LMS算法在舰船磁场信号检测中的应用

LMS算法在舰船磁场信号检测中的应用
LMS算法在舰船磁场信号检测中的应用

随机信号分析实验报告

一、实验名称 微弱信号的检测提取及分析方法 二、实验目的 1.了解随机信号分析理论如何在实践中应用 2.了解随机信号自身的特性,包括均值、方差、相关函数、频谱及功率谱密度等 3.掌握随机信号的检测及分析方法 三、实验原理 1.随机信号的分析方法 在信号与系统中,我们把信号分为确知信号和随机信号。其中随机信号无确定的变化规律,需要用统计特新进行分析。这里我们引入随机过程的概念,所谓随机过程就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。 随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,他们能够对随机过程作完整的描述。但由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。本实验中算法都是一种估算法,条件是N要足够大。 2.微弱随机信号的检测及提取方法 因为噪声总会影响信号检测的结果,所以信号检测是信号处理的重要内容之一,低信噪比下的信号检测是目前检测领域的热点,而强噪声背景下的微弱信号提取又是信号检测的难点。 噪声主要来自于检测系统本身的电子电路和系统外空间高频电磁场干扰等,通常从以下两种不同途径来解决 ①降低系统的噪声,使被测信号功率大于噪声功率。 ②采用相关接受技术,可以保证在信号功率小于噪声功率的情况下,人能检测出信号。 对微弱信号的检测与提取有很多方法,常用的方法有:自相关检测法、多重自相法、双谱估计理论及算法、时域方法、小波算法等。 对微弱信号检测与提取有很多方法,本实验采用多重自相关法。 多重自相关法是在传统自相关检测法的基础上,对信号的自相关函数再多次做自相关。即令: 式中,是和的叠加;是和的叠加。对比两式,尽管两者信号的幅度和相位不同,但频率却没有变化。信号经过相关运算后增加了信噪比,但其改变程度是有限的,因而限制了检测微弱信号的能力。多重相关法将 当作x(t),重复自相关函数检测方法步骤,自相关的次数越多,信噪比提高的越多,因此可检测出强噪声中的微弱信号。

信号检测与估计课程体会

信号检测与估计课程的主要内容 信号检测与估计重点论述了信号的随机性及统计处理方法;概述了信号检测与估计的基本概念;扼要介绍了了信号检测与估计理论的基研知识,即随机变量、随机过程及其统计描述和主要统计特性,复随机过程及其统计描述,随机参量信号及其统计描述等;在论述信号统计检测基本概念的基础上,讨论了确知信号的最佳检测准则、判决式和性能分析,随机参量信号的统计检测,以及一般高斯信号和复信号的统计检测问题;在研究了匹配滤波器理论和随机过程的正交级数展开两个预备知识后,讨论了高斯白噪声中确知信号波形的检测、高斯有色噪声中确知信号波形的检测及高斯白噪声中随机参量信号波形的检测;还讨论了复信号波形的检测问题;重点讨论了信号参量的统计估计准则、估计量的构造和性质、非随机矢量函数的估计及信号波形中参量的估计;对线性最小均方误差估计和线性最小二乘估计导出了它们的递推算法公式,并简要讨论了非线性最小二乘估计问题;信号波形的估计问题,重点讨论了连续、离散维纳滤波器的设计,均方误差的计算,离散卡尔曼滤波的信号模型,利用正交投影及其引理导出的离散卡尔曼滤波递推算法公式、含义、递推计算方法、特点和性质及其扩展;还简要讨论了非线性离散状态估计问题;论述了噪声、杂波环境中信号的恒虚警率检测,可看作是信号检测与参量估计相结合的具体应用;本章还简要讨论了信号的非参量检测和稳健性检测的基本理论和方法 实际应用 随着现代通信理论、信息理论、计算机科学与技术及微电子技术等的飞速发展,随机信号统计处理的理论和技术也在向干扰环境更复杂、信号形式多样化、技术指标要求更高、应用范围越来越广的方向发展,并已广泛应用于电子信息系统、生物医学工程、航空航天系统工程、模式识别、自动控制等领域。目前信息科技的迅猛发展已成为世界科技变革发生和发展的驱动力量。在雷达、通信、声呐、遥控遥测、图像处理、自动控制等各种各样的应用信息系统中,信息传输的可靠性和真实性已经成为核心问题。我们知道,在信息的传输与交换过程中,都是通过信号这一物理实体来实现的。信号是信息的载荷者、传送者。在信号产生和传输的过程中,必然受到各种干扰因素的影响,因而必须加以处理,才能提供给信息接收者使用。由于被传输的信号本身和各种干扰往往具有随机性,信号处理设备必须进行统计分析,而这个统计分析的基本任务是检测信号(即判定某种信号是否存在)和估计携带信息的信号参量。由此可知,信号检测与估计理论就是信号处理的统计理论,所要解决的问题是信息传输系统的基本问题,因而具有广泛的应用性。MATLAB编程实践感想 MATLAB是由美国Math Works公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动

现代测试技术第6章随机信号分析简介

第六章随机信号分析简介 本章总课时理论4课时。 本章主要内容本章介绍测试技术中随机信号分析方法,主要内容包括随机信号的幅值域分析、相关分析、功率谱分析。 本章基本要求熟练掌握描述随机信号的主要数字特征参数,掌握时域与频域分析的基本方法,了解时域与频域分析的应用。 本章重点及难点本章重点为随机信号的幅值域分析、相关分析、功率谱分析的基本原理,难点为各部分相关的理论分析。 本章教学方法 1. 以课堂理论教学为主。 2. 在理论教学过程中,可利用多媒体对已有应用实例进行演示性教学,使学生对随机信号信号时域与频域分析的应用具有一定的感性认识,激发学生掌握相关基本原理与应用的兴趣。 3. 教学中要求学生在掌握基本原理的基础上,对幅值域分析、相关分析、功率谱分析进行比较,以促进对随机信号信号时域与频域分析方法的理论与

应用有比较清楚的认识。 4. 充分利用课外辅导及练习加深对所学理论知识的认识。 实验本章未安排实验课。 课外学习指导及作业 1. 名词解释随机信号的均值、方差、均方值、均方根值、相关函数、功率谱密度函数。 2. 简述题(1) 描述随机信号的主要数字特征参数有哪些?其物理意义是什么?各自描述了随机信号的什么特性? (2) 相关分析是在什么范围内分析随机信号的方法?相关系统与相关函数各自描述了随机信号的什么特征? (3) 相关分析在工程上有什么样的应用?试举例说明。 (4) 功率谱分析是在什么范围内分析随机信号的方法? (5) 功率谱分析在工程上有什么样的应用?试举例说明。 (6) 实际信号的谱分析中为什么自功率谱比幅值谱应用更为广泛? (7) 自相关函数、互相关函数、自谱、互谱各自保留了原信号的哪些特征?这对实际应用有什么影响? 3. 计算题(1) 试求三角波与方波的概率密度函数p1(x)与p2(x)。

喷油脉冲信号.doc

喷油脉冲信号 操作说明 喷油器的驱动器简称喷油驱动器有四种基本类型: 饱和开关型 峰值保持型 博士(BOSCH)峰值保持型 PNP型 喷油脉冲检测操作说明 连接: 用通用探针连接喷油脉冲传感器输出信号线。将一缸信号拾取器夹在一缸高压线上。 操作说明: ●在“电控发动机参数”菜单下点击“喷油脉冲信号”图标,系统即可进入 喷油脉冲传感器波形测试界面,并显示所测得的喷油脉冲传感器波形,如下图所示。 ●用鼠标左键点击“停止”图标(“停止”图标被按下后即变为“测试”图 标),系统即停止测试,再点击此图标即可恢复测试(同时“测试”图标恢复为“停止”图标)。 ●显示的转速、占空比、频率与显示的波形实时对应。 ●在停止状态下可点击“显示调整”图标,在弹出的工具窗口中可对X、Y轴 进行缩放、平移,以便观察。 ●用鼠标左键点击“保存数据”图标可将检测有效结果进行保存。

●用鼠标左键点击“保存波形”图标可将波形保存于指定目录。 ●用鼠标左键点击“图形打印”可对界面有效区域进行图形打印。 ●点击帮助图标可进入帮助系统查看相应技术数据。 ●用鼠标左键点击“返回”图标可返回上级菜单。 喷油脉冲传感器检测 饱和开关型(PFI/SFI)喷油器驱动器

*测试步骤 起动发动机,以2500转/分转速保持油门2-3分钟,直至发动机完全热机,同时燃油反馈系统进入闭环,通过观察屏幕上氧传感器的信号确定这一点。 关掉空调和所有附属电器设备,让变速杆置于停车档或空档,缓慢加速并观察在加速时喷油驱动器喷油时间的相应增加。 A. 从进气管加入丙烷,使混合气变浓,如果系统工作正常,喷油驱动器喷油时间将缩短,它试图对浓的混合气进行修正(高的氧传感器电压)。

信号检测与处理计算题

信号检测与处理 1、设在某二元通信系统中,有通信信号和无通信信号的先验概率分别为:P(H 1)=0.8,P(H 0)=0.2。若对某观测值x 有条件概率分布f(x|H 1)=0.25和f(x|H 0)=0.45,试用最大后验概率准则对该观测样本x 进行分类。 2、在存在加性噪声的情况下,测量只能为2v 或0v 的直流电压,设噪声服从均值为0、方差为 2 σ的正态分布,设似然比门限值为0l ,试对测量结果进行分类(10分) 3、设二元假设检验的观测信号模型为: H0:x=-1+n H1:x=1+n 其中n 是均值为零、方差为1/2的高斯观测噪声。若两种检验都是等先验概率的,而代价因子为: C 00=1 ,C 10=4, C 11=2 C 01=8。试求Bayes 判决表示式,并画出bayes 接收机形式。 4、设x1,x2,…xn 是统计独立的方差为2σ的高斯随机变量,在H1假设下均值为a1,H0假设下均值为a0,似然比门限为0l ,试对其进行判决,并求两种错误概率。(20分) 5、在二元数字通信系统中,时间间隔T 秒内,发送一个幅度为d 的脉冲信号,即s 1=d,代表1;或者不发送信号,即s 0=0,代表0。加性噪声服从均值为0,方差为1的高斯分布,当先验概率未知,正确判决不花代价,错误判决的代价相等且等于1时,采用极大极小准则计算其极大极小风险为多大,相应的q 0为多少? 6、在加性噪声背景下,测量0V 和1v 的直流电压在P(D1|H0)=0.1的条件下,采用Neyman-Pearson 准则,对一次测量数据进行判决。假定加性噪声服从均值为0,方差为2的正态分布。(已知erf(0.9)=0.7969) 第四章 1、已知发送端发送的信号分别为???≤≤-=≤≤=T t t A t s T t t A t 0,sin )(0,sin )(s 1 0ωω 试利用最小错误概率准则设计一台接收机,对如下假设做出判决,并画出接收机的结构形式。 ???+=+=) ()()(:H )()()(:H 1100t n t s t x t n t s t x ,n(t)服从均值为0功率谱密度为N 0/2的高斯白噪声。 2、已知发送端发送的信号分别为???≤≤=≤≤=T t t A t s T t t A t 0,2sin )(0,sin )(s 1 0ωω 试利用最小错误概率准则设计一台接收机,对如下假设做出判决,并画出接收机的结构形式。 ???+=+=)()()(:H )()()(:H 11 00t n t s t x t n t s t x ,n(t)服从均值为0功率谱密度为N 0/2的高斯白噪声。 3、已知发送端发送的信号分别为???≤≤=≤≤=T t t A t s T t t 0,sin )(0,0)(s 1 0ω 试利用最小错误概率准则设计一台接收机,对如下假设做出判决,并画出接收机的结构形式。 ???+=+=)()()(:H )()()(:H 11 00t n t s t x t n t s t x ,n(t)服从均值为0功率谱密度为N 0/2的高斯白噪声。

4 脉冲信号产生电路共23页文档

4 脉冲信号产生电路 4.1 实验目的 1.了解集成单稳态触发器的基本功能及主要应用。 2.掌握555定时器的基本工作原理及其性能。 3.掌握用555定时器构成多谐振荡器、单稳态触发器的工作原理、设计及调试方法。 4.2 实验原理 1.集成单稳态触发器及其应用 在数字电路的时序组合工作中,有时需要定时、延时电路产生定时、展宽延时等脉冲,专门用于完成这种功能的IC,就是“单稳延时多谐振荡器”,也称“单稳触发器”。其基本原理是利用电阻、电容的充放电延时特性以及电平比较器对充放电电压检测的功能,实现定时或延时,只需按需要灵活改变电阻、电容值大小,就可以取得在一定时间范围的延时或振荡脉冲输出。常用的器件有LS121/122、LS/HC123、LS/HC221、LS/HC423、HC/C4538及CC4528B等。 集成单稳态触发器在没有触发信号输入时,电路输出Q=0,电路处于稳态;当输入端输入触发信号时,电路由稳态转入暂稳态,使输出Q=1;待电路暂稳态结束,电路又自动返回到稳态Q=0。在这一过程中,电路输 出一个具有一定宽度的脉冲,其宽度与电路的外接定时元件C ext 和R ext 的数 值有关。 图4-1

集成单稳态触发器有非重触发和可重触发两种,74LS123是一种双可重触发的单稳态触发器。它的逻辑符号及功能表如图4-1、表4-1所示。 在表4-1中“正”为正脉冲,“负”为负脉冲。 LS/HC123的特点是,复位端CLR也具有上跳触发单稳态过程发生的功能。 在C ext >1000pF时,输出脉冲宽度t w ≈0.45R ext C ext 。 器件的可重触发功能是指在电路一旦被触发(即Q=1)后,只要Q还未恢复到0,电路可以被输入脉冲重复触发,Q=1将继续延长,直至重复触发的最后一个触发脉冲的到来后,再经过一个t w (该电路定时的脉冲宽度)时间,Q才变为0,如图4-2所示: 图4-2 74LS123的使用方法: (1)有A和B两个输入端,A为下降沿触发,B为上升沿触发,只有AB=1时电路才被触发。 (2)连接Q和A或Q与B,可使器件变为非重触发单稳态触发器。 (3)CLR=0时,使输出Q立即变为0,可用来控制脉冲宽度。 (4)按图4-3、3-5-4连接电路,可组成一个矩形波信号发生器,利用开关S瞬时接地,使电路起振。 图4-3 图4-4 2.555时基电路及其应用 555时基电路是一种将模拟功能和数字逻辑功能巧妙地结合在同一硅片上的新型集成电路,又称集成定时器,它的内部电路框图如图4-5所示。 图4-5 电路主要由两个高精度比较器C 1、C 2 以及一个RS触发器组成。比较器 的参考电压分别是2/3V CC 和1/3V CC ,利用触发器输入端TR输入一个小于 1/3V CC 信号,或者阈值输入端TH输入一个大于2/3V CC 的信号,可以使触发 器状态发生变换。CT是控制输入端,可以外接输入电压,以改变比较器的参考电压值。在不接外加电压时,通常接0.01μF电容到地,DISC是放电输入端,当输出端的F=0时,DISC对地短路,当F=1时,DISC对地开路。 R D 是复位输入端,当R D =0时,输出端有F=0。 器件的电源电压V CC 可以是+5V~+15V,输出的最大电流可达200mA,当 电源电压为+5V时,电路输出与TTL电路兼容。555电路能够输出从微秒级到小时级时间范围很广的信号。 (1)组成单稳态触发器 555电路按图4-6连接,即构成一个单稳态触发器,其中R、C是外接定时元件。单稳态触发器的输出脉冲宽度t w ≈1.1RC。 图4-6 (2)组成自激多谐振荡器 图4-7 自激多谐振荡器电路 按图4-7连接,即连成一个自激多谐振荡器电路,此电路的工作过程

E题脉冲信参数测量仪报告精编版

E题脉冲信参数测量仪 报告 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

脉冲信号参数测量仪 摘要:本设计选用 FPGA 作为数据处理与系统控制的核心,采用FPGA与单片机相结合的方式制备出可测量脉冲信号频率、占空比、幅度、上升时间的测量仪以及标准脉冲信号发生器。本设计由以下功能模块构成:前端信号处理模块、峰值检波模块、窗口比较器模块、幅值升压模块等。利用FPGA的强大处理能力,完成数字信号处理,并将处理后的信号送至单片机进行显示,设计中综合运用了电容去耦、滤波以及同轴电缆等抗干扰措施,减少了电路干扰。在FPGA内有等精度测频模块、占空比测量模块和上升时间测量模块、标准脉冲产生模块等。显示与校准通过单片机完成。 关键词:峰值检波窗口比较器脉冲参数测试仪标准脉冲信号发生器 一、系统方案 1.方案论证与比较 方案一:图1所示为中规模电路脉冲信号测量仪。此方案采用中规模数字电路构成,主要由比较器、功能选择、量程选择、计数器和控制模块组成。该方案电路复杂,频带过窄,功能不强,实现起来比较困难。故不采用此方案。 图1 小规模数字电路原理框图 方案二:图2所示为纯单片机方案,该方案以单片机为核心。门控信号由单片机内部计数定时器产生。该方案成本低,但受单片机本身限

制,其时序控制能力弱,处理速度慢,无法达到本次设计要求。故不采用此方案。 图2 纯单片机方案原理框图 方案三:图3所示为FPGA与单片机相结合的方案。此方案中,FPGA 构成主要测量模块,输入信号经过前端处理电路,得到5V信号输入到FPGA中。单片机控制FPGA完成各种测量功能并显示测量数据。该方案外围元件相对较少,对高速信号处理速度快,精度高,且控制灵活、可靠性高。 图3 FPGA与单片机结合方案原理框图 综上所述,本设计拟采用方案三。 2.总体方案设计 当进行频率测量时,脉冲信号进入前置分挡模块。当信号较大时衰减,当信号较小时放大。在放大模块中,高频信号通过高速放大器,低频信号通过精密放大器,使输入波形均为幅值适中的脉冲,直接进入FPGA进行计算测量。FPGA中,采用等精度测频方法进行测频和测占空比,利用基本上升时间测量模式进行两个信号的上升时间测量。单片机完成数据读取及校准功能。测量幅值时经过峰值检测并保持电路,再经单片机AD采集测出。 二、理论分析与计算 1.频率测量方法

传感器脉冲信号处理电路设计

传感器脉冲信号处理电路设计 摘要 介绍了一种基于单片机平台,采用霍尔传感器实施电机转速测量的方法,硬件系统包括脉冲信号产生,脉冲信号处理和显示模块,重点分析,脉冲信号处理电路,采用c 语言编程,通过实验检测电路信号。 关键词:霍尔传感器;转速测量;单片机

目录 1 绪论 (1) 1.1 课题描述 (1) 1.2 基本工作原理及框图 (1) 2 相关芯片及硬件电路设计 (1) 2.1系统的主控电路 (1) 2.2 STC89C52单片机介绍 (2) 2.2.1 STC89C52芯片管脚介绍 (2) 2.2.2 时钟电路 (3) 2.3 单片机复位电路 (3) 2.4 霍尔传感器电机采样电路 (4) 2.4.1 A3144霍尔开关的工作原理及应用说明 (4) 2.4.2 霍尔传感器测量原理 (5) 2.5 电机驱动电路 (6) 2.6 显示电路 (6) 3 软件系统设计 (7) 3.1 软件流程图 (7) 3.2 系统初始化 (9) 3.3 定时获取脉冲数据 (10) 3.4 数据处理及显示 (11) 3.5 C语言程序 (12) 总结 (15) 致谢 (16) 参考文献 (17)

1 绪论 1.1 课题描述 在工农业生产和工程实践中,经常会遇到各种需要测量转速的场合,测量转速的方法分为模拟式和数字式两种。模拟式采用测速发电机为检测元件,得到的信号是模拟量,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难。数字式通常采用光电编码器、圆光栅、霍尔元件等为检测元件,得到的信号是脉冲信号。单片机技术的日新月异,特别是高性能价格比的单片机的出现,转速测量普遍采用以单片机为核心的数字式测量方法,使得许多控制功能及算法可以采用软件技术来完成。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。本课题,是要利用霍尔传感器来测量转速。由磁场的变化来使霍尔传感器产生脉冲,由单片机计数,经过数据计算转化成所测转速,再由数码管显示出来。 1.2 基本工作原理及框图 本课程设计的电机采用直流电机,然后利用霍尔传感A3144对电机的转速进行采样从而输出脉冲信号。主控芯片采用STC89C52单片机,对脉冲个数进行计数并经过数据处理以后得到单位时间电机转过的转数机电机的转速,再通过显示电路将电机转速显示出来。基本工作原理框图如图1所示。 图1基本工作原理框图 2 相关芯片及硬件电路设计 2.1系统的主控电路 图2是该系统的主控单元的电路图。J2、J3、J4、J5是单片机的I/O端口的扩展,预留接口用于调试等。主控芯片采用STC89C52单片机,该系统中采用定时器0作为定时器,定时器的时间为1S。定时器1作为计数器,对P35引脚采集到的脉冲信号进行计数操作,单片机然后对数据进行处理,计算出1S计数脉冲的个数,即电机转速。然后通过显示电路将电机转速显示出来,从而实现整个系统的功能。

单片机脉冲信号测量

郑州工业应用技术学院 课程设计说明书 题单片机脉冲信号测量 姓名: 院(系):信息工程学院专业班级:计算 机科学与技术学号: 指导教师: 成绩: 时间:年月日至年月日

摘要 脉冲信号测量仪是一种常用的设备,它可以测量脉冲信号的脉冲宽度,频率等参数,并用十进制数字显示出来。利用定时器的门控信号GATE进行控制可以 实现脉冲宽度的测量。在单片机应用系统中,为了便于对LED显示器进行管理,需要建立一个显示缓冲区。本文介绍了基于单片机AT89C51的脉冲信号参数测量仪的设计。该设计可以对脉冲信号的宽度,频率等参数进行测量。 关键词:脉冲信号;频率;宽度;单片机AT89C51

目录 摘要............................................................... I 目录............................................................... II 第一章技术背景及意义 (1) 第二章设计方案及原理 (2) 第三章硬件设计任务 (3) 第四章软件结论 (12) 第五章参考文献 (13) 第六章附录 (14)

第一章技术背景及意义 单片机微型计算机是微型计算机的一个重要分支,也是颇具生命力的机种。单片机微型计算机简称单片机,特别适用于控制领域,故又称为微控制器。通常,单片机由单块集成电路芯片构成,内部包含有计算机的基本功能部件:中央处理器、存储器和I/O 接口电路等。因此,单片机只需要和适当的软件及外部设备相结合,便可成为一个单片机控制系统。由于单片机稳定可靠、物美价廉、功耗低,所以单片机的应用日益广泛深入,涉及到各行各业,如工业自动化、智能仪表与集成智能传感器、家用电器等领域。单片机应用的意义绝不仅限于它的广阔范围以及带来的经济效益,更重要的意义在于,单片机的应用正从根本上改变着传统的控制系统的设计思想和设计方法。从前必须由模拟电路或数字电路实现的大部分控制功能,现在使用单片机通过软件就能实现了。随着单片机应用的推广普及,单片机控制技术将不断发展,日益完善。因此,本课程设计旨在巩固所学的关于单片机的软件及硬件方面的知识,激发广大学生对单片机的兴趣,提高学生的创造能力,动手能力和将所学知识运用于实践的能力。 中断功能是一种应用比较广泛的功能,它指的是当CPU正在处理某件事情的时候,外部发生了某一件事(如一个电平的变化,一个脉冲沿的发生或定时器计数溢出等)请求CPU迅速去处理,于是,CPU暂时终止当前的工作,转去处理所发生的事件。中断服务处理完该事件以后,再回到原来被中止的地方继续原来的工作,这样的过程称为中断。本文中用到了定时器T0溢出中断,以实现软件延时。脉冲信号测量仪是一种常用的设备,它可以测量脉冲信号的脉冲宽度,脉冲频率等参数。

一般高斯信号的检测

一般高斯信号的检测 ?一般高斯信号检测原理 ?确定性信号检测的贝叶斯方法

01::H H ==+z w z s w 一般高斯信号假设模型: ~(,) w N w 0C ~(,) s s N s μC 11 ()()()()T T w s s w s s T --=--+-z z C z z μC C z μμ1 11 1'()()()2 T T s w s w s s w T ---=+++z z C C μz C C C C z 矩阵求逆定理

1 11 1'()()()2 T T s w s w s s w T ---=+++z z C C μz C C C C z 1) C s =0 或s=μs 1'()T w s T -=z z C μ说明:确定信号检测相关情形,即广义匹配滤波器2) μs =0 11 111?'()()22 T T w s s w w T ---=+=z z C C C C z z C s 说明:随机信号检测估计器---相关器情形

1 11 1'()()()2 T T s w s w s s w T ---=+++z z C C μz C C C C z 3) s=H θ, ~(,) N θθθμC 1 11 1'()()()2 T T T T T w w w T - --θθθθ =+++z z HC H C H μz C HC H HC H C z 说明:确定信号+随机信号线性模型检测情形 θ=C 0 θ=μ0 ~(,) T N θθs H μHC H

例1:高斯白噪声中确定/随机信号检测问题: 0:[][] H z n w n =1:[][][] H z n s n w n =+0,1,...,1 n N =-2 []~(0,) w n N σ2[]~(,) s s n N A σ1 11 1'()()()2 T T s w s w s s w T ---=+++z z C C μz C C C C z 解: 2 w =σC I s A =μ1 2s s =σC I 2 212 2222 /1'()[] 2N s n s s NA T z z n -=σσ =+σ+σσ+σ ∑ z

信号检测与转换技术 课后题

第1章信号检测与转换技术概述 思考题 1.自动检测与转换系统的基本组成是什么? 检测是指通过各种科学的手段和方法获得客观事物的量值;转换则是通过各种技术手段把客观事物的大小转换成人们能够识别、存贮和传输的量值。 一个典型的检测与转换系统基本组成如下: 2.简述心电信号检测系统的基本组成及各部分功能。 3.简述工业检测技术涉及的主要物理量有哪些? 工业检测技术涉及主要内容包括: 热工量:温度、压力(压强)、压差、真空度、流量、流速、物位、液位等。 机械量:直线位移、角位移、速度、加速度、转速、应变、力矩、振动、噪声、质量(重量)等。 几何量:长度、厚度、角度、直径、间距、形状、粗糙度、硬度、材料缺陷等。 物体的性质和成分量:空气的湿度(绝对、相对);气体的化学成分、浓度;液体的粘度、浊度、透明度;物体的颜色等。 状态量:工作机械的运动状态(启停等)、生产设备的异常状态(超温、过载、泄漏、变形、磨损、堵塞、断裂等)。 电工量:电压、电流、电功率、电阻、电感、电容、频率、磁场强度、磁通密度等。

4.检测仪表和检测系统的技术性能有哪些?有什么含义?如何测量或计算? 5.测量误差来源有那些?按误差出现的规律,测量误差分哪几类? 系统误差:简称系差,是按某种已知的函数规律变化而产生的误差。 随机误差:简称随差,又称偶然误差,它是由未知变化规律产生的误差,具有随机变量的一切特点,在一定条件下服从统计规律,因此经过多次测量后,对其总和可以用统计规律来描述,可以从理论上估计对测量结果的影响。 粗大误差:是指在一定的条件下测量结果显著地偏离其实际值时所对应的误差,简称粗差。 6.传感器的基本组成是什么?简述各部分主要功能。 敏感元件(弹簧管、波纹管、膜盒、膜片)能直接感受被测量,并将被测非电量信号按一定对应关系转换为易于转换为电信号的另一种非电量的元件。 传感元件(电位器)能将敏感元件输出的非电信号或直接将被测非电量信号转换成电量信号的元件。 转换电路将传感元件输出的电量信号转换为便于显示、处理、传输的有用电信号的电路。 7.对某量进行多次重复的等精度测量,测量次数为10次,在不考虑系统误差和粗大误差的情况下,测量结果如下,试求标准误差和极限误差,并写出测量结果表达式。123.95, 123.45, 123.60, 123.60, 123.87, 123.88, 123.00, 123.85, 123.82, 123.60。 x=; 8.已知一组测量数据:1,2,3,4,5 500.6,442.4,428.6,370.1,343.1 y=。求其最小二乘线性度。要求:

变频器电压检测电路

变频器的电压检测电路(新) ——正弦变频器电压检测实际电路分析 一、电路构成和原理简析 电压检测电路,是变频器故障检测电路中的一个重要组成部分,旨在保障使IGBT 逆变电路的工作电源电压在一特定安全范围以内,若工作电源危及IGBT (包含电源本身的储通电容)器件的安全时,实施故障报警、使制动电路投入工作、停机保护等措施。此外,少数机型还有对输出电压的检测,在一定程度上,起到对IGBT 导通管压降检测的同样作用,取代驱动电路中IGBT 的管压降检测电路。 1、电压检测电路的构成、电压采样方式及故障表现 图1 电路检测电路的构成(信号流程)框图 1、电压检测电路的电压采样形式(前级电路) 1)直接对DC530V 电压采样 78L05C 8 P N 图2 DC530V 电压检测电路之一 直接对P 、N 端DC530V 整流后电源电压进行进行采样,形成电压检测信号。如阿尔法ALPHA2000型变

频器的电压检测电路,如图2所示。 电路中U14线性光耦合器的输入侧供电,由开关变压器的独立绕组提供的交流电压,经整流滤波、由78L05稳压处理得到5V 电源所提供,电源地端与主电路N 端同电位。输出侧供电,则由主板+5V 所提供。 直流回路P 、N 端的DC530V 电压,直接经电阻分压,取得约120mV 的分压信号,输入U14(线性光耦合器,其工作原理前文已述)进行光、电隔离与线性放大后,在输出端得到放大了的检测电压信号,再由LF353减法放大器进一步放大,形成VPN 直流电压检测信号,经CNN1端子,送入MCU 主板上的电压检测后级电路。 2)由开关变压器次级绕组取得采样电路信号 +5V -42V 图3 DC530V 电压检测电路之二 N +5V N1输入电压波形示意图V T 截止 VT 饱合导通 0V 530V 5V 0V -42V N3输出电压波形示意图 压采样等效电路T1 图4 直流回路电压采样等效电路及波型示意图 主电路的DC550V 直流电压检测信号,并不是从主电路的P 、N 端直接取得,而是“间接”从开关电源的二次绕组取出,这是曾经令一些检修人员感到困惑、找不到电压检测信号是从何处取出的一件事情,也成为该部分电路检修的一个障碍。电压采样电路如上图4所示。 在开关管VT 截止期间,开关变压器TRAN 中储存的磁能量,由次级电路进行整流滤波得到+5V 工作电源,释放给负载电路;在VT 饱和导通期间,TC2从电源吸取能量进行储存。 N3二级绕组上产生的电磁感应电压,正向脉冲出现的时刻对应开关管的截止时间,宽度较大,幅值较低,经二极管D12正向整流后提供负载电路的供电,有电流释放回路;反向脉冲出现的时刻对应开关管的饱和导通时间,宽度极窄,但并不提供电流输出,回路的时间常数较大(不是作为供电电源应用,只是由R 、C 电路取得电压检测信号),故能在电容C17上维持较高的幅值。开关管VT 饱合导通时,相当于将N1绕组直接接入530V 电源,因而在同一时刻N3绕组此时所感应的负向脉冲电压,是直接反映N1绕组供电电压高低的,并与其成线性比例关系——N3绕组感应电压的高低,仅仅取决于N1、N3绕组的匝数比。整

随机信号分析实验

实验一 随机序列的产生及数字特征估计 一、实验目的 1、学习和掌握随机数的产生方法; 2、实现随机序列的数字特征估计。 二、实验原理 1. 随机数的产生 随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。进行随机信号仿真分析时,需要模拟产生各种分布的随机数。 在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。 (0,1)均匀分布随机数是最最基本、最简单的随机数。(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即U(0,1)。实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下: N y x N ky Mod y y n n n n /))((110===-, (1.1) 序列{}n x 为产生的(0,1)均匀分布随机数。 下面给出了上式的3组常用参数: (1) 7101057k 10?≈==,周期,N ; (2) (IBM 随机数发生器)8163110532k 2?≈+==,周期,N ; (3) (ran0)95311027k 12?≈=-=,周期,N ; 由均匀分布随机数,可以利用反函数构造出任意分布的随机数。 定理1.1 若随机变量X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有

)(1R F X x -= (1.2) 由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。 2. MATLAB 中产生随机序列的函数 (1) (0,1)均匀分布的随机序列 函数:rand 用法:x = rand(m,n) 功能:产生m ×n 的均匀分布随机数矩阵。 (2) 正态分布的随机序列 函数:randn 用法:x = randn(m,n) 功能:产生m ×n 的标准正态分布随机数矩阵。 如果要产生服从2N(,)μσ分布的随机序列,则可以由标准正态随机序列产生。 (3) 其他分布的随机序列 MATLAB 上还提供了其他多种分布的随机数的产生函数,下表列出了部分函数。 MATLAB 中产生随机数的一些函数 表1.1 MATLAB 中产生随机数的一些函数 3、随机序列的数字特征估计 对于遍历过程,可以通过随机序列的一条样本函数来获得该过程的统计特性。这里我们假定随机序列X (n)为遍历过程,样本函数为x(n),其中n=0,1,2,…,N-1。那么,X (n)的均值、方差和自相关函数的估计为

脉冲群测试仪操作规程

一、用途 电气、电子产品实际使用过程中会受到以传导方式传入的脉冲信号干扰;脉冲群发生器是模拟环境中的脉冲信号并将其以传导方式施加到产品工作环境中检测设备,用于检测电气、电子产品对电快速瞬变脉冲群抗扰度是否符合设计要求。

二、外形简介 2.1工作平台 脉冲群发生器:脉冲群信号产生装置,型号为NSG 3060,可扩展浪涌等模块 耦合去耦网络:将脉冲群信号耦合到三相电路中,用于对电源施加脉冲群干扰,型号为CDN 3063 脉冲群耦合钳:将脉冲群信号耦合到数据线中,用于对485线路施加脉冲群干扰,型号为CDN 3425 485线:用于连接电力终端与电表,一端连接集中器或采集器,另一端连接电表 测试台:用于放置待测设备 测试台 脉冲群发生器 脉冲群耦合钳 485线 耦合去耦网络

脉冲群发生器 耦合去耦网络 调压器电源 接地线 调压器 调压器:三相电压调节器,用于调节耦合去耦合网络的输入电压,默认状态为380V 调压器电源:用于输入环境中的实际三相电源 接地线:基于设备、人员安全考虑,接真正的大地

2.2脉冲群测试仪 三相电源输入端口 信号耦合器电源线 耦合去耦网络开关 脉冲群发生器开关 脉冲群发生器电源线 显示屏 单相电源输出线 三相电源耦合输出端口 三相电源耦合输出线 参数调节旋钮 按键组 数据输出线 工作指示灯 耦合去耦网络脉冲群数据线输入端口

显示屏:显示脉冲群发生器操作参数,为触摸屏 按键组:左边三个分别为:启动、暂停、停止键;右边三个为参数调节进制,分别为1、10、100 参数调节旋钮:旋转可调节参数大小 工作指示灯:power(电源指示灯)、pulse(脉冲信号指示灯)、Hige Voltage(高电压指示灯)、EUT Power(待测设备供电指示灯)、Error(错误指示灯) 单相电源输出线:脉冲群信号通过两条单相电源线输出给耦合去耦网络 数据输出线:脉冲群信号通过数据线输出脉冲群耦合钳 三相电源耦合输出端口:耦合去耦网络将施加到单相电源的脉冲群信号转变为施加到三相电源的脉冲群信号,最右端的PE端口一般不用,空置即可 三相电源耦合输出线:用于给待测设备提供已施加脉冲群信号的三相电源 三相电源输入端口:将三相电源输入给耦合去耦网络,用于耦合脉冲群信号 耦合去耦网络脉冲群数据线输入端口:目前不用,空置即可 三、供电 脉冲群发生器、耦合去耦网络接普通220V民用电源即可

信号识别小结

信号识别 1.特征参数法 思路:根据瞬时幅度,瞬时相位,瞬时频率特征参数的差异进行识别优点:计算量小,简单 缺点:受信噪比影响大 2.功率谱方法 思路:经典功率谱估计有直接法,间接法 直接法:P PER w=1 N X N W2 优点:简单,快速 缺点:当数据N太大时,谱曲线起伏加剧,N太小时,谱分辨率不好。 间接法: 2 1 j 1 (k)e M jwk PER N k P x M - - = '=∑ 优点:采用分段取平均值方法使方差性能得到改善。 缺点:方差性能的改善是以牺牲偏差和分辨率为代价的。 3.基于小波变换(衍生的方法) 思路:1.对信号进行小波变换,提取变化后时域的包络方差与均值平方之比作为特征参数 2.提取频域频率,幅度,相位,功率谱密度等特征 3.时域频域相结合 优点:克服傅里叶变换的不足,对瞬时信息具有较强的检测能力 缺点:小波变换的方法对于类间识别效果还不是很理想, 如对2PSK 和4PSK的识别, 单独用该方法还不能达到很好的分类效果, 必须与其它方法结合 使用。 4.高阶累积量方法 思路:计算二阶、四阶、六阶、八阶累积量,并通过归一化、平方等变换寻找差异进行区分 优点:对噪声不敏感 缺点:对载波和码元同步要求较高 5.人工智能识别方法 思路:利用专家系统、人工神经网络、模糊推理、Agent理论、遗传算法等人工智能方法形成经验与知识的推理规则 优点:不依赖数据库的先验知识,分析灵活,自我学习 缺点:容易漏检、误判 6. 基于支持向量机的信号识别 思路:通过优化算法函数(结构风险最小化原理,粒子群优化,模糊数学,粗集理论),模型建立(一对一或一对多)和参数的而选择(带宽、均值、峰值点,归一化瞬时幅度等)进行信号的识别

丢失周期脉冲信号的检测电路

在科学研究和生产实践当中,周期脉冲信号是很常见的。如何检测周期脉冲信号的丢失,或因故障丢失周期脉冲信号需要报警的情况也是经常碰到的。本文给出了解决这类问题的办法,并通过理论分析给出了检测周期脉冲信号丢失的实用电路。 1 可重触发的单稳态电路 众所周知,所谓单稳态是指电路只有一个稳定状态,另一个是暂稳态。如电路输出稳定状态为低电平L,当输入信号到达后,电路输出变为高电平H,但是高电平状态只是暂时的,过了一定时间后它又自动回到稳定状态L。输入i u 的周期T小于输出 o u 的脉冲宽度W T 。(由W T 电路定时元件的 参数决定,定时元件参数不变,输出o u 的脉冲宽度W T 就不变),当电路在暂稳态期间若再来输入脉冲,输入脉冲对电路不起作用,只有当电路回到稳态后,再来输入脉冲信号才能触发单稳态再次动作。此种电路称为不可重复触发的单稳态电路。单稳态电路的作用一般是定时、延时、和波形整形。定时、延时的时间就是W T 。 当单稳态电路在暂稳态期间若再来输入脉冲,输出从此时刻开始再延迟W T 的宽度,此种单稳态电路为可重复触发的单稳态电路。可重复触发的单稳态电路若i u 为周期脉冲信号,且其周期T小于W T ,只要输入信号i u 正常,则o u 一直是暂稳态,这种情况输入i u 和输出o u 的波形如图(1)所示。 丢失周期脉冲信号的检测电路 许立新 李金民 (西京学院 西安 710123) 摘 要:本文通过对可重触发的单稳态电路的分析,得出了只要可重触发单稳态触发器的输出脉冲宽度大于输入周期脉冲信号的周期T,就可用可重触发的单稳态触发器构成检测周期脉冲信号丢失的电路。本文用芯片CD4538给出了实用的丢失周期脉冲信号的检测和报警电路。关键词:周期脉冲信号 单稳态 可重单稳态中图分类号:TN78文献标识码:A文章编号:1674-098X(2010)04(b)-0068-02 2 丢失周期脉冲信号的检测电路实例 利用可重复触发的单稳态电路可以构成丢失周期脉冲信号的检测电路。可重复触发的单稳态电路有多种,CD4538是双可重复触发的单稳态集成芯片,它的引脚排列如图(2)所示。 查CD4538的功能表知,端为清“0”端,低电平有效,它的稳定状态是Q=L,Q =H,当CLR =H,B输入端接高电平时,A 输入端来一个脉冲上升沿,则Q=H,Q =L,电路进入暂稳态。CD4538的W T 决定外接的定时元件Rext和Cext,其 W T =Rext﹒Cext(1) 若输入周期脉冲信号i u 的周期是T,可重触发单稳的输出脉冲宽度为W T ,当 W T =1.5T左右时,只要输入i u 的周期脉冲 正常,则输出o u 就一直处在高电平状态(暂稳态)如图(1)所示。假设i u 的第4个脉冲丢失,第5个脉冲又正常,则输入i u 与输出o u 的波形如图(3)所示(图示为i u 从CD4538的A端输入,i u 需要正的窄脉冲)。由图(3)的波形知,由于第4个周期信号丢失,单稳态电路又回到稳态低电平,当第5个输入脉冲再来时,输出o u 又为暂稳态高电平,据此可以 将丢失的周期脉冲信号检测出来。 如某自动工作的冲床,每3秒钟冲压一个工件,通过光电传感器使冲压工件的个数转换成脉冲数,每冲压一个工件,通过光电转换电路产生一个计数脉冲,计数脉冲的周期T=3S。若间隔4.5S左右未来脉冲信号,说明工作不正常,应该报警。由CD4538构成的报警电路如图(4)所示。图(4)中计数部分用四位计数,锁存译码驱动,显示电路构成(图中未画出具体电路)。周期脉冲的上 升沿触发计数器。经光电转换,放大整形后的信号1i u 的周期T=3S,若1i u 的脉冲宽度tp=0.2s,经过RC微分电路及二极管D的限幅作用后,得到周期T=3S的正尖脉冲信号 i u (如图(3)中的i u ) 微分电路参数的选择原则是 τ=RC<<tp(2) 本例选C=1F μ,R=20 ? K ,可以满足式 (2)的要求。 图1 图2图3 (下转70页)

NIST随机性检测方法及应用

NIST 随机性检测方法及应用 本科教学工程 大学生创新创业训练研究 1 引言 密码算法是构建安全信息系统的核心要素之一,是保障信息与数据机密性、完整性和真实性的重要技术。密码算法检测评估是密码算法研究的重要组成部分,它为密码算法的设计、分析提供客观的量化指标和技术参数,对密码算法的应用具有重要的指导意义.在密码算法的设计和评测过程中,需要从多个方面对其进行检测和分析。“一次一密(One-Time Pad)”是序列密码产生的思想来源,序列密码的核心是通过固定算法,将一串短的密钥序列扩展为长周期的密钥流序列,且密钥流序列在计算能力内应与随机序列不可区分。因此,分析秘钥流序列的随机性是密码算法安全性研究的重要内容,利用NIST 检测方法对密码算法进行评测可以为理论分析提供大量参考数据,从而减少理论分析者的工作量,同时可以暴露出用现有的分析方法无法发现的安全漏洞。 2 NIST 检测方法 2.1 随机性检测 随机性检测通常通过概率统计的方法考察被检测序列是否满足随机序列的某些特征以判定其是否随机。 从理论上讲,若被检测序列未通过某一随机性检测,可以肯定该序列不随机;但反之,若被检测序列能够通过某一种随机性检测,却不能肯定这个序列是随机的,即通过随机性检测是序列具有随机性的必要非充分条件。因为各检测方法中的检测项目往往都是根据随机序列所表现出的某一方面的特征而设计的。事实上,任何一个由有限种检测项目组成的集合都无法囊括随机性的所有方面。但在实际应用中,如果这个检测的设计对于随机序列使用时的具体要求而言是充分的,且被检测序列又能通过该检测,则认为该序列的随机性是“合格”的。 随机性检测利用概率统计的方法对随机数发生器或者密码算法产生序列的随机性进行描述.不同的检测项目从不同的角度刻画待检测序列与真随机序列之间的差距. 随机性检测通常采用假设检验[]的方法.假设检验就是在总体分布未知或者只知其形式但不知其参数的情况下,为了推断总体的某些性质而提出某些关于总体的假设,然后根据样本对提出的假设做出判断.随机性假设检验,就是已知真随机序列的某一方面符合一个特定的分布,那么假设待检测序列是随机的,则该待检测序列在这方面也应该符合这个特定的分布. 在实际应用中,常用来衡量随机性的方法是P value -法,这里以测试统计量X 服从2 χ分布为例来说明。 以随机序列的某种统计值V 符合自由度为n 的卡方分布为例: 原假设(零假设) 0H :序列是随机的,待测序列的统计值V 服从2(n)χ 分布; 备择假设 1H :序列不是随机的,待测序列的统计值V 不服从2(n)χ分布. 通过判断一个待测序列的统计值V 是否服从2(n)χ分布来确定是否接受原假设,从而判断该序列是否通过了该项随机性检测. 在随机性检测中判断是否接受原假设通常采用P-Value 方法[].P-Value 是一个序列比真

相关文档
最新文档