HLTF-2015-A novel role for non-ubiquitinated FANCD2 in response to hydroxyurea-induced DNA damage

HLTF-2015-A novel role for non-ubiquitinated FANCD2 in response to hydroxyurea-induced DNA damage
HLTF-2015-A novel role for non-ubiquitinated FANCD2 in response to hydroxyurea-induced DNA damage

ORIGINAL ARTICLE

A novel role for non-ubiquitinated FANCD2in response to hydroxyurea-induced DNA damage

X Chen 1,2,L Bosques 1,2,P Sung 3and GM Kupfer 1,2

INTRODUCTION

The Fanconi anemia (FA)pathway is a DNA-repair pathway for DNA interstrand crosslinks (ICL).Patients with FA exhibit birth defects,bone marrow failure and a lifelong predisposition to cancer,such as acute myeloid leukemia and head and neck cancer.Cellular hypersensitivity to DNA cross-link agents,such as mitomycin C (MMC),is the hallmark of FA.1–4At least 16genes,which when mutated,have been found to lead to FA.5,6The FA proteins FANCA,B,C,E,F,G,L and M form an upstream core complex with putative E3-ligase activity,whose target is the FANCD2-FANCI complex.5,7It is suggested that the FANCD1,J,N,O,P,Q proteins function downstream of activation of the FANCD2-FANCI complex.Monoubiquitination of FANCD2by the core complex is essential for its chromatin localization,DNA-repair focus formation and function in repairing ICL.These events are implicated in recruitment of downstream proteins important for homologous recombination,several proteins which are part of the FA pathway.RAD51is a key factor in homologous recombination (HR)by virtue of its activity of binding to single strand DNA and forming a nucleoprotein ?lament in cooperation with BRCA2,8which is itself the bona ?de FA gene FANCD1.9

Translesion (TLS)is a mechanism for DNA damage tolerance or post-replication repair involving switching of the replicative DNA polymerase for specialized translesion polymerases,such as PolH,PolK and Rev1.By recruiting error-prone polymerases TLS allows replication machinery to bypass the replication-blocking lesions.10,11The recruitment of TLS polymerases is regulated by a post-translational modi ?cation of proliferation cell nuclear antigen (PCNA)via monoubiquitination.RAD18is the E3-ligase responsible

for PCNA monoubiquitination in TLS.12Upon monoubiquitination PCNA recruits TLS polymerases to chromatin.Our group and others have recently demonstrated RAD18binding to FANCD2in a manner critical for normal FA function,13whereas others have described the physical interaction of FANCD2-PCNA.14This study seeks to understand the relationship between these pathways.The observation that FANCD2colocalizes with RAD51after exposure to DNA damage induced by MMC and HU indicates that FANCD2and RAD51may function together in repairing DNA damage.15The interplay between the FA pathway and the TLS pathway has also been demonstrated.The deubiqutinating enzyme USP1is responsible for both FANCD2and PCNA deubiquitination.16,17Also,PCNA and RAD18can interact with FANCD2and regulate FANCD2monoubiquitination.13,14,18On the other hand,the FA core complex is required for ef ?cient point mutagenesis and REV1foci formation in response to UV irradiation,indicating that FA proteins may participate in regulating TLS in a way that is independent of FANCD2monoubiquitination.19Interestingly,FANCD2depletion inhibits TLS in Xenopus egg extracts.20The observation that FANCD2interacts with PolH upon DNA damage induced by UV further demonstrates the interplay between FA pathway and TLS pathway.21These multiple levels of interaction suggest coopera-tivity amongst repair pathways that has the potential to ?ne tune response to DNA damage.

The colocalization of FANCD2with RAD51and PCNA after HU treatment indicates cooperativity.15To further understand the function and regulation of DNA-repair proteins we set out to study this relationship in response to distinct types of DNA damaging

1

Department of Pediatrics,Section of Hematology/Oncology,Yale Cancer Center,Yale School of Medicine,New Haven,CT,USA;2Department of Pathology,Section of Hematology/Oncology,Yale Cancer Center,Yale School of Medicine,New Haven,CT,USA and 3Department of Molecular,Cellular,and Developmental Biology,Yale Cancer Center,Yale School of Medicine,New Haven,CT,USA.Correspondence:Dr GM Kupfer,Department of Pediatrics,Section of Hematology/Oncology,Yale Cancer Center,Yale School of Medicine,LMP2073,333Cedar St,New Haven 06520,CT,USA.E-mail:gary.kupfer@https://www.360docs.net/doc/5815955749.html,

Received 15August 2014;revised 30January 2015;accepted 2February 2015

Oncogene (2015),1–13

?2015Macmillan Publishers Limited All rights reserved 0950-9232/https://www.360docs.net/doc/5815955749.html,/onc

agents that stimulate the monoubiquitination response of FANCD2.DNA crosslinkers such as MMC,stimulate FANCD2 monoubiquitination,as well as confer hypersensitivity upon FA mutant cells.HU depletes the deoxyribonucleotide pool,resulting in replication fork collapse.HU also stimulates FANCD2mono-ubiquitination,but the cytotoxicity effect on FA mutant cells has not been carefully explored.We?nd that almost all FA de?cient cells are as resistant to HU as wild-type cells,whereas hypersensitive to MMC,in a manner that is dependent on FANCD2,regardless of its ability to be monoubiquitinated.We?nd that FANCD2forms a complex with RAD51and RAD18,which increases upon DNA damage induced by HU.We then show that HU can induce PCNA monoubiqutination in a FANCD2and RAD51-dependent fashion but monoubiquitinated FANCD2-independent fashion.The impaired PolH chromatin localization in FANCD2and RAD51de?cient cells further demonstrates that FANCD2and RAD51are important in regulating TLS in response to DNA damage induced by HU.Knockdown of polH results in HU sensitivity only.These data reveal a novel role of FANCD2in the DNA damage response that does not depend on its monoubiquitination.

RESULTS

FANCD2de?cient cells are hypersensitive to HU

The FA pathway is a DNA-repair pathway specialized for repairing DNA ICLs.FA de?cient cells are hypersensitive to crosslinking agents,such as MMC.MMC can induce FANCD2monoubiquitina-tion,a key step in FA pathway.However,FANCD2monoubiqui-tination can also be induced by other type of DNA damaging agents,such as HU,UV and ionizing radiation.22–24HU is a replication inhibitor and can induce DNA double-strand breaks by causing replication fork arrest upon nucleotide pool depletion.25,26 It has been shown that FANCD2has an important role in protecting replication forks and in replication fork recovery.27–29In order to further understand FANCD2function in response to different DNA damage agents we compared the MMC and HU hypersensitivity of FANCD2de?cient cells,FANCA de?cient cells and FANCJ de?cient cells.As expected,FANCD2de?cient cells, FANCA de?cient cells and FANCJ de?cient cells were all hypersensitive to MMC(Figure1).However,only FA-D2mutant cells expressing no FANCD2were hypersensitive to HU,whereas FA-D2cells containing FANCD2monoubiquitination mutant K561R,FANCA de?cient cells,which lack monoubiquitinated FANCD2,and FANCJ de?cient cells were not(Figure1a).These results suggest that non-ubiquitinated FANCD2has an important but separate role in repair and response to DNA damage induced by HU.These data also clearly demonstrate that FA-J mutant cells are HU resistant,in contrast to earlier reports,but are consistent with much older data concerning cell cycle and HU in FA-A mutant cells.30,31

In order to con?rm our results,we examined another FA phenotype:cell cycle arrest.Upon MMC exposure,FA-D2mutant cells and FA-D2cells expressing FANCD2monoubiquitination mutant K561R protein displayed increased G2/M accumulation relative to corrected cells,as expected(Figure1b).We also analyzed the cell cycle effect of HU on these same cells.Instead of G2/M phase HU arrests cells in S phase.32When cells were treated with HU,FA-D2mutant cells displayed the highest amount of S phase arrest,whereas signi?cantly less was observed in cells either expressing wild-type FANCD2or monoubiquitination mutant FANCD2(K561R)protein(Figure1b).We con?rmed this observation by measuring S phase cells only with BrdU labeled cells(Supplementary Figure A).We performed cell counts in parallel,demonstrating that growth kinetics of each cell line is not markedly different to explain the cell cycle differences (Supplementary Figure A).In FA-J cells we also observed increased G2/M accumulation relative to corrected cells when exposed to MMC(Figure1c).However,FA-J mutant cells did not display higher S phase accumulation than corrected cells after HU exposure.These data con?rm the observation that mutant cells with absent FANCD2expression are more sensitive to HU than other mutant FA cells,as long as FANCD2is present,regardless of its monoubiquitination status(Figure1a).These data were further con?rmed by using two siRNA separately transfected knockdown oligos directed against FANCI,the binding partner of FANCD2. Immunoblot demonstrated effective knockdown,and the resulting depleted cells were MMC sensitive but HU resistant,consistent with the idea that FANCD2has a separable function in mediating resistance to HU(Figure1d).

In order to demonstrate that the FA-D2cells containing the FANCD2(K561R)ubiquitination mutant have reduced DNA damage,we subjected the FA-D2cell group to MMC and HU and analyzed the lysates for gamma-H2Ax signal,which is increased in proportion to increased DNA damage.As expected, FA-D2+FANCD2cells expressed FANCD2and responded to MMC or HU with FANCD2monoubiquitination,whereas FA-D2+FANCD2 (K561R)cells expressed FANCD2but were not monoubiquitinated in response to MMC or HU(Figure1e,whole-cell lysate).In chromatin fractions the wild-type containing cells displayed increased monoubiquitinated FANCD2with only modest increase in gamma-H2Ax signal(Figure1e,lanes11and12),and the FA-D2 mutant cells displayed marked increase in gamma-H2Ax signal and no increased K561R ubiquitination mutant protein on chromatin(lanes17and18)in response to MMC or HU. Interestingly,the K561R ubiquitination mutant containing cells demonstrated increased signal only in response to MMC(lane14 versus15),suggesting that these cells are indeed pro?cient in the management of DNA damage induced by HU.

FANCD2-RAD51-RAD18complex and RAD51-RAD18-PCNA complex interaction increase in response to HU

To further study the role of FANCD2in HU-induced DNA damage we performed FANCD2immunoprecipitation to test for binding partners with and without HU treatment.To rule out the possibility that DNA may have a role in co-precipitation we treated cell lysates with DNase I before performing FANCD2immuno-precipitation.We found that RAD51co-immunoprecipitated with FANCD2and con?rmed interaction of FANCD2and RAD18,using Flag immunoprecipitation followed by FANCD2immunoblotting (Figure2a).Interestingly,FANCD2monoubiquitination mutant also interacts with RAD51and RAD18(Figure2a).We also observed that these interactions signi?cantly increased with HU and MMC treatment(Figure2a,lane7versus lanes8and9,lane 16versus lanes17and18).RAD51immunoprecipitation was performed,and RAD18immunoblotting showed that RAD18 was co-immunoprecipitated by RAD51,with increased amount after HU treatment(Figure2b),suggesting that FANCD2,RAD51 and RAD18form a complex.

It has been shown that RAD18was detected as non-monoubiquitinated and monoubiquitinated forms by Western blot in human cells.33Monoubiquitinated RAD18was detected mainly in cytoplasm,whereas non-monoubiquitinated RAD18was detected predominantly in the nuclei.33A recent paper shows that ubiquitination prevents RAD18from localizing to sites of DNA damage,inducing PCNA monoubiquitination and suppressing mutagenesis.34Here we observed that FANCD2and RAD51 predominantly interacts with non-monoubiquitinated RAD18 under our experimental conditions(Figures2a and b),indicating that these interactions may have a role in PCNA monoubiquitination and DNA damage response.Interestingly,the interaction of RAD18 and RAD51was only increased in the presence of HU(Figure2b, lane8)but not MMC(Figure2b,lane9),indicating that DNA-repair proteins differentially respond to different DNA damage agents.

FANCD2for hydroxyurea-induced DNA damage

X Chen et al

2

Oncogene(2015)1–13?2015Macmillan Publishers Limited

It has been previously shown that FANCD2can interact with PCNA.14However,under our experimental conditions,interaction of FANCD2and PCNA was not detected,suggesting lack of, transient,or weak interaction.We then tested if RAD51could interact with PCNA.Indeed,in a PCNA immunoprecipitation assay we observed that RAD51was co-immunoprecipitated with PCNA (Figure2c).As in the FANCD2,RAD51and RAD18interactions,the interaction of RAD51and PCNA was also increased in response to HU treatment(Figure2c,lane8).Immunoblotting of the fractions generated by gel-?ltration chromatography of protein extracts from HU-treated cells demonstrated co-fractionation of FANCD2, RAD18,RAD51and PCNA.All these four proteins were found in a 669kDa protein complex in extracts from FA-D2+?ag-FANCD2 cells(Figure2d,fraction21–27).We pooled these fractions and subjected the extracts to Flag immunoprecipitation.Subsequent immunoblotting demonstrated the co-precipitation of RAD18and RAD51(Supplementary Figure B).Again we observed that FANCD2 and RAD51predominantly interacts with non-monoubiquitinated RAD18(Supplementary Figure B)although both monoubiquiti-nated and non-monoubiquitinated RAD18were fractionated (Figure2d).

FANCD2is required for increased interaction of RAD51and RAD18 Given the increase in interaction of RAD51and RAD18in response to HU,we wanted to test the dependence of this increased interaction upon FANCD2.Therefore,we performed RAD51 immunoprecipitation in FA-D2mutant cells lacking FANCD2 expression,FA-D2+monoubiquitination de?cient FANCD2 (K561R)cells,and FA-D2+wild-type FANCD2cells.Our results showed that only in cells lacking FANCD2expression was the interaction of RAD51and RAD18not enhanced by HU(Figure3, lane16),indicating that FANCD2is a required component in increased RAD51and RAD18complex formation.Again,RAD51 predominantly interacts with non-monoubiquitinated RAD18. Interestingly,FANCD2monoubiquitination de?cient mutant also promoted the interaction of RAD51and RAD18in response to HU even though not as strongly as wild-type FANCD2(Figure3,lane18), indicating that FANCD2monoubiquitination is not critical for increased complex formation.

FANCD2and RAD51are required for PCNA monoubiquitination in response to HU

Our immunoprecipitation data suggest that in response to HU, FANCD2-RAD51-RAD18and RAD51-PCNA interactions are enhanced.Because RAD18is responsible for PCNA monoubiqui-tination,one possible explanation is that FANCD2and RAD51 participate in PCNA monoubiquitination,and in turn,TLS. Although PCNA ubiquitination can be triggered by HU it has not been shown that the ubiquitination is RAD18-dependent.35 Because PCNA can be ubiquitinated by enzymes other than RAD1836,37we?rst tested whether HU-induced PCNA mono-ubiquitination depends on RAD18under our experimental conditions using RAD18?/?and wild-type cells.Immunoblotting of the chromatin fraction showed that HU treatment not only enhanced FANCD2monoubiquitination but also enhanced PCNA monoubiquitination and that the enhanced PCNA monoubiquti-nation was dependent on RAD18(Figure4a).We then examined PCNA monoubiquitination in FANCD2or RAD51siRNA knockdown cells.The Dharmacon SmartPool siRNA(Dharmacon)was used to knockdown FANCD2or Rad51in293T cells.We found that in control knockdown293T cells PCNA monoubiquitination as measured by mean value of ub-PCNA was enhanced.However, the enhancement of monoubiquitinated PCNA was minimized in FANCD2or RAD51siRNA knockdown cells(Figure4b,lane12and18), suggesting that FANCD2and RAD51have important roles in PCNA monoubiquitination in response to HU.Interestingly,MMC treatment did not increase the level of monoubiquitinated PCNA.One of the possible explanations for these results might be that RAD18,RAD51and FANCD2complex formation occurs only in response to HU treatment(Figures2a and3).USP1is the enzyme responsible for PCNA deubiquitination.17The USP1level and chromatin localization were similar in control knockdown cells

and RAD51knockdown cells(Supplementary Figure C),suggesting

that USP1is not responsible for diminished PCNA monoubiqui-tination.Instead,FANCD2and RAD51may stimulate PCNA monoubiquitination through RAD18,as suggested by our immunoprecipitation data.The observation that FANCD2mono-ubiquitination,which is also deubiquitinated by USP1,16was normal in RAD51knockdown cells(Figure4b,lane5and6)further supports this idea.To con?rm the speci?city of knockdown results

we repeated these experiments using two individually transfected siRNAs directed against FANCD2and RAD51,respectively. Immunoblotting showed signi?cant knockdown,as well as similar monoubiquitination response to HU(Supplementary Figure D).

We also examined the PCNA in soluble fraction of cells.The level

of PCNA was not changed in all cell lines and under different treatment conditions,and no ubiquitinated PCNA was observed (Supplementary Figure D).

These data also suggest that,given the differential effect of MMC and HU,the role of RAD51in monoubiquitination of PCNA

and thus HU resistance may not involve its canonical role in HR.To

test this idea,we utilized the RAD51inhibitor B02and C34cells, which contain the green?uorescent protein cassette and RFP cassette to measure HR and non-homologous end joining.38 Exposure of C34cells to B02resulted in no change in monoubiquitinated PCNA response to HU.However,HR was impaired,suggesting a non-canonical role for RAD51in the response to HU-induced DNA damage(Supplementary Figure E).

To con?rm the result from the siRNA knockdown experiment

and investigate the role of monoubiquitination of FANCD2we tested PCNA monoubiquitination in FA-D2mutant cells,FA-D2 cells expressing FANCD2(K561R),and FA-D2cells expressing wild-

type FANCD2.The results showed that FANCD2de?cient cells failed to enhance PCNA monoubiquitination in response to HU, whereas cells expressing wild-type FANCD2could rescue PCNA monoubiquitination as measured by mean value of ub-PCNA (Figure4c,lane12).Interestingly,the cells expressing FANCD2 monoubiquitination de?cient mutant could also rescue PCNA monoubiquitination,even though the level is not as high as wild-

type FANCD2(Figure4c,lane15).These data suggest that FANCD2is required for enhancing PCNA monoubiquitination in response to HU,and FANCD2monoubiquitination status is not critical for this activity.

The regulation of PCNA monoubiqutination by RAD51is independent of BRCA2

RAD51and its chromatin localization are very important for its function in HR.BRCA2interacts with RAD51and is responsible

for loading RAD51to chromatin at double-strand breaks for

the performance of HR.To study the relationship between the

role of RAD51in regulating PCNA monoubiquitination and its relationship to HR,we tested for RAD51chromatin localization and PCNA monoubiquitination in BRCA2mutant cells EUFA423. EUFA423cells are derived from an FA patient with complementation group D1and have biallelic mutations(7691insAT and9900insA)

in BRCA2that result in two different truncated forms of BRCA2.9

As expected RAD51chromatin localization was impaired in BRCA2

de?cient cells compared with wild-type cells,although total cellular RAD51in BRCA2de?cient cells was unchanged.However,

in response to HU monoubiquitinated PCNA was increased to a similar level in both BRCA2de?cient and wild-type cells,indicating

that RAD51chromatin localization is not required for regulating PCNA monoubiquitination,thus representing a function of RAD51

that is independent of HR(Figure5a).We con?rmed these data FANCD2for hydroxyurea-induced DNA damage

X Chen et al

3

?2015Macmillan Publishers Limited Oncogene(2015)1–13

01020304050607080

102030405060708090100S u r v i v a l (%)

MMC (nM)

FA-J 0

1020304050607080901000

1020304050607080

S u r v i v a l (%)

MMC (nM)

FA-D2

FA-D2+FANCD2FA-D2+K561R

1020304050607080901000

1020304050607080

S u r v i v a l (%)

MMC (nM)

FA-A

FA-A+FANCA

MMC hypersensitivity

1020304050607080901000

0.2

0.4

0.6

0.81

S u r v i v a l (%)

HU (mM)

FA-J

FA-J+FANCJ

1020304050607080901000

0.1

0.20.30.40

0.1

0.20.30.4

S u r v i v a l (%)

HU (mM)

FA-D2

FA-D2+FANCD2FA-D2+K561R

102030405060708090100S u r v i v a l (%)

HU (mM)

FA-A

FA-A+FANCA

HU hypersensitivity

a

FA-J+FANCJ

30nM MMC

0.1mM HU untreated FA-D2+FANCD2

FA-D2 +FANCD2 (K561R)

%G1=46.9±1.3

%S =33.9±2.7%G2=17.7±0.8

%G1=45.9±3.1%S =30.4±4.2%G2=22.6±2.8*%G1=38.9±1.2%S =33.3±2.5%G2=25.9±1.4%G1=27.5±2.3%S =24.0±2.7%G2=46.5±0.56*%G1=41.2±2.5 %S =35.8±2.8*%G2=25.1±2.5

%G1=38.6±1.5%S =36.6±4.1*%G2=23.1±5.1

FA-D2

%G1=44.9±2.2%S =38.1±1.0%G2=15.7±0.8%G1=28.9±0.5%S =34.2±1.1%G2=35.7±1.7*%G1=29.8±2.5%S =58.7±2.2*%G2=6.8±1.4

b

Figure 1.FANCD2de ?cient cells are hypersensitive to HU.(a )FA-D2,FA-D2+FANCD2,FA-D2+FANCD2(K561R),FA-A,FA-A+FANCA,FA-J and FA-J+FANCJ cells were treated with MMC or HU with the concentrations as indicated in graph for 5days.Cell survival was analyzed by crystal violet staining.(b and c )100000of FA-D2,FA-D2+FANCD2,FA-D2+FANCD2(K561R),FA-J and FA-J+FANCJ cells from each treatment were collected after exposure to MMC or HU for 22h.The cells were then processed,as in the Materials and methods section.Flow cytometry was performed to measure DNA content.(d )FANCI was knocked down in 293T cells using two different siRNA sequences (Dharmacon,Lafayette,CO,USA),either individually or as a mixture of two sequences.The knockdown of FANCI was con ?rmed by immunoblot analysis.Ku86was used as loading control.Then cells were subjected to survival assay for MMC or HU sensitivity as in a .(e )FA-D2,FA-D2+FANCD2,FA-D2+FANCD2(K561R)cells were treated with 0.5m M MMC or 0.5m M HU.The chromatin fraction was subjected to immunoblot analysis for γH2AX level.Ku86was used as loading control.

FANCD2for hydroxyurea-induced DNA damage

X Chen et al

4

Oncogene (2015)1–13?2015Macmillan Publishers Limited

using an additional BRCA2(?/?)cell line DLD-1(Horizon Discovery;Supplementary Figure F).These data again show that BRCA2is not required for hydroxyurea resistance.We tested for cell survival of BRCA2(?/?)and BRCA2wild-type cells to both MMC and HU.As expected,the BRCA2mutant cells were hypersensitive only to MMC but not HU (Figure 5b).

FANCA and FANCJ de ?cient cells exhibit PCNA monoubiquitination

FANCA is a component of the core complex of the FA pathway and is required for FANCD2monoubiquitination.We expected that FANCA de ?cient cells would behave like FANCD2

monoubiquitination mutant cells with respect to PCNA mono-ubiquitination,as in Figure 4c.Indeed,in FANCA de ?cient cells FANCD2was not monoubiquitinated,as expected,in response to HU.Consistent with data shown earlier using cells containing monoubiquitination de ?cient FANCD2,both FANCA de ?cient and pro ?cient cells responded to HU by displaying PCNA mono-ubiquitination in response to HU,and FA-A cells,like mono-ubiquitination de ?ciet FANCD2cells,showed slightly lower PCNA monoubiquitination than FANCA pro ?cient cells (Figure 5c,lanes 6and 8).Next,we analyzed another FA mutant cell line,FANCJ de ?cient cells,for PCNA monoubiquitination in response to HU.In FANCJ de ?cient cells PCNA monoubiquitination was similar to that in FANCJ pro ?cient cells (Figure 5d),suggesting that FANCJ is not

30nM MMC 0.3mM HU

untreated

FA-J

FA-J +FANCJ

%G1=61.9±0.2%S =16.7±0.9%G2=22.5±1.9%G1=38.4±1.7%S =9.2±0.7%G2=53.0±2.1*

%G1=74.9±3.9%S =12.2±2.9%G2=14.7±1.3%G1=55.8±2.4%S =15.3±2.5%G2=29.5±0.4*%G1=50.2±1.9%S =30.5±2.0*%G2=20.7±0.8

%G1=46.4±7.8%S =39.1±7.3*%G2=15.5±1.4

c

010203040506070

8090100S u r v i v a l (%)

MMC (nM)

control siRNA FANCI siRNA-Mix FANCI siRNA-2FANCI siRNA-3

010

2030-10

40

90

140

0.05

0.10.15

0.2

405060708090100

S u r v i v a l (%)

HU (mM)

control siRNA FANCI siRNA-mix FANCI siRNA-2FANCI siRNA-3

d

Ku86

Blot:

FANCI

siRNA

C Mix 2 3

FANCI FANCD2

γH2AX

H2AX

Ku86

Blot:-MMC HU

Chromatin FA-D2+K561R FA-D2FA-D2+FANCD2FANCD2Blot:

Whole cell

FA-D2+K561R FA-D2

FA-D2+FANCD2Ku86

FANCD2

e

10 11 12 13 14 15 16 17 18

1 2 3 4 5 6 7 8 9

-MMC HU

-MMC HU

-MMC HU

-MMC HU

-MMC HU

Figure 1.Continued

FANCD2for hydroxyurea-induced DNA damage X Chen et al

5

?2015Macmillan Publishers Limited

Oncogene (2015)1–13

required for PCNA monoubiquitination.These results indicate that the effect of FANCD2on PCNA monoubiquitination is indepen-dent of both the upstream FA core complex and downstream FA effector proteins.

PolH chromatin localization is decreased in FANCD2de ?cient cells and RAD51siRNA knockdown cells

We have shown that FANCD2and RAD51are required for PCNA monoubiquitination in response to HU.PCNA monoubiquitina-tion regulates the DNA polymerase switching in TLS.39–41To con ?rm HU-induced PCNA monoubiquitination has a role in TLS we tested for chromatin localization of TLS polymerases PolH and PolK in response to HU in FANCD2or RAD51pooled siRNA (Dharmacon)knockdown cells.In control knockdown cells PolH chromatin localization was increased in response to HU

(Figure 6a,lane 15).However,in FANCD2or RAD51siRNA knockdown cells PolH chromatin localization failed to increase when treated with HU (Figure 6a,lanes 12and 18).MMC treatment,in contrast,did not enhance the chromatin localiza-tion of PolH (Figure 6a,lane 14),consistent with the observation that PCNA monoubiquitination is enhanced by FANCD2and RAD51in response to HU but not MMC.These data con ?rm the roles of FANCD2and RAD51in regulating TLS through PCNA monoubiquitination in response to HU.Interestingly,PolK level on chromatin is unaffected in FANCD2or RAD51siRNA knock-down cells (Figure 6a).This may be because PolH has one ubiquitin binding domain and binds to monoubiquitinated PCNA,whereas PolK has two ubiquitin binding domains and binds to polyubiquitinated PCNA.42,43To con ?rm the speci ?city of FANCD2and RAD51knockdown we repeated

knockdown

-

HU MMC MMC -HU -

HU MMC

Input IgG Rad51IP

Blot:Rad18

Rad51

a

b

Blot:PCNA

Rad51

-HU MMC -

HU MMC -

HU MMC

Input IgG

PCNA IP c

FANCD2Rad18

Rad51

MMC -

HU -HU MMC

Input IgG

FlagAb

IP Blot:-MMC HU

Relative value: 1.0 2.1 4.0

Relative value: 1.0 2.6 2.8

Relative Value: 1.0 1.9 1.2

Relative value: 1.0 2.3 1.1

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

-MMC HU -

MMC HU

Input

IgG

FlagAb

IP Blot:-

MMC HU

FANCD2Rad18

Rad51

Relative value 1.0 2.7 1.6

Relative value 1.0 4.4 3.2

)

R 165K (2D C N A F g a l f +2D -A F 2

D C N A F g

a l f +2D -A F 10 11 12 13 14 15 16 17 18

C 13 15 17 19 21 23 25 27 29 31 33 35

Rad18

FANCD2669KDa

MW Fractions 2MDa

blot:

d

Rad51

PCNA

Figure 2.FANCD2-RAD51-RAD18complex and RAD51-RAD18-PCNA complex interaction increase in response to HU.(a )FA-D2+Flag-FANCD2cells were treated or not with 0.5m M HU or 0.5μM MMC overnight.Whole-cell extracts were immunoprecipitated with control IgG or anti-Flag antibody.The immunoprecipitation products were analyzed by immunoblot with FANCD2,RAD18and RAD51antibodies.(b )The 293T cells were treated or not with 0.5m M HU or 0.5μM MMC overnight.Whole-cell extracts were prepared and immunoprecipitated with control IgG or RAD51antibody.The immunoprecipitation products were analyzed by immunoblot with RAD18and RAD51antibodies.(c )The 293T cells were treated or not with 0.5m M HU or 0.5μM MMC overnight.Whole-cell extracts were prepared and immunoprecipitated with control IgG or PCNA antibody.The immunoprecipitation products were analyzed by immunoblot with RAD51and PCNA antibodies.(d )Gel ?ltration of FA-D2+?ag-FANCD2cell extracts (from cells treated with HU)was performed,and resulting fractions were immunoblotted for FANCD2,RAD18,RAD51and https://www.360docs.net/doc/5815955749.html,ne C is loading control.All four proteins partially were co-fractionated.

FANCD2for hydroxyurea-induced DNA damage

X Chen et al

6

Oncogene (2015)1–13

?2015Macmillan Publishers Limited

experiment using two individually transfected siRNAs directed against FANCD2and RAD51,respectively.Immunoblotting showed signi ?cant knockdown,as well as similar PolH chromatin localization in response to HU (Supplementary Figure G).The results from knockdown cells were con ?rmed in FANCD2de ?cient cells (Figure 6b).In addition,the FANCD2monoubiqui-tination mutant cells and FANCA de ?cient cells also promoted PolH chromatin localization in response to HU (Figures 6b and c),although not as strongly as wild type,in agreement with the PCNA monoubiquitination data.This again suggests that non-ubiquitinated FANCD2can respond to HU and promote PCNA monoubiquitination and TLS.In order to demonstrate the speci ?city of polH in the context of HU,we performed siRNA knockdown using two different siRNAs directed against polH.Signi ?cant knockdown was achieved,as evidenced by immuno-blotting (Figure 6d).Interestingly,PolH knockdown cells showed signi ?cant hypersensitivity to HU but not to MMC,consistent with the speci ?c involvement of TLS-associated activities of PolH.RAD51de ?cient cells are hypersensitive to HU

We tested cellular sensitivity to MMC and HU in RAD51knock-down cells.We demonstrated knockdown with pooled siRNA (Dharmicon)by immunoblot (Figure 6a).As expected,these cells showed hypersensitivity to HU and MMC (Figure 7).These results were con ?rmed by using two speci ?c siRNA knockdown oligos,which we transfected separately into 293T cells,con ?rming knockdown by immunoblotting.These resulting cells displayed the same sensitivity to both HU,as well as MMC (Supplementary Figure H).These data support the idea that RAD51plays an important role in resolving the DNA damage induced by HU in a non-HR dependent fashion.

DISCUSSION

Although different DNA-repair pathways are responsible for different kinds of DNA damage,the components of one pathway may be important for repair of multiple types of DNA damage,especially for lesions as complex as ICL.Previously,we showed that mismatch repair proteins MSH2and MLH1could regulate FANCD2monoubiquitination and ICL repair.44The E3-ligase RAD18is important for PCNA monoubiquitination and TLS but also has an important role in FANCD2monoubiquitination.13,18PCNA itself has been shown to regulate FANCD2function.14In our work,we ?nd that all FA mutant cells examined,except FA-D2-null mutant cells,which are largely devoid of FANCD2protein,are

nonetheless resistant to HU.These data are supported by the response to γH2Ax,which is increased in mutant FA cells in response to MMC but to HU only in FA-D2deletion mutant cells.We then show that FANCD2can interact with RAD18and RAD51,even when non-monoubiquitinated,and RAD51can also interact with RAD18and PCNA (Figure 2),suggesting that FANCD2,RAD51and RAD18form a complex in a manner that regulates PCNA.These interactions are enhanced in response to HU (Figures 2b and 3).We further show that HU-induced PCNA monoubiquitination is RAD18-dependent (Figure 4a).This is distinctly different from FA-dependent TLS in MMC-induced repair,which is RAD18-independent.45More importantly,we ?nd that FANCD2and RAD51,but not BRCA2,are required for PCNA monoubiquitination and TLS in response to DNA damage caused by HU (Figures 4b and c).This represents a non-canonical role for RAD51,as the pharma-cological inhibition of the HR function does not abolish PCNA monoubiquitination.The enhanced PCNA monoubiquitination and PolH chromatin localization are abrogated in either RAD51knockdown cells or FANCD2de ?cient cells (Figures 4b and c)supporting the idea that FANCD2,RAD51and RAD18form a complex to promote damage-speci ?c TLS.It is likely this complex regulates PCNA monoubiquitination in response to HU.It has also been shown that FANCD2and RAD51have an important role in replication fork protection and that this FANCD2mediated fork protection is epistatic with RAD51function.27These data are also supportive of the idea that PCNA undergoes polymerase switch-ing,as only PolH is induced by HU,but not MMC,and knockdown of PolH renders cells HU sensitive but not MMC sensitive.Taken together our data demonstrate that besides ICL repair,HR,and replication protection,FANCD2and RAD51together also have important and distinct roles in TLS in response to DNA damage caused by HU (Figure 8).Their function in PCNA monoubiquitina-tion and TLS polymerase switching in response to HU may also have an important role in HU resistance.Our data that RAD51knockdown cells are similarly hypersensitive to HU as FA-D2cells support this idea,as do previous data that PCNA monoubiquitination mutant cells were hypersensitive to HU.35

Interestingly,the monoubiquitination of FANCD2is dispensable for its role in response to HU,an agent primarily thought to lead to replication fork collapse.The function of non-monoubiquitinated FANCD2may explain the fact that FA patients with absent FANCD2protein expression have a more severe clinical phenotype than those with core complex protein mutations.3In an analogous fashion,FANCD2de ?cient mice display higher magnitude of DNA damage than FANCG de ?cient mice.46We also did not observe the

F A -D 2

F A -D 2+F A N C D 2

F A -D 2+K 561R

F A -D 2

F A -D 2+F A N C D 2

F A -D 2+K 561R

F A -D 2

F A -D 2+F A N C D 2

F A -D 2+K 561R

Input IgG Rad51F A -D 2

F A -D 2+F A N C D 2

F A -D 2+K 561R

F A -D 2

F A -D 2+F A N C D 2

F A -D 2+K 561R

F A -D 2

F A -D 2+F A N C D 2

F A -D 2+K 561R

Input IgG Rad51U

H h t i W U

H o N IP

Blot:Rad18

Rad51

IP

Blot:Rad18

Rad51

Relative value: 1.0 1.0 0.8

Relative value: 1.0 5.0 2.9

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

Figure 3.FANCD2is required for increased interaction of RAD51and RAD18in response to HU.FA-D2,FA-D2+FANCD2and FA-D2+FANCD2(K561R)cells were treated or not with 0.5m M HU overnight.Whole-cell extracts were prepared and immunoprecipitated with control IgG or RAD51antibody.The immunoprecipitation products were analyzed by immunoblot with RAD18and RAD51antibodies.

FANCD2for hydroxyurea-induced DNA damage X Chen et al

7

?2015Macmillan Publishers Limited

Oncogene (2015)1–13

HCT116Rad18-/-HCT116

Rad18

Whole cell

Ku86

FANCD2-HU -

HU

Blot:

HCT116Rad18-/-HCT116PCNA

FANCD2Ku86

Chromatin

-HU -HU

Blot:

a

Ub-PCNA

Non-specific

band

1 2 3 4

5 6 7 8

Ku86

Ku86

Rad51Blot:

-MMC HU -MMC HU -MMC HU

Chromatin

C

Rad51

siRNA

FANCD2

Blot:-MMC HU -MMC HU -MMC HU Whole cell Rad51

FANCD2

siRNA

C

PCNA

FANCD2

b

PCNA

Ub-PCNA

1 2 3 4 5 6 7 8 9

10 11 12 13 14 1 5 16 17 18

Ku86

PCNA

FANCD2

Ku86

Blot:-MMC HU -MMC HU -

MMC HU

Chromatin

FA-D2+K561R

FA-D2FA-D2+FANCD2

FANCD2

Blot:-MMC HU -MMC HU -

MMC HU

Whole cell FA-D2+FANCD2

FA-D2+K561R FA-D2

c

PCNA

Ub-PCNA

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

Figure 4.FANCD2and RAD51are required for PCNA monoubiquitination in response to HU.(a )RAD18is responsible for PCNA monoubiquitination in response to HU.HCT116and HCT116(RAD18?/?)cells were either treated or not with 0.5m M HU overnight.The whole-cell lysate and chromatin fraction were prepared and analyzed by immunoblot with PCNA and FANCD2antibodies.Ku86was used as loading control.(b )PCNA monoubiquitination is decreased in FANCD2or RAD51siRNA knockdown 293T cells.FANCD2and RAD51were knocked down by FANCD2and RAD51siRNA,respectively in 293T cells.The knockdown cells were then treated or not with 0.5μM MMC or 0.5m M HU overnight.The whole-cell lysate and chromatin fraction were prepared and analyzed by immunoblot with RAD51,PCNA and FANCD2antibodies.Ku86was used as loading control.Mean value of ub-PCNA is reported.(c )FANCD2,but not its monoubiquitination,is required for PCNA monoubiquitination.FA-D2,FA-D2+FANCD2and FA-D2+FANCD2(K561R)cells were treated or not with 0.5μM MMC or 0.5m M HU overnight.The whole-cell lysate and chromatin fraction were prepared and analyzed by immunoblot with PCNA and FANCD2antibodies.Ku86was used as loading control.Mean value of ub-PCNA is reported.

FANCD2for hydroxyurea-induced DNA damage

X Chen et al

8

Oncogene (2015)1–13?2015Macmillan Publishers Limited

involvement of FANCD2and RAD51in PCNA monoubiquitination in the DNA damage response caused by MMC,and PCNA is only weakly monoubiquitinated in response to MMC,suggesting that the role of FANCD2and RAD51in PCNA monoubiquitination and TLS may be HU speci ?c.Ho et al.47also showed that PCNA is only weakly monoubiquitinated in response to MMC.In addition,Howlett et al.14showed that FANCD2is not required for PCNA monoubiqutination in response to UV damage.It has also been shown that in response to UV,FANCA and FANCG have important roles in regulating Rev1foci formation in a PCNA

monoubiquitination-independent manner.19These data indicate that different DNA damage may activate different DNA-repair pathways,even in the FA pathway,and conversely,different DNA-repair proteins cooperate to repair damage induced by different DNA damage agents.

Indeed,damage-speci ?c regulation of TLS has been shown.Helicase-like transcription factor (HLTF)and SNF2histone-linker PHD-?nger RING-?nger helicase (SHPRH)are Rad5homologs involved in PCNA ubiquitination and TLS polymerase recruitment,contributing in different ways to specify DNA damage-induced

- HU FA-A

FA-A+FANCA

Whole cell

FANCD2

PCNA

Ku86

Blot:FA-A

FA-A+FANCA

Chromatin

FANCD2

Ku86

Blot:PCNA

Ub-PCNA

5 6 7 8

1 2 3 4

c

FA-J

FA-J

FA-J+FANCJ

FA-J+FANCJ

Whole cell

Chromatin

FANCD2

Ku86

Blot:FANCD2

PCNA Ku86

Blot:PCNA

Ub-PCNA

1 2 3 4

1 2 3 4

d

10203040506070

80901000

S u r v i v a l (%)

MMC (nM)

BRCA2 WT BRCA2-/-0

1020304050607080901000

S u r v i v a l (%)

HU (mM)

BRCA2 WT

BRCA2-/-

b

10

20

3040

50

60

0.1

0.2

0.3

0.4

0.5

Rad51

Ku86

- HU BRCA2 mut BRCA2 mut BRCA2 WT

Whole cell

Chromatin

Blot:a

- HU Rad51

PCNA

Ku86

Blot:PCNA

Ub-PCNA

5 6 7 8

1 2 3 4

BRCA2 WT

- HU

- HU

- HU

- HU - HU

- HU - HU

- HU - HU

Figure 5.PCNA monoubiquitination is independent of BRCA2,FANCA and FANCJ in response to HU.(a )HU stimulates PCNA

monoubiquitination in BRCA2-independent manner.BRCA2de ?cient EUFA423cells and EUFA423+BRCA2cells were treated or not with 0.5m M HU overnight.The whole-cell lysate and chromatin fractions were prepared and analyzed by immunoblot with PCNA and RAD51antibodies.Ku86was used as loading control.(b )BRCA2wild-type DLD-1and BRCA2knock out DLD-1cells were treated with MMC or HU with the concentrations as indicated in graph for 5days.Cell survival was analyzed by crystal violet staining.(c )FANCA de ?cient cells exhibit normal PCNA monoubiquitination.FA-A and FA-A+FANCA cells were treated or not with 0.5m M HU overnight.The whole-cell lysate and chromatin fraction were prepared and analyzed by immunoblot with PCNA and FANCD2antibodies.Ku86was used as loading control.(d )FANCJ de ?cient cells exhibit PCNA monoubiquitination.FA-J and FA-J+FANCJ cells were treated or not with 0.5m M HU overnight.Whole-cell lysate and chromatin fraction were prepared and analyzed by immunoblot with PCNA and FANCD2antibodies.Ku86was used as loading control.

FANCD2for hydroxyurea-induced DNA damage X Chen et al

9

?2015Macmillan Publishers Limited

Oncogene (2015)1–13

PolH

PolH

PolK

Ku86

Ku86

Rad51

FANCD2PolK a

Blot:-MMC HU -MMC HU -MMC HU

Chromatin

C

Rad51

siRNA

FANCD2

Blot:

-MMC HU -MMC HU -MMC HU

Whole cell

C

Rad51

siRNA

FANCD2

Relative value: 0.3 1.0 0.2

10 11 12 13 14 15 16 17 18

1 2 3 4 5 6 7 8 9

b

Blot:-

MMC HU -MMC HU -

MMC HU

Chromatin FA-D2+FANCD2

FA-D2+K561R FA-D2

PolH

Ku86PolK

Blot:-

MMC HU -MMC HU -MMC HU

Whole cell FA-D2+FANCD2FA-D2+K561R FA-D2PolK

Ku86PolH

Ku86

Relative value: 0.4 1.0 0.6

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

- MMC HU - MMC HU

A

-A F A

-A F FA-A+FANCA FA-A+

FANCA Whole cell

Chromatin

PolK

Ku86

FANCD2PolH

Blot:PolK Ku86

FANCD2PolH

Blot: 1 2 3 4 5 6

1 2 3 4 5 6

c

- MMC HU

- MMC HU

Ku86

Blot:PolH

siRNA

C Mix 7 8

PolH 00.050.10.150.2

-104090140d

102030405060708090100S u r v i v a l (%)

MMC (nM)

control siRNA PolH siRNA-MIX PolH siRNA-7PolH siRNA-8

1020304050607080

90100

S u r v i v a l (%)

HU (mM)

Control siRNA PolH siRNA-Mix PolH siRNA-7PolH siRNA-8

Figure 6.FANCD2and RAD51are required for PolH chromatin localization.(a )FANCD2and RAD51were knocked down by FANCD2and RAD51siRNA,respectively in 293T cells.The knockdown cells were then treated or not with 0.5μM MMC or 0.5m M HU overnight.The whole-cell lysate and chromatin fraction were prepared and analyzed by immunoblot with PolH,RAD51,PolK and FANCD2antibodies.Ku86was used as loading control.(b )FA-D2,FA-D2+FANCD2and FA-D2+FANCD2(K561R)cells were treated or not with 0.5μM MMC or 0.5m M HU overnight.The whole-cell lysate and chromatin fraction were prepared and analyzed by immunoblot with PolH and PolK antibodies.Ku86was used as loading control.(c )PolH chromatin localization in FA-A cells.FA-A and FA-A+FANCA cells were treated or not with 0.5μM MMC or 0.5m M HU overnight.Whole-cell lysate and chromatin fraction were prepared and analyzed by immunoblot with PolH,PolK and FANCD2antibodies.Ku86was used as loading control.(d )PolH was knocked down in 293T cells using two different siRNA sequences (Dharmacon),either individually or as a mixture of two sequences.The knockdown of PolH was con ?rmed by immunoblot analysis.Ku86was used as loading control.Then cells were subjected to survival assay for MMC or HU sensitivities (as in Figure 1a).

FANCD2for hydroxyurea-induced DNA damage

X Chen et al

10

Oncogene (2015)1–13

?2015Macmillan Publishers Limited

mutagenesis.In response to the DNA damage caused by UV,HLTF enhances PCNA monoubiquitination and PolH recruitment and inhibits SHPRH function.However,in response to DNA damage caused by MMS,HLTF degradation is promoted,and the interaction of SHPRH with RAD18and PolK is enhanced,leading to the recruitment of PolK.43Our data showed that PolH,but not PolK,chromatin localization is regulated by FANCD2and RAD51in response to HU.We speculate that HLTF may be used in FANCD2and RAD51regulated PCNA monoubiquitination and TLS.

A recent publication indicates that PolH can interact with monoubiquitinated FANCD2also connects monoubiquitinated FANCD2with PolH in UV damage,21supporting our observation that FANCD2has an important role in recruiting PolH and TLS in response to HU.Although we show that FANCA and FANCD2monoubiquitination are not required for this function in response to HU,the difference might be because of a differential response of cells to types of DNA damage.Interestingly,FANCA and FANCG,but not FANCD2,have been shown to have important roles in Rev1foci formation in response to UV damage.19However,FANCG de ?ciency did not affect PCNA monoubiquitination or change PolH foci formation signi ?cantly in response to UV damage.We show that in response to HU damage FANCD2,but not FANCA,is important for PolH recruitment (Figure 6).PCNA monoubiquitination and TLS may be regulated differentially in response to different DNA damage.

Recruitment of RAD51to chromatin by BRCA2is required for its function in HR,which is important ultimately for ICL repair.8The colocalization of FANCD2and RAD51has been observed previously,15and it has been shown that FANCD2de ?cient cells are defective in ef ?cient HR repair.48However,here we show that RAD51also has an important role in PCNA monoubiquitination and TLS in a HR-independent manner in response to HU.As RAD51also has an important role in restarting HU-stalled replication forks without triggering HR,49the activities we observe in this investigation may represent an alternative regulatory pathway involving exclusively DNA replication.Alternatively,and perhaps more compellingly,this phenomenon may be a means of coordinating replication and repair,thus utilizing components in common to both pathways.MATERIALS AND METHODS Cell culture

The 293T and C34cells were cultured in Dulbecco's Modi ?ed Eagle's medium (DMEM)containing 10%fetal bovine serum (FBS;Biowest,Miami,FL,USA)and pen/strep (Invitrogen,Grand Island,NY,USA).FA-D2mutant cells PD20+pMMP vector,PD20+pMMP-Flag-FANCD2,PD20plus FANCD2pMMP-Flag-K561R mutant and FA-A mutant cells GM6914and GM6914plus pMMP-Flag-FANCA were cultured in DMEM containing 15%FBS and pen/strep.FA-J mutant cells and FA-J+FANCJ and BRCA2mutant EUFA423cells and EUFA423+BRCA2cells cells were cultured in RPMI containing 20%FBS and pen/strep.BRCA2knock out and wild-type colorectal adenocarcinoma DLD-1cells were cultured in RPMI containing 10%FBS and pen/strep.

Immunoprecipitation

The 293T cells and FANCD2de ?cient and pro ?cient cells were cultured on 15cm 2plates and treated with or without 0.5μM MMC or 0.5m M HU overnight prior to collecting.Following phosphate-buffered saline (PBS)washed,whole-cell lysate was prepared by adding 1ml of the whole-cell lysis buffer (300m M NaCl,1.0%Triton X-100,5m M EDTA,2m M NaVO 4,2m M Na 4O 7P 2,0.02%NaN 3,and 50m M Tris,pH 7.4)with proteinase inhibitors.Following 10s of sonication,extracts were cleared by centrifugation at 14000r.p.m.for 15min at 4°C.Supernatants were collected,and equal amount of extract (2mg protein)were used for each immunoprecipitation.The lysates were treated with DNase I (20u)for 15min at room temperature and then 15min at 37°C.Then 2μg antibody (FANCD2(H-300),RAD51(C20),PCNA(PC10),or normal rabbit or mouse IgG,Santa Cruz,Santa Cruz,CA,USA)were added.After incubation overnight at 4°C,protein G beads were added for another 4h.Beads were washed four times,and the pellets were subjected to immunoblot analysis.

Immunoblot

Protein samples were suspended in SDS Loading Buffer (50m M Tris-Cl pH6.8,2%SDS,0.1%bromophenol blue,10%glycerol,10%β-mercap-toethanol)and boiled for 5min.Samples were run on 7.5%SDS-polyacrylamide gels and transferred to nitrocellulose membrane (Bio-Rad,Hercules,CA,USA).Membranes were blocked in TBS-T (TBS +0.1%Tween-20)with 10%milk for 1.5h and incubated in primary

102030405060708090100S u r v i v a l (%)

HU (mM)

Control siRNA Rad51 siRNA

00

102030405060708090100

00.1

0.20.30.4

102030405060708090100S u r v i v a l (%)

MMC (nM)

Control siRNA Rad51 siRNA

Figure 7.RAD51de ?cient cells are hypersensitive to HU.RAD51knockdown 293T cells were treated with MMC or HU with the concentrations as indicated in graph for 5days.Survival cells were analyzed by crystal violet staining (see Figure 4b for knockdown immunoblot).

FANCD2

TLS

POL H

FANCD2-Ub

FA Core Complex

Replication Fork Collapse (HU)

HR

REV1

TLS

ICL Repair (MMC)

Rad51

HR

Figure 8.Multifunctionality of DNA-repair proteins.FA proteins are responsible for ICL repair.FA core complex is also important for Rev1foci formation in response to UV in PCNA monoubiquitination-independent manner.FANCD2also interacts with RAD51,RAD18and PCNA and regulate PCNA monoubiqutination and PolH chromatin localization in response to HU.RAD51is a key player for HR and TLS.It also interacts with FANCD2,RAD18and PCNA and is required for PCNA monoubiquitination and PolH chromatin localization in response to HU.

FANCD2for hydroxyurea-induced DNA damage X Chen et al

11

?2015Macmillan Publishers Limited

Oncogene (2015)1–13

antibody(FANCD21:2000,RAD511:2000,PCNA1:500,Ku861:5000,Santa Cruz,and RAD181:1000,Bethyl,Montgomery,TX,USA)for1h at room temperature in TBS-T+1%milk.After washing,membranes were incubated in secondary antibody(ECL anti-rabbit IgG or anti-mouse IgG-HRP, Amersham,Princeton,NY,USA)1:5000in TBS-T+1%milk for1h at room temperature.Blots were washed in TBS-T three times for5min each and developed by chemiluminescence(Supersignal West Pico Kit or Super-signal West Femto kit,Pierce,Rockford,IL,USA).The quanti?cation of Western blot was carried out using ImageJ software(NIH,Bethesda,MD, USA).We measured mean values of each band with?xed area.The relative values of each band were shown.For ub-PCNA we measured mean values of each band,and the values were then corrected with mean values of PCNA.The?nal values were shown.

Chromatography

FA-D2+pMMP-Flag-FANCD2cells were cultured on15cm2plates and treated with0.5μM HU overnight prior to collecting.Whole-cell lysate was prepared as in immunoprecipitation assay.Lysate was run through a P11 column,and the?ow through was loaded on a Superose6gel-?ltration column(GE Healthcare,Piscataway,NJ,USA).Fractions were eluted in non-denaturing lysis buffer,collected and analyzed by SDS-polyacrylamide gel electrophoresis.Selected fractions were isolated and analyzed by immunoblot for FANCD2,RAD18,RAD51and PCNA co-fractionation. Fraction sizes on column were standardized using molecular weight standards(GE Healthcare).

Cell fractionation

Procedures for permeabilization and subnuclear extraction are described previously.50In brief,after PBS wash cells on the15cm2plates were collected by scraping,and centrifuged for5min to obtain the pellet.The soluble fraction was extracted by suspending the cells in1ml of low-salt buffer(10m M Hepes,pH7.4,10m M KCl and50μg/ml digitonin)containing protease and phosphatase inhibitors(2μg/ml leupeptin,1μg/ml pepstatin, 1μg/ml aprotinin,1m M phenylmethylsulfonyl?uoride and1m M Na3VO4) for15min at4°C.Permeabilized nuclei were recovered by centrifugation at2000r.p.m.,5min at4°C.The supernatant was termed the soluble fraction.The nuclei were washed three times more in the same buffer. After wash,the nuclei were resuspended in200μl of low-salt buffer containing40units of DNase I(RNase free,Roche Diagnostics,Indianapolis, IN,USA)for15min at room temperature and then an additional15min at 37°C,then pelleted again.Supernatant was set aside.The pellet was extracted once more with extraction buffer(1%Triton X-100,50m M Hepes, pH7.4,300m M NaCl and30m M Na4P2O7?10H2O,10M NaF,and1m M EDTA) containing protease and phosphatase inhibitors for15min at4°C. Supernatant was collected at14000r.p.m.in a microfuge for10min and pooled with the low-salt buffer+DNase I supernatant to form the chromatin fraction.Cellular fractions were analyzed by immunoblot.

siRNA knockdown

The293T cells were grown to50%con?uence in DMEM with10%FBS.A total of60n M FANCD2or RAD51siRNA pool(siGENOME SMARTpool)and non-targeting control siRNA(Dharmacon)were transfected in293T cells using X-tremeGENE siRNA transfection reagent(Roche Diagnostics) according to the manufacturer’s instructions.For individual siRNA knock-down the sequences used are:FANCD2–18(5?-GAACAAAGGAAGCCGG AAU-3?),FANCD2-2(5?-GAUAAGUUGUCGUCUAUUA-3?),RAD51-7(5?-CCAAC GAUGUGAAGAAAUU-3?),RAD51-2(5?-GAAGCUAUGUUCGCCAUUA-3?),PolH-7 (5?-GCACUUACAUUGAAGGGUU-3?),PolH-8(5?-GCAAUUAGCCCAGGAACUA-3?), FANCI-2(5?-GUAAGAGCCUGAACUAUAC-3?)FANCI-3(5?-GAUGGGAGUUUG UGAGGUU-3?).The second transfection was performed next day after?rst transfection to ensure maximum knockdown.Whole-cell lysate and chromatin fractions were made from the cells5days after the?rst transfection and then analyzed by immunoblot.

Cell survival assay

Cells were grown in six-well plates with or without MMC or HU in the indicated concentrations for5days.After wash with PBS cells were?xed with10%acetic acid and10%methanol for5min then stained with1% crystal violet for3min.After washing and allowing the plates to dry,the stain was dissolved with0.1%SDS in methanol and read at a wavelength of595nm in a microplate reader.Cell cycle analysis

Cells were collected and washed in PBS(Ca++,Mg++),then?xed with70% ethanol overnight at4°C.After wash with PBS cells were subjected to RNase treatment(20μg/ml)and propidium iodide staining(10μg/ml)at 37°C for30min.Cellular?uorescence was then quanti?ed using a FACS Calibur?ow cytometer.Histograms were analyzed with FlowJo software (Ashland,OR,USA).For S phase analysis Alexa Fluor488conjugated BrdU antibody was used(EMD Millpore).After overnight treatment of HU cells, they were incubated with10μM BrdU for2h.Collected cells were then washed with PBS and?xed with cold70%ethanol overnight at4°C.After wash the cells were treated with2m M HCl at room temperature for30min. Cells were then washed twice with PBS and incubated with BrdU antibody (1:50)at room temperature for20min.Cells were washed once with PBS and then subjected to RNase treatment(20μg/ml)and propidium iodide staining(10μg/ml)at37°C for30min.

HR assay

C34cells were grown in DMEM with10%Tet free serum in six-well plate. Cells were pre-treated with20μM RAD51inhibitor B02(EMD Millipore, Billerica,MA,USA)for2h,then ligand Shield1(Clontech,Mountain View, CA,USA;2μl/ml)and triamcinolone acetonide(100μM)were added to cells for overnight to induce double-strand break.Cells were washed and replaced with fresh media.Three days later the cells were collected and analyzed through?uorescence-activated cell sorting for green?uorescent protein(HR positive)and RFP(non-homologous end joining positive)cells. CONFLICT OF INTEREST

The authors declare no con?ict of interest.

REFERENCES

1Kim H,D'Andrea AD.Regulation of DNA cross-link repair by the Fanconi anemia/ BRCA pathway.Genes Dev2012;26:1393–1408.

2Green AM,Kupfer GM.Fanconi anemia.Hematol Oncol Clin North Am2009;23: 193–214.

3Wang W.Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins.Nat Rev Genet2007;8:735–748.

4Bagby GC,Alter BP.Fanconi anemia.Semin Hematol2006;43:147–156.

5Garaycoechea JI,Patel KJ.Why does the bone marrow fail in Fanconi anemia?

Blood2013;123:26–34.

6Pickering A,Zhang J,Panneerselvam J,Fei P.Advances in the understanding of Fanconi anemia tumor suppressor pathway.Cancer Biol Ther2013;14:1089–1091. 7Alpi AF,Patel KJ.Monoubiquitylation in the Fanconi anemia DNA damage response pathway.DNA Repair2009;8:430–435.

8Holloman WK.Unraveling the mechanism of BRCA2in homologous recombi-nation.Nat Struct Mol Biol2011;18:748–754.

9Howlett NG,Taniguchi T,Olson S,Cox B,Wais?sz Q,De Die-Smulders C et al.

Biallelic inactivation of BRCA2in Fanconi anemia.Science2002;297:606–609. 10Lehmann AR,Niimi A,Ogi T,Brown S,Sabbioneda S,Wing JF et al.Translesion synthesis:Y-family polymerases and the polymerase switch.DNA Repair2007;6: 891–899.

11Chang DJ,Cimprich KA.DNA damage tolerance:when it's OK to make mistakes.

Nat Chem Biol2009;5:82–90.

12Watanabe K,Tateishi S,Kawasuji M,Tsurimoto T,Inoue H,Yamaizumi M et al.

Rad18guides poleta to replication stalling sites through physical interaction and PCNA monoubiquitination.EMBO J2004;23:3886–3896.

13Williams SA,Longerich S,Sung P,Vaziri C,Kupfer GM.The E3ubiquitin ligase RAD18regulates ubiquitylation and chromatin loading of FANCD2and FANCI.

Blood2011;117:5078–5087.

14Howlett NG,Harney JA,Rego MA,Kolling FWt,Glover TW.Functional interaction between the Fanconi Anemia D2protein and proliferating cell nuclear antigen (PCNA)via a conserved putative PCNA interaction motif.J Biol Chem2009;284: 28935–28942.

15Hussain S,Wilson JB,Medhurst AL,Hejna J,Witt E,Ananth S et al.Direct interaction of FANCD2with BRCA2in DNA damage response pathways.Hum Mol Genet2004;13:1241–1248.

16Nijman SM,Huang TT,Dirac AM,Brummelkamp TR,Kerkhoven RM,D'Andrea AD et al.The deubiquitinating enzyme USP1regulates the Fanconi anemia pathway.

Mol Cell2005;17:331–339.

17Huang TT,Nijman SM,Mirchandani KD,Galardy PJ,Cohn MA,Haas W et al.

Regulation of monoubiquitinated PCNA by DUB autocleavage.Nat Cell Biol2006;

8:339–347.

FANCD2for hydroxyurea-induced DNA damage

X Chen et al

12

Oncogene(2015)1–13?2015Macmillan Publishers Limited

18Palle K,Vaziri C.Rad18E3ubiquitin ligase activity mediates Fanconi anemia

pathway activation and cell survival following DNA Topoisomerase 1inhibition.Cell Cycle 2011;10:1625–1638.

19Mirchandani KD,McCaffrey RM,D'Andrea AD.The Fanconi anemia core complex

is required for ef ?cient point mutagenesis and Rev1foci assembly.DNA Repair 2008;7:902–911.

20Knipscheer P,Raschle M,Smogorzewska A,Enoiu M,Ho TV,Scharer OD et al.The

Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair.Science 2009;326:1698–1701.

21Fu D,Dudimah FD,Zhang J,Pickering A,Paneerselvam J,Palrasu M et al.

Recruitment of DNA polymerase eta by FANCD2in the early response to DNA damage.Cell Cycle 2013;12:803–809.

22Howlett NG,Taniguchi T,Durkin SG,D'Andrea AD,Glover TW.The Fanconi anemia

pathway is required for the DNA replication stress response and for the regulation of common fragile site stability.Hum Mol Genet 2005;14:693–701.

23McCabe KM,Hemphill A,Akkari Y,Jakobs PM,Pauw D,Olson SB et al.ERCC1is

required for FANCD2focus formation.Mol Genet Metab 2008;95:66–73.

24Dunn J,Potter M,Rees A,Runger TM.Activation of the Fanconi anemia/BRCA

pathway and recombination repair in the cellular response to solar ultraviolet light.Cancer Res 2006;66:11140–11147.

25Tanaka T,Huang X,Halicka HD,Zhao H,Traganos F,Albino AP et al.Cytometry of

ATM activation and histone H2AX phosphorylation to estimate extent of DNA damage induced by exogenous agents.Cytometry A 2007;71:648–661.

26Koc A,Wheeler LJ,Mathews CK,Merrill GF.Hydroxyurea arrests DNA replication

by a mechanism that preserves basal dNTP pools.J Biol Chem 2004;279:223–230.27Schlacher K,Wu H,Jasin M.A distinct replication fork protection pathway

connects Fanconi anemia tumor suppressors to RAD51-BRCA1/2.Cancer Cell 2012;22:106–116.

28Chaudhury I,Sareen A,Raghunandan M,Sobeck A.FANCD2regulates BLM

complex functions independently of FANCI to promote replication fork recovery.Nucleic Acids Res 2013;41:6444–6459.

29Lossaint G,Larroque M,Ribeyre C,Bec N,Larroque C,Decaillet C et al.FANCD2

binds MCM proteins and controls replisome function upon activation of S phase checkpoint signaling.Mol Cell 2013;51:678–690.

30Suhasini AN,Rawtani NA,Wu Y,Sommers JA,Sharma S,Mosedale G et al.

Interaction between the helicases genetically linked to Fanconi anemia group J and Bloom's syndrome.EMBO J 2011;30:692–705.

31Johnstone P,Reifsteck C,Kohler S,Worland P,Olson S,Moses RE et al.Fanconi

anemia group A and D cell lines respond normally to inhibitors of cell cycle regulation.Somat Cell Mol Genet 1997;23:371–377.

32Maurer-Schultze B,Siebert M,Bassukas ID.An in vivo study on the synchronizing

effect of hydroxyurea.Exp Cell Res 1988;174:230–243.

33Miyase S,Tateishi S,Watanabe K,Tomita K,Suzuki K,Inoue H et al.Differential

regulation of Rad18through Rad6-dependent mono-and polyubiquitination.J Biol Chem 2005;280:515–524.

34Zeman MK,Lin JR,Freire R,Cimprich KA.DNA damage-speci ?c deubiquitination

regulates Rad18functions to suppress mutagenesis.J Cell Biol 2014;206:183–197.35Brown S,Niimi A,Lehmann AR.Ubiquitination and deubiquitination of PCNA in

response to stalling of the replication fork.Cell Cycle 2009;8:689–692.

36Chen J,Bozza W,Zhuang Z.Ubiquitination of PCNA and its essential role in

eukaryotic translesion synthesis.Cell Biochem Biophys 2011;60:47–60.

37Terai K,Abbas T,Jazaeri AA,Dutta A.CRL4(Cdt2)E3ubiquitin ligase

monoubiquitinates PCNA to promote translesion DNA synthesis.Mol Cell 2010;37:143–149.

38Bindra RS,Goglia AG,Jasin M,Powell SN.Development of an assay to measure

mutagenic non-homologous end-joining repair activity in mammalian cells.Nucleic Acids Res 2013;41:e115.

39Hoege C,Pfander B,Moldovan GL,Pyrowolakis G,Jentsch S.RAD6-dependent

DNA repair is linked to modi ?cation of PCNA by ubiquitin and SUMO.Nature 2002;419:135–141.

40Stelter P,Ulrich HD.Control of spontaneous and damage-induced mutagenesis

by SUMO and ubiquitin conjugation.Nature 2003;425:188–191.

41Kannouche PL,Lehmann AR.Ubiquitination of PCNA and the polymerase switch

in human cells.Cell Cycle 2004;3:1011–1013.

42Moldovan GL,Dejsuphong D,Petalcorin MI,Hofmann K,Takeda S,Boulton SJ

et al.Inhibition of homologous recombination by the PCNA-interacting protein PARI.Mol Cell 2012;45:75–86.

43Lin JR,Zeman MK,Chen JY,Yee MC,Cimprich KA.SHPRH and HLTF act in a

damage-speci ?c manner to coordinate different forms of postreplication repair and prevent mutagenesis.Mol Cell 2011;42:237–249.

44Williams SA,Wilson JB,Clark AP,Mitson-Salazar A,Tomashevski A,Ananth S et al.

Functional and physical interaction between the mismatch repair and FA-BRCA pathways.Hum Mol Genet 2011;20:4395–4410.

45Hirano S,Yamamoto K,Ishiai M,Yamazoe M,Seki M,Matsushita N et al.Functional

relationships of FANCC to homologous recombination,translesion synthesis,and BLM.EMBO J 2005;24:418–427.

46Reliene R,Yamamoto ML,Rao PN,Schiestl RH.Genomic instability in mice is

greater in Fanconi anemia caused by de ?ciency of Fancd2than Fancg.Cancer Res 2010;70:9703–9710.

47Ho TV,Scharer OD,Translesion DNA.synthesis polymerases in DNA interstrand

crosslink repair.Environ Mol Mutagen 2010;51:552–566.

48Nakanishi K,Yang YG,Pierce AJ,Taniguchi T,Digweed M,D'Andrea AD et al.

Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair.Proc Natl Acad Sci USA 2005;102:1110–1115.

49Petermann E,Orta ML,Issaeva N,Schultz N,Helleday T.Hydroxyurea-stalled

replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair.Mol Cell 2010;37:492–502.50Qiao F,Moss A,Kupfer GM.Fanconi anemia proteins localize to chromatin and the

nuclear matrix in a DNA damage-and cell cycle-regulated manner.J Biol Chem 2001;276:23391–23396.

Supplementary Information accompanies this paper on the Oncogene website (https://www.360docs.net/doc/5815955749.html,/onc)

FANCD2for hydroxyurea-induced DNA damage X Chen et al

13

?2015Macmillan Publishers Limited Oncogene (2015)1–13

光伏发电支架组件安装资料

XXXX 10MWP光伏发电项目 光伏支架及组件 安装施工方案 审批人年月日审核人年月日编制人年月日 XXXX 二〇一五年八月

目录 一、工程概况 (2) 二、编制依据 (2) 三、施工准备 (2) 四、主要施工方法 (3) 五、施工进度计划及保证措施 (7) 六、质量标准与质量保证措施 (7) 七、施工安全文明管理措施 (10)

一、工程概况 本工程共5MWp的支架及光伏板安装,每MWp安装110组光伏板支架,共计550组光伏板支架。每组支架安装40块光伏板,共计22000块光伏板。 光伏板支架采用钢结构镀锌件通过螺栓进行连接,光伏板通过压块进行压接施工。 二、编制依据 1、《光伏发电站施工规范》(GB50794-2012); 2、《光伏发电站验收规范》(GB50794-2012); 3、《钢结构工程施工质量验收规范》(GB50505-2001); 3、支架及组件安装说明书; 4、光伏支架及组件安装施工图 三、施工准备 3.1施工现场准备 1、认真熟悉图纸,熟悉设计交底和图纸会审纪要,了解设计的具体意图、所使用的规范、规程等,熟悉操作规程和具体施工方法。 2、安装支架和光伏组件所用工具、机械均已配备齐全。 3、现场进行样板引路,试安装一组,安装完毕后,请甲方及监理验收,合格后方可大面积开始安装,安装要求同样板一致。 3.2技术准备 1、收到施工图后,及时组织施工图会审。 2、组织相关人员认真学习支架说明书,召开技术专题会议,将安装问题暴露出来,集中解决,以便顺利进行大面积施工。 3、针对项目部各施工区域工长及安装施工队带班进行技术交底。 3.3机械、劳动力投入计划 光伏支架和组件安装拟投入人力40人左右(高峰),根据工程的进展情况,可灵活增减人数。主要用工体现在光伏支架和光伏组件运输、安装上,人数不够用普工补充,普工主要用于转运材料和配合等工作。具体用工情况详见机械与劳动力计划表。

分布式支架组件安装作业指导书

分布式支架组件安装作 业指导书 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

支架及组件安装作业指导书 一、编制依据 1、《光伏发电站施工规范》------------GB50794-2012 2、《钢结构工程施工及验收规范》-----GB50205-2001 3、施工图纸及现场情况 二、施工工器具 水准仪、尼龙绳、钢卷尺、扳手、螺栓安装专用套筒、电钻等。 三、支架安装 1、支架安装前应作下列准备工作: (1)对安装人员进行安装技术交底; (2)按照阵列的安装顺序将支架及其附件分散到各个施工位置,准备安装。(3)支架外观及保护层应完好无损,去除支架构件上的泥砂、灰尘及污渍,保持支 架构件的干燥、整洁。 (4)查验支架构件有无明显弯曲变形,禁止使用不满足安装要求的构件。 2、支架安装: (1)导轨定位:按照屋面支架布置图,定导轨位置,并放线,导轨按定位线放置。 (2)导轨固定:一片屋面的南北两头首先固定两根导轨(分别为A、B导轨),A、B导轨两端必须在同一水平线上,在A、B两根导轨之间拉一根水平线,该区域内的导轨的两端均与该水平线对齐。

(3)导轨夹具安装:每根导轨配备8个夹具,导轨拼接处两端的瓦棱必须配2个夹具加固。 (4)导轨安装完成后,检查每根导轨的水平度,每根导轨的弯曲度不得大于1mm。完成一组支架安装后,进行支架位置的精确校核。支架的校核方法为,先精确校核导轨的定位,然后再校核导轨的水平和垂直度,校核过程中检查螺栓的紧固情况,有必要的话进行二次紧固,以保证支架的整体稳固度。 (3)支架主要构件的连接螺栓均采用M8螺栓,光伏组件托板与导轨的连接采用M8 螺栓。螺栓的连接和紧固过程中不应强行敲打,不应气割扩孔。 四、光伏组件安装 (一)组件安装前应作如下准备工作: 1、组件开箱前查验: a)查看外包装箱有无明显损坏变形。 b)如果有明显损坏变形及时告知项目部材料员,交由材料员处理,如果无明显损坏变形则继续开箱。 2、组件开箱后查验: a)开箱后先从侧面查看组件有无破损。如果有破损及时告知项目部材料员,交由材料员处理。 b)组件搬运时,必须检查每块组件正背面玻璃有无崩边、破角、裂纹;检查接线盒有无脱胶、松动、脱落;检查光伏线缆及公母头有无挤压变形或破损。如果出现以上现象应先将组件妥善放置一旁,放置时要避免对组件造成二次损

1-部件装配作业指导书

北京信天嘉华科技发展有限公司文件类别:作业指导书SOP 文件编号:XTJH/GY-A002 [MLP01] 版本号:01 APOLLOV+医疗平台组件装配作业指导书 1目的和范围 本作业指导书用来指导APOLLOV医疗平台部件组装和过程检验。 2职责 生产部负责部件生产制造组装并完成过程检验(互检加专检抽检)。 3准备 3.1组装人员按照生产计划从库房领取零部件、辅料和包材并将暂时不用的材料放置在物品架。 3.2清理工作台,准备工具:螺丝刀,套筒,板手,斜口钳,尖嘴钳,生料带、胶布、螺钉、螺母、锯齿垫、平垫等。 4 底座组件 4.1材料清单:

4.2作业流程 4.2.1依次将内径Φ12.2,外径Φ24 的大垫片,M12螺母装入脚轮相应的位置,脚轮接触地面的部位贴粘美纹纸;(见图1) 图1 4.2.2将2个3/8*10快插接头缠生料带固定在水泵的进出水嘴上(水泵将标识撕掉);(见图2) 图2 脚轮,带刹车,DFL-80 脚轮,不带刹车,DFL-80 大垫片,M12螺母 3/8*10快插接头(件) 底座主体部件 底座加强板 24V 水泵(DP60) 底座前板 底座后板

4.2.3用4-M4*8的盘头螺钉加锯齿垫将底座加强筋安装在底座主体部件上;(见图2) 4.2.4用2-M4*8的盘头螺钉加锯齿垫将底座前板安装在底座主体部件上;(见图2) 4.2.5用4-M4*8的盘头螺钉加锯齿垫将底座后板安装在底座主体部件上;(见图2) 4.2.6用专用板手将脚轮固定在底座主体部件上,注意:带刹车的脚轮装在机器前边,不带刹车的脚轮装在机器后边;(见图2) 4.2.7用4-M4*30的盘头螺钉、加大平垫将水泵固定在底板主体部件上,备M4防松螺母。(见图2) 5 24V电源组件 5.1材料清单: 5.2作业流程: 5.2.1用2-M4*6的盘头螺钉加锯齿垫将24V直流电源安装在24V电源固定板上;(见图3) 5.2.2将4-M4*20公母铜柱,4-M4*8公母铜柱固定在转接板支架上;(见图3) 5.2.3用4-M4*8的盘头螺钉加锯齿垫将转接板支架安装在24V电源固定板上;(见图3)

光伏组件安装方法

一、工程概况 1.工程名称:【】 2.项目规模:【5MW】 3.工程地点:【】 二、编制依据 1.施工图纸 2.组件生产厂家安装说明书 3、《光伏发电站施工规范》(GB50794-2012) 4、《光伏发电工程验收规范》GB50796-2012) 三、施工管理目标 1.质量目标 组件无破损,一次验收合格率达100%。 2.安全目标 确保无重大安全事故发生,轻伤频率控制在1%以内。 四、施工准备 1、、技术准备 ①认真审核、熟悉施工图纸,了解组件的排列组别。 ②对施工班组进行有针对性的技术、安全交底。 ③根据工程实际情况划分作业区域,合理调配作业人员。 2、安装前准备 ①组件外观检查。 在视觉直观下,组件应平整,周边无开胶、裂纹等缺陷,色差、尺寸、铭牌参数应符合要求,偏差较大的组件应及时联系相关人员进行处理。 ②支架已调整,不存在高、低或波浪型的起伏,直线度良好。 复查支架安装质量符合下表要求:

③安装 使用的各种工具已到位,满足组件安装使用。 3、劳动 力计划 根据作业面积分部特点人员计划安排如下: 五、组件安装 组件在搬运、摆放、紧固螺丝时均要轻拿轻放,严防磕碰。 1.组件安装前应复查支架的平整度,若目测发现有明显的高差,严禁进行安装。须经专业人员调 整后报验合格才能进行安装。 2.组件开箱前,先检查组件箱体外包装,确认外包装纸箱无破损后再进行开箱。如外包装有损 坏,则从破损处打开。打开后须认真检查,确认组件是否存在破损现象,如发现破损及时向 相关人员汇报,并停止继续开箱。 3.在破除外包装时,应避免刀片划伤组件外层的保护膜。开箱后包装垃圾集中放置,避免环境 污染。 4.测量太阳能电池板在阳光下的开路电压,电池板输出端与标识正、负值应吻合。 5.组件的倒运装卸必须轻拿轻放,尽量减少箱体在运输过程中的震动、摇摆等不利因素,且晃 动幅度﹤±2°。 6.安装过程中组件要轻拿轻放,搬动时严禁组件直接与地面接触,防止硬物对组件造成点损伤 的隐患。组件确需依靠或平放时不得超过2块。 7.组件安装过程中,安装人员严禁依靠、抓扶横梁、斜梁,避免产生变形对组件造成应力损 伤。

光伏组件作业指导书

太阳能光伏组件安装作业指导书 常规组件

目录 1 介绍 (3) 2 法规和条例 (3) 3 一般信息 (3) 3.1 组件识别 (3) 3.2 常规安全 (4) 3.3 电性能安全 (4) 3.4 操作安全 (5) 3.5 防火安全 (5) 4 安装条件 (6) 4.1 安装地点和工作环境 (6) 4.2 倾角的选择 (7) 5 机械安装 (7) 5.1 常规要求 (7) 5.2 安装方式 (8) 6 电气安装 (12) 6.1 电气性能 (12) 6.2 电缆线和连线 (13) 6.3 连接器 (13) 6.4 旁路二极管 (14) 7 接地 (14) 7.1 使用接地夹具接地 (14) 7.2 使用未被使用的安装孔接地 (15) 7.3 其他的第三方接地装置 (16) 8 操作和维护 (16) 8.1 清洗 (16) 8.2 组件的外观检查 (17) 8.3 连接器和线缆的检查 (17)

1 介绍 本安装手册包含有重要的电气和机械安装信息,在您安装组件前,请首先了解这些信息。此外,手册中还包含了一些其他的您必须熟悉的安全信息。 2 法规和条例 光伏组件的机械安装和电气安装应该参照相应的法规,包括电气法,建筑法和电力连接要求。这些条例随着安装地点的不同而不同,例如建筑屋顶安装,车载应用等。要求也可能随着安装系统电压,使用直流或者交流的不同而不同。具体条款请联系当地的权威机构。 3 一般信息 3.1 组件识别 每块组件上都贴有3种标签,提供如下的信息 1.铭牌:描述了产品类型,在测试条件下的标准额定功率、额定电流、额定电压、开路电压、短路电流,认证标示,最大系统电压等信息。 2.电流分档标贴:根据组件的最佳工作电流值对组件进行分档,然后根据分档结果,在组件上附有标识 3.序列号:每个组件都有一个独特的序列号。这个序列号是组件在层压前就放入的。此外,你可以找到一个相同的序列号在组件铭牌之上或旁边。

组件安装作业指导书

云南省大理州宾川县 大营西村50MW并网光伏电站项目组件安装作业指导书 云南省电力设计院 宾川县大营西村50MW并网光伏电站项目 EPC总承包项目部 2014年7月

作业指导书签名页

目录 1.工程概况及适用范围 (1) 1.1工程简述 (1) 1.2组件等级 (1) 2.编写依据 (2) 3.组件到货验收流程 (2) 4.卸货流程流程 (4) 5.开箱验收流程 (5) 6.安装流程 (6) 7.7.安全风险辨析与预控 (6) 8.作业准备 (8) 8.1 人员配备 (8) 8.2主要工器具及仪器仪表配置 (8) 9.作业方法 (9) 9.1 开箱准备 (9) 9. 2开箱步骤 (9) 10.质量控制措施及检验标准 (14) 10.1 质量控制措施 (14) 10.2. 质量控制点 (15) 10.3. 检验标准 (15) 10.4 光伏组件安装允许偏差表 (15) 10.5光伏组件之间的接线应符合下列要求 (16)

1.工程概况及适用范围 1.1工程简述 西村太阳能光伏电站位于宾川县大营镇西村以西,距宾川县城西南面直线距离约27.5km。场址南北长约1.20km,东西宽约1.90km,地势起伏较大,场地海拔2274m~2467.5mm。场地用地面积约1298.33亩(围栏内面积),西村并网光伏电站工程为西村光伏电站规划建设的一期工程,西村光伏电站总共规划容量为150MW,本期工程装机容量为50MW,本项目拟采用国产255Wp系列组件,建设50个1MWp太阳电池方阵。 本是个作业指导书适用于宾川县大营西村50MW并网光伏电站项目主体工程 1.2组件等级 本项目采用晶奥太阳能科技有限公司光伏发电组件模块。 在本项目中涉及到三个等级,分别是:Current class H Current class M Current class L

安装作业指导书

通州区再生能源发电厂 烟气净化工程 安装作业指导书 编制: 审核: 批准: 安徽盛运环保工程有限公司 2017年03月12日

目录 一、目的 (3) 二、范围 (3) 三、职责 (3) 四、引用文件 (3) 五、作业方法及要求 (3) 1、安装施工技术质量要求及保证措施 (3) 2、施工人员安全要求及保证措施 (11) 3、焊接施工技术质量要求 (13) 4、焊接工艺质量保证 (15) 六、职业健康及安全文明生产 (17)

一、目的 规范尾气净化工程中安装施工的岗位人员操作。 二、范围 适用于通州区再生能源发电厂生活垃圾焚烧发电项目烟气净化安装工程。 三、职责 1.严格遵守设计要求及技术规范的有关规定,确保工程质量,杜绝工程质量事故。 2.严格遵守安全技术规程,时刻警惕安全事故隐患,确保人身设备安全事故为零。 3.爱护设备,精心施工,节约用水、用电、用气,不浪费材料,努力减少施工成 本。 4.努力学习钻研技术技能,不断提高自身技术素质,积极参加岗位练兵及技术考核活动。 四、引用文件 《中华人民共和国建筑法》 《建筑工程质量管理条例》 《工程测量规范》(GB7) 《地基基础工程施工及验收规范》(GB202-2002) 《钢结构工程施工及验收规范》(GB50205-2001) 《袋式除尘器安装技术要求与验收规范》(JB/T8471-2010) 《电力建设施工及验收技术规范》(锅炉机组篇DL/T5047-95) 《电力建设施工质量验收及评价规程》(锅炉机组篇DL/ 五、作业方法及要求 1、安装施工技术质量要求及保证措施 ⑴钢支架施工流程 ⑵应对设备基础进行尺寸和位置的检查,允许偏差见下表,不符合要求的项目应呈报监理及项目部,请求返工处理直至验收合格。 钢支架分片吊 标高 垂直度 横梁、支撑件 钢架 焊接 钢支架 安装验 基础验收 钢支架组装拼接

中美文化差异

文化是指一个社会所具有的独特的信仰、习惯、制度、性格、思维方式等的总模式,是一个社会的整个生活方式,一个民族的全部活动方式。它为一个语言社会的全体成员所共有,也为这个语言社会所独有。文化既是一种社会现象,是人们长期创造形成的产物,又是一种历史现象,是社会历史的积淀物。虽然随着全球经济一体化及社会信息化的发展,人类赖以生存的家园正变得越来越像个“地球村”,中美两国间的文化交流也日趋频繁,但是中美文化差异依然存在。 一、中美文化差异现象 中国有着五千年的文化和历史的沉淀,而在地球另一端的美国是一个多民族的国家,却只有200多年的历史。中美之间的文化差异是巨大的,它是两国人民交流和理解的障碍和鸿沟。中美之间的文化差异是复杂而多面的。 (一)文化观念的差异 中国的传统文化是以儒家思想为核心,历来主张尊卑有别,长幼有序,也就是说,凡事都要遵循一定的规矩,并受到等级观念的制约。例如,晚辈见到长辈为表尊重要主动打招呼;学生要尊敬老师。而美国文化主要承袭了基督教中的新教思想,等级观念淡薄。美国人更注重个人权益,追求人人平等,没有辈份间过多的礼节。子女对父母、学生对教师都直呼其名,子女可以与父母争论问题.或提出自己个性主张。 在独具特色的中国文化中,人情占很重要的地位。人情在中国社会中有其一定的社会结构性,人情与面子是相互联系的,讲情面的人会将心比心、以心换心地回报别人的情谊。因此,在中国文化中.自我评价是在人与人之间的亲情及互相交往的情谊中建立和实现的。中国人强调家族及阶级层次。中华文化崇尚集体主义。人们之间相互信赖,团结合作,当个人利益与集体利益相矛盾时,集体利益总被放在首位。在衡量个人行为时,往往是以道德为准则,注重和谐、群体利益的维护,这与美国文化截然不同。美国人崇尚个人自由,强调个人潜力的发挥,个人目标的实现及个人利益的追求,信奉法律至上。在美国,人与人之间多为互利关系,表现出人情较为淡漠,但却十分重视个人利益和自由,个人自我意识较强。 (二)思维方式的差异 思维方式是社会文化的产物,受到生产方式、历史传统、哲学思想及语言文学等方面的综合影响。受不同文化背景制约的中美两国人具有不同的思维方式。中国人偏向综合性思维.强调整体优先,采用从整体到部分的思维方式,如表达顺序时,要由大地方到小地方,即国家一省一市一区一街一号;表达时间是按年一月一日的顺序。美国人则偏好分析性思维,强调部分的优先,在表达空间顺序时与中国相反,由小地方

组件安装作业指导书

中广核甘肃金昌一期50MWp并网光伏电站项目多晶硅电池安装组件安装 作 业 指 导 书 中海阳能源集团股份有限公司 中广核金昌项目部 年月日

批准:年月日审核:年月日编写:年月日

一、编制目的 为了规范中广核甘肃金昌一期并网50MWp光伏电站组件安装作业,指导作业人员按要求进行施工,确保安全、优质、高效的完成组件安装工作。 二、组件结构及工作原理 组件由一定数量的单晶硅或多晶硅电池片,按一定的电气要求方式联接,经钢化玻璃、热熔胶、背板、边框、接线盒等材料封装而成,是利用光电效应将太阳能转换为电能,提供直流电输出的装置。 三、组件安装要求 3.1环境条件 环境温度:- 40℃至+ 40℃ 工作温度:- 40℃至+ 85℃ 储存温度:- 20℃至+ 40℃ 湿度:在85RH%以下 抗风压:2400Pa以下 机械载荷:5400Pa以下 3.2安装地点选择。 3.2.1选择适合安装组件的地点。如在北半球组件最好朝南,在南半球组件最好朝北。 3.2.2组件应安装在阳光可以充分照射的位置并确保在任何时间内不被遮挡。 3.2.3组件需安装在牢固的支架上。最佳安装倾斜角(衡量组件与地面的安装倾斜角)与安装位置的纬度相同。 3.2.4不要把组件放置在易产生或聚集可燃气体的地方。 3.3安装注意事项 3.3.1 安装组件要求特定的技术和知识,安装和试运行必须由专业公司和有资 格的工程师来完成。 3.3.2 所有组件都带有永久连接的接线盒。组件的连接必须使用符合安全规定要求的电缆线及连接端子。 3.3.3 安装人员应该预先了解安装过程中可能会发生伤害的风险,包括电击等。 3.3.4 单个组件,在阳光照射下可能会产生30V以上的电压,接触30V以上的直流电压是很危险的。 3.3.5在阳光照射下,插拔组件连接端子时,连接端子部位可能会产生火花、燃烧、电击。因此,安装时应使用不透明的材料将组件正面遮挡并且不管组件有没有连接,人体都不要直接接触接线端。

中美文化差异

Cultural differences on politeness between western and Chinese can be found in many aspects of daily communication, including addressing, greeting and parting, compliments, apologies, thanks, etc. In the following, we will look at some cultural different between China and western. When people meet acquaintances or friends, people usually greet each other . The purpose of greeting is to establish or maintain social contact. So formulaic expressions are often used, but such formulaic expressions often causes conflict because of the great cultural differences between Chinese and native English speakers. In English, people often employ the following expressions to greet each other “Good morning/evening/afternoon. “Fine day, isn’t it? ”How is everything going?”“What are you going to do?” Where have you been?”etc. Westerners treat them as real question. While in Chinese, we always say “Have u eaten?”“where r u going to?”to show our consideration. Parting may be divided into two steps. Before the final prating, there is usual a leave-taking. Western and Chinese cultures have diverse ways to deal with leave-takings. Firstly, in English society, during the closing phase of an encounter, from ”I” perspective, reasons for terminating the encounter are presented in mitigatory comments. Typical comments are associated with expressions of apology, such as “I” am afraid I must be off, I have to relieve the baby-sitter” etc. Western people believe that to be willing to visit and converse with someone is to have respect for him.; to terminate the visiting is not of one’s own free will, but because of some other arrangements, therefore they always try to make their leaving sound reluctant by finding some reasons and apologize for it to make the leaving acceptable for both parties. English speakers often signal several times before leaving. “Well, it’s been nice to see you again. I do enjoy our talk and the lovely dinner, but I must be going soon”. Thank you very much for asking me over. I hope we’ll be able to get together again before long…” Consolidation in a wider range of common acquaintances also occurs, in expressions such as “Say

支架及光伏组件安装作业指导书

泗县深能马鞍山一期20兆瓦地面 光伏电站项目 支架及光伏组件安装作业指 导书 中国能源建设集团江苏省电力建设第三工程有限公司泗县深能马鞍山光伏项目部(章) 二0一六年四月十一日

批准:年月日审核:年月日 年月日 年月日编写:年月日 年月日

目录 一、编制依据 (1) 二、工程概况 (1) 三、施工准备及资源配置 (1) 四、支架安装工艺 (2) 五、光伏组件安装工艺 (4) 六、太阳能光伏组件接线 (6) 七、施工质量保证 (7) 八、安全文明施工 (8)

一、编制依据 1)设计图纸; 2)《光伏发电站施工规范》(GB50794-2012); 3)《光伏发电站验收规范》(GB50796-2012)。 二、工程概况 项目建设位于泗县黑塔镇马鞍山,利用马鞍山及附近荒山荒坡建设地面分布式光伏发电站,占地面积约1500亩。施工场地多为山地,地势复杂,依据设计要求尽量维持原貌,光伏厂区地基基础采用钻孔灌注桩基础,钢管桩径13cm,深度120cm~130cm,外露30cm,强度等级C25。支架及组件均由总包单位按设计要求提供。 三、施工准备及资源配置 1、支架安装前准备 (1)对安装人员进行安装技术交底。 (2)按照单元区的安装顺序将钢构件分散到各个施工位置,准备安装。 (3)支架外观及保护层应完好无损,去除支架构件上的泥砂、灰尘及污渍,保持支架构件的干燥、整洁。 (4)查验支架构件有无明显弯曲变形,禁止使用不满足安装要求的构件。 2、组件安装前准备 a、组件开箱查验 (1)查看外包装箱有无明显损坏变形。 (2)如果有明显损坏变形及时告知项目部材料员,交由材料员处理,如果无明 显损坏变形则继续开箱。 b、组件开箱后查验 (1)开箱后先从侧面查看组件有无破损。如果有破损及时告知项目部材料员, 交由材料员处理。 (2)组件搬运时,必须检查每块组件正背面玻璃有无崩边、破角、裂纹;检查 接线盒有无脱胶、松动、脱落;检查光伏线缆及公母头有无挤压变形或破损。

光伏组件安装方案

光伏组件安装方案 The manuscript was revised on the evening of 2021

一、工程概况 1.工程名称:【】 2.项目规模:【 5MW】 3.工程地点:【】 二、编制依据 1.施工图纸 2.组件生产厂家安装说明书 3、《光伏发电站施工规范》(GB50794-2012) 4、《光伏发电工程验收规范》GB50796-2012) 三、施工管理目标 1.质量目标 组件无破损,一次验收合格率达100%。 2. 安全目标 确保无重大安全事故发生,轻伤频率控制在1%以内。 四、施工准备 1、、技术准备 ①认真审核、熟悉施工图纸,了解组件的排列组别。 ②对施工班组进行有针对性的技术、安全交底。 ③根据工程实际情况划分作业区域,合理调配作业人员。 2、安装前准备 ①组件外观检查。 在视觉直观下,组件应平整,周边无开胶、裂纹等缺陷,色差、尺寸、铭牌参数应符合要求,偏差较大的组件应及时联系相关人员进行处理。 ②支架已调整,不存在高、低或波浪型的起伏,直线度良好。 复查支架安装质量符合下表要求:

③ 3、劳动力计划 根据作业面积分部特点人员计划安排如下: 五、组件安装 组件在搬运、摆放、紧固螺丝时均要轻拿轻放,严防磕碰。 1. 组件安装前应复查支架的平整度,若目测发现有明显的高差,严禁进行安装。须 经专业人员调整后报验合格才能进行安装。 2.组件开箱前,先检查组件箱体外包装,确认外包装纸箱无破损后再进行开箱。如外包装有损坏,则从破损处打开。打开后须认真检查,确认组件是否存在破损现象,如发现破损及时向相关人员汇报,并停止继续开箱。

电池组件安装作业指导书

目录 1.总则 (2) 1.1编制目的 (2) 1.2编制依据 (2) 2.材料要求 (2) 3.主要机具 (2) 4.作业条件 (2) 4.1施工技术准备 (2) 4.2施工现场准备 (3) 5.施工操作 (3) 5.1施工程序 (3) 5.2电池组件安装 (3) 5.3太阳能板引出线连接 (4) 6施工工序卡及工艺技术控制 (4) 6.1.开箱工序卡 (4) 6.2.安装工序卡 (4) 6.3.接线工序卡 (5) 6.4.细节质量工艺控制措施 (5) 7.环境保护要求 (5)

1.总则 1.1编制目的 电池组件在太阳能电站建设工程中,作为电站结构重要组成部分.为优质完成组件安装工程,实现创精品工程的目标,特编制此《电池组件安装作业指导书》。 1.2编制依据 1.2.1 《电气装置安装工程质量检验及评定规程》DL/T 5161.6-2002 1.2.2 《电力建设安全工作规程》第1部分:火力发电厂DL5009.1-2002 1.2.3 《电力建设安全健康与环境管理工作规定》(2002版) 1.2.4 《职业安全健康体系文件》B版 1.2.5 《火电施工质量检验及评定标准》电气装置篇 1.2.6 SJ/T 10173-1991 《TDA75多晶硅太阳电池》 1.2.7 GB/T 14007-1992 《陆地用太阳电池组件总规范》 1.2.8 2006年版《工程建设标准强制性条文》(电力工程部分) 1.2.9 《北京意科浙江分公司4MW金太阳工程施工蓝图》 2.材料要求 施工所需的各种材料请见下表。 材料计划供应表 3.主要机具 机具需用量计划表 4.作业条件 4.1施工技术准备 施工前必须具备:现场平面布置图、结构施工蓝图等相关文件资料,并有经审批的施工方案。

自动化安装作业指导书

自动化安装作业指导书 本指导书用于本公司工业自动化仪表安装工程的安装,共分取源部件的安装、仪表盘(箱)的安装、仪表设备的安装、仪表供电供气、供液系统的安装、仪表用电气线路的敷设、仪表用管路的敷设、工业集散计算机安装、红外线扫描仪安装、仪表调校。 本指导书采用标准及资料如下: (一)自动化仪表安装工程质量检验评定标准(GBJ131-90); (二)自动化仪表工程施工及验收规范(GB50093-2002); (三)SCANGX型扫描仪手册。 1 取源部件的安装 1.1 检验数量:取源部件安装的检验数量应符合下列规定: 1.1.1 用于高压、负压、高温、易燃、易爆、有毒、有害介质的取源部件,必须全部检验。 1.1.2 用于中低压、常温无害介质的取源部件,必须按取源的种类分别抽检30%,并不应少于一个。 1.2 温度取源部件安装 1.2.1 温度取源部件安装及检查 1.2.1.1 温度取源部件安装 (1)温度取源部件的安装位置应严格按设计图纸坐标点取定,无设计坐标点时,应选在介质温度变化灵敏和具有代表性的地方,不宜选在阀门等阻力部件的附近和介质流量呈死角处以及振动较大的地方。 (2)温度取源部件在设备(或工艺管道)的安装应符合下列要求: a 与设备(或工艺管道)垂直安装时,取源部件轴线应与设备(或工艺管道)轴线垂直相交。 b 在设备(或工艺管道)的拐弯处安装时,宜逆着介质流向,取源部件轴线应与设备(或工艺管道)轴线垂直相交。 c 在设备(或工艺管道)倾斜安装时,宜逆着介质流向,取源部件与轴线与设备(或工艺管道)轴线垂直相交。 d 在有保温层的取源部件安装应在保温前安装完成,且保温后元件易于装卸。 e 在砌筑上安装时,应先把测量部件预埋在砌筑体内,测温保护管应大于温度元件2mm,取源部件在金属体安装时采用焊管式。焊接应符合施工规范要求。 1.2.1.2 温度取源部件安装质量检查应符合下表: 温度取源部件质量标准和检验方法 1.3 压力取源部件安装 1.3.1 压力取源部件安装要求 1.3.1.1 压力取源部件安装部位应符合以下要求 ⑴按设计图坐标点定位; ⑵安装压力取源部件不宜在焊缝及其边缘上开孔及焊接,开孔及焊接工作必须在设备(或管道)的防腐、衬里、吹扫和试压、试验前进行; ⑶压力取源部件在水平和倾斜的设备(或工艺管道)安装时,取压口的方位在设备(或工艺管道)的上部;

光伏组件安装施工方案

目录 1.工程概况 (1) 2.编制依据 (1) 3.主要工程内容 (1) 4.参加作业人员的资格和要求 (1) 5.作业所需的工器具 (1) 6.作业前应做的准备工作 (1) 7.支架制作安装方案 (2) 8.光伏板安装 (5) 9.防雷接地 (6) 10.电缆敷设 (7) 11.试验方案 (8) 12.安全文明施工措施 (8)

1.工程概况 东营(胜利)城卫分布式光伏示范区20兆瓦项目(以下简称本工程)规划容量为20MWp。项目建设地位于山东省东营市垦利区胜利油田孤东十万亩土地开发项目区东营金润盐化有限责任公司初级蒸发区水池,坐标为北纬37°56'29.8",东经119°0'21.7",海拔高度0m,项目规划容量为20MWp。本工程装机容量为20MWp,采用分区发电、集中并网方案。光伏组件是光伏发电系统的核心部件,其各项参数指标的优劣直接影响着整个光伏发电系统的发电性能。通过比较,本工程电池组件选270Wp多晶双玻硅电池组件,逆变器选用1250kW光伏并网逆变器。光伏组件采用固定式安装形式,结合建设方意见,电池方阵的固定倾角为26 。本工程系统综合效率取80%,由计算可得,本工程25年总发电量约为64749万kW· h,25年年平均发电约2589.96万kW· h,平均年利用小时数为:1112小时。 本工程容量为20MWp,本期建设开关站一座,站内35kV侧采用单母线接线方式,并建设1回35kV出线接至系统侧。本期将16个发电单元组按照每8个发电单元组为一组,通过2回35kV集电线路接入35kV母线上,再通过1回35kV出线接入系统。本期整个20MWp光伏并网电站系统由16个约为1.25MWp的光伏并网发电单元组成,每个发电单元由1套1250kW光伏并网逆变器组成,每台逆变器输出电压为360V三相交流电,通过断路器接到升压变压器的低压绕组上,经1250kVA箱式变压器升压至35kV高压,将8台变压器经35kV集电线路并联后,通过高压开关柜接入35kV配电室35kV母线上,共设计2回路。35kV配电装置采用屋内布置,成套金属铠装开关柜,开关柜单列布置,开关柜均采用"下进下出"接线方式。无功补偿装置的连接变压器室外布置,消弧线圈接地变兼站用变布置在35kV配电室外。 2. 编制依据 2.1江苏谦鸿电力工程咨询有限公司设计施工图 2.2《光伏电站验收规范》(GB50796-20012) 2.3《光伏发电站施工方案》(GB 50794-2012) 2.4《电力建设安全工作规程》(DL5009.1-2013)

中美文化的差异

中美文化的差异 姓名:徐凯学号:101500326 院系:新闻与传播学院 通过一学期对美国社会于文化的学习,发现美国这样的发达国家和中国有很大的文化差异,从以下三点进行对比。 第一:家庭观念的差异。家庭教育可以说是人生命中重要的教育,家庭对人产生巨大的影响。我国当代家庭教育受传统的家庭观念影响,家长总是意味着权威,作为统治者在家庭中处于核心地位。在中国人的逻辑中有这么一条,即“长者恒为师”,在家庭中,年长者一定可以教育年幼者,这就在家庭内部形成一种人际关系的不平等,儿童也由此学会了对不同的人说不同的话,懂得了父母比朋友重要,长者是权威的象征。而在美国家庭,家长更注重自由与平等的相处。从小就尊重孩子,重视给孩子的个人自主权,让孩子学会在社会允许的条件下自己做决定,独立解决自己所遇到的各种问题。他们把孩子当做一个独立的个体平等对待,给孩子应有的尊重和理解。孩子在父母面前可以畅所欲言地发表自己的见解,所言有独到之处,父母还会给以适当的奖励。孩子有独立的时间和空间去自由的想像或进行创造性活动。中国式家庭教育往往着眼于孩子将来是否有出息,能否找个好职业,能否在顺境中度过一生。基于这种期盼,很多家长认为,父母对孩子的责任就是让他们生活得更好,父母能给他们多少幸福就给他们多少幸福。若能给孩子创造最优越的生活条件,再苦再累也愿意。与此相比,美国家庭的育儿观有很大不同,他们的着眼点在于培养孩子具有适应各种环境和独立生存的能力。基于这种观念,他们十分重视孩子的自身锻炼。他们普遍认为孩子的成长必须依靠自身的力量。因此从小就注重培养锻炼他们的自立意识和独立生活能力。 第二:饮食文化的差异。中国与美国的饮食差异体现在4个方面 1、中国是合餐,一桌菜众人可以共享随便吃;美国是分餐,每个人自己点自己的菜,一般不会与别人共享。 2、在吃饭时中国人喜欢给别人夹菜,或大让特让生怕别人吃不好;美国人则自己吃自己盘子里的东西,一般不会把自己盘子里的东西给别人吃,最多是向朋友推荐自己盘子里的东西好吃。 3、中国喜欢吃饭时喝烈酒吃喝不分,酒足饭饱;美国人在吃饭时不喝烈酒,只是在饭前或饭后喝。 4、中国人吃饭喜欢以面和米作主食;美国人则多以肉食为主。 第三:历史的差异。美国历史上的西进运动在一定程度上造就了美国的国民性格。美国的西部开发是在资本主义条件下发生的,受资本主义经济规律支配。最为著名的是“西进运动”美国的西部开发是伴随着工业革命而发生和发展的。工业革命一方面为西部开发提供了强劲的动力,另一方面也为西部开发提供了有效的工具和手段对美国西部开发产生重要影响的另一重大事件是南北战争。南北战争期间,联邦政府为了动员人民参加反对南方叛乱的战争,先后推出一系列有利于西部开发的措施。战争结束后,南方种植园奴隶制被废除,大批劳动力被解放,北方的

装配作业指导书57538

——首家上传K32整机装配作业指导书 共 18 页 (包括封面) 技术文件类别:工艺文件 文件编号:K32-GY02 技术文件名称:K32系列整机加工作业指导书 版本:A 生效日期: 拟制 审核 批准 深圳赛尔林电子科技有限公司

目录 一、目的 (3) 二、适用范围 (3) 三、相关文件 (3) 四、组装装配流程图 (4) 五、装配流程详解 (5)

一、目的 为SIMCOM公司K32平台系列整机提供装配流程、作业要求、测试方法和设备需求指导。 二、适用范围 本文件按照K32平台的原型机编制。仅作为本平台其他机型生产时的借鉴,其他机型生产时,请严格按照各自不同的结构和BOM进行装配。 三、相关文件 《SC22-013手机结构件外观验收要求》 《SC15-008可靠性测试标准》

四、 组装装配流程图 RECEIVER 安装 主板泡棉粘贴 装LENS 和摄像头镜片 LCD 焊接到主板 外观工艺检查 核对IMEI 和MP3 FQC DOME 安装 天线安装 主板安装到后壳 手动功能检测 USB 检测MP3下载 IMEI 写入 整机FT 测试 耦合测试 摄像头安装 安装螺钉盖片 装箱 入库 FQA 打后壳螺丝 主板IQA 前后壳合盖 LCD 安装到主板 LCD 焊接检查 打天线螺丝

五、装配流程和详解 1.1 主板IQA 依照SIMCOM 标准的主板来料检验标准进行检验,将不良品截出并作上标识。 1.2 摄像头安装 1. 取摄像头,将摄像头接口扣合到主板的对应接口上,并按紧。 2. 取摄像头接口泡棉,贴到摄像头接口上,并按紧。 所需设备:塑料镊子。 注意事项:1. 作业时,必须佩带防静电手镯。 1.3 天线安装 1. 取天线组件,检查天线外观是否良好。 2. 取天线泡棉,将天线泡棉的粘性面朝天线,将天线泡棉贴到天线上。 3. 取振子,将振子安装到天线组件内。 4. 取SPEAKER ,撕掉SPEAKER 的双面胶离心纸,将SPEAKER 安装到天线组件内。SPEAKER 安装方向如图。 5. 撕掉摄像头保护膜。 6. 将天线组件扣合到主板上,天线组件顶部的两个卡扣与PCBA 扣合紧密。 摄像头接口泡棉 摄像头本体

中美文化中友谊观的对比

科技信息 中西方文化中都很重视友谊。相应地,在一些名言或谚语中,对友谊都有所表达。尽管汉语中的“朋友”、“友谊”对应英语中的“friend”、“friendship”,但是在中国文化和美国文化中,朋友、友谊的内涵和对朋友、友谊的理解大不相同。在中国文化中,朋友指志同道合的人,后来泛指交谊深厚的人,友谊是朋友间深厚的感情、亲密的关系。而美国的friend,是指有共同感受或喜好、能在一起愉快地交流的人,可以用来指非常广泛的人际关系,friendship 在很大程度上是一种伙伴关系。 由于社会文化背景、思维方式等方面的差异,中西方对朋友和友谊的认识和表达方式有很多差别。如果在跨文化交际中不重视或无视这种差异,将二者等同理解,就有可能带来交际的困难,造成交际双方的 误解。因此本文将从三个方面对比分析中西方朋友和友谊的内涵差异。一、范围不同 金庸曾谈到中国人把好朋友视作兄弟,通过义结金兰这种方式和异姓朋友结拜为兄弟,并立誓:“虽非同年同月同日生,但愿同年同月同 日死。” 金庸说:“西方社会中,只有热烈相爱的恋人,才会立誓同死。但在中国这个重义气的社会,友情比爱情更受重视。”这也说明在中国文化里,“朋友”是指可以互相信任,互相倾诉,感情很深的关系。 与中方来比,西方中朋友概念的范围更广泛。对西方人来说,“朋友”可以用来指童年的玩伴、在新地方刚认识几天的人、关系密切的商务伙伴、一个深受信赖的知己等。友谊可以是肤浅的、暂时的也可以是 深厚的、 长久的。这也由于美国人一贯开放自由的态度,能够轻松、随时随地交上朋友。雷尼尔(AlisonLanier)在其撰写的《生活在美国》(Liv-ingintheUSA,1981)一书中指出:美国是一个流动性很强的国家。美国人很容易结交到朋友,但是,一旦环境改变,友情也会变化。另外,在中国,朋友贯通各个方面,朋友之间无所不谈,生活上、工作上都互相帮助。而在美国,朋友只局限于一个领域,不会延伸至其他领域。对于美国人来讲,在不同的生活领域里有不同的朋友,有打高尔夫球结识的朋友,有车子加油时认识的朋友,有旅游时认识的朋友,有的是家长会上结交的朋友,,有的是修理汽车时认识的朋友等,但这些朋友都不会干涉到彼此其他的领域。姚明在2009年12月10日接受美 国著名的男人杂志《君子》 的专访中,以自己的经历诠释着东西方文化之间的交流和碰撞。谈及比赛时,他说:“中国有句老话是,友谊第一,比 赛第二。” 可是在美国这句话必须改成,“比赛是比赛,友谊是友谊。”对于人情味很重的中国文化,在比赛中要兼顾友谊,而以理性著称的美国人认为比赛和友谊是两个互不干涉的方面,比赛是一回事,友谊是另一回事。 二、时间不同 首先是确定朋友关系的时间不同。中国人建立朋友关系的时间相对较长,在最初的时间,中国人一般很少打开心扉,但是随着交往次数的增多,对彼此的逐渐了解,双方才变得亲密。西方人可能在一分钟内就能交到朋友,但是想要达到至交的水平却很困难。这也容易造成误解,因为中国人以为已经同西方人成为朋友了,可是却发现西方人已经忘记上次热情的谈话了。 另一方面,中西方维持友谊的时间不同。中国人更期望长久不变的朋友关系。朋友可能一辈子都是朋友。在中国文化里,人们怀有传统的“两情若是久长时,又岂在朝朝暮暮”的态度,

光伏工程组件安装作业指导书

一般施工方案(措施)报审表 工程名称:编号:S- JSB-003

注本表一式__4__份,由施工项目部填报,监理项目部、施工项目部各存_1___份。 项目 晶体硅光伏组件安装方案 施工项目部 2013年04月

警告 光伏组件暴露在光照下时,即使未连接到电路,它们也会产生电流。接触光伏组件输出线路可能会造成电击或烧伤。当多个光伏组件互连起来以增加组合输出电流或电压时,这种危险的程度会更高。 在进行任何涉及光伏组件或系统电路连接的操作之前,请用不透明布或其它不透明材料覆盖整个光伏组件前端表面。请使用适当的安全设备(绝缘工具、绝缘手套等)和步骤。 小心 建议您操作光伏组件时只接触其较长的一侧。 ? 请勿扭曲或拆卸光伏组件。 ? 请勿踩踏光伏组件。 ? 请勿试图通过将光线聚集在光伏组件表面来增加其输出电流。 ? 如果PV 发电系统包含其它组件(电池、充电控制器、转换器等),请按照相应制造商的安全建议操作。

CECEP Solar 光伏组件产生直流电,可以在单块光伏组件或多块光伏组件系统中使用它们,以满足各种应用的不同电流或电压需求。某些应用可能需要使用阻流二极管(它可以防止黑暗期间的电池放电情况)或电池充电调节器(它可以防止电池过度充电或潜在的电池损坏情况)。有关其它信息,请与CECEP Solar代表联系。 规范 在某些地区,可能会对光伏组件的安装和使用进行管理。具体而言,这些规范可能会规定在屋顶、外墙和车辆上安装光伏组件的要求。安装人员必须在相应情况下遵守这些规范。 光伏组件特征 表C-1列出了CECEP Solar 晶体硅光伏组件光伏组件的电子和机械特征和标准实验条件(STC)下 每个光伏组件标签上标出的主要电子特征。标准实验条件是指辐照度1 kW/m2、AM 1.5 光谱和电池温度25oC。任何单个光伏组件的Pmax、Voc和Isc将保持在这些指定值的10%范围内。 在某些情况下,光伏组件产生的电流或电压可能超出在标准实验条件(STC) 下得出的数值。当确定组件级别和容量时,标准实验条件(STC) 下的光伏组件开路电压和短路电流应该相应地乘以1.25。如U.S. NEC 的690-8 部分所述,对于确定导线和保险丝,还可以对短路电流再乘以1.25(共计1.56),对开路电压乘以校正系数(见下面的表1)。 表1.开路电压的最低温度校正系数表

相关文档
最新文档