稳定绕组引起变压器输出电压中性点位移的分析_贾俊

稳定绕组引起变压器输出电压中性点位移的分析_贾俊
稳定绕组引起变压器输出电压中性点位移的分析_贾俊

变压器绕组变形测试讲义

讲义 变压器绕组变形测试技术及其应用Transformer Winding Deformation Test Technology & Application 临沂供电公司

目录 1 前言 1.1 什么是绕组变形? 1.2 绕组变形的原因 1.3 绕组变形的危害 2 绕组变形的测量方法 2.1 阻抗法 2.2 低压脉冲法 2.3 频率响应法 3 频率响应法的原理 3.1.1 变压器线圈的等值电路 3.1.2 空心电感的电感量计算及变化分析 3.2 绕组变形种类以及变形在等值电路中的等效分析3.2.1 整体变形 3.2.2 局部变形 4 变压器绕组变形测试仪 4.1 测试仪组成 4.2 主要技术参数 4.3 特点 5 现场测试过程中的注意事项 5.1 对测试环境的要求 5.2 对变压器状态的要求 5.2.1对引线、周围接地体和金属悬浮物的要求 5.2.2 对分接位置的要求 5.2.3 对接地的要求 5.2 测试接线方式 5.2.1 YN接线 5.2.2 Y接线 5.2.3 对于Δ接线 5.2.4 有平衡绕组的变压器

5.2.5 套管末屏取信号的问题 5.2.6 其它注意事项 6 绕组变形波形分析 6.1 频率响应图谱的特征 6.1.1 差异是绝对的 6.1.2 具有相对的一致性 6.1.3 低压绕组的一致性较好 6.1.4 厂用变压器的一致性较差 6.1.5 三相变压器的一致性较好 6.2 变形测试的判断 6.2.1 低压绕组为主,高、中压绕组为辅 6.2.2 横向比较为主,纵向比较为辅 6.2.3 低频段为主,中、高频段为辅 6.2.4 波形观察为主,相关系数判断为辅 6.2.5 综合判断 6.3 绕组变形程度的分类 6.4 变压器绕组变形判断程序 7 绕组变形测试仪的检验 8绕组变形测试实例 9利用频率响应法辅以阻抗电压法进行变压器绕组变形测试的应用研究

绕组数和绕组连接方式的选择

绕组数和绕组连接方式的选择 参考《电力工程电气设计手册》和相应的规程中指出:在具有三种电压的变电所中,如果通过主变各绕组的功率达到该变压器容量的15%以上,或在低压侧虽没有负荷,但是在变电所的实际情况,由主变容量选择部分的计算数据,明显满足上述情况。故WH 市郊变电所主变选择三绕组变压器。 参考《电力工程电气设计手册》和相应规程指出:变压器绕组的连接方式必须和系统电压一致,否则不能并列运行。电力系统中变压器绕组采用的连接方式有Y 和△型两种,而且为保证消除三次谐波的影响,必须有一个绕组是△型的,我国110KV 及以上的电压等级均为大电流接地系统,为取得中型点,所以都需要选择0Y 的连接方式。对于110KV 变电所的35KV 侧也采用0Y 的连接方式,而6-10KV 侧采用△型的连接方式。 故WH 市郊变电所主变应采用的绕组连接方式为:110...d y Y n N 。 2.1.6 全绝缘、半绝缘、绕组材料等问题的解决 在110KV 及以上的中性点直接接地系统中,为了减小单相接地时的短路电流,有一部分变压器的中性点采用不接地的方式,因而需要考虑中性点绝缘的保护问题。110KV 侧采用分级绝缘的经济效益比较显著,并且选用与中性点绝缘等级相当的避雷器加以保护。35KV 及10KV 侧为中性点不直接接地系统中的变压器,其中性点都采用全绝缘。 2.1.7主变压器的冷却方式 根据主变压器的型号有:自然风冷式、强迫油循环风冷式、强迫油循环水冷式、强迫导向油循环式等。然而自然风冷却适用于7.5MVA 以下小容量变压器。容量大于10MVA 的变压器采用人工风冷。从经济上考虑,结合本站选用50MVA 的变压器,应选用强迫空气冷却。 1123123%(%%%)2s s s s U U U U = +-=11 21223311%(%%%)2 s s s s U U U U =+-=-0.5

主变压器中性点过电压保护配置原则

由于电力系统运行的需要,110~220 k V有效接地系统的变压器中性点大部分采用不接地运行方式,变压器一般采用分级绝缘结构,绝缘水平相对较低,所以不接地运行的变压器中性点需要考虑对雷电过电压、操作过电压和暂时过电压的保护。 根据DL/T620—1997《交流电气装置的过电压保护和绝缘配合》的有关规定,提出以下保护配置意见: a)对110 kV和220 k V有效接地系统中可能偶然形成的局部不接地系统(如接地变压器误跳开关等原因引起)、低压侧有电源的变压器不接地中性点应装设间隙保护。 b)经验算,如断路器因操作机构故障出现非全相和严重不同期产生的铁磁谐振过电压可能危及中性点为标准分级绝缘、运行时中性点不接地的110 kV和220 k V变压器的中性点绝缘,宜在中性点装设间隙。 c)变压器中性点间隙值的确定应综合考虑 ———间隙的标准雷电波动作值小于主变压器中性点的标准雷电波耐受值;———因接地故障形成局部不接地系统时间隙应动作; ———系统以有效接地方式运行、发生单相接地故障时,间隙不应动作。 2变压器中性点保护配置方式的分析 根据以上配置原则,参照广东省电力试验研究所的试验数据,直径16 mm、水平布置、半球头圆钢的棒-棒间隙放电电压与间隙距离的关系见图1,在Ucp(1±σ)和U50%(1±σ)区间内放电的概率为 99.7%[1]。 2.1变压器中性点绝缘水平的选取 根据GB

311.7-1998《高压输变电设备的绝缘配合使用导则》,对3~220 k V油纸绝缘设备,耐受操作冲击电压的能力为耐受雷电冲击的 0.83倍,其值远超过预期操作过电压水平,所以绝缘水平主要由雷电过电压决定,不需考虑操作过电压的影响。 取中性点绝缘老化累计安全系数为 0.85,参考G B311.1—1997《高压输变电设备的绝缘配合》,取雷电冲击安全系数为0.714,工频电压安全系数为 1.0,则中性点综合耐受雷电冲击裕度系数为 0.6,综合耐受工频裕度系数为 0.85。 主变压器中性点可能出现的最大暂时过电压见表1。 2.2中性点保护的配置方式 我国变压器中性点保护方式一般有: 单独间隙、单独避雷器、间隙与避雷器并联。下面结合常用中性点避雷器型号,对各种绝缘等级的变压器中性点保护方式(见表2)进行讨论。 2.2.135 kV绝缘等级 35 kV中性点绝缘水平为雷电冲击耐受电压185 k V,工频耐受电压85 k V;考虑安全系数后,绝缘水平为雷电冲击耐受电压111 kV,1 min工频耐受电压73 k V。 单独采用110 mm间隙时,间隙雷电冲击放电电压为93~112 k V,工频放电电压为47~57 k V。雷电冲击放电电压和工频放电电压均小于中性点绝缘水平,中性点有效接地系统最大暂时工频过电压下间隙不动作,中性点不接地系

三相变压器绕组的联结组别

三相变压器绕组的联结组别 1.变压器联接组别标号的常用确定方法 确定变压器联接组别标号通常采用国际上规定的时钟表示法,即规定原绕组线电动势向量EAB当作钟表的指针固定指“12”位置,副绕组电动势向量Eab当作时针指向钟表的那个数字,该数字就是三相变压器联接组别的标号。下面以Yy0为例,阐述确定联接组标号的具体步骤。分别画出原绕组和副绕组接线图(见图1(a))。注意画图时同一芯柱的绕组上下对齐,找同一芯柱上的绕组感应电动势的同极性端。 图1 Yy0连接组 按照原边接线画出原边绕组的电势向量图。按照副边接线画出把A和a(见图1(b))看成等电位点的副边绕组电势向量图。 在原、副绕组电动势向量图中找出对应的线电动势相位差。即Eab当作钟表的分针固定在“12”位置,Eab当作时针所指数字就是该变压器联接组别标号(图1中Eab指“12”,通常用“0”表示)。 联接组组成:原边接线、副边接线组别号。由此得图1的联接组为Yy0。 应用此法,对应每一个联接组别都要画出对应原边接线和副边接线的电势向量图,步骤繁琐,也容易出错,掌握起来有一定的难度,尤其对从事变电站运行的职工更是如此。笔者将所有的联接组别进行全面的分析,反复推敲,找出了它们之间的相互联系及变化规律,总结出了不用画向量图的简易确定联接组标号的方法。 2 变压器中各电动势向量的相位变化规律 用国际上规定的方法确定三相变压器的联接组别,较关键的步骤是画原、副绕组电动势向量图,找原、副边绕组对应的线电动势相位

差。由于三相变压器结构的特点,三相变压器原、副绕组电动势向量的相位变化及相位差也有一定的规律可循。 三相变压器同一侧(原边或副边)各相电动势相位互等120°。 同一铁芯柱上原、副绕组相电动势要么同相,相位差为0°,要么反相,相位差为+180°(如图1 Yy0)。 不论怎样联接,电势向量组成的三角形为等边三角形。高压绕组线电势EAB和对应的低压绕相线电势Eab之间的相位差总是30°的整倍数。 3 变压器联接组的变化规律 三相变压器的基本接线有星形联接(原边用符号“Y”表示,副边用符号“y”表示)和三角形联接(原边用符号“D”表示,副边用符 号“d”表示)。原、副边的接线组合有Yy、Yd、Dy和Dd四种。每一种组合又有6个组别号,共有24种联接组,其变化规律如下。 第一,当原、副绕组接线方式相同时,联接组标号为偶数(如图1所示),当原副绕组接线方式不同时,联接线别标号为奇数(如图2所示)。 图2 Yd11连接组第二,当原、副边接线相同、标记相同、极性也相同时,原、副绕组相对应线电势相位差为0。联接组别的标号为“0”,如Yy0。当原、副边接线相同,标记相同,极性相反时,原、副绕组对应电势相位差为180°,联接组别的标号应为“6”(Yy6)。 第三,当原边接线、标记、极性固定时,副边绕组三相出线标记按相序移位一次,相当于副边相电动势顺时针转动了120°,联接组别在原来的标号上加“4”,如“0+4”时,标号为“4”;再移位一次副边相电动势,又顺转了120°,相当于“4+4”,标号为“8”(Yy8)。

变压器绕组变形测试仪校验装置

变压器绕组变形测试仪校验装置 北京圣泰实时电气技术有限公司 频率响应分析法(FRA)检测电力变压器绕组变形,已在电力行业广泛使用,具有较高的检测灵敏度和准确性,能够在变压器不吊罩的情况下,检测出变压器存在的绕组变形故障。 尽管在DL/T911《电力变压器绕组变形的频率响应分析法》行业标准中,对绕组变形测试仪的技术指标要求及绕组变形的诊断方法均已做出明确的规定,但由于绕组变形测试仪的测量参数及使用方式较为特殊,传统方法通常难以对其技术指标进行全面检验。对于绕组变形测试仪的扫描频率精确度、检测精确度、选频滤波特性、阻抗匹配方式等关键技术指标,通常均需借助专用装置进行检验。特别是检测精确度的校验,即使采用昂贵的高精度电压表,通常也只能测量频率低于300kHz、幅度高于100mV的信号,无法满足对微弱高频信号(幅度<1mV,频率>1MHz)的精确测量,因此必须借助专用的衰减校正器来实现,且要求衰减校正器具备至少-80~20dB的调节范围和整个频段内不低于0.5dB的输出精度。此外,选频滤波特性也是决定绕组变形测试仪抗干扰能力的关键指标,将会严重影响绕组变形诊断结果的准确性,但如何对该参数进行检验,目前同样存在许多困难和不便。 为此,北京圣泰公司根据10多年来推广TDT系列变压器绕组变形测试仪的经验,加之参与编写和修订DL/T911行业标准时的调研情况,开发出FRAT-1型变压器套组变形测试仪(频响法)校验装置,可按照DL/T911标准的要求,对绕组变形测试仪的技术指标和测试附件的性能,开展全面、精确、快捷的校验工作。 FRAT-1型变压器套组变形测试仪(频响法)校验装置具备如下功能: 1、检验变压器绕组变形测试仪输出扫频信号的范围及频率、幅度的精度; 2、检验变压器绕组变形测试仪的频响检测范围及精度,可精确模拟各种频响信号; 3、检验变压器绕组变形测试仪的选频滤波的频带宽度及其带外抑制性能; 4、检验变压器绕组变形测试仪测试回路的阻抗匹配方式及测试电缆的性能; 5、提供丰富的人机对话接口和通讯接口,由外部计算机控制各项设置和操作,以EXCEL 格式保存检测数据,便于出具测试报告;

变压器绕组变形原因及危害

变压器绕组变形原因及危害 摘要:变压器是整个电网传输系统中最核心的设备,由此可见,它安全运行对整个电网的安全而言是起到至关重要作用的。本文主要通过对变压器的常见故障绕组变形进行分析,探讨变压器绕组变形的原因以及由此产生的危害。这对整个电网系统安全系统的正常有序的进行意义重大。 关键词:变压器;绕组;变形 1.变压器绕组变形的定义 所谓的变压器绕组变形的定义根据电力行业标准DL/T911-2004《电力变压器绕组变形的频率响应分析法》可知:在电动力或机械力的作用下电力变压器绕组发生了变化,它的轴向或径向尺寸有所改变。一般情况下具体的表现有,绕组位置发生移动、鼓包或者局部扭曲等。变压器在运输过程中遭受冲撞时或者遭受短路电流冲击的时候,都有可能发生变形,影响变压器的正常运行,甚至整个电网的安全运行。 2.变压器绕组变形的原因 变压器绕组变形主要的形式为绕组发生扭曲、鼓包、移位等不可恢复的变形现象,其中最常见也是对典型的形式就是伴随着绝缘破坏而出现的绕组匝间短路、主绝缘放电或完全击穿。在日常生活中,引起变压器变形的原因有很多,一般主而言,主要有以下几种: 2.1变压器绕组在运行过程中受到来自短路故障电流的冲击 在运行过程中受到各种短路故障电流的冲击是不可避免的。尤其是在近距离短路和出口故障时,绕组会受到来自短路电流带来的非常大的冲击力,从而使得绕组温度升高,且变压器有关导线的机械强度削弱,最终变压器绕组在电动力的运作下会产生变形甚至完全报废。 一般而言,变压器的电动力有两种,一种是径向(横向)力,另一种是轴向(纵向)力。 2.1.1径向(横向)力 电流的方向和线圈的相互位置决定径向力的作用,在双线圈变压器上,径向力的作用主要是起到奔窜内部线圈、拉伸外部线圈的作用,以此来增强整个线圈相对径向力的硬度。普遍的做法是把条用绝缘筒支撑,然后绕上线圈,此时线圈要受到撑条所导致的弯曲力作用和压缩力的作用。所以,假如这种合力超过了线圈刚度的最大受力点,就会造成线圈变形或者永久损坏,变现方式如:梅花状或鼓包状绕组。

变压器接法详解

变压器接法详解 常见的变压器绕组有二种接法,即“三角形接线”和“星形接线”;在变压器的联接组别中“D表示为三角形接线,“Yn”表示为星形带中性线的接线,Y表示星形,n表示带中性线;“11”表示变压器二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。 变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。Y(或y)为星形接线,D(或d)为三角形接线。数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。 “Yn,d11”,其中11就是表示:当一次侧线电压相量作为分针指在时钟12点的位置时,二次侧的线电压相量在时钟的11点位置。也就是,二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。 变压器二个绕组组合起来就形成了4种接线组别:“Y,y”、“D,y”、“Y,d”和“D,d”。我国只采用“Y,y”和“Y,d”。由于Y连接时还有带中性线和不带中性线两种,不带中性线则不增加任何符号表示,带中性线则在字母Y后面加字母n表示。n表示中性点有引出线。Yn0接线组别,UAB与uab相重合,时、分针都指在12上。“12”在新的接线组别中,就以“0”表示。 (一)变压器接线组别 变压器的极性标注采用减极性标注。减极性标注是将同一铁心柱上的两个绕组在某个瞬间相对高电位点或相对低电位点称为同极性,标以同名端“A”、“a”或“?”.采用减极性标注后,当电流从原绕组“A”流入,副绕组电流则由“a”流出。变压器的接线组别是三相权绕组变压器原,副边对应的线电压之间的相位关系,采用时钟表示法。分针代表原边线电压相量,并且将分外固定指向12上,时针代表对应的副边线电压相量,指向几点即为几点钟接线。 变压器空载运行中,Yyn0接线组别高压侧为“Y”接线,激磁电流为正弦波。由于变压器磁化曲线的非线性,铁芯磁通为平顶波,含有三次谐波成分较大,对于三芯柱铁芯配变,奇次磁通无通路,只有通过空气隙、箱壁、夹紧螺栓形成通路,这样就增加了磁滞及涡流损耗;Dyn11接线中,奇次谐波电流可在高压绕组内环流,这样铁芯中的磁通为正弦波,不会产生前者的损耗。同容量的配变空载损耗Dyn11接线比Yyn0接线可减少10%。

变压器中性点接地刀闸的操作

变压器中性点接地刀闸的操作 变压器中性点接地刀闸的切换,是变压器操作中的重要内容之一。在电网实际操作中,应注意以下事项: 1.对变压器进行操作前,一般应先推上变压器中性点接地刀闸,操作完毕后,再将变压器中性点刀闸置于系统要求的位置,以防止操作过电压危及设备安全。 2.在三圈变压器高压侧停电,中、低压侧运行的方式下,应推上高压侧中性点接地刀闸。 因为在这种方式下,虽然变压器高压侧开关在断开位置,但其高压绕组仍处于运行状态,为 保证该方式下变压器高压侧发生故障时,零序电流等保护能够正确动作,故应推上变压器中 性点接地刀闸。 3.变压器停电检修时,应拉开其中性点接地刀闸。不论是中性点直接接地还是中性点不接地系统,正常运行中其中性点都存在一定的位移电压,该中性点位移电压在系统发生单相 接地等故障时会增大。如果在停电检修时不将检修设备中性点与运用中设备的中性点断开, 就有可能使这些电压通过中性点传递到检修设备上去,危及人身和设备的安全。因此,拉开 被检修设备的中性点地刀,应作为现场保证安全的技术措施之一予以落实。

4.同一厂站多台变压器间中性点接地刀闸的切换,为保证电网不失去应有的接地点,应采用先合后拉的操作方式,即先合上备用接地点刀闸,再拉开工作接地点刀闸。 5.自耦变压器和绝缘有特殊要求的变压器中性点,应采取直接接地方式,不宜切换。由于自耦变压器的特殊结构,其一、二次绕组之间不仅存在磁的联系,而且还有电的联系,为避免高压侧网络发生单相接地故障时,在低压绕组上出现超过其绝缘水平的过电压,其中性点必须直接接地。对于绝缘有特殊要求的变压器,为防止过电压危及设备安全,其中性点也宜直接接地。 6.对变压器中性点接地刀闸的操作,必须同步进行零序保护的切换。在一、二次切换操作过程中,操作人员必须根据现场变压器零序保护的配置和实际接线,合理安排一、二次操作步骤,严防不合理的操作顺序引发操作事故。 7.变压器中性点接地运行方式的变更,应根据系统总体要求,按照保持网络零序阻抗基本不变的原则,由调度下令进行

变压器绕组变形测试仪

RTRB-II变压器绕组变形测试仪用于测试6kV及以上电压等级电力变压器及其它特殊用途的变压器,电力变压器在运行或者运输过程中不可避免地要遭受各种故障短路电流的冲击或者物理撞击,在短路电流产生的强大电动力作用下,变压器绕组可能失去稳定性,导致局部扭曲、鼓包或移位等永久变形现象,这样将严重影响变压器的安全运行。按国家电力行业标准DL/T911-2004采用频率响应分析法测量变压器的绕组变形,是通过检测变压器各个绕组的幅频响应特性,并对检测结果进行纵向或横向比较,根据幅频响应特性的变化程度,判断变压器绕组可能发生的变形情况。 RTRB-Ⅱ变压器绕组变形测试仪产品特性 采用扫频法对变压器绕组特性进行测量,不对变压器吊罩、拆装的情况下,

通过检测各绕组的幅频响应特性,对6kV及以上变压器,准确测量绕组的扭曲、鼓包或移位等变形情况。 ●测量速度快,对单个绕组测量时间3分钟以内。 ●频率精度非常高,精度高于0.001% 。 ●数字化频率合成,频率稳定性更高。 ●5000V电压隔离、充分保护测试电脑安全。 ●可同时加载9条曲线,各条曲线相关参数自动计算,自动诊断绕组的变形情 况,给出诊断的参考结论。 ●分析软件功能强大,软件、硬件指标满足国标DL/T911-2004。 ●软件管理人性化、智能化程度高,设置好参数后,只需按一个键便可完成所 有测量工作。 ●软件界面简洁直观,分析、存储、报告导出、打印等菜单一目了然。 ●现场接线简单、使用方便。 RTRB-Ⅱ变压器绕组变形测试仪产品参数 测量速度:单相绕组1.5分钟-3分钟 输出电压:Vpp-10V,测试中自动调整 输出阻抗:50Ω 输入阻抗:1MΩ(响应通道内置50Ω匹配电阻) 扫频范围:50Hz-2MHz 或50Hz-10MHz(选配) 频率精度: 0.001%

变压器的连接组别介绍

变压器的连接组别介绍 本文来自: https://www.360docs.net/doc/5613970346.html, 原文网址:https://www.360docs.net/doc/5613970346.html,/articlescn/basic/71103.htm 变压器三相绕组有星型联结、三角形联结与曲折联结等三种联结法。在绕组联结中常用大写字母A、B、C表示高压绕组首端,用X、Y、Z表示其末端;用小写字母a、b、c表示低压绕组首端,x、y、z表示其末端,用o表示中性点。 新标准对星型、三角形和曲折形联结,对高压绕组分别用符号Y、D、Z表示;对中压和低压绕组分别用y、d、z表示。有中性点引出时分别用YN、ZN和yn、zn表示。自藕变压器有公共部分的两绕组中额定电压低的一个用符号a表示。变压器按高压、中压和低压绕组联结的顺序组合起来就是绕组的联结组。例如:高压为Y,低压为yn联结,那么绕组联结组为Yyn。加上时钟法表示高低压侧相量关系就是联结组别。 常用的三种联结组别有不同的特征: 1 Y联结:绕组电流等于线电流,绕组电压等于线电压的1/√3,且可以做成分级绝缘;另外,中性点引出接地,也可以用来实现四线制供电。这种联结的主要缺点是没有三次谐波电流的循环回路。 2 D联结:D联结的特征与Y联结的特征正好相反。 3 Z联结:Z联结具有Y联结的优点,匝数要比Y形联结多15.5%。成本较大。 据GB/T6451-1999《三相油浸式电力变压器技术参数和要求》和GB/T10228-1997《干式电力变压器技术参数和要求》规定,配电变压器可采用Dyn11联结。而我国新颁布的国家规范《民用建筑电气设计规范》、《工业与民用供配电系统设计规范》、《10KV及以下变电所设计规范》等推荐采用Dyn11联结变压器用作配电变压器。现在国际上大多数国家的配电变压器均采用Dyn11联结,主要是由于采用Dyn11联结较之采用Yyn0联结有优点:3.1 D联结对抑制高次谐波的恶劣影响有很大作用3.1.1在D联结绕组中的三次谐波环流能够在变压器中产生三次谐波磁动势,它与低压绕组的三次谐波磁动势平衡抵消;3.1.2高压相绕组的三次谐波电动势在D联结回路中环流,三次谐波电流可在D联结的一次绕组内形成环流,使之不致注入公共的高压电网中去。 3.2 Dyn11联结变压器的零序阻抗比Yyn0联结变压器小得多,有利于低压单相接地短路故障的切除。 3.3 Dyn11联结变压器允许中性线电流达到相电流的75%以上。因此,其承受不平衡负载的能力远比Yyn0联结变压器大。 3.4当高压侧一相熔丝熔断时,Dyn11联结变压器另二相负载仍可运行,而Yyn0却不行。因此,在变压器联结组别选择中,选择Dyn11联结变压器很有必要。由于Yyn0联结变压器高压绕组的绝缘强度要求较之Dyn11联结变压器稍低,所以,不宜将Yyn0联结变压器改为Dyn11联结。 变压器接线组别Yn d11是什么意思 在变压器的联接组别中“Yn”表示一次侧为星形带中性线的接线,Y表示星形,n表示带中性线;“d”表示二次侧为三角形接线。“11”表示变压器二次侧的线电压Uab滞后一次侧线电压UAB330度(或超前30度)。 变压器的联接组别的表示方法是:大写字母表示一次侧(或原边)的接线方式,小写字母表示二次侧(或副边)的接线方式。Y(或y)为星形接线,D(或d)为三角形接线。数字采用时钟表示法,用来表示一、二次侧线电压的相位关系,一次侧线电压相量作为分针,固定指在时钟12点的位置,二次侧的线电压相量作为时针。

GDRB-B变压器绕组变形测试仪说明书

尊敬的用户: 感谢您购买本公司GDRB-B 变压器绕组变形测试仪。在您初次使用该产品前,请您详细地阅读本使用说明书,将可帮助您熟练地使用本仪器。 我们的宗旨是不断地改进和完善公司的产品,如果您有不清楚之处,请与公司售后服务部联络,我们会尽快给您答复。 注意事项 1、使用前,请先检查测试仪的外观,检查电源开关位置是否在“关”的位置、各接线端子是否正常。 2、变压器的测量接地没有连接正确前,请不要开始绕组变形测试。 3、试验前应将被试变压器线端充分放电。 4、绕组变形测试应在解开变压器所有引线(包括架空线、封闭母线和电缆)的前提下进行,并使这些引线尽可能的远离变压器套管(周围接地体和金属悬浮物需离开变压器套20cm以上),尤其是与封闭母线连接的变压器。 5、测试时必须正确记录分接开关的位置。应尽可能将被试变压器的分接开关放置在第1分接,特别对有载调压变压器,以获取较全面的绕组信息。对于无载调压变压器,应保证每次测量在同一分接位置,便于比较。 6、变压器铁芯必须与外壳可靠接地。 7、应保证测量接线钳与套管线夹紧密接触。如果套管线夹上有导电膏或锈迹,必须使用砂布或干燥的棉布擦拭干净。 8、测量线正确使用:放线时应展开不要卷曲、收线时应平直绕成环形存放,测量夹子在测量结束时应与测量线脱开,避免在变压器上挂住,有损测量

线。 9、测试使用过程中,不得打开与测试无关的其他软件。 10、测试仪不具有防水功能,不得在雨天露天使用。 11、测试仪及测试配件不用时放入包装箱,包装箱平时至于平放状态。 12、图片仅供参考,请以实物为准。 本手册内容如有更改,恕不通告。没有国电西高的书面许可,本手册任何部分都不许以任何(电子的或机械的)形式、方法或以任何目的而进行传播。

110kV变压器中性点过电压计算及其保护策略

110kV变压器中性点过电压计算及其保护策略 发表时间:2017-08-08T19:52:12.857Z 来源:《电力设备》2017年第10期作者:朱梁 [导读] 摘要:110kV系统通过改变变压器中性点的接地形式,从而实现调控短路电流量,同时使得继电保护能够整定 (国网上海市区供电公司 200080) 摘要:110kV系统通过改变变压器中性点的接地形式,从而实现调控短路电流量,同时使得继电保护能够整定,而且不接地变压器的中性点通过这种接地形式也能够产生过电压。本文针对110kV变压器中性点过电压的计算进行分析,结合分析内容提出相对应的保护策略。 关键词:110kV变压器;过电压;保护策略 1.引言 由于电力系统常规运行中三相对称的缘故,电力变压器不会产生过电压。若出现意外情况,比如单相接地短路、非全相运行或者是雷电等,则变压器中性点会产生一定的过电压,甚至会和相电压一般;若是出现简谐振动,变压器中性点则会产生更大的过电压。再者由于110kV变压器中性点大部分都是分级绝缘,因此保护变压器中性点是非常重要的。 通过运行实践以及相关资料显示,在雷电冲击、非全相电力运行以及系统单相接地短路事故中,变压器中性点产生的过电压会在极大程度上影响变压器中性点的绝缘。 2.110kV变压器系统的软件仿真 2.1设计110kV变压器系统的仿真模型 为了更清晰的计算变压器中性点在不同事故中所产生的具体过电压值,本文通过ATP-EMTP软件构建110kV变压器的模型进行仿真分析。2个110kV变压器通过YYd的方法连接,设定相同的参数、最大容量,避雷器接在变压器的中性点。以变压器110kV侧母线作为起点,在110kV侧输电线路上共计设有6个点,点与点之间的距离为20m。(如图1) 2.2 110kV变压器系统模型的仿真结果 本次的仿真结果是110kV输电线路上出现单相短路故障,和母线的距离越近,其中性点所产生的过电压值就会越大;换言之,接地点的过电压值越小,那么就越远离母线,其根本原因是由于正序电阻的不断降低所造成的。 此外,110kV母线侧出现了接地的情况,而2个变压器系统的高压侧电源没有出现接地的情况,中性点的最大电压值高达97kV,几乎接近了110kV输电线路中所产生的相电压,其产生原因是电力系统实际上等效于一个无穷大系统。 在本次的仿真过程中,还发现了变压器110kV侧中性点上产生的电位归零是由于线路中的零序电流在输入中性点与接地点的结合部分时被阻挡了,而且35kV上的中性点出现同样的情况,分析其原因是由于10kV侧的连接形式是采用了三角状连接从而阻挡了零序电流的进入所致。 3.110kV变压器中性点的保护策略 3.1降低110kV变压器中性点的过电压 在确定变压器之间的相隔距离之后,通过电压计算公式我们可以得知,降低正序电流的输出值,能够实现降低变压器中性点的过电压值。那么,为了能够降低正序电流的输出值,我们可以改变变压器的接地形式。在原本的变压器仿真模型的基础上进行改动,让1个变压器中性点接地,而其他部分不改变。那么,110kV电力系统中在输出线路侧出现单相接地短路的时候,未接地的那个变压器中性点产生过电 压的具体数值如表1所示。 (表1,修改过后的变压器110kV侧中性点产生的过电压值) 由此可知,未接地变压器的中性点过电压值不论是在稳态或者是暂态都是有一定程度的降低的。而在加设接地置之后,因为零序阻抗值逐渐的降低,所以线路中零序电流值就会逐渐的增加,一定要对系统中单相接地短路所包含的容量进行准确的计算,并且要把继电保护的整定结构放在考虑范围中。 3.2避雷器的选择 采用避雷器对在单相线路接地事故中变压器中性点产生的暂态过电压进行有效的调控,就需要正确的在变压器中性点上设置合适的避

DCBX-H变压器绕组变形测试仪使用说明书

DCBX-H变压器绕组变形测试仪 使用说明书 摘要 产品型号:DAXZ系列 产品名称:变压器绕组变形测试仪 参考标准:DL/T911-2004 生产厂家:武汉鼎升电力自动化有限责任公司 参考阅读:https://www.360docs.net/doc/5613970346.html,/301/ 仪器概述:DCBX-H变压器绕组变形测试仪属于电力变压器的内部结构故障检测的必备工具 1.该变压器绕组变形测试仪具有高分辨dB值测量 2.该绕组变形测试仪具有高速、高集成化微处理器 3.DDS专用数字高速扫频技术(美国) 关键词 电力变压器绕组变形测试仪、变压器绕组变形检测仪、变压器绕组变形测量仪、变压器绕组变形分析仪、绕组变形测试

声明 版权所有? 2014武汉鼎升电力自动化有限责任公司 本使用说明书所提及的商标与名称,均属于其合法注册公司所有。本使用说明书受著作权保护,所撰写的内容均为公司所有。本使用说明书所提及的产品规格或相关信息,未经许可,任何单位或个人不得擅自仿制、复制、修改、传播或出版。本使用说明书所提到的产品规格和资讯仅供参考,如有内容更新,恕不另行通知。可随时查阅我公司官网:https://www.360docs.net/doc/5613970346.html, 本使用说明书仅作为产品使用指导,所有陈述、信息等均不构成任何形式的担保。服务承诺 感谢您使用鼎升电力公司的产品。在您初次使用该仪器前,请您详细地阅读此使用说明书,以便正确使用仪器,充分发挥其功能,并确保安全。 我们深信优质、系统、全面、快捷的服务是事业发展的基础。经过多年的不断探索和进取,我们形成了“重客户、重质量"的服务理念。以更好的产品质量,更完善的售后服务,全力打造技术领先、质量领先、服务领先的电力试验产品品牌企业。构建良好的市场服务体系,为客户提供满意的售前、售后服务! 安全要求 为了避免可能发生的危险,请阅读下列安全注意事项。 本产品请使用我公司标配的附件。 防止火灾或电击危险,确保人生安全。在使用本产品进行试验之前,请务必详细阅读产品使用说明书,按照产品规定试验环境和参数标准进行试验。

三相变压器绕组的连接方法教案

(一体化)教学设计首页教案序号:NO.5

【组织教学】 1、学生按时进入实习教室。 2、点名记录考勤。 3 检查学生安全情况。 4 宣布课题教学目的要求 【知识回顾】 回顾上次所学内容 复习提问:三相变压器绕组的主要故障是什么? 答:变压器绕组的主要故障是各部分绝缘老化,绕组受潮,绕组层间、匝间、相间、高低压绕组间发生接地、短路、断路、击穿或烧毁故障,系统短路造成的绕组机械损伤;冲击电流造成的绕组机械损伤等。 【导入新课】 三相变压器绕组的首末端标记 为了正确连接三相变压器需要要对三相变压器首末端进行标记。 三相变压器高、低压绕组的首端常用U1、V1、W1和u1、v1、w1标记,而其末端常用U2、V2、W2和u2、v2、w2标记。单相变压器的高、低压绕组的首端则用U1、u1标记,其末端则用U2、u2标记。 【新课内容】 三相变压器绕组的连接方法

在三相电力变压器中,不论是高压绕组,还是低压绕组我国均采用星形联结与三角形连接两种方法。 1、星形连接 图1 三相绕组星形连接方法 三相电力变压器的星形联结是把三相绕组的末端U2、V2、W2(或u2、v2、w2)联接在一起,而把它们的首端U1、V1、W1(或u1、v1、w1)分别用导线引出接三相电源,构成星形联结(Y接法)用字母“Y”“y”表示,如图1所示。 2、三角形连接 三相电力变压器的三角形联结是把一相绕组的首端和另外一相绕组的末端连接在一起,顺次连接成为一闭合回路,然后从首端U1、V1、W1(或u1、v1、w1)分别用导线引出接三相电源。 三角形联结用字母“D”或“d”表示。

三角形连接又分为顺序连接和逆序连接两种。图2(a)的三相绕组按U2W1、W2V1、V2U1的次序连接,称为逆序(逆时针)三角形联结。而图2(b)的三相绕组按U2V1、W2U1、V2W1的次序连接,称为顺序(顺时针)三角形联结。 三、总结 (1)三相变压器一、二次绕组不同接法的组合有:Y,y;YN,d;Y,yn;D,y;D,d等,其中最常用的组合形式有三种,即Y,yn;YN,d和Y,d。(2) 对于高压绕组来说,接成星形最为有利; 大容量的变压器通常采用Y,d或YN,d联结; 容量不太大而且需要中性线的变压器,广泛采用 Y,yn联结 (3) a.不同形式的组合,各有优缺点。对于高压绕组来说,接成星形最为有利,因为它的相电压只有线电压的,当中性点引出接地时,绕组对地的绝缘要求低。 b.大电流的低压绕组,采用三角形联结可以使导线截面比星形联结时小,方便于绕制,所以大容量的变压器通常采用Y,d 或YN,d联结。

DCBXS变压器绕组变形测试仪

DCBX-S变压器绕组变形测试仪 信息来源: 仪器使用方法 1.仪器面板 ◇仪器面板上安装有电源自锁开关, 按下时电源打开,指示灯点亮,关闭时按下松开, 指示灯熄灭; 变压器绕组变形测试仪前面板图 ◇仪器背板上安装有电源插座内藏保险丝。 ◇USB通信端口连接笔记本电脑和无线蓝牙天线。 ◇测量信号端口:K9插座外标颜色与测量电缆外标颜色一致,请对颜色连接;变压器绕组变形测试仪后面板图 2.变压器的几种常用检测接线方式 变压器绕组变形频率响应测试仪主要是由主测量单元和笔记本电脑构成,并行三根专用测量电缆以及测量夹子和接地线组成。

主测量单元系统与试品之间采用50高频同轴电缆联接,扫频信号经输出端口(激励输出),通过连接电缆将信号夹子(黄色)向被试品注入信号;由信号测量夹子(绿色)从被试品获取信号,经电缆传输到(响应输入);由信号测量从被试品注入点获取同步参考信号,经电缆传输到输入(参考输入)。被试品外壳与测试电缆的屏蔽层必须可靠连接并接地,大型变压器一般以铁芯接地套管引出线与油箱的连接点,作为公共接地点,变压器外壳点接地 三相Yn形测量接线 Yn形测量A相接线示意图 ◇测量系统共一点接地,取变压器铁芯接地。 ◇黄夹子定义为输入,钳在Yn的‘O’点、绿夹子定义为测量,钳在A相上。 ◇地线连接网依次由绿夹子地线孔插入接地线至黄夹子地线孔,再由一根地线转接到铁芯接地。将黑夹子连接至铁芯接地,钳在低压侧A相上。 ◇接地导线为5米。 ◇仪器的接地由测量线导入。

Yn形测量B相接线示意图 ◇测量系统共一点接地,取变压器铁芯接地。 ◇黄夹子为输入,钳在Yn的‘O’点、绿夹子为测量,钳在B相上。 ◇地线连接网依次由绿夹子地线孔插入接地线至黄夹子地线孔,再由一根地线转接到铁芯接地。将黑夹子连接至铁芯接地,钳在低压侧B相上。 ◇接地导线为5米。 ◇仪器的接地由测量线导入。 Yn形测量C相接线示意图 ◇测量系统共一点接地,取变压器铁芯接地。 ◇黄夹子为输入,钳在Yn的‘O’点、绿夹子为测量,钳在C相上。 ◇地线连接网依次由绿夹子地线孔插入接地线至黄夹子地线孔,再由一根地线转接到铁芯接地。将黑夹子连接至铁芯接地,钳在低压侧C相上。 ◇接地导线为5米。 ◇仪器的接地由测量线导入。

主变压器中性点零序过流

、间隙过流和零序过压,是保护设备本身引出线上的接地短路故障的,一般是作为变压器高压侧110--220千伏系统接地故障的后备保护.零序电流保护,是变压器中性点接地运行时的零序保护;而零序电压保护是变压器中性点不接地运行时的零序保护;间隙过流则是用于变压器中性点经放电间隙接地的运行方式中. 零序过流保护,一次启动电流很小,一般在100安左右,时间约 0.2秒.零序过压保 护,按经验整定为二倍额定相电压115,为躲过单相接地的暂态过压,时间通常整定为0.1-- 0.2秒.变压器220KV侧中性点放电间隙的长度,一般为325毫米,击穿电压的有效值为 127.3千伏,当中性点的电压超过击穿电压时,间隙被击穿,零序电流通过中性点,保护时间整定为 0.2秒.在发生单相接地故障时,接在电流互感器上的单相接地电流继电器和零序电压继电器动作,启动时间继电器,时间继电器以整定的时限,通过信号继电器,发出信号和断开接地变压器各侧断路器 110kV线路接地故障时,电源侧为直接接地系统,对侧主变中性点不接地,此时,主变中性点会产生多高电压,主变间隙零序与对侧线路保护如何配合?望高人指点!!! 主变间隙零序与对侧线路保护不需配合,因不是同一系统。主变间隙零序电压一般整定180V, 0.5S. 主变间隙零序电压一般整定110KV系统150V, 0.5S.220KV系统180V,

0.5S. 中性点不接地的主变单相接地中性点理论上产生100V零序电压 中性点直接接地的主变单相接地中性点理论上产生300V零序电压 主变中性点电压在主变非接地时为300V左右,接地时为173左右,反映中性点非直接接地的间隙零序电压所以设定为180V,考虑到雷击过电压、操作过电压等情况,设定时间为 0.5S。 最近我也研究了变压器的间隙保护: 1.从零序序网图可以分析,尽管你提到的变压器中性点不接地,但它仍然处在一个接地系统中(其上级变压器110kV侧接地),所以当线路系统发生基地故障时,本变压器零序电压(PT开口三角电压)是100V。为了防止系统感应过电压、雷击过电压等的误动作,所以整定为150V(对于220kV变压器为 180V); 2.对于时间定值,我建议你与上一级线路的接地距离II段、零序过流II段等伸入变压器的线路保护段配合,这样可以防止当由于雷击等原因造成线路保护与间隙保护同时动作,即使线路重合成功,由于变压器间隙保护动作将变压器切除,重合闸已经没有意义了。 3.希望小兄弟咱能一起探讨,期待你的信息。 [16楼][继保工人累]于2010-9-22 16:17:07对文章回复如下: 不接地变中性点零序电压一次值应为接地点零序电压,约为110kV // 方向阻抗继电器的最大动作阻抗(幅值)的阻抗角,称为它的最大灵敏角φs 被保护线路发生相间短路时,短路电流与继电器安装处电压间的夹角等于线路的阻抗角ΦL,线路短路时,方向阻抗继电器测量阻抗的阻抗角φm,等于线路

最新变压器绕组变形检测仪说明书

变压器绕组变形检测 仪说明书

变压器绕组变形检测仪说明书 质量保证 本公司生产的产品,在发货之日起三个月内,如产品出现缺陷,实行包换。一年(包括一年)内如产品出现缺陷,实行免费维修。一年以上如产品出现缺陷,实行有偿终身维修。 安全事项 非专业人员请勿拆开维修,以免触电及扩大故障范围! 请勿拆下仪器的盖板:以免产生电击危险 警告! 为避免伤害人身及设备,使用测试仪前请先阅读“安全须知”和“警告”以及“注意”等相关资料的内容。 安全须知 请遵循本手册的说明使用本测试仪,否则测试仪所提供的保护可能会受到损坏。 本手册中,警告是指对使用者构成危险的情况或操作。 小心是指对测试仪或被试变压器可能造成损坏的情况或操作。 注意是指对测试结果可能造成误差的情况或操作。 安全工作准则 请参阅安全须知资料,并遵循下列说明的安全工作准则。 警告、小心和注意! 为了避免人身伤害,同时为避免测试仪或被试变压器受到损坏,请遵循以下准则进行操作:使用前,请先检查测试仪的外观,检查电源开关位置是否在“关”的位置、各接线端子是否正常。 测试仪的“接地”没有连接正确前,请不要开始绕组变形测试。 试验前应将被试变压器线端充分放电。 绕组变形测试应在解开变压器所有引线(包括架空线、封闭母线和电缆)的前提下进行,并使这些引线尽可能的远离变压器套管(周围接地体和金属悬浮物需离开变压器套20cm以上),尤其是与封闭母线连接的变压器。 测试时必须正确记录分接开关的位置。应尽可能将被试变压器的分接开关放置在第1分接,特别对有载调压变压器,以获取较全面的绕组信息。对于无载调压变压器,应保证每次测量在同一分接位置,便于比较。 变压器铁心必须与外壳可靠接地。测试仪外壳、测量阻抗外壳必须与变压器外壳可靠接地。 应保证测量阻抗的接线钳与套管线夹紧密接触。如果套管线夹上有导电膏或 锈迹,必须使用砂布或干燥的棉布擦拭干净。 目录 一、仪器概述 (3)

变压器绕组变形试验方案

遵义220kV海龙变I号主变增容工程变压器绕组变形试验方案 批准: 审核: 编写: 葛洲坝集团电力有限责任公司试验中心 二〇一六年九月

变压器绕组变形试验方案 1、范围 本作业指导书适用于电力生产、基建、试验研究等单位和部门。本作业指导书规定了交接验收、预防性试验、检修过程中的变压器绕组变形试验(频率响应法)的试验项目的引用标准、仪器设备要求、试验人员资质要求和职责、作业程序、试验结果判断方法和试验注意事项等。制定本指导书的目的是规范试验操作,保证试验结果的正确性,为设备运行、监督、检修提供依据;指导设备管理人员应用变压器绕组变形测试技术对电力变压器进行检测和诊断,为变压器设备运行检修提供依据,提高变压器设备运行的可靠性。 变压器绕组变形测试技术是根据测得的变压器各绕组频率响应特性的一致性,结合设备结构、运行情况及其他项目进行全面的、历史的、综合的分析比较。以判断变压器绕组变形程度。本作业指导书提出的判断方法和注意值仅适用于使用差值判断变压器绕组变形的方法。 2规范性引用文件 下列文件中的条款通过本作业指导书的引用而成为本作业指导书的条款。凡是注日期的引用文件,其随后所有的修改单或修订版均不适用于本作业指导书,然而,鼓励根据本作业指导书达成协议的各方研究是否可使用这些文件的最新版本。凡是不注明日期的引用文件,其最新版本适用于本作业指导书。 GB1094.1电力变压器第一部分总则 GB1094.2电力变压器第二部分温升 GB1094.3电力变压器第三部分绝缘水平和绝缘试验 3定义 本作业指导书采用下列定义。 3.1变压器绕组变形 变压器在运行中不可避免地要遭受出口短路或近区短路故障冲击,在运输安装过程中也可能受到碰撞冲击。在这些冲击力(包括电动力和机械力)作用下,变压器绕组变就可能发生轴向、径向尺寸变化、位移、扭曲、鼓包等变形。 3.2变形程度正常 指变压器牌原始状态或不存在明显变形,可以继续运行,绕组不需要整修。 3.3一般变形 指变压器存在明显变形加强监督,应在适当电动机安排检修,再次短路或其他冲击将有很大可能造成变压器损坏,需要整修或更换绕组。 3.4严重变形

相关文档
最新文档