锂电池保护板常用IC、MOS场效应管

锂电池保护板常用IC、MOS场效应管

锂电池保护板常用IC、MOS场效应管,详细清单如下:

S-8261AANMD-G2NT2G 封装:SOT-23-6 品牌:SEIKO 备注:单节

S-8261AAJMD-G2JT2G 封装:SOT-23-6 品牌:SEIKO 备注:单节

S-8261ABJMD-G3JT2G 封装:SOT-23-6 品牌:SEIKO 备注:单节

S-8261ABPMD-G3PT2G 封装:SOT-23-6 品牌:SEIKO 备注:单节

S-8261ABRMD-G3RT2G 封装:SOT-23-6 品牌:SEIKO 备注:单节

S-8261ABMMD-G3MT2G 封装:SOT-23-6 品牌:SEIKO 备注:单节

S-8261ACEMD-G4ET2G 封装:SOT-23-6 品牌:SEIKO 备注:磷酸铁锂保护板

S-8261AAOMD-G2OT2G 封装:SOT-23-6 品牌:SEIKO 备注:单节

S-8241ACLMC-GCLT2G 封装:SOT-23-5 品牌:SEIKO 备注:单节

S-8242AAA-M6T2GZ 封装:SOT-23-6 品牌:SEIKO 备注:双节

S-8242AAD-M6T2GZ 封装:SOT-23-6 品牌:SEIKO 备注:双节

S-8242AAF-M6T2GZ 封装:SOT-23-6 品牌:SEIKO 备注:双节

S-8242AAY-M6T2GZ 封装:SOT-23-6 品牌:SEIKO 备注:双节

S-8242AAK-M6T3GZ 封装:SOT-23-7 品牌:SEIKO 备注:双节

S-8232AAFT-T2-G 封装:TSSOP-8 品牌:SEIKO 备注:双节

S-8232ABFT-T2-G 封装:TSSOP-8 品牌:SEIKO 备注:双节

S-8232AUFT-T2-G 封装:TSSOP-8 品牌:SEIKO 备注:双节

S-8253AAAFT-TB-G 封装:TSSOP-8 品牌:SEIKO 备注:2-3节

S-8253AAD-T8T1GZ 封装:TSSOP-8 品牌:SEIKO 备注:2-3节

S-8254AAAFT-TB-G 封装:TSSOP-16 品牌:SEIKO 备注:三-四节

S-8254AABFT-TB-G 封装:TSSOP-16 品牌:SEIKO 备注:三-四节

S-8254AAFFT-TB-G 封装:TSSOP-16 品牌:SEIKO 备注:三-四节

S-8254AAGFT-TB-G 封装:TSSOP-16 品牌:SEIKO 备注:三-四节

S-8254AAJFT-TB-G 封装:TSSOP-17 品牌:SEIKO 备注:三-四节

S-8254AANFT-TB-G 封装:TSSOP-18 品牌:SEIKO 备注:三-四节

S-8254AAKFT-TB-G 封装:TSSOP-19 品牌:SEIKO 备注:三-四节

R5400N101FA-TR-F 封装:SOT-23-5 品牌:RICOH 备注:单节

R5400N110FA-TR-F 封装:SOT-23-5 品牌:RICOH 备注:单节

R5400N150FA-TR-F 封装:SOT-23-5 品牌:RICOH 备注:单节

R5400N149FA-TR-F 封装:SOT-23-5 品牌:RICOH 备注:单节

R5402N101KD-TR-F 封装:SOT-23-6 品牌:RICOH 备注:单节

R5402N110KD-TR-F 封装:SOT-23-6 品牌:RICOH 备注:单节

R5402N149KD-TR-F 封装:SOT-23-6 品牌:RICOH 备注:单节

R5402N163KD-TR-F 封装:SOT-23-6 品牌:RICOH 备注:单节

R5402N128EC-TR-F 封装:SOT-23-6 品牌:RICOH 备注:单节

R5402N163KD-TR-F 封装:SOT-23-6 品牌:RICOH 备注:单节

R5460N207AF 封装:SOT-23-6 品牌:RICOH 备注:双节

R5460N207AA 封装:SOT-23-6 品牌:RICOH 备注:双节

R5460N208AA 封装:SOT-23-6 品牌:RICOH 备注:双节

R5460N208AF 封装:SOT-23-6 品牌:RICOH 备注:双节

R5460N212AF 封装:SOT-23-6 品牌:RICOH 备注:双节

R5460N214AF 封装:SOT-23-6 品牌:RICOH 备注:双节

R5460N214AC 封装:SOT-23-6 品牌:RICOH 备注:双节

R1211N002D-TR-F 封装:SOT-23-6 品牌:RICOH 备注:DC/DC升压

R1224N102H-TR-F 封装:SOT-23-6 品牌:RICOH 备注:DC/DC降压

R1224N332F-TR-F 封装:SOT-23-6 品牌:RICOH 备注:DC/DC降压

MM1414CVBE 封装:TSSOP-20 品牌:MITSUMI 备注:三-四节

MM3076XNRE 封装:SOT23-6 品牌:MITSUMI 备注:单节

MM3177FNRE 封装:SOT23-6 品牌:MITSUMI 备注:单节

VA7021P/C 封装:SOT-23-6 品牌:中星微备注:单节,中星微代理,中国最低价格DW01+ 封装:SOT-23-6 品牌:富晶备注:单节

FS312 封装:SOT-23-6 品牌:富晶备注:单节

CS213 封装:SOT-23-6 品牌:新德备注:单节

STC5NF20V 封装:TSSOP-8 品牌:ST 备注:配套MOS管

FTD2017M 封装:TSSOP-8 品牌:三洋备注:配套MOS管

ECH8601M 封装:SNT-8A 品牌:三洋备注:配套MOS管

UPA1870BGR 封装:TSSOP-8 品牌:NEC 备注:配套MOS管

FS8205A 封装:TSSOP-8 品牌:富晶备注:配套MOS管

SM8205ACTC 封装:SOT-23-6 品牌:茂达备注:配套MOS管

SM8205AOC 封装:TSSOP-8 品牌:茂达备注:配套MOS管

AO8810 封装:TSSOP-8 品牌:AOS 备注:配套MOS管

AO8820 封装:TSSOP-8 品牌:AOS 备注:配套MOS管

AO8822 封装:TSSOP-8 品牌:AOS 备注:配套MOS管

AO8830 封装:TSSOP-8 品牌:AOS 备注:配套MOS管

AO9926B 封装:TSSOP-8 品牌:AOS 备注:配套MOS管

SDC6073 封装:MSOP-8 品牌:SDC光大备注:单节,二合一的保护IC

电池保护板工作原理

锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,常用的保护IC有8261,DW01+,CS213,GEM5018等,其中精工的8261系列精度更好,当然价钱也更贵。后面几种都是台湾出的,国内次级市场基本都用DW01+和CS213了,下面以DW01+ 配MOS管8205A (8pin)进行讲解: 锂电池保护板其正常工作过程为: 当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。此时DW01 的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。 2.保护板过放电保护控制原理: 当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的放电回路被切断,电芯将停止放电。保护板处于过放电状态并一直保持。等到保护板的P 与P-间接上充电电压后,DW01 经B-检测到充电电压后便立即停止过放电状态,重新在第1脚输出高电压,使8205A内的过放电控制管导通,即电芯的B-与保护板的P-又重新

接上,电芯经充电器直接充电。 3.保护板过充电保护控制原理: 当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到4.4V时,DW01 将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的充电回路被切断,电芯将停止充电。保护板处于过充电状态并一直保持。等到保护板的P 与P-间接上放电负载后,因此时虽然过充电控制开关管关闭,但其内部的二极管正方向与放电回路的方向相同,故放电回路可以进行放电,当电芯的电压被放到低于4.3V时,DW01 停止过充电保护状态重新在第3脚输出高电压,使8205A内的过充电控制管导通,即电芯的B-与保护板P-又重新接上,电芯又能进行正常的充放电. 4.保护板短路保护控制原理: 如图所示,在保护板对外放电的过程中,8205A内的两个电子开关并不完全等效于两个机械开关,而是等效于两个电阻很小的电阻,并称为8205A的导通内阻,每个开关的导通内阻约为30m\U 03a9共约为60m\U 03a9,加在G极上的电压实际上是直接控制每个开关管的导通电阻的大小当G极电压大于1V时,开关管的导通内阻很小(几十毫欧),相当于开关闭合,当G极电压小于0.7V以下时,开关管的导通内阻很大(几MΩ),相当于开关断开。电压UA就是8205A的导通内阻与放电电流产生的电压,负载电流增大则UA必然增大,因UA0.006L×

简易锂电池保护IC 测试电路的设计

简易锂电池保护IC测试电路的设计 作者:中国地质大学蔡欢欢 由于锂电池的体积密度、能量密 度高,并有高达4.2V的单节电池 电压,因此在手机、PDA和数码相机等便携式电子产品中获得了广泛的应用。为了确保使用的安全性,锂电池在应用中必须有相应的电池管理电路来防止电池的过充电、过放电和过电流。锂电池保护IC超小的封装和很少的外部器件需求使它在单节锂电池保护电路的设计中被广泛采用。 然而,目前无论是正向(独立开发)还是反向(模仿开发)设计的国产锂电池保护IC由于技术、工艺的原因,实际参数通常都与标准参数有较大差别,在正向设计的IC中尤为突出,因此,测试锂电池保护IC的实际工作参数已经成为必要。目前市场上已经出现了专用的锂电池保护板测试仪,但价格普遍偏高,并且测试时必须先将IC焊接在电路板上。因此,本文中设计了一个简单的测试电路,借助普通的电子仪器就可以完成对锂电池保护IC的测试。 锂电池保护IC的工作原理 单节锂电池保护IC的应用电路很简单,只需外接2个电阻、2个电容和2个MOSFET,其典型应用电路如图1所示。 图1 锂电池保护IC的典型应用电路 锂电池保护IC测试电路设计

图2 锂电池保护IC测试电路 根据锂电池保护IC的工作原理设计的测试电路如图2所示,图3详细说明了图2中模块B 的电路。模块A在测试过流保护时为CS引脚提供电压,模拟图1中的CS引脚所探测到的电压。调整模块中的可变电位器可为CS引脚提供可变电源,控制其中的跳变开关可为CS 提供突变电压。模块B为电源,模拟为IC提供工作电压。调整电路中的可变电位器R7可为整个电路提供一个可变电压,在测试过充电保护电压和过放电保护电压时使用。控制模块中的开关S1的闭合为测试电路提供一个跳变电源,在测试IC的过充、过放和过流延迟时使用。跳线端口P1、P2在测试IC工作电流时使用,在测试其他参数时将开关S2导通即可。测试IC工作电流时,将电流表接在P1、P2上,将开关S2断开。模块C是用2个MOSFET 做成的微电流源,在测试OD、OC输出高、低电平时向该引脚吸、灌电流,只要MOSFET 选择恰当,可以满足测试需要。模块D是2片MOSFET集成芯片,相当于图1中的M1、M2,其中的两个端口在测试MOSFET漏电流时使用,在测试其他参数时要将这两个端口短接。模块E是一个IC插座,该插座用于放置待测IC,最多可以放置4片IC(测试时只能放一片IC),测试完以后可以将IC取出,不留任何痕迹,不影响IC的销售和再次测试。

锂电池保护IC

由于锂电池的体积密度、能量密度高,并有高达4.2V的单节电池电压,因此在手机、PDA 和数码相机等便携式电子产品中获得了广泛的应用。为了确保使用的安全性,锂电池在应用中必须有相应的电池管理电路来防止电池的过充电、过放电和过电流。锂电池保护IC超小的封装和很少的外部器件需求使它在单节锂电池保护电路的设计中被广泛采用。 然而,目前无论是正向(独立开发)还是反向(模仿开发)设计的国产锂电池保护IC由于技术、工艺的原因,实际参数通常都与标准参数有较大差别,在正向设计的IC中尤为突出,因此,测试锂电池保护IC的实际工作参数已经成为必要。目前市场上已经出现了专用的锂电池保护板测试仪,但价格普遍偏高,并且测试时必须先将IC焊接在电路板上。因此,本文中设计了一个简单的测试电路,借助普通的电子仪器就可以完成对锂电池保护IC的测试。 锂电池保护IC的工作原理 单节锂电池保护IC的应用电路很简单,只需外接2个电阻、2个电容和2个MOSFET,其典型应用电路如图1所示。 图1 锂电池保护IC的典型应用电路 锂电池保护IC测试电路设计

图2 锂电池保护IC测试电路 根据锂电池保护IC的工作原理设计的测试电路如图2所示,图3详细说明了图2中模块B的电路。模块A在测试过流保护时为CS引脚提供电压,模拟图1中的CS引脚所探测到的电压。调整模块中的可变电位器可为CS引脚提供可变电源,控制其中的跳变开关可为CS提供突变电压。模块B为电源,模拟为IC提供工作电压。调整电路中的可变电位器R7可为整个电路提供一个可变电压,在测试过充电保护电压和过放电保护电压时使用。控制模块中的开关S1的闭合为测试电路提供一个跳变电源,在测试IC的过充、过放和过流延迟时使用。跳线端口P1、P2在测试IC工作电流时使用,在测试其他参数时将开关S2导通即可。测试IC工作电流时,将电流表接在P1、P2上,将开关S2断开。模块C是用2个MOSFET 做成的微电流源,在测试OD、OC输出高、低电平时向该引脚吸、灌电流,只要MOSFET 选择恰当,可以满足测试需要。模块D是2片MOSFET集成芯片,相当于图1中的M1、M2,其中的两个端口在测试MOSFET漏电流时使用,在测试其他参数时要将这两个端口短接。模块E是一个IC插座,该插座用于放置待测IC,最多可以放置4片IC(测试时只能放一片IC),测试完以后可以将IC取出,不留任何痕迹,不影响IC的销售和再次测试。

锂电池保护板工作原理资料

锂电池保护板工作原理 锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,下面以DW01 配MOS管8205A进行讲解: 锂电池保护板其正常工作过程为: 当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。此时DW01 的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。 2.保护板过放电保护控制原理:

当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的放电回路被切断,电芯将停止放电。保护板处于过放电状态并一直保持。等到保护板的P 与P-间接上充电电压后,DW01 经B-检测到充电电压后便立即停止过放电状态,重新在第1脚输出高电压,使8205A内的过放电控制管导通,即电芯的B-与保护板的P-又重新接上,电芯经充电器直接充电。 4.保护板过充电保护控制原理: 当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到4.4V时,DW01 将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关

5A锂电池保护IC(XB8588)

XB8588D ____________________________________________________________________________________________________________________________ XySemi Inc - 1 - https://www.360docs.net/doc/5a15173501.html, REV0.5 One Cell Lithium-ion/Polymer Battery Protection IC GENERAL DESCRIPTION The XB8588 series product is a high integration solution for lithium-ion/polymer battery protection. XB8588 contains advanced power MOSFET, high-accuracy voltage detection circuits and delay circuits. XB8588 is put into an TSSOP8 package and only one external component makes it an ideal solution in limited space of battery pack. XB8588 has all the protection functions required in the battery application including overcharging, overdischarging, overcurrent and load short circuiting protection etc. The accurate overcharging detection voltage ensures safe and full utilization charging. The low standby current drains little current from the cell while in storage. The device is not only targeted for digital cellular phones, but also for any other Li-Ion and Li-Poly battery-powered information appliances requiring long-term battery life. FEATURES · Protection of Charger Reverse Connection · Protection of Battery Cell Reverse Connection · Integrate Advanced Power MOSFET with Equivalent of 40m ? R DS(ON) · TSSOP8 Package · Only One External Capacitor Required · Over-temperature Protection · Overcharge Current Protection · Two-step Overcurrent Detection: -Overdischarge Current -Load Short Circuiting · Charger Detection Function · 0V Battery Charging Function - Delay Times are generated inside · High-accuracy Voltage Detection · Low Current Consumption - Operation Mode: 2.8μA typ. - Power-down Mode: 0.1μA max. · RoHS Compliant and Lead (Pb) Free APPLICATIONS ? One-Cell Lithium-ion Battery Pack ? Lithium-Polymer Battery Pack Figure 1. Typical Application Circuit

手机锂电池保护板相关知识1【最新】

保护板初步知识 1、保护板的由来 锂电池(可充型)之所以需要保护,是由它本身特性决定的。由于锂电池本身的材料决定了它不能被过充、过放、过流短路及超高温充放电,因此锂电池锂电组件总会跟着一块精致的保护板和一片电流保险器出现 . 2、主要保护能能 过充电保护功能过放电保护功能 过电流保护电流包括过流1 过流2 短路保护 3、保护板的组成和元件: 保护板通常包括控制IC、开关MOS、储存电容、识别电阻及辅助器件NTC/PTC等组成。其中控制IC在一切正常的情况下控制MOS开关导通,使电芯与外电路导通,而当电芯电压或回路电流超过规定值时,它立刻控制MOS开关断开,保护电芯的安全。 PTC是正温度系数热敏电阻,NTC是负温度系数热敏电阻.PTC与NTC在应用上有不同的地方是:PTC在电路中可以做过电流保护,NTC主要是开关浪涌电流的抑制.他们也有共同的作用就是温度感测和侦测试 4、原理图及元件介绍 IC 它由精确的比较器来获得保护可靠的保护参数,主要参数: -过充电压 -过充恢复电压 -过放电压 -过放恢复电压 -过流检测电压 -短路保护电压 -耗电 MOSFET 串在主充放电回路中,担当高速开关,执行保护动作。我司所用的都是串在B- P-间。MOSFET包含三个电极:漏极(D)源极(S)栅极(G);当G极为高电平时,D 极与S极导通,当G极为低电平时,D极与S极断开。主要参数: -内阻 -耐电流 -耐电压 -内部是否连通 -封装 FUSE PTC :二次保护器件。 原理图:

正极:B+ FUSE P+ 负极:B- MOS(2、3)脚 MOS(1)脚接 MOS(8)脚 MOS(5、6)脚夫 P- 5、功能介绍: 通常状态:当电芯电压在2。5V---4。2V之间,IC的充电控制脚(第1脚)和放电管控制脚(第3脚)同时处于高电平,充电MOS、放电MOS同时打开,B-与P-连通,保护板有输出电压,能正常允放电. -过放状态:当电池接上手机等负载后,电芯电压渐渐降低,同时IC同部通过R1电阻实时监测电芯电压,当电芯电压降到IC的过放保护电压时,IC放电控制脚(第1脚)输出电压为0V,即低电平,放电MOS关闭,无输出电压。 - 过充状态:当电池通过充电器充电时,随着充电时间的增加,电芯电压越来越高,当电芯电压升高到过充保护电压时,IC将认为电芯处于过充电电压状态,IC的充电控制脚(第3脚)输出为低电平,即0V;此时充电MOS管关闭,B-与P-处于断开状态,充电回路切断,充电停止。保护板处于过充状态并一直保持。等到P+ P-之间接上负载后,因此时虽然充电管处于关闭状态,但其内部的二极管的正方向与放电回路的方向相同,故放电回路可以放电,当电芯电压被放低至过充电恢复电压以下时,充电管又导通,电芯的B-与保护板的P-又重新接上,电芯又能正常的充放电。 -过流及短路保护:当电池的负载电流超过IC的过流保护值时,IC的放电控制脚(第1脚)输出低电平,MOS管关闭。 3、 常见的问题点: -内阻大:决定电池内阻的器件有 PCB的线阻,MOS管的导通内阻, FUSE的内阻,电芯内阻及镍片的电阻。 解决方法:首先判断电芯内阻(一般要求小于60mΩ)是否超过标准,其次是测试保护板内阻(一般要求小于60mΩ)、FUSE内阻(一般要求小于15mΩ),最后检查镍片及接触电阻(一般要求小于15mΩ) -无电压无内阻(不能充放电等):无电压无内阻通常是充电MOSFET关闭或放电MOSFET关闭或充放电MOS同时关闭,导致MOS管关闭的原因有 IC 不能正常工作或MOS管自身损坏或MOS连锡,虚焊。解决方法:先检查IC第5脚电压电否正常(电压与电芯电压相同),第6脚与B-是否连好,电芯电压是否正常,R1电阻是阻值是否正确,R1是否虚焊。其次检查IC的充电控制脚(3脚)和放电控制脚(5脚)电压是否正确(在通常的状态,IC的1、3脚都是高电平,等于电芯电压)。再次检查MOS是否短路,虚焊。 无ID(热敏):ID电阻一端连接保护板的P-端子,一端连接保接保护板的ID端子,若有此类问题时,可首先确认线路是否导通,其次可确认电阻本身是否不良或是否连锡。 短路保护、过流保护不良:可先检查R2是否虚焊,IC的过流检测端子(IC的第2脚)是否虚焊,若无以上两种不良,那么应是IC本身损坏。

锂电保护IC行业应用

聚焦科技锂电保护IC系统开发应用 图一:开发依据图 通过依据图可开发不同行业不同应用方案: 特种电池管理系统: 低温锂电池/ 宽温锂电/ 钛酸锂电池/ 防爆锂电池 工业电池管理系统: 锂离子电池/ 磷酸铁锂电池/ 18650锂电池/ 聚合物锂电池

动力/储能管理系统: 12V锂电池/ 24V锂电池/ 36V锂电池/ 48V锂电池一对一定制化管理系统: 特种锂电池/ 机器人电池/ AGV锂电池/医疗锂电池 以下内容为可开发锂电保护系统具体行业和应用:一.特种锂离子电池和工业电池保护系统 1.极寒电池方案 电芯型号:18650/3.7V/2000mAh 电池规格:18650/4S1P/14.8V/2000mAh 标称电压:14.8V 标称容量:2000mAh 充电电压:16.8V 充电电流:≤1A 放电电流:1A 瞬间放电电流:2A 放电截止电压:10V 成品内阻:≤250mΩ 电池重量:385g

产品尺寸:101×76×28(Max) 充电温度:0~45℃ 放电温度:-40~60 ℃ 存储温度:-20~20 ℃ 电池外壳:Al6061铝合金 锂电保护:短路保护,过充保护,过放保护,过流保护。 应用领域:无线综测设备 产品特点 低温工作:采用军品级低温电芯,确保在-40度低温下工作;可靠连接:采用方形航空连接器,快捷,安全,可靠; 电池组循环寿命高,符合低碳、节能、环保价值理念; 2.(21.6V 8800mAh 轨道检测仪低温锂电池) 电芯型号:18650/3.7V/2200mAh 电池规格:18650-6S4P/21.6V/8800mAh 标称电压:21.6V 标称容量:8800mAh 充电电压:25.2V 充电电流:≤4.4A 放电电流:8A 瞬间放电电流:12A 放电截止电压:15V

锂电池保护芯片原理

锂电池保护原理 锂电池保护板是对串联锂电池组的充放电保护;在充满电时能保证各单体电池之间的电压差异小于设定值(一般±20mV),实现电池组各单体电池的均充,有效地改善了串联充电方式下的充电效果;同时检测电池组中各个单体电池的过压、欠压、过流、短路、过温状态,保护并延长电池使用寿命;欠压保护使每一单节电池在放电使用时避免电池因过放电而损坏。 成品锂电池组成主要有两大部分,锂电池芯和保护板,锂电池芯主要由正极板、隔膜、负极板、电解液组成;正极板、隔膜、负极板缠绕或层叠,包装,灌注电解液,封装后即制成电芯,锂电池保护板的作用很多人都不知道,锂电池保护板,顾名思义就是保护锂电池用的,锂电池保护板的作用是保护电池不过放、不过充、不过流,还有就是输出短路保护。 01锂电池保护板组成

1、控制ic, 2、开关管,另外还加一些微容和微阻而组成。控制ic 作用是对电池的保护,如达到保护条件就控制mos进行断开或闭合(如电池达到过充、过放、短路、过流、等保护条件),其中mos管的作用就是开关作用,由控制ic开控制。锂电池(可充型)之所以需要保护,是由它本身特性决定的。由于锂电池本身的材料决定了它不能被过充、过放、过流、短路及超高温充放电,因此锂电池锂电组件总会跟着一块精致的保护板和一片电流保险器出现。锂电池的保护功能通常由保护电路板和PTC协同完成,保护板是由电子电路组成,在-40℃至+85℃的环境下时刻准确的监视电芯的电压和充放回路的电流。 02保护板的工作原理 1、过充保护及过充保护恢复 当电池被充电使电压超过设定值VC(4.25-4.35V,具体过充保护电压取决于IC)后,VD1翻转使Cout变为低电平,T1截止,充电停止.当电池电压回落至VCR(3.8-4.1V,具体过充保护恢复电压取决于IC)时,Cout变为高电平,T1导通充电继续,VCR 必须小于VC一个定值,以防止频繁跳变。 2、过放保护及过放保护恢复 当电池电压因放电而降低至设定值VD(2.3-2.5V,具体过充保护电压取决于IC)时,VD2翻转,以短时间延时后,使Dout变为低电平,T2截止,放电停止,当电池被置于充电时,内部或门被翻转而使T2再次导通为下次放电作好准备。 3、过流、短路保护 当电路充放回路电流超过设定值或被短路时,短路检测电路动作,使MOS管关断,电流截止。

S 和DW A主流锂电池保护板原理图说明

S8261和DW01-8205A主流锂电池保护板原理图说明 锂电池保护板的主要参数 锂电池保护板主要由保护IC和MOS管构成 (1)保护IC主要参数 1)?封装 2)?过充电压 3)?过充释放电压 4)?过放电压 5)?过放释放电压 6)?耐压 (2) MOSFET主要参数 1) N沟、P沟 2)?内阻 3)?封装(TSSOP8 <简称薄片>?、SOP8<简称厚片>、SOT23-6等) 4)?耐电流 5)?耐电压 6)?内部是否连通 锂电池保护板的工作原理 锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,保护板有两个核心部件:一块保护IC,它是由精确的比较器来获得可靠的保护参数;另外是MOSFET串在主充放电回路中担当高速开关,执行保护动作。下面以DW01?配MOS管8205A进行讲解: 激活保护板的方法:当保护板P+、P-没有输出处于保护状态,可以短路B-、P-来激活保护板,这时,Dout、Cout均会处于低电平(保护IC此两端口是高电平保护,低电平常态)状态打开两个MOS开关。 1.锂电池保护板其正常工作过程为: 当电芯电压在至之间时,DW01?的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。此时DW01?的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01?的电压,故均处于导通状态,即两个

电子开关均处于开状态。此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。 2.保护板过放电保护控制原理: 当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01?内部将 通过R1电阻实时监测电芯电压,当电芯电压下降到约时DW01?将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的放电回路被切断,电芯将停止放电。保护板处于过放电状态并一直保持。等到保护板的P?与P-间接上充电电压后,DW01?经B-检测到充电电压后便立即停止过放电状态,重新在第1 脚输出高电压,使8205A内的过放电控制管导通,即电芯的B-与保护板的P-又重新接上,电芯经充电器直接充电。 3.保护板过充电保护控制原理: 当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到时,DW01?将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的充电回路被切断,电芯将停止充电。保护板处于过充电状态并一直保持。等到保护板的P?与P-间接上放电负载后,因此时虽然过充电控制开关管关闭,但其内部的二极管正方向与放电回路的方向相同,故放电回路可以进行放电,当电芯的电压被放到低于时,DW01?停止过充电保护状态重新在第3脚输出高电压,使8205A内的过充电控制管导通,即电芯的B-与保护板P-又重新接上,电芯又能进行正常的充放电. 4.保护板短路保护控制原理: 在保护板对外放电的过程中,8205A内的两个电子开关并不完全等效于两个机械开关,而是等效于两个电阻很小的电阻,并称为8205A的导通内阻,每个开关的导通内阻约为30m\U 03a9共约为60m\U 03a9,加在G极上的电压实际上是直接控制每个开关管的导通电阻的大小当G极电压大于1V时,开关管的导通内阻很小(几十毫欧),相当于开关闭合,当G极电压小于以下时,开关管的导通内阻很大(几MΩ),相当于开关断开。电压UA就是8205A的导通内阻与放电电流产生的电压,负载电流增大则UA必然增大,因UA0.006L×IUA又称为8205A的管压降,UA可以简接表明放电电流的大小。上升到时便认为负载电流到达了极限值,于是停止第1脚的输出电压,使第1脚电压变为0V、

锂电池保护板工作原理及构成

锂离子电池保护板工作原理及其构成 锂离子电池保护板工作原理及其构成 MOS 锂在元素周期表上第3位,外层电子1个,容易失去形成稳定结构,所以是非常活泼的一种金属。而锂离子电池具有放电电流大、内阻低、寿命长、无记忆效应等被人们广泛使用,锂离子电池在使用中严禁过充电、过放电、短路,否则将会使电池起火、爆炸等致命缺点,所以,在使用可充锂电池都会带有一块保护板来保护电芯的安全。

保护板有两个核心部件:一块保护IC,它是由精确的比较器来获得可靠的保护参数;另外是MOSFE T串在主充放电回路中担当高速开关,执行保护动作。电路原理图如下: 1、下面介绍保护IC个引脚功能:VDD是IC电源正极,VSS是电源负极,V-是过流/短路检测端,Do ut是放电保护执行端,Cout是充电保护执行端。 2、保护板端口说明:B+、B-分别是接电芯正极、负极;P+、P-分别是保护板输出的正极、负极;T 为温度电阻(NTC)端口,一般需要与用电器的MCU配合产生保护动作,后面会介绍,这个端口有时也标为ID,意即身份识别端口,这时,图上的R3一般为固定阻值的电阻,让用电器的CPU辨别是否为指定的电池。 保护板工作过程:

1、激活保护板的方法:当保护板P+、P-没有输出处于保护状态,可以短路B-、P-来激活保护板,这时,Dout、Cout均会处于低电平(保护IC此两端口是高电平保护,低电平常态)状态打开两个MOS 开关。 2、充电:P+、P-分别接充电器的正负极,充电电流经过两个MOS对电芯进行充电。这时,IC的VD D、VSS既是电源端,也是电芯电压检测端(经R1)。随着充电的进行,电芯电压逐渐升高,当升高到保护IC门限电压(一般是4.30V,通常称为过充保护电压)时,Cout随即输出高电平将对应那个M OS关断,充电回路也被断开。过充保护后,电芯电压会下降,当下降到IC门限电压(一般为4.10V,通常称为过充保护恢复电压)时,Cout恢复低电平状态打开MOS开关。 3、放电:同样,在电池放电时,IC的VDD、VSS也会对电芯电压检测,当电芯电压下降到IC门限电压(一般是2.40V,通常称为过放保护电压)时,Dout随即输出高电平将对应那个MOS关断,放电

锂电池保护板原理定稿版

锂电池保护板原理精编 W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

锂电池保护板原理 锂电池(可充型)之所以需要保护,是由它本身特性决定的。由于锂电池本身的材料决定了它不能被过充、过放、过流、短路及超高温充放电,因此锂电池锂电组件总会跟着一块精致的保护板和一片电流保险器出现。 锂电池的保护功能通常由保护电路板和PTC等电流器件协同完成,保护板是由电子电路组成,在-40℃至+85℃的环境下时刻准确的监视电芯的电压和充放回路的电流,及时控制电流回路的通断;PTC在高温环境下防止电池发生恶劣的损坏。 普通锂电池保护板通常包括控制IC、MOS开关、电阻、电容及辅助器件FUSE、PTC、NTC、ID、存储器等。其中控制IC,在一切正常的情况下控制MOS开关导通,使电芯与外电路导通,而当电芯电压或回路电流超过规定值时,它立刻控制MOS开关关断,保护电芯的安全。 在保护板正常的情况下,Vdd为高电平,Vss,VM为低电平,DO、CO为高电平,当 Vdd,Vss,VM任何一项参数变换时,DO或CO端的电平将发生变化。 1、过充电检出电压:在通常状态下,Vdd逐渐提升至CO端由高电平变为低电平时VDD-VSS间电压。 2、过充电解除电压:在充电状态下,Vdd逐渐降低至CO端由低电平变为高电平时VDD-VSS间电压。 3、过放电检出电压:通常状态下,Vdd逐渐降低至D O端由高电平变为低电平时VDD- VSS间电压。 4、过放电解除电压:在过放电状态下,Vdd逐渐上升到DO端由低电平变为高电平时VDD-VSS间电压。 5、过电流1检出电压:在通常状态下,VM逐渐升至DO由高电平变为低电平时VM-VSS 间电压。

锂电池保护板常用IC、MOS场效应管

锂电池保护板常用IC、MOS场效应管,详细清单如下: S-8261AANMD-G2NT2G 封装:SOT-23-6 品牌:SEIKO 备注:单节 S-8261AAJMD-G2JT2G 封装:SOT-23-6 品牌:SEIKO 备注:单节 S-8261ABJMD-G3JT2G 封装:SOT-23-6 品牌:SEIKO 备注:单节 S-8261ABPMD-G3PT2G 封装:SOT-23-6 品牌:SEIKO 备注:单节 S-8261ABRMD-G3RT2G 封装:SOT-23-6 品牌:SEIKO 备注:单节 S-8261ABMMD-G3MT2G 封装:SOT-23-6 品牌:SEIKO 备注:单节 S-8261ACEMD-G4ET2G 封装:SOT-23-6 品牌:SEIKO 备注:磷酸铁锂保护板 S-8261AAOMD-G2OT2G 封装:SOT-23-6 品牌:SEIKO 备注:单节 S-8241ACLMC-GCLT2G 封装:SOT-23-5 品牌:SEIKO 备注:单节 S-8242AAA-M6T2GZ 封装:SOT-23-6 品牌:SEIKO 备注:双节 S-8242AAD-M6T2GZ 封装:SOT-23-6 品牌:SEIKO 备注:双节 S-8242AAF-M6T2GZ 封装:SOT-23-6 品牌:SEIKO 备注:双节 S-8242AAY-M6T2GZ 封装:SOT-23-6 品牌:SEIKO 备注:双节 S-8242AAK-M6T3GZ 封装:SOT-23-7 品牌:SEIKO 备注:双节 S-8232AAFT-T2-G 封装:TSSOP-8 品牌:SEIKO 备注:双节 S-8232ABFT-T2-G 封装:TSSOP-8 品牌:SEIKO 备注:双节 S-8232AUFT-T2-G 封装:TSSOP-8 品牌:SEIKO 备注:双节 S-8253AAAFT-TB-G 封装:TSSOP-8 品牌:SEIKO 备注:2-3节 S-8253AAD-T8T1GZ 封装:TSSOP-8 品牌:SEIKO 备注:2-3节 S-8254AAAFT-TB-G 封装:TSSOP-16 品牌:SEIKO 备注:三-四节 S-8254AABFT-TB-G 封装:TSSOP-16 品牌:SEIKO 备注:三-四节 S-8254AAFFT-TB-G 封装:TSSOP-16 品牌:SEIKO 备注:三-四节 S-8254AAGFT-TB-G 封装:TSSOP-16 品牌:SEIKO 备注:三-四节 S-8254AAJFT-TB-G 封装:TSSOP-17 品牌:SEIKO 备注:三-四节 S-8254AANFT-TB-G 封装:TSSOP-18 品牌:SEIKO 备注:三-四节 S-8254AAKFT-TB-G 封装:TSSOP-19 品牌:SEIKO 备注:三-四节 R5400N101FA-TR-F 封装:SOT-23-5 品牌:RICOH 备注:单节 R5400N110FA-TR-F 封装:SOT-23-5 品牌:RICOH 备注:单节 R5400N150FA-TR-F 封装:SOT-23-5 品牌:RICOH 备注:单节 R5400N149FA-TR-F 封装:SOT-23-5 品牌:RICOH 备注:单节 R5402N101KD-TR-F 封装:SOT-23-6 品牌:RICOH 备注:单节 R5402N110KD-TR-F 封装:SOT-23-6 品牌:RICOH 备注:单节 R5402N149KD-TR-F 封装:SOT-23-6 品牌:RICOH 备注:单节 R5402N163KD-TR-F 封装:SOT-23-6 品牌:RICOH 备注:单节 R5402N128EC-TR-F 封装:SOT-23-6 品牌:RICOH 备注:单节 R5402N163KD-TR-F 封装:SOT-23-6 品牌:RICOH 备注:单节 R5460N207AF 封装:SOT-23-6 品牌:RICOH 备注:双节 R5460N207AA 封装:SOT-23-6 品牌:RICOH 备注:双节 R5460N208AA 封装:SOT-23-6 品牌:RICOH 备注:双节 R5460N208AF 封装:SOT-23-6 品牌:RICOH 备注:双节 R5460N212AF 封装:SOT-23-6 品牌:RICOH 备注:双节 R5460N214AF 封装:SOT-23-6 品牌:RICOH 备注:双节 R5460N214AC 封装:SOT-23-6 品牌:RICOH 备注:双节 R1211N002D-TR-F 封装:SOT-23-6 品牌:RICOH 备注:DC/DC升压 R1224N102H-TR-F 封装:SOT-23-6 品牌:RICOH 备注:DC/DC降压 R1224N332F-TR-F 封装:SOT-23-6 品牌:RICOH 备注:DC/DC降压 MM1414CVBE 封装:TSSOP-20 品牌:MITSUMI 备注:三-四节 MM3076XNRE 封装:SOT23-6 品牌:MITSUMI 备注:单节 MM3177FNRE 封装:SOT23-6 品牌:MITSUMI 备注:单节 VA7021P/C 封装:SOT-23-6 品牌:中星微备注:单节,中星微代理,中国最低价格DW01+ 封装:SOT-23-6 品牌:富晶备注:单节 FS312 封装:SOT-23-6 品牌:富晶备注:单节 CS213 封装:SOT-23-6 品牌:新德备注:单节 STC5NF20V 封装:TSSOP-8 品牌:ST 备注:配套MOS管 FTD2017M 封装:TSSOP-8 品牌:三洋备注:配套MOS管 ECH8601M 封装:SNT-8A 品牌:三洋备注:配套MOS管 UPA1870BGR 封装:TSSOP-8 品牌:NEC 备注:配套MOS管 FS8205A 封装:TSSOP-8 品牌:富晶备注:配套MOS管 SM8205ACTC 封装:SOT-23-6 品牌:茂达备注:配套MOS管 SM8205AOC 封装:TSSOP-8 品牌:茂达备注:配套MOS管 AO8810 封装:TSSOP-8 品牌:AOS 备注:配套MOS管 AO8820 封装:TSSOP-8 品牌:AOS 备注:配套MOS管 AO8822 封装:TSSOP-8 品牌:AOS 备注:配套MOS管 AO8830 封装:TSSOP-8 品牌:AOS 备注:配套MOS管 AO9926B 封装:TSSOP-8 品牌:AOS 备注:配套MOS管 SDC6073 封装:MSOP-8 品牌:SDC光大备注:单节,二合一的保护IC

3.7v锂电池保护板原理图

3.7v锂电池保护板原理图 锂电池保护板主要由维护IC(过压维护)和MOS管(过流维护)构成,是用来保护锂电池电芯安全的器材。锂电池具有放电电流大、内阻低、寿数长、无回忆效应等被人们广泛运用,锂离子电池在运用中禁止过充电、过放电、短路,不然将会使电池起火、爆破等丧命缺陷,所以,在运用可充锂电池都会带有一块维护板来维护电芯的安全。 1、电压保护能力过充电保护板:保护板有必要具有防止电芯电压超越预设值的才干过放电维护:保护板有必要具有防止电芯电压底于预设值的才干。 2、电流能力(过流保护电流,短路保护) 保护板作为锂电芯的安全保护器材,既要在设备的正常作业电流规模内,能可靠工作,又要在当电池被意外短路或过流时能迅速动作,使电芯得到保护。 3、导通电阻定义:当充电电流为500mA时,MOS管的导通阻抗。 由于通讯设备的工作频率较高,数据传输要求误码率低,其脉冲串的上升及下降沿陡,故对电池的电流输出能力和电压稳定度要求高,因而保护板的MOS管开关导通时电阻要小,单节电芯保护板通常在《70m,如太大会导致通讯设备作业不正常,如手机在通话时突然断线、电话接不通、噪声等现象。 4、自耗电流定义:IC作业电压为3。6V,空载状况下,流经保护IC的作业电流,一般极小。 保护板的自耗电流直接影响电池的待机时刻,通常规则保护板的自耗电流小于10微安。 5、机械功能、温度适应能力、抗静电能力保护板有必要能通过国标规则的轰动,冲击实验;保护板在40到85度能安全工作,能经受15KV的非触摸ESD静电测验。 锂电池充放电保护电路的特点及工作原理锂电池的保护功能通常由保护电路板和PTC协同完成,保护板由电子元件组成,在-40℃~+85℃的环境下时刻准确地监视电芯的电压和充放电回路的电流,并及时控制电流回路的通断;PTC的主要作用是在高温环境下进行保护,防止电池发生燃烧、爆炸等恶性事故。

DW02D(锂电池保护IC)

DW02D (文件编号:S&CIC0921) 二合一锂电池保护IC 一、概述 DW02D 产品是单节锂离子/锂聚合物可充电电池组保护的高集成度解决方案。DW02D 包括了先进的功率MOSFET ,高精度的电压检测电路和延时电路。 DW02D 具有非常小的SOT23-6的封装并且只需要一个外部元器件,这使得该器件非常适合应用于空间限制得非常小的可充电电池组应用。 DW02D 具有过充,过放,过流,短路等所有的电池所需保护功能,并且工作时功耗非常低。 该芯片不仅仅是为手机而设计,也适用于一切需要锂离子或锂聚合物可充电电池长时间供电的各种信息产品的应用场合。 二、特点 内部集成等效70mΩ的先进的功率MOSFET ; SOT23-6封装; 只需要一个外部电容; 过充电流保护; 3段过流保护:过放电流1、过放电流2(可选)、负载短路电流; 充电器检测功能; 延时时间内部设定; 高精度电压检测; 低静态耗电流:正常工作5.0uA (典型值);休眠状态不超过0.1uA ; 兼容ROHS 和无铅标准。

封装形式 管脚号管脚名称管脚描述 VC C GN D VD D NC BA T T T EST 1234 5 6 1VCC 内部电路供电端2GND 接地端,接电池芯负极3VDD 正电源供电端4 NC 悬空 5BATT 电池组的负极,内部FET 开关连接到GND 6 TEST 测试端

正常工作模式 如果没有检测到任何异常情况,充电和放电过程都将自由转换。这种情况称为正常工作模式。过充电压情况 在正常条件下的充电过程中,当电池电压高于过充检测电压(VCU),并持续时间达到过充电压检测延迟时间(tCU)或更长,DW02D 将控制MOSFET 以停止充电。这种情况称为过充电压情况。以下两种情况下,过充电压情况将被释放: 1、当电池电压低于过充解除电压(VCL),DW02D 控制充电的FET 导通,回到正常工作模式下。 2、当连接一个负载并且开始放电,DW02D 控制充电的FET 导通回到正常工作模式下。解除机制如下:接上负载后放电电流立刻流过充电FET 内部寄生二极管开始放电,BATT-电压升到0.7V ,DW02D 检测到这个电压后,当电池电压等于或低于过充检测电压(VCU),DW02D 立刻恢复到正常工作模式,另外,在接上负载放电时,如果BATT-电压等于或低于过流1检测电压,芯片也不会恢复到正常状态。 注:当电池被充电到超过过充检测电压(VCU)并且电池电压没有降到过充检测电压(VCU)以下,即使加上一个可以导致过流的重载,过流1和过流2都不会工作,除非电池电压跌到过充检测电压(VCU)以下。但是实际上电池是有内阻的,当电池接上一个重载,电池的电压会立即跌落,这时过流1和过流2就会动作。短路保护与电池电压无关。

锂电池充电保护IC原理

锂电池充电保护IC原理 锂离子电池因能量密度高,使得难以确保电池的安全性。具体而言,在过度充电状态下,电池温度上升后能量将过剩,于是电解液分解而产生气体,因内压上升而导致有发火或破裂的危机。反之,在过度放电状态下,电解液因分解导致电池特性劣化及耐久性劣化(即充电次数降低)。 锂离子电池的保护电路就是要确保这样的过度充电及放电状态时的安全性,并防止特性的劣化。锂离子电池的保护电路是由保护IC、及两颗Power-MOSFET所构成。其中保护IC为监视电池电压;当有过度充电及放电状态时,则切换以外挂的Power-MOSFET来保护电池,保护IC的功能为: (1)过度充电保护、(2)过度放电保护、(3)过电流/短路保护。以下就这三项功能的保护动作加以说明 (1) 过度充电: 当锂电池发生过度充电时,电池内电解质会被分解,使得温度上升并产生气体,使得压力上升而可能引起自燃或爆裂的危机,锂电池保护IC用意就是要防止过充电的情形发生。 过度充电保护IC原理: 当外部充电器对锂电池充电时,为防止因温度上升所导致的内压上升,需终止充电状况,此时保护IC需检测电池电压,当到达4.25V时(假设电池过充点为4.25V)及激活过充电保护,将Power MOS由ON'OFF,进而截止充电。另外,过充电检出,因噪声所产生的误动作也是必须要注意的,以免判定为过充保护,因此需要延迟时间的设定,而delay time也不能短于噪声的时间。 (2) 过度放电: 在过度放电的情形下,电解液因分解而导致电池特性劣化,并造成充电次数的降低,锂电池保护IC用以保护其过放电的状况发生, 达成保护动作。 过度放电保护IC原理:为了防止锂电池过度放电之状态,假设锂电池接上负载,当锂电池电压低于其过放电电压检测点(假设设定为2.3V),将激活过放电保护,将Power MOS由ON'OFF,进而截止放电,达成保护以避免电池过放电现象发生, 并将电池保持在低静态电流的状态(standby mode),此时耗电为0.1uA

相关文档
最新文档