基于MC14433的数字电压表

基于MC14433的数字电压表
基于MC14433的数字电压表

河北建筑工程学院《电子技术》课程设计报告

设计题目:三位半数字电压表电路的设计

院(系):_河北建筑工程学院电气系 ___

专业班级:_电子班__

学生姓名:

学号:

指导老师: __ ___

设计地点(单位):河北建筑工程学院电气实验室

设计时间: 2011年6月6日-2011年6月19日

数字电压表设计报告

一、设计目的

通过电子技术的综合设计,熟悉一般电子电路综合设计过程、设计要求、应完成的工作内容和具体的设计方法。通过设计有助于复习、巩固以往的学习内容,达到灵活应用的目的。设计完成后在实验室进行自行安装、调试,从而加强学生的动手能力。在该过程中培养从事设计工作的整体概念。

二、设计要求

1、利用所学的知识,通过上网或到图书馆查阅资料,设计三个实现数字万用表的方案;只要求写出实验原理,画出原理功能框图,描述其功能。

2、其中对将要实验方案 3 1/2数字电压表,需采用中、小规模集成电路、MC14433 A/D转换器等电路进行设计,写出已确定方案详细工作原理,计算出参数。

3、技术指标:

Ⅰ、测量直流电压1999-1V;199.9-0.1V;19.99-0.01V;1.999-0.001V;

Ⅱ、测量交流电压1999-199V;

Ⅲ、三位半显示;

Ⅳ、比较设计方案与总体设计;

Ⅴ、根据设计过程写出详细的课程设计报告;

三、设计方案及原理

方案一、基于MC14433的数字电压表

方案一基于MC14433的数字电压表

方案一:该方案大致分为五个模块,分别为基准电压模块;A/D转换模块;字形译码驱动模块;显示电路模块;字位驱动模块。由上图可以清楚地看出,交流电流经过AC/DC转换成直流,经过电阻分压集稳压放大后进入双积分转换器MC14433测量,再通过CD4511译码器经过A/D转换器位选电路送到LED显示,完成电压测试。

方案二、基于INC 7107数字电压表

方案二,基于INC 7107数字电压表

方案二:该方案将直流电压和交流电压转换电路直接同芯片INC7107连接组成,INC7107将转换后的数据显示在LED显示数码管上。INC7017为CMOS3 1/2为单片双积分式A/D转换器,集模拟部分的缓冲器、积分器、电压比较器、正负电压参考源和模拟开关,以及数字部分的振荡器、计数器、锁存器、译码器、驱动器、控制器和逻辑电路于一身的芯片。使用时只需少量电阻、电容等器件即可完成模拟量到数字量的转换。

方案三、基于AT89C52的数字电压表

方案三、基于AT89C52的数字电压表

方案三:该方案采用12M晶振产生脉冲做AT89C52的内部时钟信号,通过软件设置单片机的内部定时器T0产生中断信号。利用中断设置单片机的P2.4口取反产生脉冲做AT89C52的时钟信号。单片机软件设置ADC0808开始A/D转换并将转换结果存到片内RAM。系统调出显示子程序,将保存结果转化为0.00-5.00V分别保存在片内RAM;系统调出显示子程序,将转化后数据查表,输出到LED显示电路,将相应电压显示出来,程序进入下一个循环。

方案比较:

方案一:选用A/D转换芯片MC14433、CD4511、MC1413、MC1403实现电压的测量,用四位数码管显示出最后的转换电压结果。缺点是工作速度低,优点是精度较高,工作性能比较稳定,抗干扰能力比较强。器件价格合适,采购方便,成本低,易实施。

方案二:选用专用电压转化芯片INC7107实现电压的测量和控制。它包含3 1/2位数字A/D转换器,可直接驱动LED数码管。用四位数码管显示出最后的转换电压结果。缺点是精度比较低,且内部电压转换和控制部分不可控制。优点是价格低廉。

方案三:选用单片机AT89S52和A/D转换芯片ADC0809实现电压的转换和控制,用四位数码管显示出最后的转换电压结果。缺点是价格稍贵;优点是转换精度高,且转换的过程和控制、显示部分可以控制。

综合比较三个方案,方案一结构简单,易实施,价格合适且工作精度高,比较稳定,抗干扰能力强;而方案二虽然价格低廉,但是精度较低;方案三价格稍贵且不易操作。综合比较我们选择了方案一。

四、31/2位数字电压表

部件构成:

◆三位半A/D转换器(MC14433):将输入的模拟信号转换成数字信号。

◆基准电压(MC1403):提供精密电压,供A/D转换器做参考电压。

◆译码器(MC4511):将二—十进制(BCD)码转换成七段信号。

◆驱动器(MC1413):驱动显示器的a,b,c,d,e,f,g七个发光段,

驱动发光数码管(LED)进行显示。

◆显示器:将译码输出的七段信号进行数字显示,读出A/D转换结果。

工作过程:

三位半数字电压表通过位选信号DS1~DS4进行动态扫描显示,由于MC14433电路的A/D转换结果是采用BCD码多路调制方法输出,只要配上一块译码器,就可以将转换结果以数字方式实现四位数字的LED发光数码管动态扫描显示。

DS 1~DS 4输出多路调制选通脉冲信号。DS 选通脉冲为高电平时表示对应的数位被选通,此时该位数据在Q 0~Q 3端输出。每个DS 选通脉冲高电平宽度为18个时钟脉冲周期,两个相邻选通脉冲之间间隔2个时钟脉冲周期。DS 和EOC 的时序关系是在EOC 脉冲结束后,紧接着是DS1输出正脉冲。以下依次为DS 2,DS 3和DS 4。其中DS 1对应最高位(MSD),DS 4则对应最低位(LSD)。在对应DS 2,DS 3和DS 4选通期间,Q 0~Q 3输出BCD 全位数据,即以8421码方式输出对应的数字0~9.在DS1选通期间,Q 0~Q 3输出千位的半位数0或l 及过量程、欠量程和极性标志信号。

在位选信号DS1选通期间Q 0~Q 3的输出内容如下:

Q 3表示千位数,Q 3=0代表千位数的数宇显示为1,Q 3=1代表千位数的数字显示为0。

Q 2表示被测电压的极性,Q 2的电平为1,表示极性为正,即U X >0,Q 2的电平为0,

表示极性为负,即U X <0。显示数的负号(负电压)由MC1413中的一只晶体管控制,

符号位的“-’阴极与千位数阴极接在一起,当输入信号U X 为负电压时,Q 2端输出置“0”, Q 2 负号控制位使得驱动器不工作,通过限流电阻R M 使显示器的

“-”(即g 段)点亮;当输入信号U X 为正电压时,Q 2端输出置“1”,负号控制位

使达林顿驱动器导通,电阻R M 接地,使“-”旁路而熄灭。小数点显示是由正电源

通过限流电阻R DP 供电燃亮小数点。若量程不同则选通对应的小数点。过量程是当

输入电压U X 超过量程范围时,输出过量程标志信号OR ---

当OR --- = 0 时,|U X |>1999,则溢出。|U X |>U R 则OR --- 输出低电平。当OR ---

= 1时,表示

|U X |

的消隐端BI --- 直接相连,当U X 超出量程范围时,OR ---输出低电平,即OR --- = 0 →BI --- = 0 ,

MC4511译码器输出全0,使发光数码管显示数字熄灭,而负号和小数点依然发亮。 1. 三位半A /D 转换器MC14433

在数字仪表中,MC14433电路是一个低功耗三位半双积分式A /D 转换器。和其它典型的双积分A/D 转换器类似,MC14433A /D 转换器由积分器、比较器、计数器和控制电路组成。如果必要设计应用者可参考相关参考书。使用MC14433时只要外接两个电阻(分别是片内RC 振荡器外接电阻和积分电阻R I )和两个电容(分别

是积分电容C I 和自动调零补偿电容C 0)就能执行三位半的A /D 转换。

MC14433内部模拟电路实现了如下功能:(1)提高A /D 转换器的输入阻抗,使输入阻抗可达l00M Ω以上;(2)和外接的R I 、C I 构成一个积分放大器,完成V

/T 转换即电压—时间的转换;(3)构造了电压比较器,完成“0”电平检出,将输入电压与零电压进行比较,根据两者的差值决定极性输出是“1”还是“0”。

比较器的输出用作内部数字控制电路的一个判别信号;(4)与外接电容器C

构成自动调零电路。

MC14433原理框图

除“模拟电路”以外,MC14433 内部含有四位十进制计数器,对反积分时间进行3位半BCD码计数(0~1999),并锁存于三位半十进制代码数据寄存器,在控制逻辑和实时取数信号(DU)作用下,实现A/D转换结果的锁定和存储。借助于多

路选择开关,从高位到低位逐位输出BCD码Q

0~Q

3

,并输出相应位的多路选通脉冲

标志信号DS

1~DS

4

实现三位半数码的扫描方式(多路调制方式)输出。

MC14433内部的控制逻辑是A/D 转换的指挥中心,它统一控制各部分电路的工作。根据比较器的输出极性接通电子模拟开关,完成A/D转换各个阶段的开关转换,产生定时转换信号以及过量程等功能标志信号。在对基准电压VREF 进行积分时,控制逻辑令4位计数器开始计数,完成A/D 转换。

MC14433内部具有时钟发生器,它通过外接电阻构成的反馈,井利用内部电容形成振荡,产生节拍时钟脉冲,使电路统一动作,这是一种施密特触发式正反馈RC 多谐振荡器,一般外接电阻为360kΩ时,振荡频率为100kHz;当外接电阻为470kΩ时,振荡频率则为66kHz,当外接电阻为750kΩ时,振荡频率为50kHz。若采用外时钟频率。则不要外接电阻,时钟频率信号从CPI(10脚)端输入,时钟脉冲CP 信号可从CPO(原文资料为CLKO)(11脚)处获得。MC14433内部可实现极性检测,用于显示输入电压U

X

的正负极性;而它的过载指示(溢出)的功能是当输入电压Vx 超出量程范围时,输出过量程标志OR(低有效)。

MC14433是双斜率双积分A/D 转换器,采用电压—时间间隔(V/T)方式,通

过先后对被测模拟量电压U

X 和基准电压V

REF

的两次积分,将输入的被测电压转换

成与其平均值成正比的时间间隔,用计数器测出这个时间间隔对应的脉冲数目,即可得到被测电压的数字值。双积分过程可以做如下概要理解:

首先对被测电压U X 进行固定时间T 1、固定斜率的积分,其中T 1=4000Tcp 。显然,

不同的输入电压积分的结果不同(不妨理解为输出曲线的高度不同)。然后再以固定电压V REF 以及由R I ,C I 所决定的积分常数按照固定斜率反向积分直至积分器输

出归零,显然对于上述一次积分过程形成的不同电压而言,这一次的积分时间必然不同。于是对第二次积分过程历经的时间用时钟脉冲计数,则该数N 就是被测电压对应的数字量。由此实现了A /D 转换。积分电阻电容的选择应根据实际条件而定。若时钟频率为66kHz ,C I 一般取0.1μF 。R I 的选取与量程有关,量程为2V

时,取RI 为470k Ω;量程为200mV 时,取R I 为27k Ω。

选取R I 和C I 的计算公式如下:

式中,ΔUC 为积分电容上充电电压幅度,ΔU C = V DD - U X (max) - ΔU,ΔU = 0.5V,

例如,假定C I =0.1μF ,V DD =5V ,f CLK =66kHz 。当U X (max)=2V 时,代入上式可得R I =480k Ω,取R I =470k Ω。MC14433设计了自动调零线路,足以保证精确的转换结果。

MC14433A /D 转换周期约需16000个时钟脉冲数,若时钟频率为48kHz ,则每秒可转换3次,若时钟频率为86kHz ,则每秒可转换4次。

MC14433 采用24引线双列直插式封

装,外引线排列,参考右图的引脚标注,

各主要引脚功能说明如下:

(1) 端:V AG ,模拟地,是高阻输入端,作

为输入被测电压U X 和基准电压V REF 的参考

点地。

(2) 端:R REF ,外接基准电压输入端。

(3) 端:U X ,是被测电压输入端。

(4) 端:R I ,外接积分电阻端。

(5) 端:R I /C I ,外接积分元件电阻和电容

的公共接点。

(6) 端,C1,外接积分电容端,积分波形

由该端输出。

(7) 和 (8) 端:C 01和C 02,外接失调补偿

电容端。推荐外接失调补偿电容C 0取0.1

μF 。

(9) 端:DU ,实时输出控制端,主要控制转换结果的输出,若在双积分放电周期即阶段5开始前,在DU 端输入一正脉冲,则该周期转换结果将被送入输出锁存器并经多路开关输出,否则输出端继续输出锁存器中原来的转换结果。若该端通过一电阻和EOC 短接,则每次转换的结果都将被输出。

(10) 端:CPI (CLKI),时钟信号输入端。

(11) 端:CPO (CLKO),时钟信号输出端。

(12) 端:V

EE

,负电源端,是整个电路的电源最负端,主要作为模拟电路部分的负电源,该端典型电流约为0.8mA,所有输出驱动电路的电流不流过该端,而是流向

V

SS

端。

(13) 端:V

SS

负电源端.

(14) 端:EOC,转换周期结束标志输出端,每一A/D转换周期结束,EOC端输出一正脉冲,其脉冲宽度为时钟信号周期的1/2。

(15) 端:OR ,过量程标志输出端,当|UX|>V

REF

时,OR输出低电平,正常量程OR 为高电平。

(16)~(19) 端:对应为DS

4~DS

1

,分别是多路调制选通脉冲信号个位、十位、百

位和千位输出端,当DS端输出高电平时,表示此刻Q。~Q

3

输出的BCD 代码是该对应位上的数据。

(20)~(23)端:对应为Q

0-Q

3

,分别是A/D 转换结果数据输出BCD代码的最低

位(LSB)、次低位、次高位和最高位输出端。

(24) 端:V

DD

,整个电路的正电源端

2.七段锁存-译码-驱动器CD4511

CD4511 是专用于将二-十进制代码(BCD)转换成七段显示信号的专用标准译码器,它由4位锁存器,7段译码电路和驱动器三布分组成。

(1) 四位锁存器(LATCH):它的功能是将输入的A,B,C 和D代码寄存起来,该电路具有锁存功能,在锁存允许端(LE 端,即LATCHENABLE)控制下起锁存数据的作用。

当LE=1时,锁存器处于锁存状态,四位锁存器封锁输入,此时它的输出为前一次LE=0时输入的BCD码;

当LE=0时,锁存器处于选通状态,输出即为输入的代码。

由此可见,利用LE 端的控制作用可以将某一时刻的输入BCD代码寄存下来,使输出不再随输入变化。

(2) 七段译码电路:将来自四位锁存器输出的BCD 代码译成七段显示码输出,MC4511中的七段译码器有两个控制端:

① LT (LAMP TEST)灯测试端。当LT = 0时,七段译码器输出全1,发光数码管各段全亮显示;当LT = 1时,译码器输出状态由BI端控制。

② BI (BLANKING)消隐端。当BI = 0时,控制译码器为全0输出,发光数码管各段熄灭。BI = 1时,译码器正常输出,发光数码管正常显示。

上述两个控制端配合使用,可使译码器完成显示上的一

些特殊功能。

(3) 驱动器:利用内部设置的NPN 管构成的射极输出

器,加强驱动能力,使译码器输出驱动电流可达20mA。

CD4511电源电压V

DD

的范围为5V-15V,它可与NMOS电路

或TTL电路兼容工作。

CD4511采用16引线双列直插式封装,引脚分配见右图,真值表参见下图。

使用CD451l时应注意输出端不允许短路,应用时电路输出端需外接限流电阻。

3.七路达林顿驱动器阵列MC1413

MC1413采用NPN达林顿复合晶体管的结构,因此具有很高的电流增益和很高的输入阻抗,可直接接受MOS 或CMOS 集成电路的输出信号,并把电压信号转换成足够大的电流信号驱动各种负载.该电路内含有7个集电极开路反相器(也称OC0门)。MC1413电路结构和引脚如图3所示,它采用16引脚的双列直插式封装。每一驱动器输出端均接有一释放电感负载能量的续流二极管。

本电路采用三极管代替七路达林顿驱动器阵列MC1413。

4.高精度低漂移能隙基准电源MC1403

MC1403的输出电压的温度系数为零,即输出电压与温度无关.该电路的特点是:

① 温度系数小;② 噪声小;③ 输入电压范围大,

稳定性能好,当输入电压从+4.5V变化到+15V时,

输出电压值变化量小于3mV;④输出电压值准确

度较高,y。值在2.475V~2.525V 以内;⑤压

差小,适用于低压电源;⑥ 负载能力小,该电源

最大输出电流为10mA。

MC1403用8条引线双列直插标准封装,如右图所

示。

5.量程选择电路

如左图中四个电阻串联分压设计,总电阻值为10M

Ω,当开关S1闭合时,为最小量程2V ;当开关S2闭

合时,衰减10倍,其量程为20V ;当开关S3闭合时,

衰减100倍,其量程为200V ;当开关S3闭合时,衰减

100倍,其量程为200V 。

通过电阻对不通电压进行不同的分压,从而得到

固定范围内的相对较小的电压输入至MC14433进行模

数转换,输出至数字显示器上。

6.单相桥式整流滤波电路

电路为单向桥式整流电路,适用于大电压的整流。

电路TR 为电流变压器,它的作用是将交流电网电压V1

变成整流电路要求的电压V2=Sinwt ,四支整流二极管D1~D4接成电桥的形式。

五、遇到的问题及解决方法

问题一:数字显示器连接完成后不亮?

解决方法:经检查发现有些导线坏损导致电路不通,还有些接口接触不良,更换了坏的导线后问题解决。

问题二:数字显示器显示为非数字?

解决方法:经过检查发现个别数字显示器坏损,部分线条不亮,更换了显示器后问题解决。

问题三:连接电路完成后结果显示不正常?

解决方法:经检查发现因为连线比较混乱,在连线过程中造成短路,致使理论结果和实际不一样,于是我们重新组装了电路,对电路进行了规范布线,从而问题得到了解决。

问题四:测试后发现数码管显示数字亮度偏弱?

解决方法:经检查发现有些电阻使用时直接套用了查找资料时使用的电阻,致使其实际情况和理论存在偏差,电阻过大使得电流过小,从而导致显示器亮度不够,在反复测试后更换了合适的电阻,问题解决。

六、心得体会

在老师布置完课题任务之时,我感觉这就是不可能的任务,因为对老师说的一无所知,感觉学了那么多元器件,了解了那么多知识,但是现在还是不知道怎么办。虽然什么都不会,但是任务还是得做下去。经过一周多时间的查找资料,以及在网上寻找前人的经验,终于对这些元器件有了一个大致的了解。通过分析讨论,我们组最终确定了一个方案并进行深入探寻。了解各个元件的性能及功能,发掘尽可能多的问题进行解决。在试验当天,我们满怀信心开始动手自己连接电路,当时觉得既然大部分都搞懂了,连接电路应该不是什么问题,但是在连接电路的过程中却发现了不少当初讨论时没有发现的问题,致使本来认为一个小时左右的试验做了将近一天。从中我深深认识到理论和实际之间还有很大距离,理论吃透了,在实际过程中还会遇到理论之外的问题,所以东少操作是一个很重要的环节,并且要学会在实践中发现问题,解决问题,加强自己的动手才做能力。最后魏老师悉心询问学生试验情况,解答了同学们遇到的各类问题,感谢魏老师对试验的细心指导和帮助。

汇总实验电路图

基于单片机的数字电压表设计报告

单片机原理及系统课程设计 专业:电气工程及其自动化 班级: 姓名: 学号: 指导教师: 兰州交通大学自动化与电气工程学院 2010 年 3 月 7 日

基于单片机的数字电压表设计 摘要

图3.2系统原理图4软件设计

5.系统调试及仿真结果 6.总结 两周的课程设计结束了,在这过程中,我学到了很多东西。首先,我学会了单片机设计的基本过程有哪些,每一过程有哪些基本的步骤,怎样通过查资料去完成这每一步。其次我巩固了上学期所学的一些单片机知识,从而加深了对ADC0809芯片的功能的了解。在编程过程中,遇到了许多困难,通过与同学之间的交流和咨询,最后解决了这些困难。所谓实践出真知,学到的东西只有运用到实践当中,才能真正体会到知识的力量。最后,通过这次课程设计,让我明白了想法和实践还是有差距的,当你真正去做一件事的时候,你会发现你的想法可能不适用,随时都需要调整,另外扎实的理论知识也是完成设计任何设计必不可少的要素,一切想法离开了理论知识都是空想。 参考文献 [1]彭为,黄科,雷道仲.单片机典型系统设计实例精讲[M].电子工业出版社.2009:22-54. [2] 谭浩强.C程序设计(第三版)[M].清华大学出版社.2009:32-46. [3] 王思明,张金敏,张鑫等.单片机原理及应用系统设计(第一版)[M].科学出版社.2012:70-292.

附录A源程序代码#include #include #define uchar unsigned char sbit p21=P2^1; sbit p22=P2^2; sbit p23=P2^3; sbit EOC=P3^1; sbit OE=P3^0; sbit ST=P3^2; sbit p34=P3^4; sbit p35=P3^5; sbit p36=P3^6;

数字电压表的文献综述

文献综述 一.前言 发展历程 数字电压表在1952年由美国NLS公司首次从电位差计的自动化过程中研制成功。50多年来,数字电压表有了不断的进步和提高。数字电压表刚开始是4位显示,然后是5位、6位,而现在发展到7位、8位数码显示;从最初的一两种类型发展到原理不同的几十种类型;从最早的采用继电器、电子管发展到全晶体管、集成电路、微处理器化;从一台仪器只能测一到两种参数到能测几十种参数的多用型;显示器件也从辉光数码管发展到等离子体管、发光二极管、液晶显示器等。数字电压表的体积和功耗越来越小,重量不断变轻,价格也逐步下降,可靠性越来越高,量程范围也逐步扩大。 DVM的高速发展,使它已成为实现测量自动化、提高工作效率不可缺少的仪表,现在已经广泛应用于电子、电工测量,自动化测试系统等领域。故数字电压表已成为一种必不可少的测量仪器。本设计是基于单片机AT89C51的数字电压表。硬件电路设计简单,具有读数方便、误差小、稳定性高等特点,具有较高应用价值,特别适合平常简单的测量。采用智能化的数字仪器将是必然的趋势,它们不仅能提高测量准确度,而且能提高电测量技术的自动化程序,可以扩展成各种通用数字仪表、专用数字仪表及各种非电量的数字化仪表(如:温度计、湿度计、酸度计、重量、厚度仪等),几乎覆盖了电子电工测量、工业测量、自动化仪表等各个领域。从而提高计量检定人员的工作效率。 二.正文 1.DVM简介 数字电压表(Digital Voltmeter)简称DVM,是采用数字化的测量技术,将连续的模拟量转换成为离散的数字形式并加以显示的电子测量仪表。传统的指针式电压表功能单一、精度低,不能满足数字化时代的需求。数字电压表具有以下九大特点:1. 显示清晰直观,读数准确;2. 准确度高;3. 分辨率高;4. 测量范围宽;5. 扩展能力强;6. 测量速率快;7.输入阻抗高;8. 集成度高,微功耗;9. 抗干扰能力强。采用单片机的数字电压表不仅精度高、抗干扰能力强,

单片机课程设计数字电压表

单片机课程设计 ——电压表的设计 学院:信息工程学院 专业:电子信息科学与技术 班级:2011150 学号:201115002 姓名:王冬冬 同组同学:凡俊兴 201115001

目录 1 引言 (1) 2设计原理及要求 (2) 2.1数字电压表的实现原理 (2) 2.2数字电压表的设计要求 (2) 3软件仿真电路设计 (2) 3.1设计思路 (2) 3.2仿真电路图 (3) 3.3设计过程 (3) 3.4 AT89C51的功能介绍 (4) 3.4.1简单概述 (4) 3.4.2主要功能特性 (5) 3.4.3 AT89C51的引脚介绍 (5) 3.5 ADC0809的引脚及功能介绍 (7) 3.5.1芯片概述 (7) 3.5.2 引脚简介 (8) 3.5.3 ADC0809的转换原理 (8) 3.6 74LS373芯片的引脚及功能 (8) 3.6.1芯片概述 (8) 3.6.2引脚介绍 (9) 3.7 LED数码管的控制显示 (9) 3.7.1 LED数码管的模型 (9)

LED数码管模型如图3-6所示。 (9) 3.7.2 LED数码管的接口简介 (9) 4系统软件程序的设计 (9) 4.1 主程序 (10) 4.2 A/D转换子程序 (11) 4.3 中断显示程序 (12) 5使用说明与调试结果 (13) 6总结 (13) 参考文献 (14) 附录1 源程序 (15) 附录2原理电路 (19)

1 引言 在电量的测量中,电压、电流和频率是最基本的三个被测量,其中电压量的测量最为经常。而且随着电子技术的发展,更是经常需要测量高精度的电压,所以数字电压表就成为一种必不可少的测量仪器。数字电压表简称DVM,它是采用数字化测量技术,把连续的模拟量转换成不连续、离散的数字形式并加以显示的仪表。由于数字式仪器具有读数准确方便、精度高、误差小、测量速度快等特而得到广泛应用[1]。 传统的指针式刻度电压表功能单一,进度低,容易引起视差和视觉疲劳,因而不能满足数字化时代的需要。采用单片机的数字电压表,将连续的模拟量如直流电压转换成不连续的离散的数字形式并加以显示,从而精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC实时通信。数字电压表是诸多数字化仪表的核心与基础[2]。以数字电压表为核心,可以扩展成各种通用数字仪表、专用数字仪表及各种非电量的数字化仪表。目前,由各种单片机和A/D转换器构成的数字电压表作全面深入的了解是很有必要的。 最近的几十年来,随着半导体技术、集成电路(IC)和微处理器技术的发展,数字电路和数字化测量技术也有了巨大的进步,从而促使了数字电压表的快速发展,并不断出现新的类型[4]。数字电压表从1952年问世以来,经历了不断改进的过程,从最早采用继电器、电子管和形式发展到了现在的全固态化、集成化(IC 化),另一方面,精度也从0.01%-0.005%。 目前,数字电压表的内部核心部件是A/D转换器,转换的精度很大程度上影响着数字电压表的准确度,因而,以后数字电压表的发展就着眼在高精度和低成本这两个方面[3]。 本文是以简易数字直流电压表的设计为研究内容,本系统主要包括三大模块:转换模块、数据处理模块及显示模块。其中,A/D转换采用ADC0808对输入的模拟信号进行转换,控制核心AT89C51再对转换的结果进行运算处理,最后驱动输出装置LED显示数字电压信号

多功能数字电压表课程设计

1.设计主要内容及要求; 设计一个多功能数字电压表。 要求:1)硬件电路设计,包括原理图和PCB板图。 2)数字电压表软件设计。 3)要求能够测量并显示直流电压、交流电压,测量范围0.002V---2V。 2.对设计论文撰写内容、格式、字数的要求; (1).课程设计论文是体现和总结课程设计成果的载体,一般不应少于3000字。 (2).学生应撰写的内容为:中文摘要和关键词、目录、正文、参考文献等。课程设计论文的结构及各部分内容要求可参照《沈阳工程学院毕业设计(论文)撰写规范》执行。应做到文理通顺,内容正确完整,书写工整,装订整齐。 (3).论文要求打印,打印时按《沈阳工程学院毕业设计(论文)撰写规范》的要求进行打印。 (4). 课程设计论文装订顺序为:封面、任务书、成绩评审意见表、中文摘要和关键词、目录、正文、参考文献。 3.时间进度安排;

中文摘要 随着微型计算机及微电子技术在测试领域中的广泛应用,仪器仪表在测量原理、准确度、灵敏度、可靠性、多种功能及自动化水平等方面都发生了巨大的变化,逐步形成了完全突破传统概念的新一代仪器——智能仪器。智能化是现代仪器仪表的发展趋势,许多嵌入式系统、电子技术和现场总线领域的新技术被应用于智能仪器仪表的设计,尤其是嵌入式系统的许多新的理念极大地促进了智能仪器仪表技术的发展。 今年来,随着大规模集成电路的发展,有单片A/D转换器构成的数字电压表获得了迅速普及和广泛应用,它是目前在电子测量及维修工作中最常用、最得力的一种工具类数字仪表。数字电压表具有很高的性价比,其主要优点是准确度高、分辨力强测试功能完善、测量速率快、显示直观。 测试仪器的智能化已是现代仪器仪表发展的主流方向。因此学习智能仪器的工作原理、掌握新技术和设计方法无疑是十分重要的。 关键词智能,数字,电压表,仪器仪表

51单片机简单数字电压表

毕业论文声明 本人郑重声明: 1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。本人完全意识到本声明的法律结果由本人承担。 2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。 3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。 4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。

学位论文作者(签名): 年月

关于毕业论文使用授权的声明 本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。本人完全了解大学有关保存,使用毕业论文的规定。同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容: 按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据库和收录到《中国学位论文全文数据库》进行信息服务。在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。 论文作者签名:日期: 指导教师签名:日期: 单片机硬件实习任务书

数字电压表原理

第十章数字电压表 第二节单片A/D转换器产品分类 A/D转换器是数字电压表、数字多用表及测试系统的“心脏”。 A/D 转换器大致可分成五大类; ①单片A/D转换器; ②单片DMM专用IC(内含A/D 转换器); ③多重显示仪表专用IC; ④专供数字仪表使用的特制IC(ASIC); ⑤其他通用型A/D转换器,这种芯片仅完成模/数转换,不能直接配数字仪表。 一、单片A/D转换器 单片A/D转换器:采用CMOS工艺将DVM的基本电路(含模拟电路与数字电路)集成在同一芯片上,配以LCD或LED数显器件后能显示A/D 转换结果的集成电路。 按显示位数划分,单片A/D转换器主要有4种:3?位、3?位、4?位、5?位。若按智能化程度来区分,又分纯硬件、带μP的两种。 第三节3?位LCD显示数字电压表 ICL7106是目前广泛应用的一种3?位A/D转换器,能构成3?位液晶显示的数字电压表。 一、ICL7106的工作原理 1. ICL7106的性能特点 (1)+7V~+15V单电源供电,可选9V叠层电池,有助于实现仪表的小型化。低功耗(约16mW),一节9V叠层电池能连续工作200小时或间断使用半年左右。 (2)输入阻抗高(1010Ω)。内设时钟电路、+2.8V基准电压源、异或门输出电路,能直接驱动3?位LCD显示器。 (3)属于双积分式A/D转换器,A/D转换准确度达±0.05%,转换速率通常选2次/秒~5次/秒。具有自动调零、自动判定极性等功能。通过对芯片的功能检查,可迅速判定其质量好坏。 (4)外围电路简单,仅需配5只电阻、5只电容和LCD显示器,即可构成一块DVM。其抗干扰能力强,可靠性高。 3.ICL7106的工作原理 ICL7106内部包括模拟电路和数字电路两大部分,二者是互相联系的。一方面由控制逻辑产生控制信号,按规定时序将多路模拟开关接通或断开,保证A/D 转换正常进行;另一方面模拟电路中的比较器输出信号又控制着数字电路的工作状态和显示结果。下面介绍各部分的工作原理。 (1)模拟电路 模拟电路由双积分式A/D转换器构成。主要包括2.8V基准电压源(E0)、缓冲器(A1)、积分器(A2)、比较器(A3)和模拟开关等组成。缓冲器A4专门用来提高COM端带负载的能力,可谓设计数字多用表的电阻挡、二极管挡和h FE挡提供便利条件。这种转换器具有转换准确度高、抗串模干扰能力强、电路简单、成本低等优点,适合做低速模/数转换。每个转换周期分三个阶段进行:自动调零(AZ)、正向积分(INT)、反向积分(DE),并按照AZ→INT→DE→AZ…的顺序进行循环。令计数脉冲的周期为T CP,每个测量周期共需4000T CP。其中,正向积分时间固定不变,T1=1000T CP。仪表显示值

基于单片机的数字电压表--开题报告

毕业设计(论文)开题报告 ——基于单片机的数字电压表设计与实现 引言 在传统的电工和电子测量中广泛使用的模拟测量仪表,虽然具有可直观看出表针偏转了多少格或满刻度的百分之几等优点,但需要对读数加以换算或说明, 尤其是不可避免地要带来人为的“视差”,不同的观察者会得到不同的结果。数字仪表则不同,它可以将测量结果直接用数字显示出来,读数准确,设计简单,可以随身携带,使用上更加方便快捷。 一、数字电压表的历史发展与选题意义 数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。传统的指针式电压表功能单一、精度低,不能满足数字化时代的需求,采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC进行实时通信。目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能化测量领域,示出强大的生命力。与此同时,由DVM扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。 1.1 数字电压表的历史发展 数字电压表自1952年问世以来,已有50多年的发展史,大致经历了五代产品。第一代产品是20世纪50年代问世的电子管数字电压表,第二代产品属于20世纪60年代出现的晶体管数字电压表,第三代产品为20世纪70年代研制的中、小规模集成电路的DVM。近年来,国内外相继推出由大规模集成电路(LSI)或超大规模集成电路(VLSI)构成的数字电压表、智能数字电压表,分别属于第四代、第五代产品。它们不仅开创了电子测量的先河,更以其高准确度、高可靠性、高分辨力、高性价比等优良特性而受到人们的青睐。 1.2选题意义 相对于传统的指针表而言,数字电压表有以下特点: 1.读数直观准确; 2.显示位数; 3.准确度高,分辨率高;

基于单片机的数字电压表

基于单片机的数字电压表 摘要:本文介绍一种基于89S52单片机的一种电压测量电路,该电路采用ICL7135高精度、双积分A/D转换电路,测量范围直流0-±2000伏,使用LCD液晶模块显示,可以与PC机进行串行通信。正文着重给出了软硬件系统的各部分电路,介绍了双积分电路的原理,89S52的特点,ICL7135的功能和应用,LCD1601的功能和应用。该电路设计新颖、功能强大、可扩展性强。 关键词:电压测量,ICL7135,双积分A/D转换器,1601液晶模块 Abstract: The introduction of a cost-based 89S52 MCU a voltage measurement circuits, the circuits used ICL7135 high-precision, dual-scoring A/D conversion circuits, measuring scope DC 0-2000 volts, the use of LCD that can be carried out with a PC serial communications. The paper focuses on providing a software and hardware system components circuit, introduced double integral circuit theory, 89S52 features ICL7135 functions and applications, LCD1601 functions and applications. the circuit design innovative, powerful, can be expansionary strong. Key Words: Digital Voltmeter ICL7135 LCD1601 89S52 1前言 数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。传统的指针式电压表功能单一、精度低,不能满足数字化时代的需求,采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC进行实时通信。目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能化测量领域,示出强大的生命力。与此同时,由DVM扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。本章重点介绍单片A/D 转换器以及由它们构成的基于单片机的数字电压表的工作原理。

数字电压表的设计毕业设计论文

田唯迪:数字电压表的设计 华东交通大学理工学院 Institute of Technology. East China Jiao tong University 毕业设计 Graduation Design (2011 —2015 年) 题目数字电压表的设计 分院:电气与信息工程分院 专业:工程及其自动化 班级:电力2011-1 学号: 学生姓名:田唯迪 指导教师: 起讫日期:2015-01-01—2015-05-10

华东交通大学理工学院毕业设计 摘要 在电子应用领域,工业自动化仪表已经有了非常广泛的应用。本文设计的数字电压表以AT89C51单片机为主要控制器件,利用ADC0808把模拟信号转换为数字信号并加以显示的电路。它的设计主要包括硬件电路和系统程序两部分设计。硬件电路主要是单片机最小设计模块、A/D转换模块和显示模块的设计,系统程序设计则是通过AT89C51单片机先将系统初始化,通过ADC0808转换芯片把模拟量转换成数字量,最后通过数码管显示数据。设计的数字电压表的测量范围为200mv—10v,对直流电压进行测量。该电路功能强大,有报警系统,可控制测量范围,数码管显示精度高,可扩展性强等优点。 数字电压表的应用在很多领域,有非常好的应用前景。对数字电压表进行研究很有必要性。这对我们研究单片机技术是很有帮助的。 关键词:AT89C51;ADC0808;电压测量;A/D转换 1

田唯迪:数字电压表的设计 Abstract In electronic applications, industrial automation instruments have a very wide range of applications. This design of a digital voltmeter to AT89C51 microcontroller as the main control device, use it ADC0808 analog signals into digital signals and display them circuit. Its design includes hardware and system design program in two parts. The hardware circuit design module is the smallest single-chip design A / D converter module and display module, system programming is through the first AT89C51 SCM system initialization, by ADC0808 converter chip to convert analog to digital, and finally through a digital display data. Measuring range designed digital voltmeter is 200mv-10v, DC voltage measurement. The circuit is powerful, alarm system, control measuring range, digital display and high precision, scalability and other advantages.残骛楼諍锩瀨濟溆塹籟。 Application of digital voltmeter in many areas, there is a very good prospect. Conduct research on the digital voltmeter very necessity. This single-chip technology for our study is helpful.酽锕极額閉镇桧猪訣锥。 Key words: T89C52; ADC0808; V oltage measurement;A/D converter 2

基于单片机的数字电压表设计

引言 数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。传统的指针式电压表功能单一、精度低,不能满足数字化时代的需求,采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强、集成方便。目前,由各种单片A/D 转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能化测量领域,示出强大的生命力。与此同时,由DVM扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。本论文重点介绍单片A/D 转换器以及由它们构成的基于单片机的数字电压表的工作原理。

1 实训要求 (1)基本要求: ①实现8路直流电压检测 ②测量电压范围0-5V ③显示指定电压通道和电压值 ④用按键切换显示通道 (2)发挥要求 ①测量电压范围为0-25V ②循环显示8路电压 2 实训目的 (1)进一步熟悉和掌握单片机的结构和工作原理; (2)掌握单片机的借口技术及,ADC0809芯片的特性,控制方法; (3)通过这次实训设计,掌握以单片机为核心的电路设计的基本方法和技术;(4)通过实际程序设计和调试,逐步掌握模块化程序设计的方法和调试技术。 3 实训意义 通过完成一个包括电路设计和程序开发的完整过程,使自身了解开发单片机应用系统的全过程,强化巩固所学知识,为以后的学习和工作打下基础。 4 总体实训方案 测量一个0——5V的直流电压,通过输入电路把信号送给AD0809,转换为数字信号再送至89s52单片机,通过其P1口经数码管显示出测量值。 4.1 结构框图 如图1—1所示 图1—1

单片机数字电压表开题报告

南京航空航天大学金城学院 毕业设计(论文)开题报告 题目基于单片机的数字电压表的设计 系部自动化系 专业自动化 学生姓名高英鑫学号2011032307 指导教师侯瑞职称讲师 毕设地点南京航空航天大学金城学院 2014年11 月22 日

1.结合毕业设计(论文)课题任务情况,根据所查阅的文献资料,撰写1500~2000字左右的文献综述: 文献综述 摘要本文是以基于单片机的数字电压表设计为研究内容。首先对数字电压表作了详 细介绍,接着讲述了数字电压表的类型和作用以及一些数字电压表的制作原理和构造,对比一下各种方法制造的压表。对各种电压表的制作做一个归纳和总结,最后给出自己的方案和准备采用的手段方法。 关键词单片机 A/D转换数据处理 1 简介 数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。传统的指针式电压表功能单一、精度低,不能满足数字化时代的需求,采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC进行实时通信。目前,由各种单片A/D转换器构成的数字电压表,已被广泛用于电子及电工测量、工业自动化仪表、自动测试系统等智能化测量领域,示出强大的生命力。与此同时,由DVM 扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。 数字电压表是诸多数字化仪表的核心与基础,电压表的数字化是将连续的模拟量如直流电压转换成不连续的离散的数字形式并加以显示,这有别于传统的以指针加刻度盘进行读数的方法,避免了读数的视差和视觉疲劳。目前数字电压表的内部核心部件是A/D转换器,转换器的精度很大程度上影响着数字电压表的准确度,本文A/D转换器采用ADC0809对输人模拟信号进行转换,控制核心AT89C51再对转换的结果进行运算和处理,最后驱动输出装置显示数字电压信号。 数字电压表(数字面板表)是当前电子、电工、仪器、仪表和测量领域大量使用的一种基本测量工具有关数字电压表的书籍和应用已经非常普及了。数字电压表的主要技术指标:测量范围、输入阻抗、显示位数、测量速度、分辨率。 2 数字电压表的几种类型 DVM的种类有多种,分类方法也很多,有按位数分的,如3/2位、5位、8位;有按测量速度分的,如高速、低速;有按体积、重量分的,如袖珍式、便携式、台式。

数字电压表单片机毕业设计

数字电压表的设计与仿真 摘要:本文介绍的是数字电压表的发展背景和利用单片机,A/D转换芯片结合的方法设计一个交直流数字电压表。它的具体功能是:最高量程为500V,分三个档位量程,即5V,50V,500V,可以通过调档开关来实现各个档位。当测得电压的数值小于1V时,系统会自动的将电压数值转换为以mV为电压单位的电压值。并且通过按键的方法能够测得后五秒的平均电压值。同时它也可以用于交流电压的测量,胜任一般的电压测量工作。 关键字:数字电压表;单片机;A/D转换

Digital voltmeter design and simulation Abstract:This article describes the background of the development of the digital voltmeter and designed microcontroller, a / d conversion chips combined with a DC digital voltmeter. Its specific functions are: the maximum range for 200v, three-stall range, that is, 2v, 20v, 200v, can downshift switch to achieve the various stalls. When the measured voltage is less than 1v, the system automatically the voltage value converted to a voltage value mv voltage units. Five seconds and the key method to measure the average voltage value. Key words:Digital voltmeter ;Single-chip computer ;A/D converter

数字电压表单片机课程设计

《单片机技术及其应用》 课程设计报告 题目:数字电压表的设计 班级:11通信本2班 学号:1011028432 姓名:段苓苓 同组人员:钟梦为梅韶田赵赫宇周洋 指导教师:刘少敏薛莲 2014年06月26日

目录 1 引言 (1) 1.1 设计意义 (1) 1.2 系统功能要求 (1) 2 设计内容 (1) 2.1 设计思路 (1) 2.2 主要功能 (2) 3 方案论证 (2) 3.1 程序设计 (2) 3.2 电路设计原理 (3) 3.3 软件设计方案 (4) 3.4 硬件设计方案 (4) 4 单元电路设计 (5) 4.1 数码管显示器 (5) 4.2 单片机的晶振电路 (6) 4.3 显示模块 (7) 4.4 ADC0808模数转换芯片 (7) 4.5 复位电路 (8)

4.6 AT89C52单片机的引脚介绍 (9) 4.7 模拟输入电路 (10) 4.8 总电路设计 (10) 5 系统软件程序的设计 (11) 5.1 主程序 (11) 5.2 A/D转换子程序 (11) 5.3 显示子程序 (11) 6 调试及性能分析 (11) 6.1 调试方法及步骤 (11) 6.2 实物调试数据 (12) 6.3 误差分析 (13) 7 心得体会 (14) 8 指导老师意见 (15) 附录: (16)

数字电压表的设计 1 引言 1.1 设计意义 我们学习的是单片机这门课程,这门课程最显著的特点就是它是一门实用技术课程,它要求我们不仅仅要掌握扎实的理论基础,更重要的是要学会如何去真真利用它为我们的电路设计服务,也只有通过课程设计这样的动手实践才是我们掌握这门技术的最佳途径,因此,我们开设这样的实践是很重要的,也是我们努力去学习钻研的动力。 数字电压表是采用数字化检测技术,把连续的模拟量(直流输入电压)换成不连续的、离散的数字形式并加以现实的仪表,克服了传统模拟电压表的读书不方便和不精确等问题。不能满足数字化时代的需求,采用单片机的数字电压表,由精度高、抗干扰能力强,可扩展性强集成方便,还可以与PC进行实时通信。目前,由各种单片A/D转换器构成的数字电压表,已广泛应用于电子电工测量、工业自动化仪表、自动测试系统等智能化测量领域,展现了强大的生命力。与此同时,由数字电压表扩展而成的各种通用及专用数字化仪器,也把电量及非电量测量技术提高到了崭新的水平,因此,通过这次课程设计能让我们了解这些知识,为以后研究相关技术打下坚实的基础。 1.2 系统功能要求 采用51系列单片机和ADC设计一个数字电压表,测量0~5V范围内的8路输入电压值,并在4位LED数码管上轮流显示或单路选择显示,要求显示两位小数。 2 设计内容 2.1 设计思路 (1)根据设计要求,选择AT89C51单片机为核心控制器件。 (2)A/D转换采用ADC0808实现,与单片机的接口为P1口和P2口的高四位引脚。 (3)电压显示采用4位一体的LED数码管。 (4)LED数码的段码输入,由并行端口P0产生:位码输入,用并行端口P2低四位产生。

数字电压表的功能特点

(1)显示清晰直观,读数准确:数字电压表能避免人为测量误差(例如视差),保证读数的客观性与准确性;同时它符合人们的读数习惯,能缩短读数和记录的时间,具备标志符显示功能,包括测量项目符号、单位符号和特殊符号。 (2)准确度高:数字电压表的准确度远优于模拟式电压表。例如,3?位、4?位DVM的准确度分别可达±0.1%、±0.02%。 (3)分辨率高:分辨率是指所能显示的最小数字(零除外)与最大数字的百分比。数字电压表在最低电压量程上末位1个字所代表的电压值反映仪表灵敏度的高低,且随显示位数的增加而提高。 (4)扩展能力强:在数字电压表的基础上可扩展成各种通用及专用数字仪表、数字多用表(DMM)和智能仪器,以满足不同的需要。如通过转换电路测量交直流电压、电流,通过特性运算可测量峰值、有效值、功率等,通过变化适配可测量频率、周期、相位等。 (5)测量速率快:数字电压表在每秒钟内对被测电压的测量次数叫测量速率,单位是“次/s”。主要取决于A/D转换器的转换速率,其倒数是测量周期。3?位、5?位DVM的测量速率分别为几次每秒、几十次每秒。8?位DVM采用降位的方法,测量速率可达10万次/s。 (6)输入阻抗高:数字电压表的输入阻抗通常为10MΩ~10000MΩ,最高可达1TΩ。在测量时从被测电路上吸取的电流极小,不会影响被测信号源的工作状态,能减小由信号源内阻引起的测量误差。 (7)抗干扰能力强:5?位以下的DVM大多采用积分式A/D转换器,其串模抑制比(SMR)、共模抑制比(CMR)分别可达100dB、80dB~120dB。高档DVM还采用数字滤波、浮地保护等先进技术,进一步提高了抗干扰能力,CMR 可达180dB。 (8)集成度高,微功耗:新型数字电压表普遍采用CMOS大规模集成电路,整机功耗很低。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关仪器仪表产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城。https://www.360docs.net/doc/5012785910.html,/

数字电压表开题报告

陕西理工学院毕业设计(论文)开题报告 课题名称数字电压表的设计与制作 课题来源教师科研课题类型实验研究型指导教师陈正涛 姓名张保全院系电信工程系班级通信07(3)班选题的背景和意义: 数字电压表在1952年由美国NLS公司首次创造,它刚开始是4位,50多年来,数字电压表有了不断的进步和提高。数字电压表是从电位差计的自动化过程中研制成功的。开始是4位数码显示,然后是5位、6位显示,而现在发展到7位、8位数码显示;从最初的一两种类型发展到原理不同的几十种类型;从最早的采用继电器、电子管发展到全晶体管、集成电路、微处理器化;从一台仪器只能测1-2种参数到能测几十种参数的多用型;显示器件也从辉光数码管发展到等离子体管、发光二极管、液晶显示器等。数字电压表的体积和功耗越来越小,重量不断变轻,价格也逐步下降,可靠性越来越高,量程范围也逐步扩大。 DVM的高速发展,使它已成为实现测量自动化、提高工作效率不可缺少的仪表,数字化是当前计量仪器发展的主要方向之一,而高准度的DC-DVC的出现,又使DVM进入了精密标准测量领域。随着现代化技术的不断发展,数字电压表的功能和种类将越来越强,越来越多,其使用范围也会越来越广泛。采用智能化的数字仪器也将是必然的趋势,它们将不仅能提高测量准确度,而且能提高电测量技术的自动化程序,可以扩展成各种通用数字仪表、专用数字仪表及各种非电量的数字化仪表(如:温度计、湿度计、酸度计、重量、厚度仪等),几乎覆盖了电子电工测量、工业测量、自动化仪表等各个领域。从而提高计量检定人员的工作效率。 这个课题的目的和意义在于使自己掌握对数字电压表的理解,自己动手设计数字电压表与仿真,它可以广泛的应用于电压测量外,通过各种变换器还可以测量其他电量和非电量,测量是一种认识过程,就是用实验的方法将被测量和被选用的相同参量进行比较,从而确定它的大小。DVM广泛应用于测量领域每期测量的准确度和可信度取决于它的主要性能和技术指标。所示我们要学习和掌握如何设计DVM就显得十分重要。

51单片机数字电压表实验报告

微控制器技术创新设计实验报告 姓名:学号:班级: 一、项目背景 使用单片机AT89C52和ADC0808设计一个数字电压表,能够测量0-5V之间的直流电压值,四位数码显示。在单片机的作用下,能监测两路的输入电压值,用8位串行A/D转换器,8位分辨率,逐次逼近型,基准电压为5V;显示精度0.001伏。 二、项目整体方案设计 ADC0808 是含8 位A/D 转换器、8 路多路开关,以及与微型计算机兼容的控制逻辑的CMOS组件,其转换方法为逐次逼近型。ADC0808的精度为1/2LSB。在AD 转换器内部有一个高阻抗斩波稳定比较器,一个带模拟开关树组的256 电阻分压器,以及一个逐次通近型寄存器。8 路的模拟开关的通断由地址锁存器和译码器控制,可以在8 个通道中任意访问一个单边的模拟信号。

三、硬件设计 四、软件设计 #include #include"intrins.h" #define uchar unsigned char #define uint unsigned int sbit OE = P2^7; sbit EOC=P2^6; sbit START=P2^5;

sbit CLK=P2^4; sbit CS0=P2^0; sbit CS1=P2^1; sbit CS2=P2^2; sbit CS3=P2^3; uint adval,volt; uchar tab[]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8, 0x80,0x90,0x88,0x83,0xC6,0xA1,0x86,0x8E}; void delayms(uint ms) { uchar j; while(ms --) { for(j=0;j<120;j++); } } void ADC_read() { START=0; START=1; START=0; while(EOC==0);

单片机数字电压表开题报告书

XX航空航天大学金城学院毕业设计(论文)开题报告 题目基于单片机的数字电压表的设计系部自动化系 专业自动化 学生XX 高英鑫学号2011032307 指导教师侯瑞职称讲师 毕设地点XX航空航天大学金城学院

2014年11 月22 日

个取出Ub进行比较后,将数码寄存器输出的二进制码按序排列就会等于被测电压值。 图1 逐次逼近比较型数字电压表的原理框图 (2)电压-时间变换型。所谓电压-时间变换型是指测量时将被测电压值转换为时间间隔△t,电压越大,△t越大,然后按△t大小控制定时脉冲进行计数,其计数值即为电压值。电压-时间变换型又称为V-T型或斜坡电压式,其原理框图如图2所示。控制器ST是电压表的指挥部,它每隔一定时间(例如每隔2s)就发出一个启动脉冲,一方面利用启动脉冲打开控制门T,让等间隔的标准时间脉冲序列能通过控制门进入十进制计数器;另一方面启动脉冲触发斜坡电压发生器,使它开始产生一个直线上升的斜坡电压,在斜坡电压上升的过程中,斜坡电压不断与被测电压在电压比较器中进行比较,当斜坡电压等于被测电压Ux时,电压比较器即发出关门信号,将T门关闭。这时十进制计数器所保留的数就是T门从开启到关闭的时间间隔中,通过T门的标准间脉冲的个数。被测电压Ux越大,斜坡电压从零上升到被测电压Ux,值所需要的时间、T门开启时间也越长,计数器所计数值也越大,利用数码显示器将计数器所计数值显

示出来,所计的数就是通过T门的脉冲个数。适当选择标准脉冲发生器的重复频率和斜坡斜率,就能使通过T门的脉冲个数与被测电压值相等,显示器上便可以直接显示出被测电压值。 图2 V-T型数字电压表原理框图 (3) 电压-频率变换型。所谓电压-频率变换型是指测量时将被测电压值转换为频率值,然后用频率表显示出频率值,即能反映电压值的大小。这种表又称为V-f型,图3为V-f型数字电压表原理框图。 图中有两个振荡器,HO为固定频率振荡器,AO为可控频率振荡器。利用被测电压直接控制AO的输出电压频率,使被测电压越大,频率就越高,经混频器混频之后,输出的频率也越高;当被测电压为零时,让可控频率振荡器AO输出的频率等于HO的频率,经混频器混频之后,输出频率为零。这样就能通过可控频率振荡器,把被测电压值转换为频率值,然后通过计数显示出来。只要适当选择AO和HO的振荡频率,就能够使显示器读数直接等于被测电压值。

数字电压表设计报告(终结版)

数字电压表 摘要 在电子器件设计中,以单片机作为控制核心的系统得到了广泛的应用,尤 其以MCS-51最为普遍。而数字电压表的基本原理是对直流电压进行模数转换, 并将其结果用数字直接显示出来。为以单片机为控制核心实现数字电压表的设计,结合了模数转换技术,段码显示以及液晶显示,并结合ADC0809芯片及74HC573,进而实现了对5V以内的直流电压的准确测量,并在数码管以及液晶显示屏上同 时显示。并进一步扩展,实现了最多可以对八路电压同时进行测量。而且对于超出测量范围的电压能够以LED灯的闪烁实现报警。 关键词:MSC-51ADC0809 数字电压表数模转换 LCD 1

目录 1.系统设计 (3) 1.1 方案设计与论证 (3) 1.1.1 方案设计 (3) 1.1.2 方案论证 (3) 1.2 主要部件原理及参数计算 (3) 1.2.1 输入单元电路设计 (3) 1.2.2 A/D转换电路设计 (4) 1.2.3 单片机主控电路设计 (5) 1.2.4 电压显示电路设计 (6) 1.3 系统设计 (7) 1.3.1 硬件设计 (7) 1.3.2 软件设计流程 (7) 2. 系统测试 (9) 2.1 测试方法与结果 (9) 2.2 测试结论 (9) 2.2.1 功能实现 (9) 2.2.2 误差分析 (10) 3. 附录 (10) 3.1 参考文献 (10) 3.2 附图 (10) 3.3 源程序 (12) 2

1.系统设计 1.1 方案设计与论证 数字电压表(Digital V oltmeter)简称DVM,目前采用单片机设计的数字电压表,由于精度高、抗干扰能力强、可扩展性强、集成方便,还可以与PC进行实时通信,所以以下方案均采用单片机设计。 1.1.1 方案设计 方案一:基于MSP430F448单片机的数字电压表设计。MSP430F44x系列单片机片内集成了8路12位A/D、串行通信接口、看门狗定时器、比较器、硬件乘法器等外围设备模块,从而降低了应用电路的复杂程度,提高了系统的可靠性。该芯片可以工作于2.5V和3.3V两种电压下,其功耗非常低。 方案二:使用AT89C51单片机作为核心控制芯片,并用TLC549串行芯片作模数采样芯片。其占用的单片机的I/O口少且占用电路面积小。其缺点是编程比较复杂。 法案三:使用AT89C51单片机作为核心控制芯片,并采用ADC0809数模转换芯片其需要占用一个I/O口,可以循环采样8路模拟通道。占用板子面积大但编程相对更为简单。 1.1.2 方案论证 采用MSP430F44x系列单片机设计具有低功耗、系统稳定、外围电路简单等优点,但是考虑现有资源使用2.5V和3.3V电源供电具有一定难度。对比方案二和方案三,结合实际情况,采用TLC549串行芯片实现电路不具有可行性,所以本设计采用方案三。 1.2 主要部件原理及参数计算 如何实现5V模拟电压转换成数字电压?如何实现数字电压经过控制显示在数码管上和液晶屏上?它们的参数如何设置?下面将回答这些问题。 1.2.1 输入单元电路设计 输入电路的作用是把被测的模拟电压值送到模数转换器的模拟输入端,使用单片机学习板输出5V直流电压,然后经过电位器选择不同的电压,最后将转换后的模拟电压送至ADC0809芯片。 3

相关文档
最新文档