AS 3990 Structural Steel For Mechanical Engineering

AS 3990 Structural Steel For Mechanical Engineering
AS 3990 Structural Steel For Mechanical Engineering

AS3990—1993

Australian Standard?

Mechanical equipment—Steelwork

This Australian Standard was prepared by Committee ME/5,Cranes(Balloted by ME/1,Boilers and Pressure Vessels;ME/4,Lift Installations;ME/5,Cranes;ME/18, Mining Equipment;ME/38,Gas and Liquid Petroleum Piping Systems;ME/43,Bulk Handling Equipment).It was approved on behalf of the Council of Standards Australia on24February1993and published on17May1993.

The following interests are represented on the balloting Committees: Australian commerce associations

Australian development associations

Australian energy associations

Australian engineering associations

Australian Federal authorities

Australian importers associations

Australian industry associations

Australian manufactures associations

Australian marketing associations

Australian mining associations

Australian research associations

Australian Steamship Owners Federation

Australian State authorities

Australian trade associations

Australian universities

Australian utilities associations

Review of Australian Standards.To keep abreast of progress in industry,Australian Standards are subject to periodic review and are kept up to date by the issue of amendments or new editions as necessary.It is important therefore that Standards users ensure that they are in possession of the latest edition,and any amendments thereto.

Full details of all Australian Standards and related publications will be found in the Standards Australia Catalogue of Publications;this information is supplemented each month by the magazine‘The Australian Standard’,which subscribing members receive,and which gives details of new publications,new editions and amendments,and of withdrawn Standards.

Suggestions for improvements to Australian Standards,addressed to the head office of Standards Australia, are welcomed.Notification of any inaccuracy or ambiguity found in an Australian Standard should be made without delay in order that the matter may be investigated and appropriate action taken.

AS3990—1993

Australian Standard?

Mechanical equipment—Steelwork AS3990first published in part as AS CAI—1933.

Second edition1939.

Revised and issued as SAA Int.351—1952.

Revised and issued as AS CAI—1968.

Fourth edition1972.

AS1250first published1972.

AS CAI—1972and AS1250—1972revised,amalgamated

and issued as AS1250—1975.

AS CAI—1972withdrawn1976.

Third edition as AS1250—1981.

Revised and redesignated in part as AS3990(Int)—1991.

Revised and issued as AS3990—1993.

PUBLISHED BY STANDARDS AUSTRALIA

(STANDARDS ASSOCIATION OF AUSTRALIA)

1THE CRESCENT,HOMEBUSH,NSW2140

ISBN0726280917

AS3990—19932

PREFACE

This Standard was prepared by the Standards Australia Committee on Cranes and balloted by the Standards Australia Committees for Boilers and Unfired Pressure Vessels,Lift Installations,Cranes,Mining Equipment,Gas and Liquid Petroleum Piping Systems,and Bulk Handling Equipment to provide a working stress method for the design of mechanical equipment steelwork.AS1250—1981,SAA Steel Structures Code,which provided a working stress method,was superseded by AS4100—1990,Steel structures,which provides the limit states design method.

Although the limit states design method(AS4100)is the preferred method of designing steelwork,it is necessary to continue the working stress design method(this Standard)for certain mechanical equipment where the application Standards allow.This is particularly so for mechanical equipment where the equivalent international Standards use the working stress design method.

While the editorial style and layout have been updated,this Standard incorporates the minimum changes necessary to AS1250—1981,SAA Steel Structures Code.Amendments1 and2have been incorporated into the text.Section10has been deleted,Section11 renumbered and new Appendices F and G added.Clauses1.1,2.2,3.3.1,3.3.5,9.5.2,10.1.1,

10.1.4and10.1.5;and Appendix C have been revised.

The issue of this Standard follows its publication as an Interim Standard in December1991.

Section1and Appendix G have been revised,a new Application Clause included and Reference Standards updated to current editions.

Attention is drawn to the following Standards which may be required for use in connection with this Standard:

AS

1110ISO metric hexagon precision bolts and screws

1111ISO metric hexagon commercial bolts and screws

1112ISO metric hexagon nuts,including thin nuts,slotted nuts and castle nuts

1163Structural steel hollow sections

1170SAA Loading Code

1170.1Part1:Dead and live loads and load combinations

1170.2Part2:Wind loads

1170.3Part3:Snow loads

1252High strength steel bolts with associated nuts and washers for structural engineering 1275Metric screw threads for fasteners

1302Steel reinforcing bars for concrete

1303Steel reinforcing wire for concrete

1379The specification and manufacture of concrete

1391Methods for tensile testing of metals

1418SAA Crane Code

1554SAA Structural Steel Welding Code

1554.1Part1:Welding of steel structures

1554.2Part2:Arc stud welding(steel studs to steel)

1554.5Part5:Welding of steel structures subject to high levels of fatigue loading

3AS3990—1993

1559Fasteners—Bolts,nuts and washers for tower construction

1594Hot-rolled steel flat products

1627Metal finishing—Preparation and pretreatment of surfaces

1627.7Part7:Hand tool cleaning of metal surfaces

2074Steel castings

2121SAA Earthquake Code

2214SAA Structural Steel Welding Supervisors Certification Code

2312Guide to the protection of iron and steel against exterior atmospheric corrosion

2812Welding,brazing and cutting of metals—Glossary of terms

3600Concrete structures

3678Structural steel—Hot-rolled plates,floorplates and slabs

3679Structural steel

3679.1Part1:Hot-rolled bars and sections

3679.2Part2:Welded sections

4100Steel structures

BS

5135Metal-arc welding of carbon and carbon manganese steels

Supplement1(PD3343)to BS449,

Part1:Recommendations for design(withdrawn)

?Copyright STANDARDS AUSTRALIA

Users of Standards are reminded that copyright subsists in all Standards Australia publications and software.Except where the Copyright Act allows and except where provided for below no publications or software produced by Standards Australia may be reproduced,stored in a retrieval system in any form or transmitted by any means without prior permission in writing from Standards Australia.Permission may be conditional on an appropriate royalty payment.Requests for permission and information on commercial software royalties should be directed to the head office of Standards Australia.

Standards Australia will permit up to10percent of the technical content pages of a Standard to be copied for use exclusively in-house by purchasers of the Standard without payment of a royalty or advice to Standards Australia.

Standards Australia will also permit the inclusion of its copyright material in computer software programs for no royalty payment provided such programs are used exclusively in-house by the creators of the programs.

Care should be taken to ensure that material used is from the current edition of the Standard and that it is updated whenever the Standard is amended or revised.The number and date of the Standard should therefore be clearly identified.

The use of material in print form or in computer software programs to be used commercially,with or without payment,or in commercial contracts is subject to the payment of a royalty.This policy may be varied by Standards Australia at any time.

AS3990—19934

CONTENTS

Page SECTION1SCOPE AND GENERAL

1.1SCOPE (6)

1.2APPLICATION (6)

1.3STANDARDS (6)

1.4NEW MATERIALS OR METHODS (6)

1.5DESIGN AND SUPERVISION (6)

1.6DEFINITIONS (7)

1.7NOTATION (8)

SECTION2MATERIALS

2.1STRUCTURAL STEEL (11)

2.2FASTENERS AND ELECTRODES (11)

2.3STEEL CASTINGS (12)

2.4CONCRETE (12)

SECTION3GENERAL DESIGN REQUIREMENTS

3.1LOADS (13)

3.2DESIGN METHODS (13)

3.3OTHER DESIGN CONSIDERATIONS (15)

SECTION4GEOMETRICAL PROPERTIES

4.1GENERAL (18)

4.2GEOMETRICAL PROPERTIES FOR CALCULATING BENDING

STRESSES (18)

4.3PLATE THICKNESSES (18)

4.4HOLES (19)

4.5SECTIONAL AREAS OF BOLTS,SCREWED TENSION RODS AND

RIVETS (20)

4.6MAXIMUM SLENDERNESS RATIOS (20)

SECTION5DESIGN OF BEAMS

5.1GENERAL (22)

5.2MAXIMUM PERMISSIBLE STRESS (22)

5.3MAXIMUM PERMISSIBLE COMPRESSIVE STRESS (22)

5.4MAXIMUM PERMISSIBLE STRESS IN A BEAM BENT ABOUT THE

AXIS OF MAXIMUM STRENGTH (23)

5.5ELASTIC CRITICAL STRESS (27)

5.6BENDING STRESSES FOR CASED BEAMS (28)

5.7PURLINS AND GIRTS (28)

5.8EFFECTIVE SPAN OF BEAMS (29)

5.9EFFECTIVE LENGTH OF BEAMS FOR LATERAL BUCKLING (29)

5.10SHEAR (33)

5.11BEARING STRESSES (34)

5.12FLANGE DETAILS (34)

5.13WEB DETAILS (35)

5.14SEPARATORS AND DIAPHRAGMS (39)

5AS3990—1993

Page SECTION6DESIGN OF STRUTS

6.1AXIAL STRESSES IN UNCASED STRUTS (40)

6.2AXIAL FORCES IN CASED STRUTS (40)

6.3EFFECTIVE LENGTH OF STRUTS (41)

6.4ECCENTRICITY FOR STRUTS (43)

6.5SPLICES (43)

6.6STRUTS WITH TWO OR MORE MAIN COMPONENTS IN CONTACT..44

6.7STRUTS WITH TWO SEPARATED COMPONENTS (44)

6.8CAPS AND BASES FOR STRUTS (48)

6.9BEARING STRESSES (49)

SECTION7DESIGN OF TENSION MEMBERS

7.1AXIAL STRESSES IN TENSION MEMBERS (50)

7.2TENSION MEMBERS SUBJECTED TO BENDING (50)

7.3DISTRIBUTION OF FORCES (50)

7.4TENSION MEMBERS WITH TWO OR MORE MAIN COMPONENTS (52)

7.5CONNECTIONS (53)

7.6BEARING STRESSES (53)

SECTION8COMBINED STRESSES

8.1GENERAL (54)

8.2INDIVIDUAL MOMENTS AND FORCES (54)

8.3DIRECT STRESS COMBINATIONS (54)

SECTION9DESIGN OF CONNECTIONS

9.1MINIMUM DESIGN FORCE ON CONNECTIONS (57)

9.2CHOICE OF FASTENERS (57)

9.3COMBINED CONNECTIONS (57)

9.4CONNECTION STIFFENERS (57)

9.5STRESSES IN BOLTS,SCREWED TENSION RODS,RIVETS AND PINS57

9.6DESIGN DETAILS FOR FASTENERS (58)

9.7DESIGN DETAILS FOR PINS (59)

9.8WELDS (59)

9.9PACKING (61)

SECTION10FABRICATION AND ERECTION

10.1GENERAL (62)

10.2TOLERANCES (62)

10.3FABRICATION PROCEDURES (63)

10.4ERECTION (65)

APPENDICES

A DEFLECTION(See Clause3.3.5) (67)

B FATIGUE(See Clause3.3.6) (69)

C STRENGTHS OF STEELS COMPLYING WITH AS1163,AS1594,

AS3678AND AS3679 (76)

D LIST OF REFERENCES ON TH

E ELASTIC FLEXURAL-TORSIONAL

BUCKLING OF STEEL BEAMS (77)

E EFFECTIVE LENGTH OF STRUTS(See Clause6.3) (78)

F DESIGN REQUIREMENTS FOR HIGH STRENGTH STRUCTURAL

BOLTS(See Clause9.5) (82)

G FABRICATION,ASSEMBLY AND INSPECTION OF HIGH-STRENGTH

STRUCTURAL BOLTS(See Clause10.1.5) (85)

7AS3990—1993 1.5.2Supervision All stages of construction of a structure or the part of a structure to which this Standard is applied shall be adequately supervised to ensure that all the requirements of the design are satisfied in the completed structure.Supervision shall be

the responsibility of either—

(a)the Design Engineer;or

(b)an Engineer experienced in such supervision.

For the purposes of this Standard,the term‘Supervising Engineer’shall mean the engineer responsible for supervision of construction and shall include his representative.

NOTES:

1Although the execution of design and supervision may be delegated to other acceptable persons who need not necessarily be qualified,Clause 1.5requires that design and

supervision be the responsibility of qualified and experienced persons.

2The Clause does not require the Design Engineer to be responsible for supervision also unless he has been assigned this responsibility specifically.The Design Engineer and the

Supervising Engineer need not be the same person.

3Welding inspectors should be qualified to the requirements of AS2214.

1.6DEFINITIONS

1.6.1General For the purposes of this Standard,the definitions in Clauses 1.6.2to

1.6.4shall apply.

NOTE:Other terms having special meanings are defined in the Clause in which they occur.

1.6.2Administrative definitions

1.6.

2.1Approved—according to the context,approved either by the Engineer or the Building Authority.

1.6.

2.2Building Authority—a body having statutory powers to control the design and erection of buildings or structures in the area in which the building or structure concerned

is to be erected.

1.6.

2.3Contractor—the person,persons or organization agreeing under a contract to execute the work.

1.6.

2.4Engineer—a person qualified for Corporate Membership of the Institution of Engineers,Australia.(See Clause1.5.)

NOTE:The definition of‘Engineer’does not require that an Engineer be a Corporate Member of the Institution of Engineers,Australia.

1.6.3Technical definitions

1.6.3.1Beam or girder—a structural member,other than a triangulated frame,which supports load primarily by its internal resistance to bending.

1.6.3.2Dead load—the actual weight of all permanent construction and all permanently installed plant,equipment,and services required for functional purposes.

1.6.3.3Footing—a part of the building or structure in direct contact with and transmitting load to the supporting foundation.

1.6.3.4Foundation—the soil,sub-soil or rock,either built up or natural,upon which a structure is supported.

1.6.3.5Gauge—the transverse spacing between parallel adjacent lines of fasteners.

1.6.3.6High strength bolt—a bolt manufactured to AS1252or an equivalent fastener.

AS3990—19938

1.6.3.7Live load—the load assumed to arise from the intended use or purpose of a

structure,including distributed,concentrated,impact and inertial forces,but excluding wind,snow and earthquake forces.

1.6.3.8Load factor—the numerical value by which the load which would cause failure

of a structure is divided,to give the maximum permissible working load on the structure.

1.6.3.9Partition—a wall employed solely for the purpose of subdividing a storey of a

building into sections and which is not intended to support any load other than its own weight.

1.6.3.10Pitch—the centre distance between individual fasteners in a line of fasteners.

1.6.3.11Strut—a compression member including a column or stanchion.

1.6.3.12Substructure—the general structural base upon which the remainder of a

structure is supported,comprising the footings and any retaining or like wall supported by the ground.

1.6.3.13Tensile strength—the ultimate tensile strength of a steel or electrode as defined

in the appropriate Australian Standard.

1.6.3.14Wind forces—forces on a structure resulting from wind pressure.

1.6.3.15Yield stress—the minimum yield stress in tension specified for the grade of

steel in the appropriate Australian Standard.

1.6.4Welding terms Welding terms shall have the meanings given in AS281

2.

1.7NOTATION The notation used in any of the Clauses shall have the following

meanings with respect to the structure,or member or condition to which the Clause is applied,unless otherwise defined elsewhere in this Standard.Unless otherwise stated,a dimension shall mean a specified dimension.

NOTE:The subscripts x,y denote the X-X and Y-Y axes of the section,respectively,X-X denotes the major principal axis,and Y-Y denotes the minor principal axis.

A

g =the gross cross-sectional area of a concrete-encased strut neglecting any casing in excess of75mm from the overall dimensions of the steel section and neglecting any applied finish

A

s

=the effective cross-sectional area of a steel member

A

w =the effective sectional area resisting shear for calculating the average shear stress or the maximum shear capacity in a member

B=the overall width of the flange of a section b=the lesser clear dimension of a web panel

b 1=the outstand of a flange or stiffener beyond the line of connections to a web,or other line of support

b 2=the unsupported width of a flange or element between two adjacent faces of support or between two adjacent lines of connections to other elements of the member

c 1,c

2

=respectively,the lesser and greater distances from the section neutral axis to the extreme fibres

D=the overall depth of a section measured parallel to the web

d=the clear depth of the web of a rolled I-section or channel between root fillets

9AS3990—1993

d 1=for th

e web o

f a beam without horizontal stiffeners,the clear distance between the flanges,neglectin

g fillets,or the clear distance between the inner toes of the flange angles,as appropriate

=for the web of a beam with horizontal stiffeners,the clear distance between the horizontal stiffener and the tension flange,neglecting fillets,or the inner toes of the tension flange angles,as appropriate

d 2=twic

e the clear distance from the neutral axis o

f a beam to the compression flange,neglectin

g fillets,or the inner toes of the flange angles,as appropriate

E=the modulus of elasticity for steel,taken as2×105MPa in this Standard

F′

c

=the characteristic28-day compressive strength of concrete as defined in AS3600

F

ac =the maximum permissible compressive stress in an axially loaded strut not subjected to bending

F

at =the maximum permissible tensile stress in an axially loaded tension member not subjected to bending

F

b =the maximum permissible stress due to bending in a member not subjected to axial force

F

bc =the maximum permissible compressive stress due to bending in a member not subjected to axial force

F

bt =the maximum permissible tensile stress due to bending in a member not subjected to axial force

F

ob

=the elastic buckling stress of a beam

F

oc

=the elastic buckling stress of a strut

F

p

=the maximum permissible stress in bearing in a member

F

u

=the tensile strength pertaining to the steel used in a member

F

v

=the maximum permissible average stress in shear in a member

F

vm

=the maximum permissible stress in shear in a member

F

Y =the yield stress pertaining to the steel used in a member;where F

Y

is used in dimensionally inconsistent expression in this Standard,its value shall be expressed in MPa(see Appendix C)

f

ac

=the calculated average stress in a member due to an axial compressive force

f

at

=the calculated average stress in a member due to an axial tensile force

f bc =the calculated compressive stress in a member due to bendin

g about a principal axis

f

bt

=the calculated tensile stress in a member due to bending about both principal axes

I s =the second moment of area(moment of inertia)of the cross section of a pair of web stiffeners about the centre-line of a beam web,or of a single stiffener about the face of a beam web,as appropriate

K

1=a coefficient to allow for the reduction in thickness or breadth of the flanges between the points of effective lateral restraint.Values of K

1

are given in Table

5.5(2)for various values of N

F

K

2=a coefficient to allow for the inequality of the flanges.Values of K

2

are given in Table5.5(3)for various values of M

F

L=the span of a member

l=the effective length of a beam or strut

AS3990—199310

M

F =the ratio of the moment of inertia of the compression flange alone to the sum of the moments of inertia of the flanges,each calculated about its own axis parallel to the axis of minimum strength of the beam,at the point of maximum bending moment

M

p

=the calculated maximum moment capacity of a beam

M

pc =the calculated maximum moment capacity of a member subjected to bending and axial load

N

F =the ratio of the total area of both flanges at the point of least bending moment to the corresponding area at the point of greatest bending moment between points of effective lateral restraint.The minimum value of N

F

shall be0.25and flange reductions shall be limited accordingly.The removal of a flange at the end of a

beam shall be neglected when calculating N

F

,provided that the length of flange removed does not exceed a length equal to the flange width at midspan

P=an axial force,compressive or tensile,in a member or part of a member

P

ac

=the calculated maximum load capacity of a strut

P

Y

=the calculated maximum load capacity of a tension member

Q=a force applied transversely to a member

R=the reaction of a beam at a support

r

y

=the radius of gyration about the y axis

r=the radius of gyration of a section

S=the longitudinal spacing between the centres of successive vertical stiffeners in a beam

T=in a flanged section,the mean thickness of the flange,or the area of the flange divided by its width,or the thickness of the flange as given in AS3679,as appropriate

T=the flange thickness as defined in Clause 1.6.Where the flanges are unequal,T shall be calculated from the flange having the greater moment of inertia, calculated about its own axis parallel to the axis of minimum strength of the beam

T 1=the thickness of the flange of a section or of a plate in compression,or the aggregate thickness of plates if connected together in accordance with Section9, as appropriate

t=the thickness of the web of a section

t

T

=the thickness of the thinner of two components joined W=the total load on a beam between supports

11AS3990—1993

S E C T I O N2M A T E R I A L S

2.1STRUCTURAL STEEL

2.1.1Australian Standards Except as otherwise permitted in Clause2.1.2below,all structural steel coming within the scope of this Standard shall,before fabrication,comply with the requirements of the following Australian Standards,as appropriate:

AS1163Structural steel hollow sections

AS1594Hot-rolled steel flat products

AS3678Structural steel—Hot-rolled plates,floorplates and slabs

AS3679Structural steel

Part1:Hot-rolled bars and sections

Part2:Welded sections

NOTE:See also Clause3.3.8.

2.1.2Other structural steels If structural steels or shapes other than those referred to

in Clause 2.1.1are used they shall comply with Australian Standards or with specifications issued by bodies accredited by the Building Authority,such as the British Standards Institution and the American Society for Testing and Materials.The maximum

value of the yield stress F

Y to be used in the application of this Standard shall be

450MPa.A steel intended to be welded shall be suitable for welding.

2.1.3Acceptance of steels Certified mill test reports,or test certificates issued by the mill shall constitute sufficient evidence of compliance with material specifications referred to in this Standard.At the discretion of the Design Engineer,and subject to the approval of the Building Authority,it shall be permissible to use a test certificate provided by an approved testing laboratory or an affidavit from the fabricator instead of a certified mill test report or mill test certificates.

2.1.4Unidentified steel If unidentified steel is used it shall be free from surface imperfections,and shall be used only where the particular physical properties of the steel and its weldability will not adversely affect the strength and serviceability of the

structure.Unless a full test in accordance with AS1391is made,the yield stress F

Y of the

steel for design purposes shall be taken as not exceeding170MPa.

2.2FASTENERS AND ELECTRODES

2.2.1Steel bolts,nuts and washers Steel bolts,nuts and washers shall comply with the following Standards,as appropriate:

AS1110ISO metric hexagon precision bolts and screws

AS1111ISO metric hexagon commercial bolts and screws

AS1112ISO metric hexagon nuts,including thin nuts,slotted nuts and castle nuts AS1252High strength steel bolts with associated nuts and washers for structural engineering

AS1559Fasteners—Bolts,nuts and washers for tower construction

Other high strength fasteners equivalent to AS1252may be used.

2.2.2Rivets All rivets shall comply with an approved Standard.

2.2.3Electrodes All electrodes shall comply with the appropriate requirements of AS1554.

AS3990—199312

2.2.4High strength bolts

2.2.4.1Storage High strength bolts,nuts and washers shall be stored in such a manner

that they will not deteriorate.Bolts and nuts shall be supplied with a residual coating of light oil which shall not be removed.

NOTE:The oil coating should be retained to ensure uniform behaviour of the bolt during tightening.

2.2.4.2Bolt length To determine the required bolt length,the minimum allowances

given in Table2.1shall be added to the grip.

TABLE2.1

BOLT LENGTH MINIMUM ALLOWANCES

Nominal diameter

of bolt

Allowance to be added to the grip

mm

M16 M20 M24 M30 M3626 30 36 42 48

NOTES:

1The values in Table2.1are generalized with due

allowance for manufacturing tolerance to provide

protrusion of the end of the bolt when using a

heavy semi-finished hexagonal nut and one flat

washer.For each additional hardened flat washer

used,add4mm.For each bevelled washer used,

add8mm.

Appropriate extra allowance shall be made when

special thick washers or direct-tension indication

washers are used.The calculated bolt length

should be rounded off to the nearest suitable stock

length.

2The minimum allowance specified in Table 2.1

applies to friction-type joints or bearing-type

joints where threads are permitted in the shear

plane.Greater allowance may be required for

bearing-type joints where threads are excluded

from the shear plane.A minimum number of two

free threads shall project beyond the inside

bearing face of the nut in all joints.

2.3STEEL CASTINGS All steel castings shall comply with the appropriate requirements of AS2074.

2.4CONCRETE Unless otherwise required by this Standard,all structural and fire-protective concrete used in association with structural steel shall comply with the appropriate requirements of AS3600.

13AS3990—1993

S E C T I O N3G E N E R A L D E S I G N

R E Q U I R E M E N T S

3.1LOADS A structure,and part of a structure,shall be designed for the loads laid down by the Application Standards and the following Standards,as appropriate: AS1170SAA Loading Code

Part1:Dead and live loads and load combinations

Part2:Wind loads

Part3:Snow loads

NOTE:Attention is drawn to AS2121,SAA Earthquake Code,where it is required to take earthquake forces into account.

3.2DESIGN METHODS

3.2.1General A structure and part of a structure shall be capable of sustaining the most adverse combination of static and dynamic forces that may reasonably be expected from all the loads specified in Clause3.1.Except as qualified by Clause3.2.4or where a load factor is applicable,every part of the structure shall be so proportioned that the permissible stresses specified in this Standard are not exceeded.Where applicable,a load factor used in design shall not be less than that specified in this Standard.

A design method specified in this Standard shall be used,at the choice of the Design Engineer,as the basis for design.The stiffness,stability and serviceability of the structure shall be such that the appropriate requirements of Clause3.3are satisfied.

3.2.2Simple design method The method specified herein and known as the simple design method,applies to the design of a structure,or part of a structure,in which the ends of members will not develop restraining moments adversely affecting the remainder

of the structure or its parts.

(a)Rectangular framed structures,conventional method For the purpose of this

method of design for a rectangular framed structure,the following assumptions shall

be made:

(i)Beams and trusses are simply supported.

(ii)All connections of beams and trusses are subjected to reaction shear forces applied at the eccentricity appropriate to the connection detail.

(iii)Members in compression are subjected to axial forces applied at the eccentricities given by applying Clause 6.4and have the effective lengths

given in Clause6.3.

(iv)Members in tension are subjected to concentric axial forces applied over the net area of the section,as specified in Clause7.3.

(b)Rectangular framed structures,wind connection method If a rectangular framed

structure is designed for vertical loads using(a)above,the lateral forces may be

assumed to be carried by fully rigid connection action in accordance with

Clause3.2.3,Method1,if the structure complies with the following requirements:

(i)Under lateral forces,the connections shall be designed elastically and shall

satisfy Section9.

(ii)Under vertical forces,only the welds and fasteners used in the connections shall satisfy Section9,and the remaining elements of the cross-section shall

possess sufficient deformation capacity to ensure that overstressing of the

welds or fasteners cannot occur.

AS3990—199314

(iii)Where welds or fasteners are stressed by both lateral and vertical forces the combined stresses shall satisfy the requirements of Section9.

(c)Triangulated structures For the purpose of this method of design for a triangulated

structure,axial forces shall be found by assuming that all members are pin

connected.Where any eccentricity occurs,all stresses arising therefrom shall be

kept within the limits of this Standard.

3.2.3Fully rigid design method The method specified herein,and known as the fully

rigid design method,applies to the design of a structure,or part of a structure,in which the beam-to-strut connections have sufficient rigidity to hold the angles between the members virtually unchanged irrespective of the load.

A structure and part of a structure proportioned according to this method shall be analysed

using one of the following methods:

Method1Adequate elastic analysis to show that the permissible stresses specified in this Standard are not exceeded.

Method2Adequate analysis to show that the load-carrying capacity is not less than that required when a load factor of1/0.60is applied to the loads or to the

load combinations in Clause3.3.1.Nevertheless,the deflections and other

movements under working loads shall not exceed the limits imposed by

Clause3.3.5.

3.2.4Semi-rigid design method The method specified herein,and known as the

semi-rigid design method,applies to the design of a structure,or part of a structure,in which the connections between the members are capable of furnishing a dependable and known degree of flexural restraint in accordance with the recommendations of Supplement No.1(PD3343),to BS449,or as specified below.

In cases where this method of design is employed,calculations based on general or particular experimental evidence shall be made to show that the stresses in the structure are nowhere in excess of the appropriate stresses laid down in this Standard.

Alternatively,where riveted or bolted connections are employed,and only steel with a yield stress not exceeding280MPa is used,the requirements of this Standard with respect to stresses shall be deemed to be satisfied if the design is made in accordance with Supplement No.1to BS449.The design of continuous struts shall comply with Clause6.4.

3.2.5Experimentally based design Where a structure is of an unconventional or

complex nature and the Design Engineer shows by full-scale or model tests that the limits on deflections,stability and serviceability,and stress or load factor imposed by Clause3.2.1are satisfied,the corresponding design requirements of this standard shall be deemed also to have been satisfied,subject to the following conditions:

(a)In the case of a full-scale test of a prototype structure,the prototype shall be

accurately measured before testing to determine the dimensional tolerances in all

relevant parts of the structure.The tolerances then specified on the drawings shall

be such that all successive structures shall be in practical conformity with the

prototype.

Where the design is based on failure loads,a load factor of not less than2.0,on the

loads or load combinations in Clause3.3.1shall be used.

Loading devices shall be previously calibrated,and care shall be exercised to ensure

that no artificial restraints are applied to the prototype by the loading systems.

The distribution and durations of forces applied in the test shall be representative of

those to which the structure is deemed to be subjected under this Standard.

(b)In the case where design is based on the testing of a small-scale model structure,the

model shall be constructed with due regard for the principles of dimensional

15AS3990—1993 similarity.The thrusts,moments and deformations under working loads shall be

determined by physical measurements made when the loading is applied to simulate

the conditions assumed in the design of the actual structure.

(c)When it is desired to justify a structure or any of its parts by testing a prototype or

model,prior notice shall be given to the Building Authority,and all the relevant

tests shall be carried out to the satisfaction of the Authority.

3.3OTHER DESIGN CONSIDERATIONS

3.3.1Loading combinations Unless specified in the application Standard, e.g.

AS1418,the load combinations given in this Clause shall apply.A structure or part of a structure shall be so designed that the maximum permissible stress is not exceeded under

any of the following load combinations:

(a)X

D +X

L

;

(b)0.75(X

D +X

L

+X

w

);or

(c)X

D

′+X w′;

where

X

D

=dead load

X

L

=live load

X

w

=wind load

X

w

′=wind load causing stresses of the opposite sign to the dead load

X

D

′=that part of the dead load which cannot be removed from the structure

3.3.2Stability A structure shall comply with the following requirements for stability:

(a)The stability of a structure as a whole and of each part shall be investigated,and

weight and anchorage shall be provided so that the structure or part is in equilibrium for the resultant of—

1.0times the whole of the dead load tending to prevent overturning;

1.2times the dead load,if any,tending to cause overturning;and

1.4times the static-load equivalent of other loads tending to cause overturning.

(b)Due account shall be taken of possible variations in loading during construction and

repair or other temporary conditions,so as to ensure stability at all times.

3.3.3Lateral forces Adequate provision shall be made to resist the lateral forces that can occur during and after erection of a structure.Where the lateral forces cause twisting in a structural frame,provision shall be made to resist all resulting increases in horizontal shear but all resulting decreases in horizontal shear shall be neglected in the design. When considering the effect of lateral forces,proper allowance shall be made for the strength and stiffness of all structural components as follows:

(a)Where structural components such as walls,roofs,floors and other additional

bracing structure are capable of transmitting all lateral forces to the substructure,it shall be deemed that the structural steelwork is not loaded by such forces.

(b)Where these other structural components are strong enough to transmit only part of

the lateral forces to the substructure,the lateral forces shall be distributed through the structural system in accordance with the relative stiffnesses of the frame and other components,and the structural steelwork shall be designed accordingly.

(c)Where resistance to lateral forces provided by other structural components is

obviously low or not ascertainable,the structural steelwork shall be designed to resist all the lateral forces and transmit them to the substructure.

AS3990—199316

3.3.4Lateral restraining systems

3.3.

4.1General Lateral restraints required to act as intermediate lateral restraints for

beams(Clause 5.9.2.2)or to reduce the effective lengths of struts shall meet the requirements of this Clause(3.3.4).

3.3.

4.2Forces A single lateral restraint shall be designed to resist a force of0.025P,in

addition to any other forces to which it may be subjected,where P is the maximum axial force in the critical flange or chord.

3.3.

4.3Stiffness A single lateral restraint shall be designed in such a way that the

transverse deflection of the critical flange or chord at the point being restrained shall not exceed0.0025L,where L is the span of the restrained member(Clause5.8),when subjected to the force of0.025P defined in Clause3.3.4.2.This is equivalent of a minimum force/extension stiffness of10P/L.

3.3.

4.4Multiple restraints When more than one lateral restraint is used and the various

restraints are uniformly distributed along the restrained member,then the force and stiffness requirements defined in Clauses3.3.4.2and3.3.4.3shall be distributed evenly amongst the various restraints;provided that the stiffness of an individual brace shall not be less than4P/l.

3.3.

4.5Parallel restrained members When a series of parallel members are restrained

by a line of restraints,the forces and stiffnesses determined by Clauses3.3.4.2and3.3.4.3 shall be summed for all members and the restraints designed for the total force and stiffness so obtained.However,for seven or more parallel members,only the seven members with the largest P values need be considered.

3.3.

4.6Attachment of restraints Lateral restraints shall be attached to a beam such that

the force defined in Clause3.3.4.2can be transferred and such that the critical flange or chord deflection limit laid down in Clause3.3.4.3is not exceeded.

3.3.

4.7Critical flange or chord The critical flange or chord of a member is that part

which would deflect the furthest during buckling in the absence of the restraint being designed.If an exact analysis is not available this shall be determined as follows:

(a)When adjacent points of load application are restrained,the critical flange or chord

of a beam between such points is the compression flange or chord.

(b)When a point of gravity load application is unrestrained,the critical flange or chord

is the top flange.

(c)When the load is directly due to wind,the critical flange is the windward flange.

3.3.5Deflection Where applicable,reference should be made to the application

Standard, e.g.AS1418,for deflection requirements.Under the most adverse loading conditions,the deflections of neither a structure as a whole,nor any of its parts,shall be such as will impair the strength or serviceability of the structure or part,or lead to damage of other building components,or be unsightly.The responsibility for selecting deflection limits used in design shall rest with the Design Engineer.

NOTE:Guidance on maximum permissible deflections in specific cases is given in Appendix A.

3.3.6Fatigue For members subjected to frequent fluctuations of live load,the

maximum permissible stress range shall be determined in accordance with Appendix B,as appropriate to the number of cycles,the class of constructional details adopted,and the materials used.

17AS3990—1993 3.3.7Corrosion protection Where steelwork in a structure is to be exposed to a corrosive environment,the steelwork shall be given adequate protection against corrosion,

and the Design Engineer shall specify this protection.The degree of protection to be employed shall be determined after consideration has been given to use of the structure, climatic or other local conditions,and maintenance provisions.

NOTE:Recommendations for corrosion protection may be found in AS2312.

3.3.8Brittle fracture Where steelwork in a structure is welded and parts subject to tensile stress may become liable to brittle fracture,an assessment of the required notch toughness of the fabricated steel may be made using the guidance given in Appendix D of

AS1554,Part1.

NOTE:Welded structures of steel to AS3678and AS3679are normally satisfactory but,under certain conditions,parts subjected to tensile stress may become liable to brittle fracture.

This type of failure should be considered possible when there is any combination of low temperatures and the following factors:thick plates or thick sections;reduction in the ductility of the steel connections or details giving rise to severe stress concentrations;or the possibility of undetected defects in welding such as cracks or lack of fusion or root penetration.

Specialist literature dealing with the problem of brittle fracture may also be consulted.(Refer to Welding Technology Institute of Australia Technical Note10‘Fracture Mechanics’.)

AS3990—199318

S E C T I O N4G E O M E T R I C A L P R O P E R T I E S

4.1GENERAL The geometrical properties of the gross and the effective cross-sections

of a member or part of a member,shall be calculated on the following bases:

(a)The properties of the gross cross-section shall be calculated from the specified size

of the member or part.

(b)The properties of the effective cross-section shall be calculated by deducting from

the area of the gross section the following:

(i)The cross-sectional areas of excessive plate widths as given in Clause4.3.

(ii)The sectional areas of all holes in the section,except that for parts in compression,a bolt or rivet hole shall not be a deduction.(See Clause4.4.)

4.2GEOMETRICAL PROPERTIES FOR CALCULATING BENDING STRESSES

It shall be permissible to calculate the bending stresses in a beam or girder by using properties equivalent to those of the effective cross-section.Such equivalent properties shall be obtained by multiplying the properties of the gross cross-section by the ratio of the effective flange cross-sectional area to the gross flange cross-sectional area.

In welded construction the flange cross-sectional area shall be that of the flange plates alone.

In bolted or riveted construction,the cross-sectional area of the flanges shall be taken as the sum of the cross-sectional areas of the flange plates,flange angles and the portion of the web and side plates(if any)between the flange angles.

4.3PLATE THICKNESSES

4.3.1Plate and flange outstands If the projection,b

1,of a plate or flange beyond its

connection to a web,or other line of support or the like,exceeds the relevant values given in(a),(b)and(c)below,the area of the excess flange shall be neglected when calculating the effective geometrical properties of the section.

(a)Flanges and plates in compression with unstiffened edges....256T

1/√F

Y

.

(b)Flanges and plates in compression with stiffened edges....20T

1to the inner face

of the stiffening.

Stiffened flanges shall include flanges composed of channel or I-sections or of plates with continuously stiffened edges.

(c)Flanges and plates in tension....20T

1

.

In this Clause,T

1shall be taken to be the thickness of the plate,irrespective of whether

the plate is a flange or other part of the member.

4.3.2Flanges and plates—Unsupported widths Where a plate is connected to other parts of a built-up member along lines generally parallel to the longitudinal axis of the member,the width,b

2

,(see Clause1.6)shall not exceed the following:

(a)For plates in uniform compression.....

However,where the width exceeds—

for welded plates which are not stress-relieved;

for other plates;or

【文献综述】“对”与“对于”的定量比较

文献综述 汉语言文学 “对”与“对于”的定量比较 介词与名词或名词性短语构成“介宾短语”,表示时间、处所、方式、条件、对象等。“对”与“对于”是介词中用来引出介绍对象的词,在现代汉语中使用的频率相当高,一般人在运用时,常常无法它们之间的微妙区别,不注意两者用法的准确性,用错的情况时有发生,因此,介词“对于”在现代汉语的介词研究中具有重要的意义。 一、“对”的用法: 关于“对”的用法各个学者有着不同的分类角度和结论,主要有以下几种观点:吕叔湘在《现代汉语八百词》中把介词“对”的用法分为了两类,一类是指示动作的对象,表示朝,向,第二类是表示对待,表示人与人、人与事物之间的关系,可用在助动词、副词的前或后,也可用在主语前(有停顿),意思相同。还有一种是固定搭配“对……来说”,表示从某人、某事的角度来看。 张炼强在《汉语学习难点简析》中认为介词“对”表示对待关系,引出对象,他从语义的角度把介词“对”的意义分为四类:一是表示面对,朝向。二是引出动作的受事,三是引出为此涉及的对象。四是指明论断适用的对象,常用“对……来说”,也可以单用“对”。周芍,邵敬敏(2006)与张炼强的分类结论类似,他们认为“对”主要用来引进对象或目标,它引进的对象或目标是多种多样的,而且用法也比较复杂,大致可以分为三个义项,一是“对”引进动作的对象或方向,表示朝向,二是“对”可以表示对待,用在助动词、副词之前或之后,“对”字结构也可用在主语前(有停顿),用法大致同于“对于”,三是“对”还可用来表示从某人、某事的角度来看待,表示评议角度。 李琳莹(1999)分析比较了介词“对”的各个相关义项及其语用差异,根据它的语法意义把它分为四类,当谓语动词表示的是具体的言语行为或动作行为时,“对”介绍出这些行为所面对的对象。当作谓语的动词或形容词表示的是心理活动或情感态度时,介词“对”介绍出这些心理或情感行为的对象。第三种是“对”介绍出句中主要动词表示的行为所针对的对象。当谓语部分是一个表示拍段、描写或叙述的短语或句子时,“对”介绍出判断、描写或叙述出发的角度,引出针对的特定对象。 周培兴在《中学语法疑解》中认为“对”是一个常用介词,它的主要用途是在后

数码管引脚图

七段数码管引脚图 《七段数码管引脚图》 数码管使用条件: a、段及小数点上加限流电阻 b、使用电压:段:根据发光颜色决定;小数点:根据发光颜色决定 c、使用电流:静态:总电流 80mA(每段 10mA);动态:平均电流 4-5mA 峰值电流 100mA 上面这个只是七段数码管引脚图,其中共阳极数码管引脚图和共阴极的是一样的,4位数码管引脚图请在本站搜索我也提供了,有问题请到电子论坛去交流. 数码管使用注意事项说明: (1)数码管表面不要用手触摸,不要用手去弄引角; (2)焊接温度:260度;焊接时间:5S (3)表面有保护膜的产品,可以在使用前撕下来。

这类数码管可以分为共阳极与共阴极两种,共阳极就是把所有LED的阳极连接到共同接点com,而每个LED的阴极分别为a、b、c、d、e、f、g及dp(小数点);共阴极则是把所有LED的阴极连接到共同接点com,而每个LED的阳极分别为a、b、c、d、e、f、g及dp(小数点),如下图所示。图中的8个LED分别与上面那个图中的A~DP各段相对应,通过控制各个LED的亮灭来显示数字。 那么,实际的数码管的引脚是怎样排列的呢?对于单个数码管来说,从它的正面看进去,左下角那个脚为1脚,以逆时针方向依次为1~10脚,左上角那个脚便是10脚了,上面两个图中的数字分别与这10个管脚一一对应。注意,3脚和8脚是连通的,这两个都是公共脚。 还有一种比较常用的是四位数码管,内部的4个数码管共用 a~dp这8根数据线,为人们的使用提供了方便,因为里面有4个数码管,所以它有4个公共端,加上a~dp,共有12个引脚,下面便是一个共阴的四位数码管

关于自我总结与自我鉴定的区别推荐

关于自我总结与自我鉴定的区别推荐自我评价是指被评价者自己参照评价指标体系对自己的活动状况或发展状况进行自我鉴定。 自我鉴定实质上就是评价对象自我认识、自我分析、自我提高的过程。 评价对象积极参与到评价活动中来,不仅有助于评价对象及时发现自己的问题并及时改进,而且有利于消除评价人员与评价对象之间可能出现的对立情绪,使评价结论更容易为评价对象所接受。所以在倡导评价主体之间双向互动、相互理解的当代教育评价中,自我评价越来越为人们所重视,特别是在以发现学生的问题、寻找解决问题的方法、促进学生的发展为根本目的的形成性评价中,自我评价显得更为重要。但是,由于自我评价一般没有一个客观的统一标准,其主观性比较强,容易出现对成绩或问题估计过高或过低的现象。这是自我评价的突出缺点。因此,开展自我评价时要特别注意对自我评价者的引导,并把自我评价与他人评价有机地结合起来。这样有利于学习和自我我认识! 个人工作总结及自我鉴定 我于XX年7月加入宝钢集团八钢股份有限公司,在近一年半的工作中我热衷本职工作,严格要求自己,摆正工作位置,时刻保持“谦虚”、“谨慎”、“律己”的态度,在领导的关心栽培和同事们的帮助支持下, 始终勤奋学习、积极进

取,努力提高自我,始终勤奋工作,认真完成任务,履行好岗位职责,各方面表现优异,得到了领导和同事们的肯定。通过自身的不断努力,无论是思想上、学习上还是工作上,都取得了长足的发展和巨大的收获。通过这一年的工作与学习,使我认识到一名合格技术员的成长是一个前景光明、充满希望同时又需要付出努力和心血的过程,也是一个需要不断完善不断发展的长期的过程。以下是我在这一年的工作总结及自我鉴定: 一、严于律己,自觉加强党性锻炼,政治思想觉悟得到提高 思想是行动的指南,一个人如果想把工作做好,就必须先树立自己的工作思维。作为一名非党员,我积极要求加入党组织,于XX年8月上交了入党申请书,现已是一名入党积极分子。日常工作中我严格要求自己,自觉接受党员和同事们的监督和帮助,坚持不懈地克服自身的缺点,弥补自己的不足。始终坚持运用马克思列宁主义的立场、观点和方法论,坚持正确的世界观、人生观、价值观,并用以指导自己的学习、工作和生活实践。同时积极主动的了解国家大事,认真学习党的各项新方针、新政策,不断的提升自己的党性修养,与党保持一致;作为公司的一员,我认真的学习和渗透公司的主流文化思想,并将其运用到实际工作中,与公司保持一致。

四位共阴和共阳数码管的引脚介绍及检测方法概括

内部的四个数码管共用a~dp这8根数据线,为人们的使用提供了方便,因为里面有四个数码管,所以它有四个公共端,加上a~dp,共有12个引脚,下面便是一个共阴的四位数码管的内部结构图(共阳的与之相反)。引脚排列依然是从左下角的那个脚(1脚)开始,以逆时针方向依次为1~12脚,下图中的数字与之一一对应。 数码管使用条件: a、段及小数点上加限流电阻 b、使用电压:段:根据发光颜色决定;小数点:根据发光颜色决定 c、使用电流:静态:总电流 80mA(每段 10mA);动态:平均电流 4-5mA 峰值电流 100mA

上面这个只是七段数码管引脚图,其中共阳极数码管引脚图和共阴极的是一样的,4位数码管引脚图请在本站搜索我也提供了数码管使用注意事项说明: (1)数码管表面不要用手触摸,不要用手去弄引角; (2)焊接温度:260度;焊接时间:5S (3)表面有保护膜的产品,可以在使用前撕下来。 数码管测试方法与数字显示译码表

ARK SM410501K SM420501K 数码管引脚图判断 数码管识别 ARK SM410501K 共阳极数码管 ARK SM420501K 共阴极数码管 到百度搜索下,这两种数码管只有销售商,并无引脚图。 对于判断引脚,对于老手来说,很简单,可是对于新手来讲,这是件很难的事情,因为共阴、 共阳表示的含义可能还不太懂 ZG工作室只是将该数码管的引脚图给出,并让大家一起分享。 注:SM410501K 和SM420501K 的引脚排列是一模一样的。 这张图很明确给出该数码管的引脚排列。 数字一面朝向自己,小数点在下。左下方第一个引脚为1、右下方第二个引脚为5,右上方第一个引脚为6。见图所示。 其中PROTEL图中K 表示共阴、A表示共阳。 能显示字符的LED数码管(三) 常用LED数码管的引脚排列图和内部电路图 CPS05011AR(1位共阴/红色 0.5英寸)、SM420501K(红色 0.5英寸)、 SM620501(蓝色0.5英寸)、SM820501(绿色0.5英寸)

because,since,as,for的用法区别

because、since、as、for的用法区别 because、since、as、for这几个词都是表示“原因”的连词,语气由强至弱依次为:because→since→as→for。其中because、since和as均为从属连词,引导原因状语从句;而for是并列连词,引导并列句。 ?because because表示直接原因,它所指的原因通常是听话人所不知道的,其语气最强。常用来回答why的提问,一般放在主句之后,也可以单独存在例如: (1)Istayed at home because it rained. 因为下雨,我呆在家里。 (2)B ecause Lingling was ill, she didn’t come to school. 玲玲因为生病,没有上学。 (3)—Why is she absent? 她为什么缺席? —Because she is sick. 因为她病了。 (4)此外,在强调句型中只能用because。例如, It was because I missed the early bus that I was late for school. 我上学迟到是因为我错过了早班车。 ?since since侧重主句,从句表示显然的或已为人所知的理由,常译为“因为、既然”,语气比because稍弱,通常置于句首,表示一种含有勉强语气的原因。例如: (1)Si nce he asks you, you’ll tell him why. 他既然问你了,那就告诉他为什么吧。 (2)Si nce everyone is here, let’s start. 既然大家都到齐了,我们就是出发吧。 (3)Since I understood very little Japanese, I c ouldn’t follow the conversation. 我日语懂得不多,因而听不懂对话。 ?as as是常用词,它表示的“原因”是双方已知的事实或显而易见的原因,由于理由不是很重要,含义与since相同,但语气更弱,没有since正式,常译为“由于,鉴于”。从句说明原因,主句说明结果,主从并重。例如:

摄像头接口分类及

摄像头接口分类及基础知识

一、Camera 工作原理介绍 1.结构 2.工作原理 外部光线穿过 lens 后,经过 color filter 滤波后照射到 Sensor 面上, Sensor 将从 le ns 上传导过来的光线转换为电信号,再通过内部的 AD 转换为数字信号。如果 Sensor 没有集成 DSP,则通过 DVP 的方式传输到 baseband,此时的数据格式是 RAW DATA。如果集成了 DS P, RAW DATA 数据经过 AWB、则 color matr ix、 lens shading、 gamma、 sharpness、 A E 和 de-noise 处理,后输出 YUV 或者 RGB 格式的数据。 最后会由 CPU 送到 framebuffer 中进行显示,这样我们就看到 camera 拍摄到的景象了。3. YUV 与 YCbCr . 一般来说,camera 主要是由lens 和 senso r IC 两部分组成,其中有的 sensor IC 集成了 DSP,有的没有集成,但也需要外部 DSP 处

理。细分的来讲,camera 设备由下边几部分构成: 1) lens(镜头)一般 camera 的镜头结构是有几片透镜组成,分有塑胶透镜(Plastic)和玻璃透镜(Glass) ,通常镜头结构有:1P,2 P,1G1P,1G3P,2G2P,4G 等。 2) sensor(图像传感器) Senor 是一种半导体芯片,有两种类型:CCD(Charge Coupled Device)即电荷耦合器件的缩写和 CMOS(Co mplementary Metal-Oxide Semiconductor)互补金属氧化物半导体。Sensor 将从 lens 上传导过来的光线转换为电信号,再通过内部的AD 转换为数字信号。由于 Sensor 的每个 pi xel 只能感光 R 光或者 B 光或者 G 光,因此每个像素此时存贮的是单色的,我们称之为 R AW DATA 数据。要想将每个像素的 RAW DATA 数据还原成三基色,就需要 ISP 来处理。 注:

七段数码管引脚图

由于很多多都需要这个数码管引脚图,于是今天专门用qq截了图,请大家记好引角的顺序 《七段数码管引脚图》 数码管使用条件: a、段及小数点上加限流电阻 b、使用电压:段:根据发光颜色决定;小数点:根据发光颜色决定 c、使用电流:静态:总电流 80mA(每段 10mA);动态:平均电流 4-5mA 峰值电流 100mA 上面这个只是七段数码管引脚图,其中共阳极数码管引脚图和共阴极的是一样的,4位数码管引脚图请在本站搜索我也提供了数码管使用注意事项说明: (1)数码管表面不要用手触摸,不要用手去弄引角; (2)焊接温度:260度;焊接时间:5S (3)表面有保护膜的产品,可以在使用前撕下来。 数码管测试方法与数字显示译码表

图 三、测试:同测试普通半导体二极管一样。注意!万用表应放在R×10K档,因为R×1K档测不出数码管的正反向电阻值。对于共阴极的数码管,红表笔接数码管的“-”,黑表笔分别接其他各脚。测共阳极的数码管时,黑表笔接数码管的vDD,红表笔接其他各脚。另一种测试法,用两节一号电池串联,对于共阴极的数码管,电池的负极接数码管的“-”,电池的正极分别接其他各脚。对于共阳极的数码管,电池的正极接数码管的VDD,电池的负极分别接其他各脚,看各段是否点亮。对于不明型号不知管脚排列的数码管,用第一种方法找到共用点,用第二种方法测试出各笔段a-g、Dp、H等。 uchar bit_secl=0x01; for(n=0;n<8;n++) //显示数字 {P0=bit_secl; P2=0x03;

delay_ms(1500); } return; } void display4(void) {uchar n; uchar bit_secl=0x01; for(n=0;n<8;n++) //显示数字{P0=bit_secl; P2=0x04; bit_secl=bit_secl<<1; delay_ms(1500); } return; } void display5(void) {uchar n; uchar bit_secl=0x01; for(n=0;n<8;n++) //显示数字{P0=bit_secl; P2=0x05; bit_secl=bit_secl<<1; delay_ms(1500); } return; } void display6(void) {uchar n; uchar bit_secl=0x01; for(n=0;n<8;n++) //显示数字{P0=bit_secl; P2=0x06; bit_secl=bit_secl<<1; delay_ms(1500); } return; } void display7(void) {uchar n; uchar bit_secl=0x01; for(n=0;n<8;n++) //显示数字{P0=bit_secl; P2=0x07;

because, since, as与for用法辨析

because, since, as与for用法辨析 1. because的用法 because语气最强,表示直接原因,可用于回答 why 提出的问题、引导表语从句、用于强调句等,而其余三者均不行。如: A:Why didn’t she come? 她为什么没来? B:Because she was very busy. 因为她很忙。 It is because he is clever that I like him. 是因为他聪明我才喜欢他。 2. since与as 两者所表示的原因都是人们已知的,即对已知事实提供理由,而不是表示直接原因。since 比 as 语气稍强,且比 as 略为正式,它们引导的从句通常放在主句之前,有时也放在主句之后。如: As you weren’t there, I left a message. 由于你不在那儿,我留了个口信。 Since you’ve been here a w hile, you might as well stay. 既然你已经来了一段时间,就不妨继续待下去。 另外,since 可用于省略句,而其他三者不行。如: Since so, I have nothing to say. 既然如此,我无话可说。 3. for的用法

for是并列连词,而其余三者为从属连词。for有时可表示因果关系(通常要放在主句之后,且可与 because 换用);有时不表示因果关系,而是对前面分句内容的解释或推断(也要放在主句之后,但不能与because 换用)。比较: The ground is wet,for (=because) it rained last night. 地面是湿的,因为昨晚下过雨。 It must have rained last night,for the ground is wet this morning. 昨晚一定下过雨,你看今天早上地面是湿的。 (此句不能用 because 代 for) 英语微信群是目前学习英语最有效的方法,群里都是说英语,没有半个中文,而且规则非常严格,是一个超级不错的英语学习环境,群里有好多英语超好的超牛逼的人,还有鬼佬和外国美眉。其实坦白说,如果自己一个人学习英语太孤独,太寂寞,没有办法坚持,好几次都会半途而废。只要你加入到那个群里以后,自己就会每天都能在群里坚持学,坚持不停地说和练,由于是付费群,群里的成员学习氛围非常强,每天的训练度都非常猛,本来很懒惰的你一下子就被感染了,不由自主地被带动起来参与操练,不好意思偷懒,别人的刻苦学习精神会不知不觉影响你,EYC英语微信群(群主vx 601332975)可以彻底治好你的拖延症,里面学员都非常友好,总是给你不断的帮助和鼓励,让你学英语的路上重新燃起了斗志,因为每天都在运用,你的英语口语就能得到了迅猛的提升,现在可以随便给一个话题,都能用英文滔滔不绝的发表5分钟以上对这个话题的看法和观点,想提高英语口语的可以加入进来,It really works very well.

常用摄像机的分类

常用摄像机的分类 根据不同感光芯片划分 我们知道感光芯片是摄像机的核心部件,目前摄像机常用的感光芯片有ccd和cmos 两种: 1.ccd摄像机,ccd称为电荷耦合器件,ccd实际上只是一个把从图像半导体中出来的电子有组织地储存起来的方法。 2.cmos摄像机,cmos称为“互补金属氧化物半导体”,cmos实际上只是将晶体管放在硅块上的技术,没有更多的含义。 尽管ccd表示“电荷耦合器件”而cmos表示“互补金属氧化物半导体”,但是不论ccd或者cmos对于图像感应都没有用,真正感应的传感器称做“图像半导体”,ccd和cmos传感器实际使用的都是同一种传感器“图像半导体”,图像半导体是一个p n结合半导体,能够转换光线的光子爆炸结合处成为成比例数量的电子。电子的数量被计算信号的电压,光线进入图像半导体得越多,电子产生的也越多,从传感器输出的电压也越高。 因为人眼能看到1lux照度(满月的夜晚)以下的目标,ccd传感器通常能看到的照度范围在0.1~3lux,是cmos传感器感光度的3到10倍,所以目前一般ccd摄像机的图像质量要优于cmos摄像机。 cmos可以将光敏元件、放大器、a/d转换器、存储器、数字信号处理器和计算机接口控制电路集成在一块硅片上,具有结构简单、处理功能多、速度快、耗电低、成本低等特点。cmos摄像机存在成像质量差、像敏单元尺寸小、填充率低等问题,1989年后出现了“有源像敏单元”结构,不仅有光敏元件和像敏单元的寻址开关,而且还有信号放大和处理等电路,提高了光电灵敏度、减小了噪声,扩大了动态范围,使得一些参数与ccd摄像机相近,而在功能、功耗、尺寸和价格方面要优于ccd,逐步得到广泛的应用。cmos传感器可以做得非常大并有和ccd传感器同样的感光度,因此非常适用于特殊应用。cmos传感器不需要复杂的处理过程,直接将图像半导体产生的电子转变成电压信号,因此就非常快,这个优点使得cmos传感器对于高帧摄像机非常有用,高帧速度能达到400到100000帧/秒。 按输出图像信号格式划分 模拟摄像机 模拟摄像机所输出的信号形式为标准的模拟量视频信号,需要配专用的图像采集卡才能转化为计算机可以处理的数字信息。模拟摄像机一般用于电视摄像和监控领域,具有通

大学英语四级基础复习讲义.pdf

plete 指完成一件指派或预定的任务,或完 善、完整未完成的部分 gain 指需要做出比 obtain 更大的努力,往往指通过竞争获得某些有价值的东西obtain 指经过努力或付出代价或经过很长时间儿得到所需要的东西end 指一个动作或一件事情的结束或终止 finish 指把一件事或一个动作做完,强调 事情的了结、终止 7、4 、 accurate , correct , delicate , exact,precise 都含有一定的"正确,精确" 之意 acknowledge,admit,concede,confess,rec ognize 都含有一定的"承认"之意acknowledge 着重”公开承认”,常用来指过去曾隐瞒或否认的事accurate 准确的,精确的,指某人或某事 不仅不出错,而且与事实无出入,强调准 确性 admit 是指在压力下不得不承认已经证实或难以否认的事实,招供(事实,错误等)concede(不情愿地)承认,(在结果确定前)承认失败correct 正确的,指某人或某事合乎事实或 公认的标准或规则,没有错误 delicate 精美、精细的、雅致的 exact 确切的、精确的,语气较 accurate 强, 指某人或某事数量或质量完全符合事实或 标准,而且在细致末节上也丝毫不差 precise 精密的,指具有高度的精确性和准 确性,强调范围界限的鲜明性或细节的精密, 有时略带"吹毛求疵"的贬义 confess 着重承认自己的过错或罪恶recognize 指正式承认主权、权利等8、affirm,assert,allege,claim 都含有一定的"宣称,断言"之意affirm 断言,肯定,指根据事实坚定不移地宣称,有无可争辩之意assert 宣称,坚持,指不管事实如何,主观自信地宣称5、accuse,charge,indict 都含有一定的 "指控,控告"之意 allege 宣称,断定,指在无真实根据情况下宣称,硬说accuseaccusesb.ofdoingsth. 为 … 指 责 某 人,控告某人 claim 声称,主张,往往表示说话者反对或不同意某一观点chargechargesb.withdoingsth. 指 控 某 人… 英语四级温习资料 2(2006-12-1116:02:10)分类:大学英语四六级温习资料征服大学英语四级考试(阅读篇)(一)存在问题6、achieve,acquire,attain,gain,obtain 都含有一定的"获得,达到"之意 achieve 强调由于极大的努力,克服困难后 达到目标 第一,读不懂acquire 指经过不懈努力才获得的技术,知 识等抽象的东西,也指养成习惯等 attain 正式用语,指经过艰苦努力才使人达 到完美境地所谓读不懂,就是考生拿过文章,满头雾水,即使硬着头皮读文章,也是一知半解。然后匆忙做体,仅凭感觉去蒙,因此做体准确率必然不高。

摄像机类型与功能

摄像机类型与功能 电视监控系统的前端设备主要包括了:摄像机、镜头、云台、防护罩、支架、控制解码器、射灯等; 1:摄像机的选择 如果监视目标照度不高,对监视图像清晰度要求较高时,宜选用黑白CCD摄像机; 如果要求彩色监视时,因考虑加辅助照明装置或选用彩色�;黑白自动转换的CCD摄像机,这种摄像机当监视目标照度不能满足彩色摄像机要求时自动转化黑白摄像。 1>彩色摄像机:适用于景物细部辨别,信息量一般是黑白摄像机的10倍 2>黑白摄像机:适用于管线不住地区及夜间无法安装照明设备的地区 2:摄像机功能和工作原理 1>分辨率:表示摄像机分配率图像细节的能力,通常用电视线TVL表示,黑白摄像机水平清晰度一般选择450TVL左右; (1)25万像素左右,彩色分辨率为330线、黑白分配率420线左右的低档型; (2)25~38万像素之间,彩色分配率为420线,黑白分配率在500线上下的中档型 (3)38万以上,彩色分配率大于或者等于480线、黑白分配率,570线以上的高分配率2>灵敏度:在镜头光圈大小一定的情况下,获取规定信号电平所需要的最低靶面照度。 (1)普通型:正常工作所需照度为1~31 ux (2)月光型:正常工作所需照度为 0.1 lux左右 (3)星光型:正常工作所需照度为0.01 lux以下 (4)红外照明型:原则上可以为零照度,采用红外光源成像 3>信噪比:视频信号电平与噪声平之比,衡量摄像机质量的重要指标; 信噪比越高,图像越干净,质量就越高,通常在45~55dB之间; 4>工作温度:-10~+50dB是绝大多数摄像机生产厂家的温度指标 5>电源电压:国外摄像机交流电压适应范围是198~264V抗电源电压变化能力较强,国内摄像机交流电压适应范围一般是200~240,抗电源电压变化能力较弱;

对于各种不同的人的激励

案例一对于各种不同的人的激励 下面是对几个不同的管理对象的简单描述,请仔细阅读他们的情况并根据所学理论回答后面的问题: 1、王春华是一个大制药公司的销售代表。他的工作包括走访医生以推销公司的成方药品。他现年27岁,已婚,有一个孩子。他获有大学的企业管理学位,他在该公司已工作五年,年薪约12万人民币。 2、庄小蝶是个某医院儿科护士长。现年29岁,已婚,有两个孩子。她目前正在争取硕士学位。在医生中她的名声很好,大家都认为她是一位很能干的护士。她的年薪约7万人民币。 3、李东是国内一家最大的快餐食品专利制造商的营业部副主任。现年51岁,与配偶离婚,现有一个孩子正在上大学。他已在这个公司工作九年,年薪约30万人民币。他是该公司分享红利的高级管理人员之一。 4、周越民是一家大联营超级市场的兼职(非全日)雇员,现年26岁,退役军人。入伍前和退役后都一直为这个公司服务。他是一个重要的雇员,每小时工资约8元人民币。他现在还在一个当地大学里学习,目前再有12个学时他即将完成他的商业管理学位的学习。 5、苏灿是一家新航天工业公司的市场开发部的副经理。今年25岁,未婚,聪明伶俐,热情而又精力充沛,是“新型妇女”的代表。年薪约11万人民币,她即将完成硕士学位的学习。 6、张伟是一家属于14家联营的廉价餐馆的副经理,25岁,未婚,读过三年大学。他每周工作六天,周薪1200人民币。另外,他每年还将从家里的一笔遗产中得到约2万人民币的收入。 7、徐莉是一个大学校长的行政助理,现年31岁,单身,曾受过一年秘书训练。她的职责包括:在学位要求方面给学生以顾问,监督和保管学生档案。她的年收入约为5万人民币。她已在这这所大学工作12年了,开始时为打字员。 8、梅川是化学研究人员,在国家最大的化学公司中工作。四年前他从一个重点大学毕业后就到这个公司来工作。现年26岁,目前他的年薪约为7万人民币。两个月后他即将结婚。 9、从辉是一座办公大楼的由16人组成的夜间清扫队的监督员。他任监督员已有两年的时间了,在被提升到目前职位之前,他曾干过11年各种清扫工作。从辉今年44岁,已婚,有两个孩子。他的年薪约为3万人民币。他每周有三天要在本地一家医院任临时清扫工。 10、夏斌博士是一个著名大学的历史学教授。他在有声望的专业刊物上发表过一些文章,

数码管引脚图(常用)

由于很多多都需要这个数码管引脚图,下边介绍几种常用的二极管数码管引脚 《七段数码管引脚图》 数码管使用条件: a、段及小数点上加限流电阻 b、使用电压:段:根据发光颜色决定;小数点:根据发光颜色决定 c、使用电流:静态:总电流 80mA(每段 10mA);动态:平均电流 4-5mA 峰值电流 100mA 上面这个只是七段数码管引脚图,其中共阳极数码管引脚图和共阴极的是一样的,4位数码管引脚图请在本站搜索我也提供了数码管使用注意事项说明: (1)数码管表面不要用手触摸,不要用手去弄引角; (2)焊接温度:260度;焊接时间:5S (3)表面有保护膜的产品,可以在使用前撕下来。 数码管测试方法与数字显示译码表

图 三、测试:同测试普通半导体二极管一样。注意!万用表应放在R×10K档,因为R×1K档测不出数码管的正反向电阻值。对于共阴极的数码管,红表笔接数码管的“-”,黑表笔分别接其他各脚。测共阳极的数码管时,黑表笔接数码管的vDD,红表笔接其他各脚。另一种测试法,用两节一号电池串联,对于共阴极的数码管,电池的负极接数码管的“-”,电池的正极分别接其他各脚。对于共阳极的数码管,电池的正极接数码管的VDD,电池的负极分别接其他各脚,看各段是否点亮。对于不明型号不知管脚排列的数码管,用第一种方法找到共用点,用第二种方法测试出各笔段a-g、Dp、H等。 数码管引脚图,一般都是一样的。

数字对应数码管显示控制转换字节 (共阴编码) 显示--HGFE,DCBA--编码 0 --0011,1111--0x3F; 1 --0000,0110--0x06; 2 --0101,1011--0x5B; 3 --0100,1111--0x4F; 4 --0110,0110--0x66; 5 --0110,1101--0x6D; 6 --0111,1101--0x7D; 7 --0000,0111--0x07; 8 --0111,1111--0x7F; 9 --0110,1111--0x6F; 共阳为编码取反即可, 接线为高低端口对应接法。 备注:第一脚的识别很简单,看管脚的底部,有一个方块型的就是第一脚。或者正面(就是显示那面)超你,左下角第一个为第一脚。

英语连接词大全

英语连接词大全 ( 转) 英语写作中常见问题就是如何连接各个句子,使之能够流畅地承上启下,更顺畅地表达出自己的观点。 这份连接词大全,提供了常用、常见的连接词,方便大家在学习、工作上的使用。建议分享收藏,以便需要时可以拿出来用噢~ 1)先后次序关系: atthistime;first;second;atlast;next;previously;simultaneously同时地;eventually;lastbutnotleast;tobeginwith;tostartwith;toendwith;finally;seeing...由于,因为;sincethen;firstofall;afterwards后来;followingthis;preceding先前的;originally最初的ultimate最终的,极限的,根本的 2)因果关系: because;becauseofthis;beingthat(口语)既然,因为;anotherimportantfactor/reasonof...;since;as;for;inthat...;owingto由于,通常负面;dueto由于;forthereasonthat...;inviewof 鉴于,考虑到resultfrom归因于thereasonseemstobeobvious;thereareabout...;forthisreason;asaresultofthis;therefore;...andso...;consequently所以,因此;asaresult;thus 这样,如此,因而;hence因此;so;sothat...;inconsequence结果,结果;asaconsequence;accordingly因此,于是,相应地;inevitably不可避免地;undertheseconditionsthereupon因此于 是upon迫近 3)转折关系: but;evenso;however;though;eventhough;independentof;recklessof不顾;despitethat;inspiteofthat;regardlessof不顾;yet...;andyet;butunless.Nonetheless尽管如此 4)并列关系: and;also;too;aswellas;either...,or...;both...and... 5)(补充)递进关系: furthermore此外,而且;moreover而且,此外;further进一步地,此外;Inthisway;still;notonly...butalso...;not...but...;inaddition(to); additionally,muchmoreinteresting,morespecifically更具体地说,next,besides;asfaras...isconcerned 至于;moreover此外;inotherwords; alongthislineofconsideration;on(the)onehand...在一方面,ontheotherhand...;even;asasayinggoes...;inordertodoit...;meanwhile同时;atthesametime;accordingly因此;Inthefirstplace...,inthesecondplace...;equallyimportant;ofevengreaterappeal. 6)比较关系: similarly;inlikemanner,incomparisonwith;whencomparedwith;comparedwith;wheninfact...;like...;likewise同样地,也;similarlyimportant; apartfrom(doing)...;...ratherthan...,bydoingso;both…and...;inthesameway;notonly...but(also). 7)对照(不同点):

关于差别的说说

关于差别的说说 1、不是重不重要,而是差别太大 2、我一米六,你一米九,差别不就弯个腰翘个脚? 3、我们两者间,一个主动,一个被动,差别多大只是差一个字罢了,但差别更大的是你我。 4、活或死只有两者差别但是你如果选错了那就无法挽回 5、虚假和真实的差别在于——游戏中我敢屡败屡战,现实中我没有勇气挑战,因为没有重头再来的机会!——pls 6、有时候心酸一次次欠意,只能在这说了,我对不起你们你是工作累还是什么,担心吧,反正也不差别人嘴巴的虚伪二字 7、夏悦悦:编辑过得情话与谎言有何差别 8、不去保护该保护的东西而苟延残喘的或者,就跟死了没什么差别,一旦决定要保护的东西,无论如何都要保护到底 9、我要离开了,我的一个男闺蜜费尽心思逗我开心,可我的男朋友却不闻不问,呵呵,也许这就是差别。 10、我和特仑苏的差别就是!我的纯度低,特仑苏的纯度高! 11、我和你的差别应该就是在玩捉迷藏的时候吧我找不到你会担心而你找不到我你会回家 12、什么圣诞节!跟平常时一样没什么差别。 13、女神是在男人堆里打滚像我这种屌丝只能在女人堆里打滚

你妈的这就是差别 14、现实中的生活,总与理想的生活有着巨大的差别 15、你受伤我安慰!我伤心你不造!你回头我转身!我离开你不挽!这就是我们之间的差别!爱与被爱的差别! 16、错与对,又有什么差别,反正都要自己一个承受。 17、怎样的我能够让你更想念雨要多大天要多黑才能够有你的体贴其实没有我你分不出那些差别 18、过节和平常没神魔差别,只是对我们这些上班的人来说、 19、没有我你的生活哪有差别 20、你发个嗯我还是继续回你我发个嗯就再也没有回复这就是爱和被爱的差别 21、为什么儿媳与闺女的差别那么大,悲催。 22、过几天就是我与学霸奋斗几个月的成绩的差别了,有点小害羞i。 23、这世界最公平的事就是每个人都会死差别只在于早和晚对吗 24、新欢跟旧爱的差别就是新欢玩的是旧爱剩下的狗 25、[谁叫你还搞不清楚我跟你的差别.] 26、梦想与现实间的差别尽如此之大 27、诺言和谎言只有一个字的差别 28、- 不清楚白天黑夜的差别不相信有你陪的那些年不澄清为你笑的每一回不回忆和你流的每一滴泪。

扫盲7--安防摄像头6mm与3mm镜头的差异

安防摄像头6mm与3mm镜头的差异 差异肯定是有的,具体如下: 摄像机镜头是视频监视系统的最关键设备,它的质量(指标)优劣直接影响摄像机的整机指标,因此,摄像机镜头的选择是否恰当既关系到系统质量,又关系到工程造价。 镜头相当于人眼的晶状体,如果没有晶状体,人眼看不到任何物体;如果没有镜头,那么摄像头所输出的图像就是白茫茫的一片,没有清晰的图像输出,这与我们家用摄像机和照相机的原理是一致的。当人眼的肌肉无法将晶状体拉伸至正常位置时,也就是人们常说的近视眼,眼前的景物就变得模糊不清;摄像头与镜头的配合也有类似现象,当图像变得不清楚时,可以调整摄像头的后焦点,改变CCD芯片与镜头基准面的距离(相当于调整人眼晶状体的位置),可以将模糊的图像变得清晰。由此可见,镜头在闭路监控系统中的作用是非常重要的。工程设计人员和施工人员都要经常与镜头打交道: 设计人员要根据物距、成像大小计算镜头焦距,施工人员经常进行现场调试,其中一部分就是把镜头调整到最佳状态。 1、镜头的分类 按外形功能分按尺寸大小分按光圈分按变焦类型分按焦距长矩分球面镜头1 ” 25mm自动光圈电动变焦长焦距镜头 非球面镜头手动变焦标准镜头 针孔镜头固定焦距xx 鱼眼镜头 (1)以镜头安装分类所有的摄象机镜头均是螺纹口的,CCD摄象机的镜头安装有两种工业标准,即C安装座和CS安装座。两者螺纹部分相同,但两者从镜头到感光表面的距离不同。

C安装座: 从镜头安装基准面到焦点的距离是 17.526mm。CS安装座: 特种C安装,此时应将摄象机前部的垫圈取下再安装镜头。其镜头安装基准面到焦点的距离是 12.5mm。如果要将一个C安装座镜头安装到一个CS安装座摄象机上时,则需要使用镜头转换器。 (2)以摄象机镜头规格分类摄象机镜头规格应视摄象机的CCD尺寸而定,两者应相对应。 即摄象机的CCD靶面大小为1/2英寸时,镜头应选1/2英寸。摄象机的CCD靶面大小为1/3英寸时,镜头应选1/3英寸。摄象机的CCD靶面大小为1/4英寸时,镜头应选1/4英寸。如果镜头尺寸与摄象机CCD靶面尺寸不一致时,观察角度将不符合设计要求,或者发生画面在焦点以外等问题。 (3)以镜头光圈分类镜头有手动光圈(manualiris)和自动光圈(autoiris)之分,配合摄象机使用,手动光圈镜头适合于亮度不变的应用场合,自动光圈镜头因亮度变更时其光圈亦作自动调整,故适用亮度变化的场合。自动光圈镜头有两类: 一类是将一个视频信号及电源从摄象机输送到透镜来控制镜头上的光圈,称为视频输入型,另一类则利用摄象机上的直流电压来直接控制光圈,称为DC 输入型。自动光圈镜头上的ALC(自动镜头控制)调整用于设定测光系统,可以整个画面的平均亮度,也可以画面中最亮部分(峰值)来设定基准信号强度,供给自动光圈调整使用。一般而言,ALC已在出厂时经过设定,可不作调整,但是对于拍摄景物中包含有一个亮度极高的目标时,明亮目标物之影像可能会造成"白电平削波"现象,而使得全部屏幕变成白色,此时可以调节ALC来变换画面。另外,自动光圈镜头装有光圈环,转动光圈环时,通过镜头的光通量会发生变化,光通量即光圈,一般用F表示,其取值为镜头焦距与镜头通光口径之比,即:

最全四位七段数码管引脚图、公共脚

最全四位七段数码管引脚图、公共脚 数码管在现在的自动控制中的显示应用极为广泛,由于使用时间的问题会导致缺画的现象发生,为了便于大家更好找到合适的数码管进行更换,特给大家详细介绍 《七段数码管实物图》

数码管使用条件: a、段及小数点上加限流电阻 b、使用电压:段:根据发光颜色决定;小数点:根据发光颜色决定 c、使用电流:静态:总电流 80mA(每段 10mA);动态:平均电流 4-5mA 峰值电流 100mA 上面这个只是七段数码管引脚图,其中共阳极数码管引脚图和共阴极的是一样的,4位数码管引脚图请在本站搜索我也提供了数码管使用注意事项说明: (1)数码管表面不要用手触摸,不要用手去弄引角; (2)焊接温度:260度;焊接时间:5S (3)表面有保护膜的产品,可以在使用前撕下来。

一种四位双排引脚共阴(阳)脚位图

常见的四位双排引脚共阴(阳)脚位图 单排四位双排引脚共阴(阳)脚位图 国内外生产LED数码管的公司很多,命名方法也各不相同。下面主要介绍国产LED数码管和立得公司的LED数码管的命名方法,因为市面上这两中型号的数码管销售的最多。 国产LED数码管型号命名方法为: 示例:BS12.7R-1表示字高为12.7mm,红色,共阳极数码管。字串3 立得公司的LED数码管的命名方法为: 其中,A:极性;B:字高;C:发光颜色;D:位数;E:高效率,红;F:其它。字串2 极性:字串1 LA:共阳(单);LC:共阴(单);LD:共阳(双);LE:共阴(双);LN:共阳(加大);LM:共阴(加大)。

发光颜色: 1:红色(红底);2:绿色;3:黄色;4:橙色;5:红色;6:红色(高效率)。 位数: 1:(单位);2:(双位);3:(三位) 上图是字高为0.8英寸的四位共阳极双排12脚数码管,四个公共脚为,6、8、9、12 上图是字高为0.52英寸的四位共阳极双排12脚数码管,四个公共脚为2、3、6、10数码管测试方法与数字显示译码表

while、when和as的用法区别

as when while 的区别和用法 as when while的用法 一、as的意思是“正当……时候”,它既可表示一个具体的时间点,也可以表示一段时间。as可表示主句和从句的动作同时发生或同时持续,即“点点重合”“线线重合”;又可表示一个动作发生在另一个动作的持续过程中,即“点线重合”, 但不能表示两个动作一前一后发生。如果主句和从句的谓语动词都表示持续性的动作,二者均可用进行时,也可以一个用进行时,一个用一般时或者都用一般时。 1、As I got on the bus,he got off. 我上车,他下车。(点点重合)两个动作都是非延续性的 2、He was writing as I was reading. 我看书时,他在写字。(线线重合)两个动作都是延续性的 3、The students were talking as the teacher came in. 老师进来时,学生们正在讲话。(点线重合)前一个动作是延续性的,而后一个动作时非延续性的 二、while的意思是“在……同时(at the same time that )”“在……期间(for as long as, during the time that)”。从while的本身词义来看,它只能表示一段时间,不能表示具体的时间点。在时间上可以是“线线重合”或“点线重合”,但不能表示“点点重合”。例如: 1、He was watching TV while she was cooking. 她做饭时,他在看电视。(线线重合) 2、He was waiting for me while I was working. 我工作的时候,他正等着我。(线线重合) 3、He asked me a question while I was speaking. 我在讲话时,他问了我一个问题。(点线重合)

相关文档
最新文档