。例如,巴基斯坦的Tarbela水库到1980年才使用了六年,淤积在死库容区的泥沙只占死库容的百分之二十二,但淤积泥沙的百分之四十四是沉积在有效库容内,导致水

库寿命缩短。又如,埃及的阿斯旺大坝的总库容为一千六百二十亿立方米,到1986年,三百一十六亿立方米的死库容内所淤积的泥沙不到二十亿立方米,而在有效库容内淤积的泥沙却超过十亿立方米。

二、水库淤积带来的问题

因为筑坝修库的目的不同,调度运行各异,对水库管理者来说,泥沙淤积所带来的问题也各不相同。一般而言,水库淤积会造成如下后果:

1. 缩短水库寿命

对那些以供水或防洪为主要目的的水库来说,因为泥沙淤积减小了有效库容,所以水库的功能和效益都会受损;泥沙淤积得越快、越多,水库就报废得越早、寿命越短。而如果水库的主要目的是发电或通过抬高水源水位实施灌溉,则早期的泥沙淤积通常不会改变原水位,影响似乎较小;但一旦淤积危及进水口和出水口,水库功能的发挥就会受阻,所以淤积同样会导致水库效能下降乃至水库报废。

2. 破坏航运条件

水库的回水变动区将出现泥沙淤积,形成三角州,抬高河床、堵塞航道,造成航运条件变坏。并且,回水区内的三角洲还可能减少过河桥下的净高,甚至在枯水季时造成通航困难。上游河段河水的含沙量越高,水库水位的变幅越大,水库回水区内形成的三角洲就越大,对航运的影响也就越严重。所以,设计水库回水区内的新建桥梁时,应考虑水库的调度运行方式及河道的可能淤高。

3. 降低水电站的发电能力

水库淤积减少水库的有效库容,使水电站的发电能力降低。如果淤积形成的三角洲在大坝附近形成,还可能阻碍水流进入发电机,并增加进入发电机的泥沙、从而磨损涡轮机叶片和闸门座槽。涡轮机叶片的磨损与泥沙粒径有关,有的文献认为,泥沙的粒径若大于零点二五毫米(“有害粒径”),就会磨损叶片。也有的文献认为,泥沙的粒径只要大于零点一毫米就对涡轮机叶片有害。

4. 提高地下水位和加剧土地盐硷化

水库淤积将使水库回水区的河道水位升高,相应抬高周围地区的地下水位,这样就可能导致这些地区土地的盐渍化现象、或加剧其盐硷化。

5. 促进水库富营养化过程

泥沙淤积会改变水库以及库尾以上河道的地形,从而改变水生生物的生存环境,可能引起水库及库区以上河道内水流的富营养化,而使下泄的清水缺乏必要的养份。

6. 重金属污染。

河流中的重金属污染物会随着泥沙在水库富集,造成水库水质的恶化。

三、水库淤积速度

泥沙在水库内的淤积速度与流域产沙量、沉沙率等因素有关,因此各水库的淤积速度相差很大。如美国的米德湖水库每年库容损失仅百分之零点三;巴基斯坦的Tarbela水库的年淤积速度为百分之一点五;而巴基斯坦Kabul河上的Warsak水库坝高76米,开始使用仅一年就损失了库容的百分之十八。

1. 流域产沙量

因侵蚀而产生的泥沙通常只有一部份被输送到流域出口,被挟带到流域出口的泥沙量就被称为流域产沙量,产沙量与侵蚀量之比即输沙率。小流域的输沙率比较大,比如,在一个集水面积仅为零点零零二平方公里的小流域内,其侵蚀速率可能和产沙量相差不大,即输沙率接近于一。一般而言,流域面积越大,输沙率越低。

流域产沙量受地面坡度、土地利用、植被土壤类型、气象因素(如降雨量和降雨类型)等因素影响。黄土覆盖区(如中国的黄土高原)、东南亚和美国东南部的产沙量很高,超过每年每平方公里一百吨;在高纬度地区,降水和径流比较少,产沙量也低,小于每年每平方公里五十吨;而在中纬度(南北纬三十度至五十五度之间)和热带地区,随着植被覆盖度增加、侵蚀速率会有所减小。在有明显旱季的地区,雨季开始时侵蚀强烈,产沙量大。在热带和亚热带地区,雨季明显而且持续数月,其他月份则降雨较少,这些地区的产沙量较高或居于中间水平,为每年每平方公里五十至一百吨。

2. 沉沙率

是指沉积泥沙重量与入库泥沙重量之比,影响沉沙率的因素有库容流量比(C/I)、库区地形、放水口的型式和水库运用方式、泥沙颗粒级配等。这里主要讨论库容流量比(C/I)。库容流量比(C/I)指的是库容与年入库流量之比,与它相关的另一个指标是库容面积比(C/A),即库容与流域面积之比,库容面积比(C/A)除以单位面积入库流量即得到库容流量比(C/I)。库容面积比(C/A)也曾被广泛地用于沉沙率分析,但它不反映年平均泥沙人库流量,库容流量比(C/I)则与沉沙率的关系更为密切。

一个水库的库容流量比(C/I)若大于一,即表明库容大于年入库流量,这样的水库被称为全蓄水库。全蓄水库如果不遇到罕见的洪水,在一般情况下,其库水除了被自然蒸发、渗漏以及被利用之外,很少会通过溢洪道下泄,因此,全蓄水库的沉沙率接近于百分之百。美国的米德湖水库、在蒙他那州密苏里河上的Fort Peck水库、新墨西哥州的Elephant Butte水库均属这一类。而库容流量比(C/I)小于或等于1的水库被称为季节性蓄水库。当一个季节性蓄水库的入库水流含沙量与另一个全蓄水库的入库水流含沙量相同时,前一水库的沉沙率小于后一水库。

一个水库的沉沙率可能为零(如美国印第安那州的Williams水库),也可能为百分之一百(如美国德克萨斯州的Denison水库)。Brune曾对美国四十四座蓄水库的沉沙率以及库容流量比(C/I)的关系进行了分析,他发现,当水库不采用排沙冲沙措施时,沉沙率和库容流量比(C/I)这两个数据之间存在着高相关关系,所以,也可以说,水库的寿命主要取决定于库容流量比(C/I)和入库水流含沙量。例如,如果入库水流含沙量为每升一千至四千毫克,库容流量比(C/I)大于百分之五十,则淤满水库库容的一半所需要的时间(简称“半淤年限”)一般可达数百年;当库容流量比(C/I)位于百分之五至百分之五十之间时,“半淤年限”一般为数十年,而较小的水库可能会小于二十年。

四、水库淤积的防治措施

1. 库址选择

原则上讲,水库库址应选择在来沙量较小的地方;在修建大水库时,其库址尽量不要选在航运量大、含沙量高的河流上;此外,在干流上修水库之前,要注意控制支流的泥沙。世界上修建大型水库时,通常是修建在航运量很小的河流干流上,如美国的科罗拉多河、巴基斯坦的印度河等。如果拟修建水库大坝的河流干流是通航河流,如欧洲的多瑙河、莱茵河、美国的田纳西河和哥伦比亚河下段、俄国的伏尔加河等,则需要考虑两点,第一是干流的含沙量要低,第二是泥沙能被拦截在上游或支流;具备了这两个条件,在干流上修水库时才不至于被泥沙淤积和妨碍航运等问题所困扰。例如,现在世界上最大的水电站--巴西的伊泰普(Itaipu)水电站,就是修建在巴拉那河(Parana)上,该河含沙量不高,而且在支流和干流上游已有总库容达一千三百亿立方米的水库调节径流和泥沙,这样伊泰普水电站就较少遇到泥沙淤积问题。对于小型水库来说,如果河流含沙量高、而地形条件又许可的话,可以修建河外水库。

2. 流域治理

为了减少流域产沙量,需要进行流域治理,减少土壤被侵蚀的程度,具体措施可以包括增加林草植被、加强水土保持、改善农业技术和耕作措施、兴建田间工程以及修建拦沙坝等。通过流域治理来减少流域产沙量,在小流域(1-5平方公里)范围内,可使流域的产沙量下降百分之九十至九十五;但要在大流域范围内有效地降低产沙量,则在经济和技术上还有一定的困难。

3. 分流排沙

在洪水季节,尤其是在乾旱、半乾旱地区的洪水季节,河流一般会挟带大量的泥沙,修建分流渠道或隧道输导这种高含沙水流,就可能避免严重淤积。

五、水库内淤积泥沙的处理方法

如果水库内已经有泥沙淤积,可以有三种方法来处理淤积的水库泥沙,即排沙、冲沙和疏浚。排沙和冲沙都是通过开启水库的底部闸门、用水力来冲排,排沙措施包括排泄洪水中的泥沙和异重流排沙,冲沙包括降落水位冲沙和放空沙,疏浚是用机械清淤。对尚未沉积的悬移质和推移质泥沙可以采用排沙方法;而对已沉积的泥沙,则可采用冲沙和疏浚手段。排泄洪水中的泥沙这一措施的主要功能是排沙,但同时也具有一定的冲沙作用;降落水位冲沙和放空冲沙在达到冲沙目的的同时,有时也具有排沙的效果。从库区排泄出去的泥沙可能有利于防止下游河道被侵蚀,但也可能淤积在下游河道或导流渠道内。因此排泄水库内淤积的泥沙时,还需要考虑到泥沙在下游的堆积会否造成新的问题。以下是几种主要的淤积泥沙处理方法。

1. 排泄洪水中的泥沙

通常,洪水期的河流含沙量较高,而泥沙的滞水时间愈长,沉沙率也愈高。所以,为了减少泥沙淤积,在洪水期间可以把水库的水位保持在较低的水平,使库尾回水范围减小,水库的滞洪时间缩短,加大库水的下泄流量,以便利用洪水的挟沙能力,排泄洪水中的泥沙。洪水期可以按洪峰前后分为涨洪段和落洪段,一般来说,涨洪段的含沙量高,可以保持水库的低水位、以排泄洪水及其挟带的泥沙;而在落洪段则可以多拦蓄较清的水,这样既能利用洪水的挟沙能力、又能减少下游的淤积。

2. 降落水位冲沙

冲沙即对淤积泥沙的再侵蚀,降落水位冲沙和上述方法一样,都是在洪水过程中排泄泥沙;不同之处是,降落水位冲沙时水库的水位比排泄洪水中的泥沙时水库的水位更低。这样,降落水位冲沙会使整个水库库区河道上形成向河水一样流动的水流,从而冲刷较大面积的已淤积的泥沙,使得下泄泥沙多于人库泥沙。

冲沙效率取决于水库的地形位置、泄水流量、泄水孔高程、入库泥沙特徵、运用方式、冲沙历时等。最近几年来,一些国家的水库排沙底孔修得越来越大,如计划修建在Kalabagh的Indus河上大坝的排沙底孔的泄水能力就超过了每秒四千立方米。一个水库如果具备以下条件,可以使用冲沙方法: 第一,库容流量比(C/I)较小,有多余的水可用于冲沙;第二,有明显的乾湿季,水库可在雨季的前期排沙,而在后期蓄水;第三,从经济效益考虑,排沙较适用于给水工程,对水电站来讲,为了冲沙而降低水位将导致发电能力下降。

以前苏联的Ouchi-Kurgan水库为例,该水库长十七公里,总库容五千六百万立方米,死库容两千万立方米,建库目的是灌溉和发电。与库容相比,年入库泥沙量很大,达到一千二至一千四百万吨,因此设计水库时就准备要降落水位冲沙,在大坝底部留有八个排沙底孔,位于电站进水口以下二十一米,在最高水头三十五米时的泄水流量为每秒三百五十立方米。该水库从1961年10月开始蓄水,1963年以后,每年洪水季节(5-8月)都把水库水位降低四至五米进行冲沙;从1963年到1967年,库内淤积的泥沙仅三万吨,而从1968年到有资料记录的1970年则没有新的淤积。

3. 放空冲沙

上述两种方法都是在洪水期采用的,放空冲沙则既可以在汛期进行、也可以在非汛期进行,特别是若在汛期期间、洪水期之前或之后进行,冲沙效果更好。放空冲沙比较适合小水库,因为小水库的大部份淤积泥沙靠近水坝或在较窄的沟道内,通过放空冲沙,可能在几周内冲走大量淤积的泥沙。

4. 异重流排沙

在许多高含沙河流中和低含沙河流上的水库里,都能观测到异重流,如中国的三门峡、刘家峡和官厅水库、美国的米德湖、Elephant Butte水库、法国的Sautet水库、前南斯拉夫的Metka和Groshnitza水库、前苏联的Nulek水库等。高含沙的异重水流进入水库后,就降到库底、并向水坝流去,同时逐渐扩散。如果把异重流排泄出库,就能减少淤积。

影响异重流排沙率的因素有库区地形(宽度差异)、入库洪峰流量、输沙量以及泥沙的特徵、排沙孔相对于库底的高度、下泄流量、库水位以及水库长度等。一般来说,水库库区较短、入库流量较大、异重流含沙量较高、细粒泥沙比例较大、排沙孔较大且高程较低的情况下,异重流排沙率就较高。例如,丰家山水库长十二至十四公里,排沙率(异重流排沙量与入库泥沙量之比)为零点二三至零点六五,三门峡水库长八十公里(1961年),排沙率为零点一八至零点二一。

以美国的米德湖水库为例,米德湖水库在科罗拉多河上,水库大坝叫胡佛坝。1935年2月闸门顶部以下的总库容为四百亿立方米,有效库容为三百四十五亿立方米,平均年入库流量约一百六十亿立方米。在上游的大峡谷,悬移质输沙量平均每年为一亿五千万吨,异重流排沙率为零点一八至零点三九。当入库水流按重量计算的含沙量小于百分之一、或细粒泥沙含量较低时,异重流无法抵达胡佛坝。如1935年5至8月,入库水流中的细粒泥沙含量小于百分之一,不能进行异重流排沙,而9至10月细粒泥沙含量在百分之二以上,就可以施行异重流排沙。

5. 疏浚

疏浚就是把水底的泥沙移到水面并送到别的地方。如果不能采用分流排沙,冲沙效果也很差,或为了节水而不能采用降落水位冲沙,又不能通过增加坝高来增大库容,这时可以考虑采用疏浚方法。通常疏浚所需的费用比较高,但如果淤积物可用于制造建材或其他有用的材料,就可以降低疏浚成本。疏浚可用于恢复小水库或沉沙库的库容,或部份恢复中等水库的库容,还可用于降低河道洪水位,改善回水区通航条件;疏浚清除出来的淤积物,有的可用于制造建材,例如日本有许多水库通过疏浚为混凝土制造业提供骨料。

以阿尔及利亚的Chearfas水库疏浚工程为例,疏浚设备是一艘铣轮式吸泥船,每月能疏浚三十四万立方米的泥沙,该吸泥船从1958年至1961年在灌溉季节为这个水库疏浚了一千万立方米的泥沙,恢复了水库的库容。

六、实例分析及教训

世界上不少国家都有水库淤积的教训,中国的黄河三门峡水库就因水库淤积而几乎报废。但是,由于种种原因,三门峡水库的教训并没有在国内得到广泛的介绍,了解这个教训的人为数极少,所以,在此作一详尽的说明。

1. 黄河三门峡水库

黄河是中国的第二大河流,长五千四百六十四公里,流域面积七十五万平方公里,流域内年平均降水量四百七十八毫米。黄河以其高含沙量闻名于世,据位于黄河中游下段的三门峡观测站的资料,黄河年径流量为四百六十四亿立方米,年输沙量为十五点六亿吨,流量较小而含沙量却很大,输沙量相当高。

黄河的泥沙来源主要是中游地区。上游(河口镇以上)地段占全流域面积的百分之四十九,径流量占全流域的百分之五十四,

是黄河径流的主要来源,其产沙量仅占全流域的百分之九。而黄河的中游地区前半段(从河口镇到龙门)占全流域面积的百分之十七点五,径流量占百分之十四,产沙量却占全流域的百分之五十五,是泥沙的主要来源。黄河的中游地区后半段(从龙门到潼关),径流量占百分之二十二,产沙量占百分之三十四,是第二个主要的产沙区。黄河的径流和输沙量在年内各季及年际之间分布不均匀,洪水季节(7至10月)径流量占全年的百分之六十,输沙量占百分之八十五,而且河流中的泥沙集中地由几次主要的洪水携带。

三门峡水库恰好位于产沙量很高的黄河中游的东端。从1957年开始修建,1958年11月截流,于1960年建成大坝。按原设计方案,死水位为三百三十五米,在正常高水位的三百六十米时库容为六百三十九亿立方米;为了减少库区移民,初期建设时坝高为三百五十米,蓄水位不超过三百四十米。大坝建成后,按照设计目的,这个水库本来是被当作蓄水库来使用的,从1960年9月至1962年3月也确实如此,蓄水时最高水位曾达三百三十二点六米;但是,蓄水后不久,库区内就出现了设计时被忽略了的严重淤积,结果,只好被迫放弃水库的蓄水功能、停止蓄水,而只是利用水库滞洪。此后,泥沙淤积继续加剧,带来了一系列问题。

首先,泥沙淤积造成三门峡水库的回水区淤积迅速向上游延伸,严重影响到水库周围地区的工农业生产。大坝上游一百一十三公里处的潼关镇,是黄河的支流渭河及北洛河与黄河干流的汇流处,渭河和北洛河两岸都是重要的农业区,渭河上游距潼关一百二十公里处则是古城西安市。三门峡水库蓄水期间,潼关的黄河河床升高了四点五米,渭河下游也发生了淤积,沿河地段土地的地下水位上升,盐硷化加剧,并给上游带来了严重的洪水威胁。

其次,因为水库选址不当、设计有重大失误,因而出现了水库严重淤积,只能被迫改变水库的设计功能,拆除部份发电设备、并追加投资以增加水库的泄洪能力,使得水库的巨额投资付诸东流。三门峡水库蓄水一年半后,泥沙淤积即达十七点五亿立方米, 相当于来沙量的百分之九十三,水库库容迅速减小;从1962至1966年,又淤积了三十七点二亿立方米,大大超过水电部设计部门对该水库泥沙淤积的估计。

鉴于这样严重的局面,水电部不得不于1964年决定,放弃三门峡水库原设计的蓄水发电功能,在大坝侧面开挖了两个隧道以便增加泄洪量;同时,又放弃了原设计用于发电的四个放水管,把它们改建为泄洪排沙孔道。这样,水库的排沙率达到了百分之八十;但是,由于库区选在黄河产沙量最大地段的下游,在流域产沙量过高的情况下,水库淤积仍然很严重。于是,1970年至1973年,水电部门只好把大坝底部八个排沙孔重新打开,采用洪水中的泥沙排泄和异重流排沙等方法,加大泄洪排沙的速度。由于泄洪量加大,水库水位降低,大坝水电站只能发挥出原设计发电能力的百分之二十,建坝之初安装的高水头水轮机组无法运转,只能完全浪费了(后来,又不得不再耗费人力财力、把这些发电机组拆掉,运到湖北丹江口水电站去安装使用)。因为黄河含沙量过高,泥沙造成了水轮发电机的叶片严重磨损,结果,为了延续发电机的寿命,三门峡水电站只能在黄河含沙量最高的汛期停止发电,使得发电能力进一步下降。

放弃了三门峡水库绝大部份的发电能力之后,这个耗费巨资修建起来的水库就只能发挥调节洪峰的有限作用了。然而,即使在调节洪峰方面,它的真正价值也不很大。因为,为了防止泥沙的进一步淤积,三门峡水库曾采取了尽量少滞洪的方针,也就是说,凡是黄河下游能够通得过的洪水,三门峡水库就让它全部通过,水库不发挥滞洪功能;如果黄河洪峰过高,三门峡水库必须滞洪,则先尽量降低水库水位以排沙和冲沙。

长期的冲沙过程恢复了三门峡水库主河道上一部份被淤积的库容,但是仍然未能恢复河漫滩上的库容。当采用异重流排沙时,如果保持水库水位不升高,则排沙率可以达到零点一八至零点二一。三门峡水库在汛期大量泄洪排沙和冲沙的一个有利结果是,可以有助于控制黄河下游河道的泥沙淤积。

修建三门峡水库的失败,除了反映出当时水电部门在水库选址、判断泥沙淤积等问题上的一系列严重错误,还反映出水库的规划设计者对黄河流域治理效果的片面估计。当时,水库设计者们认为,通过黄河流域的治理可以减少产沙量。但是,由于地理条件及社会经济条件等限制,黄河流域的治理既未得到重视、也未产生预期的效果,该流域土地的侵蚀速率和产沙量仍然居高不下,使得水库淤积日益严重。

C-2 水库调洪演算的数值解程序

C-2 水库调洪演算的数值解程序 作者 张校正(新疆水利厅 ) 一、程序功能 已知水库的水位--水面面积关系,洪水量过程线,对于每一种调洪方案(包括泄流条件、调洪方式、泄水建筑物参数)由调洪起始水位依次计算,直至洪水过程结束,计算机输出各时段末之水位、泄洪洞流量、溢洪道流量、水库出库总流量等。并用彩色曲线绘制洪水过程线、泄洪过程线和水库水位变化线。 二、算法简介 1,水库水量平衡分方程的数值解: 水库水量平衡微分方程: q Q dt dZ f -= 式中: f=f(z) 水库水面面积,是水位z 的函数; Z=Z(t) 水位,是时间t 的函数; Q=Q(t) 入库流量,是时间t 的函数; Q=q(z) 出库流量,是水位z 的函数。 将上式移项,并定义调洪函数 )()()(),(z f Z q t Q Z t F -= 则得 ?????==00)(),(Z t Z Z t F dt dZ 这是一个一阶常微分方程的初值问题。应用定步长的龙格-库塔方法求解。其公式为:)22(6143211K K K K Z Z n n ++++=- 式中: )() ()(),(111111------?=?=n n n n n Z f Z q t Q T Z t F T K )21()2()2()2,2(11111112K Z f K Z q T t Q T K Z T t F T K n n n n n ++-+?=++?=----- )2()2()2()2,2(212112113K Z f K Z q T t Q T K Z T t F T K n n n n n ++-+?=++?=----- )()()(),(3131314K Z f K Z q t Q T K Z t F T K n n n n n ++-?=+?=--- T 为洪水流量时段间隔;

水库泥沙冲淤分析计算

水库泥沙冲淤分析计算 抽水蓄能电站初步设计阶段 水库泥沙冲淤分析计算大纲范本 水利水电勘测设计标准化信息网 1996年10月 抽水蓄能电站初步设计阶段 水库泥沙冲淤分析计算大纲 主编单位: 主编单位总工程师: 参编单位: 主要编写人员: 软件开发单位: 软件编写人员: 勘测设计研究院 1

年月 目次 1. 引言 (4) 2. 设计依据文件和规范 (4) 3. 基本资料 (4) 4. 水库泥沙冲淤计算 (6) 5. 专题研究 (9) 6. 应提供的设计成果 (9) 附件A (10) 附件B (11) 附件C (14) 1 前言 项目概况 抽水蓄能电站位于省县乡境内,总装机 MW。抽水蓄能电站由上水库、水道系统、厂房及下水库组成。水库泥沙冲淤分析计算 2 设计依据文件和规范 2.1 有关本工程(或专业)的文件 (1) 可行性研究报告; (2) 可行性研究报告审批文件; (3) 初步设计任务书和项目卷册任务书,以及其它专业对本专业的要求; (4) 泥沙专题报告。 2.2 设计规范 (1) DL 5021-93 水利水电工程初步设计报告编制规程; (2) SDJ 11-77 水利水电工程水利动能设计规范(试行); (3) SDJ 214-83 水利水电工程水文计算规范(试行); (4) SL 104-95 水利工程水利计算规范; (5) 水库水文泥沙观测试行办法。 2.3 主要参考资料 (1) 水利水电工程泥沙设计规范(报批稿)[echidi1][1]; (2) 《泥沙手册》(中国水利学会泥沙专业委员会主编); 2

(3) 《水库泥沙》(陕西省水利科学研究所河渠研究室、清华大学水利工程系泥沙研究室合编); (4) 《河流泥沙工程学》(武汉水利电力学院)。 3 基本资料 3.1 水库概况 (1) 水库地形图,施测时间; (2) 库区纵、横断面表,需要时给出横断面特征线; (3) 水库水位容积、面积曲线图及表(包括总库容与干支流库容)。 表 1 水库水位容积、面积表 抽水蓄能电站装机容量 MW(共台),一般每日发电 h( 点至点);每日抽水 h( 点至点)。水泵最大扬程抽水流量 m3/s,最小扬程抽水流量 m3/s;水轮机额定水头发电流量 m3/s。 3.4.1 水库水位、库容特征值,见表2。 表 2 库水位、库容特征值 (1) 各设计频率洪水的坝前水位 表 3 各设计频率洪水的坝前水位 3

水库泥沙论文

摘要:由于我国有许多河流是含沙量高、输沙量大的多泥沙河流, 水库泥沙淤积问题异常严重,所以水库泥沙淤积的研究具有重要的现实意义。前人对水库泥沙淤积问题做了大量研究探讨,本文对我国水库泥沙淤积研究的状况和成果进行了全面的综述。容包括:水库泥沙淤积的形态、入库水沙条件变化引起的问题、水库变动回水区泥沙问题研究等方面,并举例国著名的小浪底水利枢纽工程作为案例分析。 关键词:水库;泥沙;淤积问题;处理方法;小浪底工程 一.引言 水库泥沙淤积主要是河水挟带的泥沙在水库回水末端至拦河建筑物之间库区的堆积。拦河筑坝后抬高了水位, 形成了在建筑物前近似水平、而在上游末端与天然河流原水面线相切的水面曲线。水流进入库区后, 由于水深沿流程增加, 水面坡度和流速沿流程减小, 因而水流挟沙能力沿流程降低, 出现泥沙淤积。水库淤积是水库设计和管理中的一个难题。在河道上兴建水库会改变河流的水流条件和泥沙运动状态, 使泥沙在水库库区淤积, 从而降低水 库的使用效益, 甚至导致水库失效报废。所以, 对水库泥沙淤积问题的研究就显得尤为重要。 二.水库泥沙淤积的形态 水库泥沙淤积形态可分为纵剖面形态和横断面形态。 2.1 纵剖面形态 纵剖面形态包括三角洲、锥体和带状淤积三种形态。在库水位变化幅度不大, 淤积处于自由发展情况下, 水库淤积一般呈三角洲形态;在回水曲线较短, 入库水流在通过库段时紊动强度较大, 或含沙量较高, 含沙水流在达到拦河建筑物前泥沙来不及完全沉积情况下, 水库淤积将形成锥体形态。 2.2 横断面形态 横断面形态在多沙河流与少沙河流的水库中有所不同。多沙河流上的水库普遍有淤积一大片, 冲刷一条带的特点。淤积一大片指泥沙在横断面上基本呈均匀分布, 库区横断面上不存在明显的滩槽。冲刷一条带指水库在有足够大的泄流能力, 并采取经常泄空的运用方式时, 库底被冲出一条深槽, 形成有滩有槽的复式横断面。 在水库淤积形态方面, 我国对三角洲形态的淤积研究较早。这方面的成果有对官厅水库的三角洲的淤积形态及计算的初步研究, 三角洲的计算方法, 及根据非均匀悬移质不平衡 输沙的规律首次从理论上详细论证了水库三角洲淤积的趋向性、形成特点、三角洲和前坡淤积比降、洲面线与水面线方程以及前坡长度等, 并得到了官厅水库资料的验证。此外水槽试验亦证实了沙质推移质在壅水区也是以三角洲形式向前推进的。除三角洲淤积形态外, 还有对锥体淤积形态, 从理论上给出淤积剖面近似于直线, 坝前淤积厚度与总淤积体积的近似 线性关系, 带状淤积的条件, 对滞洪期锥体淤积水库的冲淤变化特征分析研究、三角洲、锥体及带状等三种淤积形态的判别方法研究等成果。

浅谈水库泥沙淤积计算方法在工程中的应用

浅谈水库泥沙淤积计算方法在工程中的应用 摘要:某水电站为旬河梯级开发中的一级,该工程为小型水电站工程,水库回 水与上游水电站尾水衔接,二级公路沿库区右岸通过。计算水库泥沙淤积和回水 高度,确定库区淹没范围,是主要设计内容,因此泥沙淤积计算是该电站设计的 重点之一。本次对水库淤积的纵、横剖面形态进行了计算,并采用美国陆军兵团 水面线计算软件HEC-RAS推算了水库回水曲线。 关键词:泥沙淤积平衡比降水电站应用 一、工程概况 本工程水库正常蓄水位331.00m,总库容436.9万m3,电站装机容量 9000kW,多年平均发电量2293万kWh。大坝坝顶总长度124.50m,坝顶高程335.10m,最大坝高30.60m。溢流坝段长64.50m,布置在主河床,堰高16.50m;左岸挡水坝长11.00m,坝高16.60m;右岸厂房坝段长49.00m,布置在主河床右侧,其中机组段长29.00cm,安装间段长12.00m。水库采取“蓄清排浑”的运行方式,即当汛期入库流量大于分界流量182m3/s,小于造床流量729 m3/s时,水库 降低至排沙水位329.00m运行,多余水量通过泄水闸门控制泄流。水电站库区为 山区型河道,多为“U”型,两岸大部分为岩质岸坡,库区河段天然平均比降 J0=1.8‰。河谷宽窄相间,库面平均宽度88m,回水长度4.1km。水库悬移质多 年平均输沙量111万t,推移质按悬移质的20%估算,为22.2万t,共计输沙量133.2万t。 二、水库泥沙冲淤分析及计算 1. 水库泥沙淤积形态判别 水库泥沙淤积形态判别采用《泥沙计算手册》中清华大学水利系及西北水利 科学研究院公式: α= V / WS / J0 式中:α—判别系数;V—水库正常蓄水位331.0m以下的库容(万m3),V= 265;WS—多年平均输沙量(万m3),WS =133.2;J0—水库库区原河床平均比降(?),J0=18.0。 计算得α=0.11<2.2,库区纵向淤积形态为锥体淤积。水库库容很小,水库在很短时间即可 达到淤积平衡状态,泥沙淤积厚度自上而下沿程递减至坝前,淤积面比降近乎一个比降,一 次洪水的淤积就可能达到坝前。 2.水库淤积形态计算 2.1纵向形态计算 天然河道比降是水沙过程和和床之间的长期作用的结果,而建库后的平衡比降只是在造 床水沙条件改变之后,同是两者相互作用的产物,因此本工程采用倍比法计算水库平衡比降。考虑本工程取水枢纽布置形式为闸坝式,侵蚀基准面抬高值较小,确定水库淤积平衡比降为 原河道比降的0.8倍。原河道河床比降为i0=1.8‰,淤积平衡比降为i=1.44‰。根据水库统计 资料,水库滩地淤积纵剖面比降与原河槽比降的关系为1:10,即滩地淤积纵剖面比降i滩 =0.18‰。 2.2.横向淤积形态计算 从造床流量相当于平滩(河漫滩)流量这个概念出发,按照《泥沙设计手册》中钱意颖公式 计算确定造床流量。 式中:—汛期平均流量,取 =84.5 m3/s(取主汛期7~9月)。 计算得Q造=729 m3/s。根据水文资料分析,水库坝址处2年一遇洪峰流量为870 m3/s, 多年平均洪峰流量为1250 m3/s。根据上述计算及经验,造床流量采用钱意颖公式计算结果。

水库淤积

水库淤积 一、水库是如何淤积的? 二、水库淤积带来的问题 三、水库淤积速度 四、水库淤积的防治措施 五、水库内淤积泥沙的处理方法 六、实例分析及教训 水库淤积是水库设计和管理中的一个难题。在河道上兴建水库会改变河流的水流条件和泥沙运动状态,使泥沙在水库库区内淤积,从而降低水库的使用效益,甚至导致水库失效报废。因此,人类在修建水库时不能不认真考虑泥沙淤积和水库寿命问题。根据1986年的资料,世界上水库的总造价计为六千亿美元,单个水库的平均寿命约为二十二年。到该年为止,全世界各种类型水库的总库容约为四万九千亿立方米,相当于河流年径流总量的百分之十三,其中库容超过五十亿立方米的水库的总库容约为四万零五百亿立方米。这些水库的总库容因泥沙淤积每年约减少百分之一,即五百亿立方米,换言之,泥沙淤积所造成的损失平均每年相当于六十亿美元。就我国情况而言,北方河流含沙量一般较高,淤积严重,如青铜峡水库运行17年,水库淤积了总库容的87% ,而旧城水库运行了11年,水库已经全部淤满;南方河流含沙较少,淤积情况轻微,如新安江水库运行16年,水库淤积仅占总库容的0.1 % 。水库淤积不仅会影响水库的综合效益,而且还会造成其他严重后果。 在本文中,我们将先从理论上分析水库淤积的原因、后果和防治措施,然后以中国的黄河三门峡水库淤积资料,说明水库淤积可能带来的严重问题。 一、水库是如何淤积的? 水库淤积与许多因素有关,其中最主要的原因是,水库蓄水后,库区和回水段的水深及过水断面积都增大了,水面坡度减小,导致库水的流速减缓,输沙能力降低,其挟带的泥沙就部份或全部地在水库库底沉积下来。虽然,人们可以采取适当措施减缓淤积的速度,但是,水库淤积通常是很难根治的。 河流中的泥沙运移和淤积是地球表面泥沙运动的一个组成部份。地球表面的泥沙运动可分为侵蚀、搬运和沉积三个过程,其动力有水、风、冰和重力等,泥沙运动和地球的内应力作用一起塑造着地球的外貌。当谈到泥沙运动时,侵蚀是指岩石或土壤被剥离(或溶蚀)、并被移走的过程,侵蚀所产生的土壤或岩石颗粒即称为泥沙;如果按照搬运方式来划分,泥沙有两种,悬浮在水流中运动的是悬移质泥沙,而沿河底滚动、滑动或跃移的为推移质泥沙;当泥沙由运动状态变为静止状态时称为泥沙的沉积,泥沙在水库中沉积就形成了水库淤积。 泥沙在水库中淤积的过程是,当水流进入库尾时,粗沙首先沉积下来,逐渐形成三角洲;同时异重流挟带着细沙向坝前推进,并沿途不断扩散,这样细沙将沉积在整个水库范围内,其中大部份沉积在坝前;坝前主河道内的淤积物称为底积层,原河漫滩上的称河漫滩淤积。由于水库回水的影响,在水库库尾以上的河道内还会发生泥沙淤积,称为回水区淤积。 水库按其功能可分为蓄水库和滞洪水库,前者是将水拦蓄下来用于水利目的,后者只用于防洪,即拦截洪水、延缓洪水下泄量、防止下游出现洪涝灾害。河水在滞洪水库中停留时间较短,而在蓄水库中则可能停留相当长的时间。水库内悬移质泥沙的沉沙率与滞水时间呈正相关,所以,滞洪水库能排走大部份悬移质泥沙,而蓄水库则无法避免泥沙沉积,如果不采取排沙措施,大部份通常淤积在库尾的悬移质就沉积下来了。 水库淤积的最明显徵兆是在库尾露出水面的三角洲,它由粗沙组成、呈发瓣形,上面生长杂草灌木。三角洲的发展速度与河流流量、泥沙颗粒级配、河道纵坡和水库水位变幅等有关,美国的米德湖三角洲的发展速度在1939-1948年约为每年三百米。 水库的淤积将减少水库的有效库容,水库的库容损失取决于淤积量和淤积泥沙的容重,而淤积泥沙的容重与泥沙粒径、淤积时间等有关。泥沙的颗粒径愈大,则容重愈大;淤积时间愈长,泥沙被压缩得愈紧密,则其容重也愈大;泥沙粒径愈小,容重受淤积时间的影响就愈大。所以水库库容损失率通常是逐渐降低的。 水库的有效库容减少就会缩短水库的寿命,水库的寿命(又称使用年限)是指水库从开始运用到因泥沙淤积而失效的时间,通常是按水库的死库容除以年泥沙淤积量来计算,这种方法是假设淤积的泥沙先在库底最低的地方沉积,把水库的死库容先填满。但这样的计算方法不尽合理,因为淤积的泥沙不是移动到库底最低的地方沉积,因此不会在库底造成一个水平的淤积面;泥沙是从进入库区开始就沿途沉积,所以会在水库库底形成一定的坡度,通常,沉积形成的三角洲的表面坡度是原河道坡度的三分之一至二分之一。 因此,尽管许多水库的死库容尚未淤满,其库尾地段的有效库容就因淤积而大大减少。例如,巴基斯坦的Tarbela水库到1980年才使用了六年,淤积在死库容区的泥沙只占死库容的百分之二十二,但淤积泥沙的百分之四十四是沉积在有效库容内,导致水

第三章调洪计算

第三章调洪计算 3.1调洪计算目的 水库调洪计算的目的是在已拟定泄洪建筑物及已确定防洪限制水位(或其他的起调水位)的条件下,用给出的入库洪水过程、泄洪建筑物的泄洪能力曲线及库容曲线等基本资料,按规定的防洪调度规则,推求水库的泄流过程、水库水位过程及相应的最高调洪水位和最大下泄流量。 3.2调洪演算的原理 水库调洪计算的基本公式是水量平衡方程式: t t t t t t V V t q q t Q Q -=?+-?++++112112 1)()( (3-1) 式中t ?—计算时段长度,s ; 1,+t t Q Q —t 时段初、末的入库流量,m 3/s ; 1,+t t q q —t 时段初、末的出库流量,m 3/s ; 1,+t t V V —t 时段初、末水库蓄水量,m 3。 水库泄流方程 : q =f (V ) (3-2) 用已知(设计或预报)的入库洪水过程线Q ~t ,由起调水位开始,逐时段连续求解(3-1)和(3-2)组成的方程组,从而求得水库出流过程q ~t ,这就是调洪演算的基本原理。

这里采用单辅助线半图解法,联解(2-1)和(2-2)两个方程,将(3-1)改写为: (V t/△t+q t/2 )+Q-q t= (V t+1/△t)+(q t+1/2 ) (3-3)式中Q—计算时段平均入流量,Q=(Q t + Q t+1)/2;其他同(3-1) 也就是说,可以事先绘制q~(V/△t)+(q/2 )的关系曲线,即调洪演算工作曲线,因式3-3)的左端各项为已知数,故式(3-3)右端项也可求出,然后根据(V t+1/△t)+(q t+1/2 )的值,通过工作曲线q~(V/△t)+(q/2 )可查出q t+1的值。因第一时段的V2、q2就是第二时段的V1、q1,于是可重复以上步骤连续进行计算,直到求出结果。 3.3调洪计算结果整理 3.3.1调洪演算基本资料 水库特征水位:正常蓄水位1856m,汛期限制水位1854m,死水位1852m 积石峡入库洪水过程线见下表: 表2-1积石峡入库洪水过程线

水库调洪计算试算法

水库调洪演算试算法 一、水库调洪计算的任务 入库洪水流经水库时,水库容积对洪水的拦蓄、滞留作用,以及泄水建筑物对出库流量的制约或控制作用,将使出库洪水过程产生变形。与入库洪水过程相比,出库洪水的洪峰流量显著减小,洪水过程历时大大延长。这种入库洪水流经水库产生的上述洪水变形,称为水库洪水调节。水库调洪计算的目的是在已拟定泄洪建筑物及已确定防洪限制水位(或其他的起调水位)的条件下,用给出的入库洪水过程、泄洪建筑物的泄洪能力曲线及库容曲线等基本资料,按规定的防洪调度规则,推求水库的泄流过程、水库水位过程及相应的最高调洪水位和最大下泄流量。 若水库不承担下游防洪任务,那么水库调洪计算的任务是研究和选择能确保水工建筑物安全的调洪方式,并配合泄洪建筑物的形式、尺寸和高程的选择,最终确定水库的设计洪水位、校核洪水位、调洪库容及二种情况下相应的最大泄流量。若水库担负下游防洪任务,首先应根据下游防洪保护对象的防洪标准、下游河道安全泄量、坝址至防洪点控制断面之间的区间入流情况,配合泄洪建筑物形式和规模,合理拟定水库的泄流方式,确定水库的防洪库容及其相应的防洪高水位;其次,根据下游防洪对泄洪方式的要求,进一步拟定为保证水工建筑物安全的泄洪方式,经调洪计算,确定水库的设计洪水位与校核洪水位及相应的调洪库容。 二、水库调洪计算基本公式 洪水进入水库后形成的洪水波运动,其水力学性质属于明渠渐变不恒定流。常用的调洪计算方法,往往忽略库区回水水面比降对蓄水容积的影响,只按水平面的近似情况考虑水库的蓄水容积(即静库容)。水库调洪计算的基本公式是水量平衡方程式:

t t t t t t V V t q q t Q Q -=?+-?++++1121121)()( (3-1) 式中: t ?——计算时段长度(s ); 1,+t t Q Q ——t 时段初、末的入库流量(m 3/s ); 1,+t t q q ——t 时段初、末的出库流量(m 3 /s ); 1,+t t V V ——t 时段初、末水库蓄水量(m 3 )。 当已知水库入库洪水过程线时,1,+t t Q Q 均为已知;t t q V ,则是计算时段t 开始的初始条件。于是,式中仅11,++t t q V 为未知数。必须配合水库泄流方程q =f (V )与上式联立求解11,++t t q V 的值。当水库同时为兴利用水而泄放流量时,水库泄流量应计入这部分兴利泄流量。假设暂不计及自水库取水的兴利部门泄向下游的流量,若泄洪建筑物为无闸门表面溢洪道,则下泄流量q 的计算公式为: 1 11 2gh mBh q ε= (3-2) 式中: ε 侧收缩系数; m 流量系数; B 溢洪道宽; h 1 堰上水头。 若为孔口出流,则泄流公式为: 2 2 2gh q μω= (3-3) 式中: μ 孔口出流系数; ω 孔口出流面积; h 2 孔口中心水头。 由式(3-2)或(3-3)所反映泄流量q 与泄洪建筑物水头h 的函数关系可转换为泄流量q 与库水位Z 的关系曲线q =f (Z )。借助于水库容积特性V =f (Z ),

水库淤积形成及其影响和应对措施

水库淤积形成及其影响和应对措施Reservoir formation and its influence and Countermeasures 在天然河流上建筑水库后,将会给该区域一系列的影响。库区水位的举高,使过水断面扩展,水力坡降变缓,水流速度减小。这些将致使水流挟沙才能的降低,然后改动原河道的泥沙运动规则,致使很多泥沙在库区逐步沉积淤积。也就是说,建筑水库成为河流泥沙淤积的主要原因。 In the natural river after building reservoir, will give the area a series of. Reservoir water level up, make the cross section, hydraulic gradient is slow, flow velocity decreases. These will lead to reduced flow, sediment movement rules and then change the original river, causing a lot of sediment deposition in the reservoir sedimentation gradually. That is to say, building reservoir become the main cause of river sediment. 在我国华北的黄河和海河水系,水流含沙量很大,库区的淤积也就相对较高。例如黄河三门峡水库,多年均匀含沙量达37.8 kg\/m?,在1960-1970年,水库总淤积泥沙达55.5亿t,使库区的库容丢失高达43%。 In North China 's the Yellow River and Haihe River, sediment concentration, reservoir sedimentation is relatively high. For

谈谈对水库泥沙的认识及国内外研究现状

谈谈对水库泥沙的认识及国内外研究现状 水库泥沙淤积主要是河水挟带的泥沙在水库回水末端至拦河建筑物之间库区的堆积。拦河筑坝后抬高了水位, 形成了在建筑物前近似水平、而在上游末端与天然河流原水面线相切的水面曲线。水流进入库区后, 由于水深沿流程增加, 水面坡度和流速沿流程减小, 因而水流挟沙能力沿流程降低, 出现泥沙淤积。水库淤积是水库设计和管理中的一个难题。在河道上兴建水库会改变河流的水流条件和泥沙运动状态, 使泥沙在水库库区内淤积, 从而降低水库的使用效益, 甚至导致水库失效报废, 所以, 对水库泥沙淤积问题的研究就显得尤为重要。一、水库淤积观测和资料分析 水库淤积的观测和资料收集是水库淤积研究的基础。我国最早开展的系统性泥沙淤积观测是对20 世纪50 年代建成的永定河官厅水库、60 年代初建成的黄河三门峡水库和汉江丹江口水库的泥沙观测,从中积累了大量的资料。从60年代开始,水利部科技司针对黄河流域和北方多沙河流的水库淤积,选择了官厅、三门峡等12 座大型水库作为重点淤积观测的水库,并建立了“黄河泥沙研究协调小组”,组织了攻关研究和成果交流。后来又将其扩展到包括南方水库在内的20 个大型水库。以这20个水库为骨干,我国已有一支数量较大的水库淤积观测队伍,收集了大量第一手资料。不论从收集资料的数量、内容、深度和可靠性看,在世界上都是首屈一指的。 二、水库变动回水区泥沙问题研究 三峡水利枢纽运用各时期水库变动回水区的范围,从坝址上游约440km 的丰都,至嘉陵江入汇口以上的油溪,长约270km。变动回水区河道流经丘陵和山区,平均比降约0.2‰~0.3‰。河道由宽谷和峡谷相间,河床由基岩和卵石组成。通过长江科学院等单位采用原型观测资料分析、泥沙数学模型计算与河工模型试验相结合的方法进行研究,结果认为:建库后变动回水区各河段均有不同程度的累积性淤积;局部河段发生河势调整,淤滩留槽,河道向单一、规顺、微弯形态发展;航道、港区较建库前有较大改善,少数港区和局部航道可能在丰沙年后的水位消落期出现航道尺度和港区水深、水域不足的情况,可采取优化水库调度,结合港区改建和整治、疏浚措施加以解

水库泥沙淤积综述

水库泥沙淤积研究综述 (邓山2008150122 三峡大学) 摘要: 由于我国有许多河流是含沙量高、输沙量大的多泥沙河流, 水库泥沙淤积问题异常严重。所以对水库泥沙淤积的研究具有重要的现实意义。前人对水库泥沙淤积问题做了大量研究探讨,本文对我国水库泥沙淤积研究的状况和成果进行了全面的综述。内容包括、水库泥沙淤积的形态、入库水沙条件变化引起的问题、水库变动回水区泥沙问题研究三个方面。 关键词:水库;泥沙;淤积;回水区 1 引言 水库泥沙淤积主要是河水挟带的泥沙在水库回水末端至拦河建筑物之间库区的堆积。拦河筑坝后抬高了水位, 形成了在建筑物前近似水平、而在上游末端与天然河流原水面线相切的水面曲线。水流进入库区后, 由于水深沿流程增加, 水面坡度和流速沿流程减小, 因而水流挟沙能力沿流程降低, 出现泥沙淤积。水库淤积是水库设计和管理中的一个难题。在河道上兴建水库会改变河流的水流条件和泥沙运动状态, 使泥沙在水库库区内淤积, 从而降低水库的使用效益, 甚至导致水库失效报废, 所以, 对水库泥沙淤积问题的研究就显得尤为重要。 2 水库淤积观测和资料分析 水库淤积的观测和资料收集是水库淤积研究的基础。我国最早开展的系统性泥沙淤积观测是对20 世纪50 年代建成的永定河官厅水库、60 年代初建成的黄河三门峡水库和汉江丹江口水库的泥沙观测, 从中积累了大量的资料。从60 年代开始, 水利部科技司针对黄河流域和北方多沙河流的水库淤积, 选择了官厅、三门峡等12 座大型水库作为重点淤积观测的水库, 并建立了“黄河泥沙研究协调小组”, 组织了攻关研究和成果交流。后来又将其扩展到包括南方水库在内的20 个大型水库, 其成果见表1 。以这20个水库为骨干, 我国已有一支数量较大的水库淤积观测队伍, 收集了大量第一手资料。不论从收集资料的数量、内容、深度和可靠性看, 在世界上都是首屈一指的。

水库库区淤积测量技术的应用研究

水库库区淤积测量技术的应用研究 发表时间:2018-09-10T15:30:10.470Z 来源:《基层建设》2018年第22期作者:黄永斌 [导读] 摘要:水库库区的淤积测量是研究水库水文要素变化规律的基础,是保证水库安全运行的重要工作。 身份证号码:44088119870128XXXX 摘要:水库库区的淤积测量是研究水库水文要素变化规律的基础,是保证水库安全运行的重要工作。基于此,为了给水库正确调度提供依据,确保水库建设效益的充分发挥,本文以差分GPS技术为研究对象,研究分析其在水库淤积测量中的应用及效果。 关键词:淤积测量;GPS定位技术;观测时段;控制网点 水库工程的建设具有防洪、发电、灌溉、供水、航运等多方面的社会与经济效益,同时能够改善当地的生态环境。随着我国经济的发展,兴建了大量的水库,为改善民生、发展经济做出了巨大的贡献。但是随着水库使用年限的增加,水库淤积会逐渐的增加,影响水库的库容,降低水库的功能的发挥,这就需要对水库淤积进行测量。目前,部分水库对水库淤积情况不了解,淤积量、淤积分布规律没有系统准确的资料,影响了水库效益的发挥。而测量手段的选择对数据精度、时效性影响巨大。 1.概述 1.1差分GPS定位技术 包括GPS定位系统的卫星传输误差、接收仪器误差、观测失误误差和测站误差等在内的许多误差深层次原因都是由同一区域内用户的公共性所引起,诸如此类的公共性固定误差,都可以通过差分补偿技术进行测量及定位。在差分GPS定位技术下,首先建立差分基准台,并将其接收机安装在预先设定的精确坐标点上,以便接收连续不断的精确GPS信号,所获取的数据还要与同类基准站已经获取的数据进行横向比较以确定误差大小,并进行精准修正,将修正值采用数据连接方式传输给区域用户,用户借此修正定位解并改善自身定位精度[1]。 1.2超声数字测深技术 位于水面位置的换能器发出声波,声波经由河流到达水底并反射回来,换能器接收到声波信号后进行记录统计,假设从换能器发出声波到其再次接收到声波之间的时间为T,这样就可以计算出水深,公式为: 式中 H———水深,m; C———声波在水中传播的速率,m/s。 测船在水上匀速航行过程中,事先布设在船上的测深仪会监测到一条连续不断的水深线,通过观察研究和比对水深线的变化便可提取到水下有关的地形地貌数据,并将信息转换成数字量输出与资源共享。 当移动站移动至水库库区某一既定位置,便可通过GPS定位技术将其所处位置的平面坐标、高程、水深等数据测量出来,并以此确定出水库库底反射点位置的三维坐标,这种方法与常用方法相比,测量精确度更高、测深速度更快、工作量大大减少、定位更加准确可靠。 1.3库区测量系统组成 图1 该水库库区测量系统流程图 某水库库区差分GPS淤积测量中,平面定位选用的是SR510RTDGPS接收机,并选用SDH—13超声数字测深仪作为数据采集的主要手段,并辅之以全站仪、测距仪及数码摄影摄像机对两岸及水下地形地貌进行测量。通过导航软件对库区淤积情况进行实时定位,并与测深仪测深数据进行同步传输与记录,利用库区基础控制网进行全过程解算与数据转换(该水库库区测量系统如图1所示)。 2.工程概况 该市水库数目众多,包括8个小(1)水库和68个小(2)水库,为给小(1)、小(2)型水库的安全性复核提供详尽的地形资料,受该市水利建筑设计院委托要求,需完成相应的水库库区淤积测量任务。 3.测量步骤 3.1建立GPS控制网 每个水库建立一个GPS控制网。以《各水库起算点情况统计表》中的控制点作为起算点,以三角形为基本形式采用边连接方式组成GPS 控制网。每个水库不少于3个待定点。编号分别为R1、R2、R3,待定点全部设置永久性标志。GPS控制网的观测采用4台南方北极星9600型GPS测量系统,静态基线精度为±5mm(+1ppm)、高程精度为±10mm(+2ppm)。GPS控制网采用静态载波相位相对定位模式进行卫星信号的接收,卫星截止高度角为15°,采样间隔为10″,同步观测有效卫星数大于5颗,观测时段长度大于90min,精度因子GDOP值小于 4[2]。仪器高在观测开始前和结束后,分别用小钢尺量取,两次较差不超过3mm,取其平均值。外业观测结束后,使用南方GPS数据处理软件,进行平差计算,GPS控制网平面约束平差必须满足表1要求。GPS接收机的天线必须与测深仪换能器一同安装在垂直的位置,且两台设备之间平面与垂直距离应为同一数值,这样便可以将荷载、航速、水流及风力等引发测量船测量误差的所有不利因素控制在可控范围内,

淤积库容计算

6.5 水库淤积估算和死水位的主要影响因素 1.水库淤积 河水中挟带的泥沙在水库内沉积,称泥沙淤积。挟沙水流进入库内后,随着过水断面逐渐扩大,流速和挟沙能力沿程递减,泥沙由粗到细地沿程沉积于库底。这一情况说明,水库的建造,带来河流泥沙的淤积。 我国华北的黄河和海河水系,水流含沙量大,如黄河三门峡水库,多年平均含沙量达37.8 kg/m3,因此自1960年至1970年间,水库共淤积泥沙55.5亿t,使库水位335 m 以下的库容损失43%。 又如海河流域永定河上的官厅水库,多年平均含沙量高达44.2 kg/m3,水库运用6年后,泥沙淤积导致库容损失达15.2%。 即使含沙量较小的长江水系,干支流上修建的水库也有泥沙淤积问题。 泥沙淤积对水库的运用会产生多方面的不利影响: ①淤积使水库调节库容减少,降低水库调节水量的能力和综合利用的效益。 ②坝前淤积,使电站进水口水流含沙浓度增大,泥沙粒径变粗,引起对过水建筑物和水轮机的磨损,影响建筑物和设备的安全和寿命。 ③库尾淤积体向库区推进的同时,也向上游延伸,即所谓“翘尾巴”,因而抬高库尾水位,扩大库区的淹没和浸没损失。 ④水库下游则由于泄放清水,水流夹沙能力增大,引起对下游河床的冲刷,水位降低,甚至河槽变形。 在水库设计时,重要的是要估计可能的淤积速度,以便判断水库的寿命和是否值得兴建。水库淤积的分布和形态取决于入库水量、含沙量、泥沙组成、库区形态、水库调度和泄流建筑物性能等因素的影响。对很多水库而言,水库全部淤满,或达到进库和出库沙量基本相等的所谓“平衡库容”的情况,可能需要很长的时间。但是,水库工作年限或寿命的衡量是着眼于水库淤积是否已相当程度上影响到水库正常(设计)功能的发挥。由于水库淤积并非全在死库容的范围内,而是沿库分布,特别是入库处。如淤积快且严重,不仅会影响有效库容,对航运也有危害。因此,严格说来所谓水库“寿命”应指水库正常工作的年限,又称水库使用年限。 为防止、减轻水库淤积,要做好流域面上的水土保持工作,也可在来沙较多的支流修建拦沙坝库。此外,采用“蓄清排浑”的运用方式,常能获得良好效果。 2.水库死水位的主要影响因素 水库死水位是水库正常运行的最低水位。死水位以下的死库容是不能用来进行径流调节的。死库容的作用,主要是淤积部分泥沙和抬高库水位。在规划设计水库时,需要先确定水库的死水位,再进行调节计算,以求得兴利库容和正常蓄水位。水库死水位的确定,主要应考虑以下几个方面。 (1)满足自流灌溉的要求 自流灌溉要求水库水位不低于灌区地面高程加上引水水头损失值。死水位越高,自流灌溉的面积越大;在抽水灌溉时,也可使抽水的扬程减少。

水库泥沙淤积分析计算及防治措施

水库泥沙淤积分析计算及防治措施摘要:泥沙淤积是水库存在的一个普遍性的问题, 水库的淤积不仅会影响水库的综合效益和使用寿命,同时还会引起河道冲刷下降,威胁沿河两岸工农业生产的安全, 给水库的管理造成一定的困扰因此, 对水库进行泥沙淤积计算是十分必要的。本文就水库中泥沙淤积起因,对水库的影响,以及减少泥沙淤积的措施方面做出了 分析探讨。 关键词:水库泥沙淤积计算 abstract: the reservoir sediment deposition is the existence of a universal problem, the deposition of reservoir will not only affect the reservoir comprehensive efficiency and service life, and at the same time can also cause a channel scour drop, along the river threat the safety of the industrial and agricultural production, to reservoir management cause certain problems therefore, the reservoir sediment deposition on calculation is very necessary. this article in the reservoir sediment deposition in the cause of the influence of the reservoir, and reduce sediment deposition measures have made analysis and discussion. keywords: reservoir sediment deposition calculation 中图分类号:tv697.2+2 文献标识码:a文章编号: 我国的水库建设在国民经济中占有重要的地位,这些水库在我

水库调洪计算

水库调洪计算 reservoir routing 在规划设计阶段,水库调洪计算的目的是为了找出当一定防洪标准的[设计洪水]入库后能满足防洪要求的防洪库容、泄洪建筑物型式和尺寸。在水库建成后,调洪计算的目的是寻求合理的、较优的水库汛期控制运用方式。 水库调洪作用 有蓄洪与滞洪两种。蓄洪一般指水库设有专用的防洪库容或通过预泄,预留部分库容,用来拦蓄洪水,削减洪峰流量,满足下游防洪要求。滞洪指仅仅利用大坝抬高水位,增大库区调蓄能力,当入库洪水流量超过水库泄流设备下泄能力时,将部分洪水暂时拦蓄在水库内,削减洪峰,待洪峰过后,所拦蓄的洪水,再逐渐泄入河道。对防洪与兴利相结合的综合利用水库来说,当入库洪水为中小洪水时,一般以蓄洪为主,以便为兴利之用;而在大洪水年份,则兼有蓄洪滞洪的作用。入库洪水经水库调蓄后,其泄流量的变化情况与水库的容积特性,泄洪建筑物形式,尺寸以及下游防洪标准,水库运行方式等有关。 水库调洪方式 基本有三种:①自由泄流(敞开泄流)。指水库不承担下游防洪任务,水库调洪只需解决水库遭遇设计标准及校核标准洪水,在水库水位超过防洪限制水位时为确保大坝安全时的泄洪。当水库承担下游防洪任务而入库洪水超过下游防洪标准设计洪水时的泄流,也是自由泄流。②固定泄流。即采用闸门控制措施,使水库下泄流量按固定值泄放(一级或多级固定),各级控制下泄流量值视入库洪水和控制点的防洪能力而定。对于调洪能力较小的水库,可按入库流量来判别属于何级下泄值,对调洪能力大的水库洪量起主要作用,宜采用库水位涨率与入库流量相结合方法判定宜选泄量数值。③泄洪方式为补偿调节方式。理想的补偿调节方式是根据区间洪水预报逐时段确定水库相应下泄流量,使其与区间洪水流量组合结果不超过下游控制点的安全允许泄流量。考虑错峰要求的水库泄流即属于此种方式。但这种方式只适合于水库泄流至下游防洪控制点的传播时间小于区间洪水的预见期和预报精度较高的情况。如果某些水库泄流传播到下游防洪控制点的时间较长,而

水库调洪计算试算法

水库调洪计算试算法 水库调洪演算试算法一、水库调洪计算的任务 入库洪水流经水库时,水库容积对洪水的拦蓄、滞留作用,以及泄水建筑物对出库流量的制约或控制作用,将使出库洪水过程产生变形。与入库洪水过程相比,出库洪水的洪峰流量显著减小,洪水过程历时大大延长。这种入库洪水流经水库产生的上述洪水变形,称为水库洪水调节。水库调洪计算的目的是在已拟定泄洪建筑物及已确定防洪限制水位(或其他的起调水位)的条件下,用给出的入库洪水过程、泄洪建筑物的泄洪能力曲线及库容曲线等基本资料,按规定的防洪调度规则,推求水库的泄流过程、水库水位过程及相应的最高调洪水位和最大下泄流量。 若水库不承担下游防洪任务,那么水库调洪计算的任务是研究和选择能确保水工建筑物安全的调洪方式,并配合泄洪建筑物的形式、尺寸和高程的选择,最终确定水库的设计洪水位、校核洪水位、调洪库容及二种情况下相应的最大泄流量。若水库担负下游防洪任务,首先应根据下游防洪保护对象的防洪标准、下游河道安全泄量、坝址至防洪点控制断面之间的区间入流情况,配合泄洪建筑物形式和规模,合理拟定水库的泄流方式,确定水库的防洪库容及其相应的防洪高水位;其次,根据下游防洪对泄洪方式的要求,进一步拟定为保证水工建筑物安全的泄洪方式,经调洪计算,确定水库的设计洪水位与校核洪水位及相应的调洪库容。 二、水库调洪计算基本公式 洪水进入水库后形成的洪水波运动,其水力学性质属于明渠渐变不恒定流。常用的调洪计算方法,往往忽略库区回水水面比降对蓄水容积的影响,只按水平面的近似情况考虑水库的蓄水容积(即静库容)。水库调洪计算的基本公式是水量平衡方程式: 11(Q,Q),t,(q,q),t,V,V (3-1) tt,1tt,1t,1t22

相关文档
最新文档