黑碳吸附汞砷铅镉离子的研究

黑碳吸附汞砷铅镉离子的研究
黑碳吸附汞砷铅镉离子的研究

农业环境科学学报2007,26(2):770-774

JournalofAgro-EnvironmentScience

摘要:由玉米秸秆燃烧物提取黑碳,测定了黑碳阳离子交换量,研究了黑碳对汞(Hg2+)、砷(As3+)、铅(Pb2+)和镉(Cd2+)离子的等温吸

附、吸附及解吸动力学特征。结果表明,黑碳阳离子交换量为0.15cmol?kg-1,远低于矿物和腐植酸。黑碳对Hg2+、As3+、Pb2+和Cd2+的等温吸附是非线性表面吸附,可用Langmiur方程拟合;黑碳对Pb2+最大吸附量远大于对Hg2+、As3+和Cd2+的;黑碳对Hg2+、As3+、Pb2+和

Cd2+吸附约5h达平衡;吸附动力学过程包括吸附快反应阶段和慢反应阶段,可用动力学一级方程和双常数速率方程描述;黑碳对

Hg2+、As3+、Pb2+和Cd2+吸附速率、吸附亲和力和最大吸附量有:Pb2+>As3+>Hg2+>Cd2+;黑碳吸附的Hg2+、As3+、Pb2+和Cd2+易解吸,30min内洗脱率高达85%以上。

关键词:黑碳;汞;砷;铅;镉;吸附中图分类号:X123

文献标识码:A

文章编号:1672-2043(2007)02-0770-05

收稿日期:2006-05-16

基金项目:山东省自然科学基金资助项目(Y2003B04)作者简介:吴

成(1971—),男,博士研究生,高级农艺师,研究方向为污染物环境行为。E-mail:wucheng7745@sina.com

通讯联系人:张晓丽

E-mail:zhangxl@sdu.edu.cn

黑碳是化石燃料或生物体的不完全燃烧物,主要含C、H、O和N,黑碳高度羧酸酯化和芳香化[1 ̄3],有较大孔隙度和比表面积[4],能强烈吸附并影响疏水性有机污染物(如PAHs、PCBs和PCDDs)迁移、转化及生物有效性[2 ̄8]。黑碳对有机污染物吸附部分不可逆[1];相对于非平面化合物,黑碳优先吸附平面构型化合物[9];天然有机质可影响黑碳表面吸附[10];土壤/沉积物中,

黑碳吸附有机污染物的重要性与其浓度相关[4]。作物秸秆燃烧物是农田土壤中黑碳重要来源,对农药环境命运有重要影响[11]。pH可影响黑碳表面官能团去质子化程度,影响黑碳吸附可离子化农药[12]。目前对黑碳吸附特性研究还仅限于有机污染物[13],未见吸附重金属报道。为认识黑碳对重金属环境行为影响,本文由玉米秸秆燃烧物提取黑碳,测定黑碳阳离子交换量

(CEC),研究黑碳吸附Hg2+、As3+、Pb2+和Cd2+特性。

1材料与方法

1.1仪器及试剂

黑碳吸附汞砷铅镉离子的研究

成,张晓丽,李关宾

(山东大学化学与化工学院,胶体与界面化学教育部重点实验室,山东济南250100)

SorptionofHg2+,As3+,Pb2+andCd2+byBlackCarbon

WUCheng,ZHANGXiao-li,LIGuan-bin

(SchoolofChemistryandChemicalEngineering,StateKeyLaboratoryofColloidandInterfaceChemistry,MinistryofEducation,ShandongUniversity,Jinan250100,China)

Abstract:Tostudythepossibleinfluenceontheremovalbehaviorofheavymetalionscausedbyblackcarbon(BC),theBCwasderivedfromcorn-residuefieldburns,thecationexchangecapacity(CEC)ofBCwasdetermined,thesorptionisothermandsorption-desorptionkineticsof

Hg2+,As3+,Pb2+andCd2+onBCwasstudied.TheCECofBCwas0.15cmol

?kg-1andmuchlowerthanthoseofclaymineralsandhumicacids.ThesorptiononBCwasmainlynonlinearsurfaceadsorption.TheLangmiurequationfittedthesorptiondataverywell,themaximumsorptioncapacitiesofPb2+onBCwasmuchlargerthanthoseofHg2+,As3+andCd2+.ThesorptionequilibriumofHg2+,As3+,Pb2+andCd2+onBCalmostreachedin5hours.Thesorptionkineticsincludedtheinitialfastphaseandthefinalslowphase.Thefirst-orderkineticreactionanddoubleconstantrateequationcoulddescribethesorptionkineticswell.Thesorptionrate,affinityandmaximumsorptioncapacitiesfollowedthese-quence:Pb2+>As3+>Hg2+>Cd2+.TheadsorbedHg2+,As3+,Pb2+andCd2+onBCwasdesorbedeasilywiththedesorptionratelargerthan85%in30minutes.

Keywords:blackcarbon;Hg2+;As3+;Pb2+;Cd2+;sorption

第26卷第2期农业环境科学学报

AF-610A原子荧光光谱仪(北京瑞利公司)、M6原子吸收光谱仪(美国热电公司)、1110型元素分析

仪(意大利CarcoErba公司)和NOVA4200e型比表面积测定仪(美国康塔公司)、水浴恒温振荡器和离心机;100mg?L-1Hg2+、As3+、Pb2+、Cd2+和Na+单标液由中国标准物质中心提供;实验用水由艾科浦(Aquaqro)纯水器所制;盐酸、硝酸和氢氟酸为优级纯,乙酸钠和乙酸铵为分析纯,硼氢化钾为化学纯。

1.2黑碳提取

玉米秸秆取自济南郊区,用水洗净风干,于2004年5月某晴天下午于不锈钢板上田间分批次燃烧(2kg

?批-1),于离心管中按10g燃烧物加200mLHCl(1mol?L-1)溶液浸泡燃烧物,加盖摇匀放置6h,振荡离心

15min(6000r?min-1,下同),分离上层液,用HCl溶液

浸泡离心提取5次,然后按10g燃烧物加200mLHCl

(1mol?L-1)/HF(1mol?L-1)混合溶液浸泡提取物,放置6h,振荡,离心15min,分离倾倒上层液,反复5次,最后洗提离心分离提取物(黑碳)5次,经洗提分离的黑碳于105℃烘干[11]。

1.3测定方法

1.3.1比表面积、

元素组成和灰分测定黑碳于50℃烘干3h,用比表面积测定仪测定黑碳BET比表面积,用元素分析仪测定黑碳C、H和O元素含量。称取黑碳5.0g置于经750℃灼烧恒重的瓷坩埚内,放入750℃马弗炉中灼烧3h,取出放入干燥器内冷却至室温后称量,计算黑碳灰分含量。1.3.2阳离子交换量测定

目前对黑碳阳离子交换量(CEC)测定,国内外还没有文献报道。本研究采用乙酸钠-火焰光度法测定CEC。用乙酸钠(pH=8.2)处理黑碳样品,然后以NH4+

将Na+交换下来,用M6原子吸收光谱仪测定溶液Na+即可得到黑碳CEC[14]。1.3.3吸附动力学

在一系列15mL离心管中,称取0.1g黑碳,加Hg2+(或As3+、Pb2+和Cd2+)标液,吸附初始Hg2+和As3+浓度30!g?L-1,Pb2+浓度2.0mg?L-1,Cd2+浓度20!g?L-1;加1mL硝酸钾溶液(0.01mol?L-1),用稀HNO3和KOH溶液调吸附液pH为7.00左右,补加水使吸附液体积为10mL,加塞充分摇匀,(25±1)℃振荡,隔时间取样,离心30min,测定上清液Hg2+、As3+、Pb2+和Cd2+浓

度。

1.3.4等温吸附

在一系列15mL离心管中,称取0.1g黑碳,加

Hg2+(或As3+、Pb2+和Cd2+)标液,加1mL硝酸钾溶液,

用稀HNO3和KOH溶液调吸附液pH为7.00左右,补

加水使吸附液体积为10mL,加塞摇匀,(25±1)℃振荡48h,离心30min,测定上清液Hg2+、As3+、Pb2+和Cd2+浓度。根据Hg2+、As3+、Pb2+和Cd2+吸附初始浓度和平衡浓度计算黑碳吸附Hg2+、As3+、Pb2+和Cd2+量。

1.3.5解吸动力学

用已吸附Hg2+(0.3511!g)、As3+(0.3512!g)、Pb2+

(0.3021mg)或Cd2+(0.2598!g)的10g黑碳填充有机

玻璃管(φ1x15cm),管两端填脱脂棉,管上端再填玻璃珠,管中溶液流量准确控制;用硝酸钾溶液(0.001mol?L-1,pH为7.00)作淋洗液,淋洗流速为2.0mL?min-1,每

隔1min收集流出液,测定Hg2+、As3+、Pb2+和Cd2+浓度。

以上实验均重复3次。

2结果与讨论

2.1黑碳提取和特性

小麦秸秆燃烧物中黑碳含量为129.2g?kg-1,黑碳中碳氢氧总含量为980.1g?kg-1,碳含量为764.0g?kg-1,黑碳比表面积为408.3m2?g-1[11],黑碳表面还有官

能团,有一定表面亲水性和总酸碱度[12]。

本研究中玉米秸秆燃烧物黑碳含量为62.5g?kg-1,黑碳中碳氢氧总含量为950.3g?kg-1,碳含量为708.0g?kg-1,灰分含量为40.2g?kg-1,比表面积为303.5m2?g-1。

黑碳是从碳化程度浅的焦碳(chars)到高度浓缩的烟灰(soot)的系列燃烧物。随碳化温度增加,黑碳对原始燃烧材料结构保留减少,粒径变小,反应活性降

低,芳香性增加[15、

16]

。Gerard和$rjan等综合多篇文献报道后认为,烟灰,粒径为亚微米级,为芳香层(aromati-clayers)聚合体,由乙炔自由基浓缩为苯类物质而形成,有类似洋葱结构,层间距(interlayerspacings)小于

20A&,碳含量为200 ̄900g?kg-1,比表面积为39 ̄90m2?g-1[13]。焦碳,粒径1 ̄100μm,对原始燃烧材料结构有保留,几乎无结构性材料,碳含量为200 ̄900g?kg-1,比表面积为8 ̄370m2?g-1[13]。

玉米秸秆燃烧物提取黑碳属焦碳类黑碳,应与小麦秸秆燃烧物提取黑碳性质类似。

2.2阳离子交换量

黑碳阳离子交换量(CEC)为0.15cmol?kg-1,远远小于高岭石、伊利石、蒙脱石和腐植酸的[17]。这可能是因为,黑碳高度羧酸酯化和芳香化,表面基团极少[1 ̄3],

矿物和腐植酸表面有一些极性基团,呈一定电性[18、19]

环境吸附剂CEC一定程度上决定着它们对重金属离

771

2007年3月子吸附容量[20]。这预示着,对重金属离子吸附,黑碳应

远小于矿物和腐植酸,这被下面等温吸附研究所证

实。

2.3吸附动力学

由图1 ̄2黑碳吸附Hg2+、As3+、Pb2+和Cd2+动力学

曲线可见,吸附动力学过程都可分为:①吸附初始快

反应阶段,Hg2+、As3+、Pb2+和Cd2+浓度迅速下降,吸附量

迅速增加;②其后吸附慢反应阶段。矿物和腐植酸对

重金属离子吸附动力学过程也可分为快慢两阶段[21 ̄27]。黑碳有较大孔隙度和比表面积[4],吸附快反应阶段由Hg2+、As3+、Pb2+和Cd2+扩散控制,短时间内达平衡;而吸附慢反应阶段则主要归因于Hg2+、As3+、Pb2+和Cd2+扩散进入黑碳微孔中,吸附于内部表面上[26、27],这种受多因素影响的扩散减缓了吸附动力学过程。黑碳对Hg2+、As3+、Pb2+和Cd2+吸附大约5h基本达平衡。用动力学一级方程、双常数方程、Elovich方程和抛物线扩散方程[22]拟合了不同时段Hg2+、As3+、Pb2+和Cd2+吸附量,动力学一级方程拟合度最好,双常数方程次之。动力学一级方程拟合黑碳吸附Hg2+、As3+、Pb2+和Cd2+相关系数(r)分别为0.998、0.997、0.994和0.991。由双常数速率方程(lnГ=a+blnt)拟合结果(表1)看出,吸附速率和吸附亲和力大致有:Pb2+>As3+>Hg2+>Cd2+,其中Pb2+吸附速率和吸附亲和力最大,这说明,相对于Hg2+、As3+和Cd2+,当Pb2+进入黑碳后可更快更多地被吸附,这可能由Pb2+特性决定。

2.4等温吸附

用Freundlich和Langmiur方程拟合黑碳等温吸附Hg2+、As3+、Pb2+和Cd2+,Freundlich方程拟合相关系数小于0.95,Langmiur方程拟合相关系数大于0.99(见表2)。这表明黑碳对Hg2+、As3+、Pb2+和Cd2+吸附主要是吸附位有限的非线性表面吸附,矿物和腐植酸对重金属离子吸附也能用Langmiur等温式拟合,也主要是表面吸附[20 ̄23]。黑碳对Hg2+、As3+、Pb2+和Cd2+最大吸附量有:Pb2+>As3+>Hg2+>Cd2+,这说明相对于Hg2+、As3+和Cd2+,Pb2+可以更多被黑碳吸附,这与相对于Hg2+、As3+和Cd2+,黑碳对Pb2+吸附亲和力更大相一致。对Hg2+、As2+、Pb2+和Cd2+最大吸附量,黑碳远小于矿物和腐植酸[20 ̄23、28],这与黑碳、矿物和腐殖酸间表面特性差异相一致。产生黑碳吸附Hg2+、As3+、Pb2+和Cd2+能力差异原因可能与Hg2+、As3+、Pb2+和Cd2+水化热差异有关,这4种离子水化热有:Cd2+>Hg2+>As3+>Pb2+[29、30];金属离子水化热越大,水合金属离子越难脱水,越不易与吸附剂表面位反应[20],越不易被黑碳表面吸附。

2.5解吸动力学

由Hg2+、As3+和Cd2+解吸动力学曲线(图3)可见,Hg2+、As3+和Cd2+易解吸。洗脱1min时,流出液中Hg2+、As3+和Cd2+浓度分别为22.65、21.65和17.64#g?L-1,洗脱率分别为12.9%、12.3%和13.6%;洗脱30min时,流出液中Hg2+、As3+和Cd2+浓度分别为0.025、0.52和0.01#g?L-1,洗脱率分别为88.2%、85.3%和91.4%。

由Pb2+解吸动力学曲线(图4)可见,Pb2+易解吸。

图1Hg2+、As3+和Cd2+吸附动力学

Figure1SorptionkineticsofHg2+,As3+andCd2+

图2Pb2+吸附动力学

Figure2SorptionkineticsofPb2+

表1双常数速率方程拟合吸附动力学

Table1Fittingresultsofdoubleconstantrateequationfor

sorptionkinetics

表2Langmiur拟合等温吸附

Table2FittingresultsofLangmiurforsorption

吴成等:黑碳吸附汞砷铅镉离子的研究772

第26卷第2期农业环境科学学报

洗脱1min时流出液Pb2+浓度为15.25mg?L-1,洗脱率为10.1%;洗脱30min时流出液Pb2+浓度为0.022mg?L-1,洗脱率为87.5%。

由上可见,黑碳吸着的Hg2+、As3+、Pb2+和Cd2+能快速洗脱,30min内洗脱率高达85%以上。黑碳表面高度芳香化与化学惰性,对Hg2+、As3+、Pb2+和Cd2+的吸附可能是吸附亲和力极弱的非静电物理吸附,可逆吸附;矿物和腐植酸,表面有一些极性基团,对Hg2+、As3+、Pb2+和Cd2+吸附,部分是化学吸附,部分不可逆[20 ̄28]。与矿物和腐植酸相比,黑碳不易阻挡Hg2+、As3+、Pb2+和Cd2+的环境迁移。

3结论

黑碳阳离子交换量为0.15cmol?kg-1,远小于矿物和腐植酸;黑碳吸附Hg2+、As3+、Pb2+和Cd2+动力学过程可分为快反应和慢反应阶段,可用动力学一级方程和双常数速率方程描述;黑碳对Hg2+、As3+、Pb2+和Cd2+等温吸附可用Langmiur方程拟合;吸附速率、亲和力和最大吸附量可能是:Pb2+>As3+>Hg2+>Cd2+;黑碳吸附的Hg2+、As3+、Pb2+和Cd2+易解吸。

参考文献:

[1]WashingtonJ,BraidaJosephJ,Pignatello.Sorptionhystersisofbenzeneincharcoalparticles[J].EnvironSciTechnol,2003,37(2):409-417.[2]JianzhongSong,Ping’anPeng,WeilinHuang.Blackcarbonandkero-

geninsoilsandsediments.1.quantificationandcharacterization[J].EnvironSciTechnol,2002,36(18):3960-3967.

[3]RobertWKramer,ElizabethBKujawinski,PatrickGHatcher.Identifi-cationofblackcarbonderivedstructuresinavolcanicashsoilhumicacidbyFouriertransformioncyclotronresonancemassspectrometry[J].EnvironSciTechnol,2004,38(12):3387-3395.

[4]GerardCornelissen,ZofiaKukulska,StavrosKalaitzidis.Relationsbe-tweenenvironmentalblackcarbonsorptionandgeochemicalsorbentcharacteristics[J].EnvironSciTechnol,2004,38(13):3632-3640.[5]MichielTO,Jonker,AlbertAKoelmans.Sorptionofpolycyclicaromatichydrocarbonsandpolychlorinatedbiphenylstosootandsoot-likemate-rialsintheaqueousenvironment:mechanisticconsiderations[J].EnvironSciTechnol,2002,36(17):3725-3734.

[6]MichielTO,Jonker,AlbertAKoelmans.Extractionofpolycyclicaro-matichydrocarbonsfromsootandsediment:solventevaluationandim-plicationsforsorptionmechanism[J].EnvironSciTechnol,2002,36(19):4107-4113.

[7]RLohmannJK,MacFarlanePM,Gschwend.Importanceofblackcar-bontosorptionofnativePAHs,PCBs,andPCDDsinBostonandNewYorkHarborsediments[J].EnvironSciTechnol,2002,36(19):4114-4119.[8]WaverlyA,ThorsenW,GregoryCope.BioavailabilityofPAHs:EffectsofsootcarbonandPAHsource[J].EnvironSciTechnol,2004,38(7):2029-2037.

[9]GerardCornelissen,MarieElmquist.Effectofsorbateplanarityonenvi-ronmentalblackcarbonsorption[J].EnvironSciTechnol,2004,38(13):3574-3580.

[10]SeokjoonKwon,JosephJPignatello.Effectofnaturalorganicsubstancesonthesurfaceandadsorptivepropertiesofenvironmentalblackcarbon(char)[J].EnvironSciTechnol,2005,39(20):7932-7939.

[11]YaningYang,GuangyaoSheng.Enhancedpesticidesorptionbysoilscontainingparticulatematterfromcropresidueburns[J].EnvironSciTechnol,2003,37(16):3635-3639.

[12]YaningYang,YuanChun,GuangyaoSheng.pH-Dependenceofpesti-cideadsorptionbywheat-residue-derivedblackcarbon[J].Langmuir,2004,20(16):6736-6741.

[13]GerardCornelissen,#rjanGustafssonThomasd.Extensivesorptionoforganiccompoundstoblackcarbon,coalandkerogeninsedimentsandsoils[J].EnvironSciTechnol,2005,39(18):6881-6895.

[14]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.4-17.

[15]FernandesMB,SkjemstadJO,JohnsonBB.Characterizationofcar-bonaceouscombustionresidues:Morphological,elementalandspectro-scopicfeatures[J].Chemosphere,2003,51:785.

[16]HedgesJI.Themolecularly-uncharacterizedcomponentofnonlivingorganicmatterinnaturalenvironments[J].OrganicGeochemistry,2000,31,945-958.

[17]熊毅.土壤胶体(第三册)[M].北京:科学技术出版社,1990.214-217.

[18]吴大清,刁桂仪,魏俊峰,等.矿物表面基团与表面作用[J].高校地质学报,2000,6(4):225-232.

[19]RebeccaSutton,GarrisonSposito.Molecularstructureinsoilhumic

图3Hg2+、As3+和Cd2+解吸动力学

Figure3DesorptionkineticsofHg2+,As3+andCd2+

图4Pb2+解吸动力学

Figure4DesorptionkineticsofPb2+

773

2007年3月

substances:thenewview(criticalreview)[J].EnvironSciTechnol,2005,39(23):9009-9015.

[20]何宏平,郭九皋,朱建喜,等.蒙脱石、高岭石和伊利石对重金属离子吸附容量的实验研究[J].岩石矿物学杂志,2001,20(4):573-578.[21]李光林,魏世强,青长乐.镉在胡敏酸上的吸附动力学和热力学研究[J].土壤学报,2004,41(1):74-80.

[22]余贵芬,青长乐,牟树森,等.汞在腐殖酸上的吸附与解吸特征[J].环境科学学报,2001,21(5):601-606.

[23]李光林,魏世强,牟树森.土壤胡敏酸对Pb的吸附特征与影响因素[J].农业环境科学学报,2004,23(2):308-312.

[24]吴大清,彭金莲,魏俊峰,等.蒙脱石与铅锌溶液界面反应动力学[J].矿物学报,2000,20(2):97-101.

[25]吴大清,彭金莲,刁桂仪,等.沉积CaCO3与重金属离子反应动力学

研究[J].地球化学,2000,29(1):56-61.

[26]ScheideggerAM,SparksDL.Kineticsoftheformationandthedisso-lutionofnickelsurfaceprecipitatesonpyrophyllite[J].ChemGeol,1996,132:157-164.

[27]StrawnDG,ScheideggerAM,SparksDL.KineticsandmechanismsofPb(Ⅱ)sorptionanddesorptionatthealuminumoxide-waterinter-face[J].EnvironSciTechnol,1998,32(17):2596-2601.

[28]郭坤梅,马毅杰.几种粘土矿物对Pb2+的吸附作用及其主要影响因素的探讨[J].地质地球化学,1997,4:109-113.

[29]张文绍,王鹤年,王曼云.配位化学及其在地质学中的应用[M].北京:地质出版社,1987.128-150.

[30]JohnADean.兰氏化学手册(第二版)[M].北京:科学技术出版社,2003.431-437.

吴成等:黑碳吸附汞砷铅镉离子的研究774

《玻璃纤维中铅、汞、镉、砷及六价铬的限量指标与测定方法》编制说明

国家标准《玻璃纤维中铅、汞、镉、砷及六价铬的限量指标与测 定方法》编制说明 草案稿 一、工作简况 欧盟RoHS《关于限制在电子电器设备中使用某些有害成分的指令》标准已于2006年7月1日开始正式实施。该标准规定了电机电子产品中的铅、汞、镉、六价铬、多溴联苯和多溴二苯醚共6项物质,并重点规定了铅的含量不能超过0.1%。2009年IMO 在香港外交大会上通过了《2009年香港国际安全与无害环境船舶拆解公约》(“香港公约”),对船舶设计/建造/营运、拆船设施、有害材料的控制及人员保护等提出了要求。公约对铅、汞、镉、六价铬的含量进行了明确限定。 玻璃纤维是重要的工业原材料,是制造电脑、手机主版等电子器件的印刷电路板的主要增强材料,在机械船舶、石油化工以及市政工程上也有大量的应用。玻璃纤维中的有毒有害物质主要为玻璃澄清过程中引入的砷、矿物杂质引入的铅、汞、镉、六价铬等。 目前无论是出口还是内销都对玻璃纤维产品提出了要求,为了人体健康和环保要求,要控制产品种有毒有害物质的含量。本标准的编制可以规范行业对于产品的技术要求以及试验方法,可以规范产业的进步和发展,可以更好的使我国的产品与国际接轨,为玻纤产业与国际接轨提供技术支持,对规范产业的发展具有积极意义。 国家标准化管理委员会于2015年4月30下达2015年第一批国家标准制修订计划,下达了计划编号为20150380-T-609的《玻璃纤维中铅、汞、镉、砷及六价铬的限量指标与测定方法》国家标准制定计划。标准负责起草单位在接到标准编制计划任务后组成了标准起草小组。起草小组根据申报时的情况,对国内外相关行业、相关技术方法进行了收集与分析,拟出了标准草案稿。 二、标准编制原则和主要内容 1. 编制原则

铅、汞、镉、砷对人体的危害及其预防措施

铅、汞、镉、砷对人体的危害及其预防措施 微量重金属元素与人体生命过程有着密切关系,它们虽然在体内的含量非常微小,但生理功能独特。 一、砷 砷在自然界分布很广,动物肌体、植物中都可以含有微量的砷,海产品也含有微量的砷。由于含砷农药的广泛使用,砷对环境的污染问题愈发严重,如以砷化合物作为饲料添加剂,过量添加至牲蓄食用的饲料中,就易使牲蓄体内积砷,食用了这种牲蓄的肉制品后,就容易造成中毒。砷侵入人体后,除由尿液、消化道、唾液、乳腺中排泄外,就蓄积于骨质疏松部、肝、肾、脾、肌肉、头发、指甲等部位。砷作用于神经系统、刺激造血器官,长时期的少量侵入人体,对红血球生成有刺激影响,长期接触砷会引发细胞中毒和毛细管中毒,还有可能诱发恶性肿瘤。我国食品重金属残留限量国家标准规定砷含量最高(粮食)为0.7毫克/千克,鲜乳为0.2毫克/千克。生活饮用水国家标准限量为0.01毫克/升。 二、铅 铅是对人体危害极大的一种重金属,它对神经系统、骨骼造血功能、消化系统、男性生殖系统等均有危害。特别是大脑处于神经系统敏感期的儿童,对铅有特殊的敏感性。研究表明儿童的智力低下发病率随铅污染程度的加大而升高。儿童体内血铅每上升10微克/100毫升,儿童智力则下降6—8分。为此,美国把普遍认为对儿童产生中毒的血铅含量下限由0.25微克/毫升,下降到0.1微克/毫升。世界卫生组织对水中铅的控制线已降到0.01微克/毫升。我国食品重金属残留量限量国家标准规定铅含量最高(豆类)为0.8毫克/千克,鲜乳为0.05毫克/千克,生活饮用水国家标准限量为0.01毫克/升。 在日常生活中,人们需要在以下六个方面加强对铅中毒的预防。 1、来自生活环境中的土壤和尘埃,玩具和学习用具,家庭装修用劣质油漆和印刷油墨,用铅壶或含铅的锡壶烫酒、饮酒,滥用含铅的丹药或偏方等。 2、食物中的铅,某些饮料、劣质食品、中草药等。某些罐装食品,由于用铅焊接缝而导致食物含铅量增加;含铅量高的食品主要有用含铅量高的容器加工成的爆米化,加入氧化铅以加快其成熟的松花蛋,大街小巷叫卖的“白馒头”也有一部分是用含铅等杂质的硫磺熏蒸而成。 3、动植物体内的铅。植物性食品的铅含量土壤、化肥、农药及灌溉用水含铅量的影响。动物性食品受铅含量受饲料、牧草、空气和饮用水含铅量的影响。 4、大气污染,如用含铅汽油的汽车尾气,以及煤制品(如煤球、煤饼)为燃料的家庭,室内空气中铅平均含量比室外空气的铅含量高很多。

铅镉砷汞铜检测法

铅、镉、砷、汞、铜测定法 一、原子吸收分光光度法 本法系采用原子吸收分光光度法测定中药中的铅、镉、砷、汞、铜,所用仪器应符合使用要求(附录V D)。除另有规定外,按下列方法测定。 1.铅的测定(石墨炉法) 测定条件参考条件:波长283. 3nm,干燥温度100~120 ℃,持续20秒;灰化温度400~750℃,持续20~25秒;原子化温度1700~2100℃,持续4~5秒。 铅标准贮备液的制备精密量取铅单元素标准溶液适量,用2%硝酸溶液稀释,制成每lml含铅(Pb)lug 的溶液,即得(0~5℃贮存)。 标准曲线的制备分别精密量取铅标准贮备液适量,用2%硝酸溶液制成每lml分别含铅0ng、5ng、20ng、40ng、60ng、80ng的溶液。分别精密量取lml,精密加含1%磷酸二氢铵和0.2%硝酸镁的溶液0 .5 ml,混匀,精密吸取20ul注人石墨炉原子化器,测定吸光度,以吸光度为纵坐标,浓度为横坐标,绘制标准曲线。 供试品溶液的制备A法取供试品粗粉0.5g,精密称定,置聚四氯乙烯消解罐内,加硝酸3~5ml,混匀,浸泡过夜,盖好内盖,旋紧外套,置适宜的微波消解炉内,进行消解(按仪器规定的消解程序操作)。消解完全后,取消解内罐置电热板上缓缓加热至红棕色蒸气挥尽,并继续缓缓浓缩至2~3ml,放冷,用水转入25ml量瓶中,并稀释至刻度,摇勻,即得。同法同时制备试剂空白溶液。 B法取供试品粗粉1g , 精密称定,置凯氏烧瓶中,加硝酸-高氣酸(4:1 )混合溶液5~10ml,混勻,瓶口加一小漏斗,浸泡过夜。置电热板上加热消解,保持微沸,若变棕黑色,再加硝酸-髙氣酸(4:1)混合溶液适量,持续加热至溶液澄明后升高温度,继续加热至冒浓烟,直至白烟散尽,消解液呈无色透明或略带黄色,放冷,转入50ml量瓶中,用2%硝酸溶液洗涤容器,洗液合并于量瓶中,并稀释至刻度,摇匀,即得。同法同时制备试剂空白溶液。 C法取供试品粗粉0 .5g,精密称定,置瓷坩埚中,于电热板上先低温炭化至无烟,移人高温炉中,于500℃灰化5~6小时(若个别灰化不完全,加硝酸适童,于电热板上低温加热,反复多次直至灰化完全),取出冷却,加10%硝酸溶液5ml使溶解,转人25ml量瓶中,

铅、汞、镉、砷对人体的危害及其预防

铅、汞、镉、砷对人体的危害及其预防 微量重金属元素与人体生命过程有着密切关系,它们虽然在体内的含量非常微小,但生理功能独特。 一、砷 砷在自然界分布很广,动物肌体、植物中都可以含有微量的砷,海产品也含有微量的砷。由于含砷农药的广泛使用,砷对环境的污染问题愈发严重,如以砷化合物作为饲料添加剂,过量添加至牲蓄食用的饲料中,就易使牲蓄体内积砷,食用了这种牲蓄的肉制品后,就容易造成中毒。砷侵入人体后,除由尿液、消化道、唾液、乳腺中排泄外,就蓄积于骨质疏松部、肝、肾、脾、肌肉、头发、指甲等部位。砷作用于神经系统、刺激造血器官,长时期的少量侵入人体,对红血球生成有刺激影响,长期接触砷会引发细胞中毒和毛细管中毒,还有可能诱发恶性肿瘤。我国食品重金属残留限量国家标准规定砷含量最高(粮食)为0.7毫克/千克,鲜乳为0.2毫克/千克。生活饮用水国家标准限量为0.01毫克/升。 二、铅 铅是对人体危害极大的一种重金属,它对神经系统、骨骼造血功能、消化系统、男性生殖系统等均有危害。特别是大脑处于神经系统敏感期的儿童,对铅有特殊的敏感性。研究表明儿童的智力低下发病率随铅污染程度的加大而升高。儿童体内血铅每上升10微克/100毫升,儿童智力则下降6—8分。为此,美国把普遍认为对儿童产生中毒的血铅

含量下限由0.25微克/毫升,下降到0.1微克/毫升。世界卫生组织对水中铅的控制线已降到0.01微克/毫升。我国食品重金属残留量限量国家标准规定铅含量最高(豆类)为0.8毫克/千克,鲜乳为0.05毫克/千克,生活饮用水国家标准限量为0.01毫克/升。 在日常生活中,人们需要在以下六个方面加强对铅中毒的预防。 1、来自生活环境中的土壤和尘埃,玩具和学习用具,家庭装修用劣质油漆和印刷油墨,用铅壶或含铅的锡壶烫酒、饮酒,滥用含铅的丹药或偏方等。 2、食物中的铅,某些饮料、劣质食品、中草药等。某些罐装食品,由于用铅焊接缝而导致食物含铅量增加;含铅量高的食品主要有用含铅量高的容器加工成的爆米化,加入氧化铅以加快其成熟的松花蛋,大街小巷叫卖的“白馒头”也有一部分是用含铅等杂质的硫磺熏蒸而成。 3、动植物体内的铅。植物性食品的铅含量土壤、化肥、农药及灌溉用水含铅量的影响。动物性食品受铅含量受饲料、牧草、空气和饮用水含铅量的影响。 4、大气污染,如用含铅汽油的汽车尾气,以及煤制品(如煤球、煤饼)为燃料的家庭,室内空气中铅平均含量比室外空气的铅含量高很多。 5、暴露在含铅环境下的大人及衣物又交叉感染给孩子,例如交通岗、印刷厂、钢铁厂、炼油厂、铸造厂、蓄电池行业和矿山等都是铅污染重灾区,许多行业都有接触铅化合物的机会,作为大人平时应注意预防铅中毒,既要保护自己,更是要保护孩子。

50-铅、镉、砷、汞、铜测定法标准操作规程

目的:建立铅、镉、砷、汞、铜测定法检验标准操作规程,保证操作正确,确保检品质量。 范围:本标准规定了铅、镉、砷、汞、铜测定法的检验方法和操作要求;适用于本公司检品铅、镉、砷、汞、铜测定。 职责:QC执行,QC主任、质量部经理监督执行。 依据:《中国药典》2010年版一部附录Ⅸ B及中国药品检验标准操作规范 内容: 1、原子吸收分光光度法:本法系采用原子吸收分光光度法测定中药中的铅、镉、砷、汞、铜,所用仪器应符合使用要求(附录Ⅴ D)。除另有规定外,按下列方法测定。 . 铅的测定(石墨炉法)。 1.1.1. 测定条件参考条件:波长,干燥温度100~120℃,持续20秒;灰化温度400~750℃,持续20~25秒;原子化温度1700~2100℃,持续4~5秒。 1.1. 2. 铅标准储备液的制备:精密量取铅单元素标准溶液适量,用2%硝酸溶液稀释,制成每1ml含铅(Pb)1μg的溶液,即得(0~5℃贮存)。 1.1.3. 标准曲线的制备:分别精密量取铅标准储备液适量,用2%硝酸溶液制成每1ml分别含铅0ng、5ng、20ng、40ng、60ng、80ng的溶液。分别精密量取1ml,精密加含1%磷酸二氢铵和%硝酸镁的溶液,混匀,精密吸取20μl注入石墨炉原子化器,测定吸光度,以吸光度为纵光标,浓度为横坐标,绘制标准曲线。 1.1.4. 供试品溶液的制备。 1.1.4.1. A法取供试品粗粉0.5g,精密称定,置聚四氟乙烯消解罐内,加硝 第1页共6页

酸3~5ml,混匀,浸泡过夜,盖好内盖,旋紧外套,置适宜的微波消解炉内,进行消解(按仪器规定的消解程序操作)。消解完全后,取消解内罐置电热板上缓缓加热至红棕色蒸气挥尽,并继续缓缓浓缩至2~3ml,放冷,用水转入25ml 量瓶中,并稀释至刻度,摇匀,即得。同法同时制备试剂空白溶液。 1.1.4. 2. B法取供试品粗粉1g,精密称定,置凯氏烧瓶中,加硝酸-高氯酸(4:1)混合溶液5~10ml,混匀,瓶口加一小漏斗,浸泡过夜。置电热板上加热消解,保持微沸,若变棕黑色,再加硝酸-高氯酸(4:1)混合溶液适量,持续加热至溶液澄明后升高温度,继续加热至冒浓烟,直至白烟散尽,消解液呈无色透明或略带黄色,放冷,转入50ml量瓶中,用2%硝酸溶液洗涤容器,洗液合并于量瓶中,并稀释至刻度,摇匀,即得。同法同时制备试剂空白溶液。 1.1.4.3. C法:取供试品粗粉0.5g,精密称定,置瓷坩埚中,于电热板上先低温炭化至无烟,移入高温炉中,于500℃灰化5~6小时(若个别灰化不完全,加硝酸适量,于电热板上低温加热,反复多次直至灰化完全),取出冷却,加10%硝酸溶液5ml使溶解,转入25ml量瓶中,用水洗涤容器,洗液合并于量瓶中,并稀释至刻度,摇匀,即得。同法同时制备试剂空白溶液。 1.1.5. 测定法:精密量取空白溶液与供试品溶液各1ml,精密加含1%磷酸二氢铵和%硝酸镁的溶液,混匀,精密吸取10~20μl,照标准曲线的制备项下的方法测定吸光度,从标准曲线上读出供试品溶液中铅(Pb)的含量,计算,即得。 . 镉的测定(石墨炉法)。 1.2.1. 测定条件参考条件:波长,干燥温度100~120℃,持续20秒;灰化温度300~500℃,持续20~25秒;原子化温度1500~1900℃,持续4~5秒。 1.2.2. 镉标准储备液的制备精密量取镉单元素标准溶液适量,用2%硝酸溶液稀释,制成每1ml含镉(Cd)1μg的溶液,即得(0~5℃贮存)。 1.2.3. 标准曲线的制备分别精密量取镉标准储备液适量,用2%硝酸溶液稀释制成每1ml分别含镉0ng、、、、、的溶液。分别精密吸取10μl,注入石墨炉原子化器,测定吸光度,以吸光度为纵光标, 第2页共6页

铅、镉、砷、汞、铜测定规程

1.目的:建立铅、镉、砷、汞、铜测定法操作规程,规范铅、镉、砷、汞、铜测定法的操作。 2.范围:本公司产品铅、镉、砷、汞、铜的检验。 3.责任:QC检验员。 4.内容: 4.1 原子吸收分光光度法: 本法系采用原子吸收分光光度法(附录Ⅴ D)测定中药材中的铅、镉、砷、汞、铜,除另有规定外,按下列方法测定。 4.1.1铅的测定(石墨炉法) 4.1.1.1测定条件 4.1.1.1.1参考条件:波长 283.3nm,干燥温度 100~120℃,持续 20 秒;灰化温度 400~750℃,持续 20~25 秒;原子化温度 1700~2100℃,持续 4~5秒;背景校正为氘灯或塞曼效应。 4.1.1.2铅标准储备液的制备 精密量取铅单元素标准溶液适量,用 2%硝酸溶液稀释,制成每 1ml 含铅(Pb)1μg 的溶液,即得(0~5℃贮存)。 4.1.1.3标准曲线的制备 分别精密量取铅标准储备液适量,用 2%硝酸溶液制成每1ml 分别含铅 0ng、5ng、20ng、40ng、60ng、80ng 的溶液。分别精密量取 1ml,精密加含 1%磷酸二氢铵和 0.2%硝酸镁的溶液 1ml,混匀,精密吸取20μl 注入石墨炉原子化器,测定吸光度,以吸光度为纵坐标,浓度为横坐标,绘制标准曲线。 4.1.1.4供试品溶液的制备 4.1.1.4.1 A 法 取供试品粗粉 0.5g,精密称定,置聚四氟乙烯消解罐内,加硝酸3~5ml,混匀,浸泡过夜,盖好内盖,旋紧外套,置适宜的微波消解炉内,进行消解(按仪器规定的消解程序操作)。消解完全后,取消解内罐置电热板上缓缓加热至红棕色蒸气挥尽,并继续缓缓浓缩至2~3ml,放冷,用水转入 25ml 量瓶中,并稀

进口化肥中有害元素砷_镉_铅_铬的普查分析

我国每年进口大量化肥,近3年通过主要港口共进口化肥约3000万t,贸易金额约54亿美元。我国进口化肥主要品种为氯化钾、复合肥和磷酸二铵。在人们日益关注生态环境的今天,大量施用化肥对环境的负面影响和食品安全问题已引起各国的关注。一些发达国家,如加拿大、澳大利亚、日本、美国、欧盟制定了相关法规对化肥中有害重金属含量进行了限量[1],我国国家标准也规定了不同肥料中有害元素限量,以防止化肥中重金属对土壤和食物链的污染。砷、镉、铅、铬是其中4个受到限制的重金属。我国对化肥中砷、镉、铅、铬的规定见表1。 笔者对进口化肥中有害元素砷、镉、铅、铬含量水平进行普查并对结果进行了分析。从普查结果可大体了解进口化肥中这几种有害元素的含量水平。 1进口化肥重金属的分析1.1 样品 进口复合肥(包括复混肥)、磷酸二铵、钾肥 (硫酸钾、氯化钾等)和尿素。 1.2样品消解 样品称量前研磨成直径小于1mm的粉末。 磷酸二铵、钾肥(硫酸钾、氯化钾等)和尿素样品直接用水溶解,复合肥(包括复混肥)样品采用GB/T 14539.1方法溶样。1.3重金属的测定 采用等离子体原子发射光谱法(ICP-AES)。仪器为美国Varian公司Vista-Pro型。仪器工作条件:99.99%以上高纯Ar,等离子体气、辅助气(载 气)流量分别为15、1.5L/min,雾化器压力200kPa,积分时间1s,射频功率1.0kW。蠕动泵自动进样装置。在标准溶液和待测溶液中均加入钇(Y)作为内标元素,溶液中Y的质量浓度为10mg/L,采用内标法定量。各元素分析谱线:As193.696nm, Cd214.439nm,Pb220.353nm,Cr206.158nm, Y371.029nm。 2结果与讨论2.1数据归纳 本文共对191批复合(混)肥料、130批磷酸二铵、58批钾肥和17批尿素共395批化肥进行了检验,获得As、Cd、Pb、Cr检测数据分别为396个、392个、382个和387个。全部检测数据按照含量 从高到低排列,其结果见图1。 2.2数据分析 本文依据有机-无机复混肥料(复合肥料)标 准对砷、镉、铅、铬的要求(见表1)来分析普查数据。所抽查的进口化肥按不同品种不符合砷、镉、铅、铬要求的情况见表2。 进口化肥中有害元素砷、镉、铅、铬的普查分析 刘志红, 刘 丽, 李 英 (深圳出入境检验检疫局,广东深圳 518045) [收稿日期]2006-09-07 [作者简介]刘志红(1966-),女,湖南衡阳人,高级工程师,从事进出口化矿产品检验工作。 [中图分类号]TQ44;TQ086;F760.6 [文献标识码]C [文章编号]1007-6220(2007)02-0077-02 不同肥料中有害元素限量/(mg?kg-1) 表1 我国对肥料中有害元素的限量要求 有机-无机复合(混)肥料 含氨基酸叶面肥微量元素叶面肥微生物肥料 肥料品种 50202030 1020203 15010010060 500 70 AsCdPbCr2007年3月第22卷第2期 磷肥与复肥 Phosphate&CompoundFertilizer 77 As含量/(mg?kg-1) 50 40302010 0 100 200 300 400 分析样的数量/个a)AsCd含量/(mg?kg-1) 100 200 300 400 5040302010 0 分析样的数量/个 b)Cd Pb含量/(mg?kg-1) 300 250 20015010050 分析样的数量/个c)Pb100 200 300 400 分析样的数量/个 d)Cr Cr含量/(mg?kg-1) 2500200015001000500 0 100 200 300 400 图1进口化肥中As、Cd、Pb、Cr含量的普查数据 0

铅汞镉砷对人体危害及预防措施范本

整体解决方案系列 铅汞镉砷对人体危害及预 防措施 (标准、完整、实用、可修改)

编号:FS-QG-38285铅汞镉砷对人体危害及预防措施 Harm of lead, mercury, cadmium and arsenic to human body and preventive measures 说明:为明确各负责人职责,充分调用工作积极性,使人员队伍与目标管理科学化、制度化、规范化,特此制定 微量重金属元素与人体生命过程有着密切关系,它们虽然在体内的含量非常微小,但生理功能独特。 一、砷 砷在自然界分布很广,动物肌体、植物中都可以含有微量的砷,海产品也含有微量的砷。由于含砷农药的广泛使用,砷对环境的污染问题愈发严重,如以砷化合物作为饲料添加剂,过量添加至牲蓄食用的饲料中,就易使牲蓄体内积砷,食用了这种牲蓄的肉制品后,就容易造成中毒。砷侵入人体后,除由尿液、消化道、唾液、乳腺中排泄外,就蓄积于骨质疏松部、肝、肾、脾、肌肉、头发、指甲等部位。砷作用于神经系统、刺激造血器官,长时期的少量侵入人体,对红血球生成有刺激影响,长期接触砷会引发细胞中毒和毛细管

中毒,还有可能诱发恶性肿瘤。我国食品重金属残留限量国家标准规定砷含量最高(粮食)为0.7毫克/千克,鲜乳为0.2毫克/千克。生活饮用水国家标准限量为0.01毫克/升。 二、铅 铅是对人体危害极大的一种重金属,它对神经系统、骨骼造血功能、消化系统、男性生殖系统等均有危害。特别是大脑处于神经系统敏感期的儿童,对铅有特殊的敏感性。研究表明儿童的智力低下发病率随铅污染程度的加大而升高。儿童体内血铅每上升10微克/100毫升,儿童智力则下降6—8分。为此,美国把普遍认为对儿童产生中毒的血铅含量下限由0.25微克/毫升,下降到0.1微克/毫升。世界卫生组织对水中铅的控制线已降到0.01微克/毫升。我国食品重金属残留量限量国家标准规定铅含量最高(豆类)为0.8毫克/千克,鲜乳为0.05毫克/千克,生活饮用水国家标准限量为0.01毫克/升。 在日常生活中,人们需要在以下六个方面加强对铅中毒的预防。 1、来自生活环境中的土壤和尘埃,玩具和学习用具,家

铅镉砷汞铜检测法

铅镉砷汞铜检测法公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

铅、镉、砷、汞、铜测定法 一、原子吸收分光光度法 本法系采用原子吸收分光光度法测定中药中的铅、镉、砷、汞、铜,所用仪器应符合使用要求(附录V D)。除另有规定外,按下列方法测定。 1.铅的测定(石墨炉法) 测定条件参考条件:波长283. 3nm,干燥温度100~120 ℃,持续20秒;灰化温度400~750℃,持续20~25秒;原子化温度1700~2100℃,持续4~5秒。 铅标准贮备液的制备精密量取铅单元素标准溶液适量,用2%硝酸溶液稀释,制成每lml含铅(Pb)lug 的溶液,即得(0~5℃贮存)。 标准曲线的制备分别精密量取铅标准贮备液适量,用2%硝酸溶液制成每lml分别含铅0ng、5ng、20ng、40ng、60ng、80ng的溶液。分别精密量取lml,精密加含1%磷酸二氢铵和%硝酸镁的溶液0 .5 ml,混匀,精密吸取20ul 注人石墨炉原子化器,测定吸光度,以吸光度为纵坐标,浓度为横坐标,绘制标准曲线。 供试品溶液的制备 A法取供试品粗粉,精密称定,置聚四氯乙烯消解罐内,加硝酸3~5ml,混匀,浸泡过夜,盖好内盖,旋紧外套,置适宜的微波消解炉内,进行消解(按仪器规定的消解程序操作)。消解完全后,取消解内罐置电热板上缓缓加热至红棕色蒸气挥尽,并继续缓缓浓缩至2~3ml,放冷,用水转入25ml量瓶中,并稀释至刻度,摇匀,即得。同法同时制备试剂空白溶液。 B法取供试品粗粉1g , 精密称定,置凯氏烧瓶中,加硝酸-高气酸(4:1 )混合溶液5~10ml,混匀,瓶口加一小漏斗,浸泡过夜。置电热板上加热消解,保持微沸,若变棕黑色,再加硝酸-髙气酸(4:1)混合溶液适量,持续加热至溶液澄明后升高温度,继续加热至冒浓烟,直至白烟散尽,消解液呈无色透明或略带黄色,放冷,转入50ml量瓶中,用2%硝酸溶液洗涤容器,洗液合并于量瓶中,并稀释至刻度,摇匀,即得。同法同时制备试剂空白溶液。 C法取供试品粗粉0 .5g,精密称定,置瓷坩埚中,于电热板上先低温炭化至无烟,移人高温炉中,于500℃灰化5~6小时(若个别灰化不完全,加硝

大米中铬、砷、镉、铅的测定(标准操作规程作业指导书)

标准检测规程 1.适用范围:大米中铬、砷、镉、铅的测定。 2.测试原理:试样用湿法消解后,用ICP-MS上机分析。 3.仪器设备 3.1 高脚烧杯:50 mL。 3.2 电热板:具有温控功能。 3.3 电感耦合等离子质谱仪(ICP-MS)。 3.4 一般实验室常用仪器和设备,玻璃容器需符合国家A级标准。 4.试剂 除非另有说明,分析时均用符合国家标准的优级纯试剂,实验用水为当天新制备的去离子水或等同纯度的水。 4.1 一级水。 4.2 硝酸:ρ(HNO3)=1.42 g/mL,高纯(CNW ppb级)。 4.3 校准曲线:用B-232 多元素混标100 mg/L配制浓度分别为0.0、0.5、1.0、 5.0、10.0、20.0、100、500μg/L的校准点,用1% ppb级的硝酸定容至100 mL PP容量瓶中。 5.分析测试 5.1 准确称取粉碎好试样1.000~1.0500 g于高脚烧杯中,加入12 mL硝酸(4.2),上置一玻璃漏斗,在可调式电热炉上消解,先控温100℃消解20~30 min,至瓶内棕色的烟变淡,控温180℃继续消解,消解30~60 min,消解消化液略带黄色不再冒浓烈黄烟,取下漏斗,200℃赶酸至0.5~1 mL(不能蒸干,蒸干需重做),取下稍冷用一级水转移定容至25 mL比色管中。同时做空白试验。 5.2 上机测定 开启仪器,将仪器预热半个小时以上,调谐将仪器调节最佳工作条件,用外标法KED模式测试。 5.3 计算公式 X=(c1-c0)×V/m/1000 其中: X:试样中目标元素含量,mg/kg;

c1:试样消化液中元素含量,μg/L; c0:空白消化液中元素含量,μg/L; V:试样消化液定容总体积,mL; m:试样质量或体积,g。 6. 质量保证与质量控制 6.1 实验所用的器皿容器等需先用自来水洗净(不可使用洗涤剂),再用20 %硝酸溶液(优级纯硝酸配制)浸泡12 h以上,使用前再依次用自来水和一级水洗净。 6.2 消解过程中,禁止沸腾和蒸干,蒸干需重新取样消解。 6.3消解液的酸度应与校准曲线酸度接近或一致。

食品接触用油墨 铅、汞、镉、铬、砷的测定

附录A 食品接触用油墨铅、汞、镉、铬、砷的测定 A.1范围 本附录规定了食品接触用油墨中铅、汞、镉、铬、砷元素测定的电感耦合等离子体发射光谱测定法。 本附录适用于食品接触用油墨中铅、汞、镉、铬、砷的测定。 A.2 原理 油墨经过涂膜干燥后粉碎,通过酸消解的方法转为溶液。将所得溶液稀释定容后,各元素经电感耦合等离子体光谱仪测定强度,用标准曲线法进行定量。 A.3 试剂和材料 除非另有说明,本方法所用试剂均为光谱纯,水为GB/T 6682 规定的一级水。 A.3.1 试剂 A.3.1.1硝酸(HNO3)。 A.3.1.2盐酸(HCl)。 A.3.1.3 氢氟酸(HF)。 A.3.1.4 金元素(Au)溶液(1000 mg/L)。 A.3.1.5 氩气(Ar):纯度≥99.99 %,或液氩。 A.3.2 试剂配制 A.3.2.1 硝酸溶液(2+98):量取20 mL硝酸,缓慢加入980 mL水中,混匀。 A.3.2.2 硝酸溶液(1+5):量取500 mL硝酸,缓慢加入2500 mL水中,混匀。 A.3.2.3 汞标准稳定剂(1 mg/L):取1 mL金元素(Au)溶液,用硝酸溶液(2+98)稀释至1000 mL,用于汞标准溶液的配制。 A.3.3 标准品 元素标准储备液(1000 mg/L或100 mg/L):铅、汞、镉、铬、砷,采用经国家认证并授予标准物质证书的单元素或多元素标准储备液。 A.3.4 标准溶液配制 准确吸取适量单元素标准储备液或多元素混合标准储备液,用硝酸溶液(2+98)逐级稀释配成铅、镉、铬、砷混合标准曲线溶液和汞标准系列溶液,各元素浓度可参考表A.1。铅、镉、铬、砷混合标准曲线溶液配制后转移至洁净的聚乙烯瓶中保存。汞元素需要用汞标准稳定剂单独配制标准曲线溶液,配制后转移至洁净的玻璃瓶中保存。 表A.1 各元素标准系列 注:可根据仪器的灵敏度、线性范围以及样液中各元素实际含量确定标准系列溶液中该元素的浓度和范围。标准工作溶液在20℃~25℃下可保存2个月。使用前摇匀。

铅、镉、砷、汞、铜测定方法

铅、镉、砷、汞、铜测定方法 本法系采用原子吸收分光光度法测定中药中的铅、镉、砷、汞、铜,所用仪器应符合使用要求(附录ⅤD)。除另有规定外,按下列方法测定。 1.铅的测定(石墨炉法) 测定条件参考条件:波长283.3nm,干燥温度100~120℃,持续20秒;灰化温度400~750℃,持续20~25秒;原子化温度1700~2100℃,持续4~5秒。 铅标准储备液的制备精密量取铅单元素标准溶液适量,用2%硝酸溶液稀释,制成每1ml含铅(Pb)lμg的溶液,即得(0~5℃贮存)。 标准曲线的制备分别精密量取铅标准储备液适量,用2%硝酸溶液制成每1ml分别含铅0ng,5ng,20ng,40ng,60ng,80ng的溶液。分别精密量取1ml,精密加含1%磷酸二氢铵和0.2%硝酸镁的溶液0.5ml,混匀,精密吸取20μl注入石墨炉原子化器,测定吸光度,以吸光度为纵坐标,浓度为横坐标,绘制标准曲线。 供试品溶液的制备 A法取供试品粗粉0.5g,精密称定,置聚四氟乙烯消解罐内,加硝酸3~5ml,混匀,浸泡过夜,盖好内盖,旋紧外套,置适宜的微波消解炉内,进行消解(按仪器规定的消解程序操作)。消解完全后,取消解内罐置电热板上缓缓加热至红棕色蒸气挥尽,并继续缓缓浓缩至2~3ml,放冷,用水转入25ml量瓶中,并稀释至刻度,摇匀,即得。同法同时制备试剂空白溶液。 B法取供试品粗粉1g,精密称定,置凯氏烧瓶中,加硝酸-高氯酸(4:1)液合溶液5~10ml,混匀,瓶口加一小漏斗,浸泡过夜。置电热板上加热消解,保持微沸,若变棕黑色,再加硝酸-高氯酸(4:1)混合溶液适量,持续加热至溶液澄明后升高温度,继续加热至冒浓烟,直至白烟散尽,消解液呈无色透明或略带黄色,放冷,转入50ml量瓶

《有机-无机复混肥料中铅、镉、铬、镍、砷和汞的测定电感耦合等离子体

《有机-无机复混肥料中铅、镉、铬、镍、砷和汞的测定电感耦合等离子体原子发射光谱法》行业标准编制说明 一、标准制定的背景及意义 随着我国经济的迅猛发展,化肥作为进口大宗资源类商品之一,涉及金额高,它的质量直接影响我国的经济安全与市场稳定。国家质检总局一直非常重视进口化肥的安全、卫生、环保问题,曾于2002年进行化肥中有毒有害物质普查。肥料中铅、镉、镍、砷、汞和镍等重金属可以通过作物直接经过食物链进入人体。这些重金属在人体内容易累积,其危害主要是损害人体的重要器官肾脏和肝脏、损伤DNA和神经系统,有些还有可能诱发恶性肿瘤。因此,许多国家对肥料中可能存在的有毒有害元素都制定了相应的限量标准。有机-无机复混肥是指含有一定量有机肥料的复混肥料,具有有效成分高,养分种类多;副成分少,对土壤不良影响小,生产成本低,物理性状好[1]等优点,因此近年来得到越来越广泛的应用。我国有机-无机复混肥料国家标准(GB 18877-2002)规定了砷、铬、铅、镉和汞的最大限量,见表1。 表1 目前,国际上发布的关于肥料中有害元素分析方法标准还是以我国发布的一些标准为主。如上述提到的国家标准GB 18877-2002中就规定了砷、铬、铅、镉和汞的测定方法,除了砷采用分光光度法外,其余四种元素均采用原子吸收法;2010年12月23日我国农业部发布的《肥料汞、砷、镉、铅、铬含量的测定》(NY/T 1978-2010),也规定了砷、铬、铅、镉和汞的测定方法,该方法中砷和汞的测定主要采用原子荧光光谱法,铬、铅、镉的测定则分别采用原子吸收光谱法和等离子发射光谱法;此外,国家质检总局于2009年2月20日发布的检验检疫行业标准

铅、镉、砷、汞、铜测定法

1.主题内容:建立有铅、镉、砷、汞、铜检测法操作方法。 2.适用范围:本规程适用于检查药物在生产过程中的铅、镉、砷、汞、铜检测法的操作。3.引用标准:《中国药典2010版一部》 4.责任:化验员、QC主管。 5. 用途:化验室 6.内容 6.1原子吸收分光光度法:本法系采用原子吸收分光光度法测定中药中的铅、镉、砷、汞、铜,所用仪器应符合使用要求(附录ⅤD)。除另有规定外,按下列方法测定。 6.1.1铅的测定(石墨炉法) 测定条件 参考条件:波长283.3nm,干燥温度100~120℃,持续20秒;灰化温度400~750℃,持续20~25秒;原子化温度1700~2100℃,持续4~5秒。 铅标准储备液的制备 精密量取铅单元素标准溶液适量,用2%硝酸溶液稀释,制成每1ml含铅(Pb)1μg的溶液,既得(0~5℃贮存)。 标准曲线的制备 分别精密量取铅标准储备液适量,用2%硝酸溶液稀释,制成每1ml分别含铅0ng、5ng、20ng、40ng、60ng、80ng的溶液。分别精密量取1ml,精密加含1%磷酸二氢铵和0.2%硝酸镁的溶液0.5ml,混匀,精密吸取20μg注入石墨炉原子化器,测定吸光度,以吸光度为纵坐标,浓度为横坐标,绘制标准曲线。 供试品溶液的制备 A法:取供试品粗粉0.5g精密称定,置聚四氟乙烯消解罐内,加硝酸3~5ml,混匀,浸泡过夜,盖好内盖,旋紧外套,置适宜的微波消解炉内,进行消解(按仪器规定的消解程序操作)。

消解完全后,取消解内罐置电热板上缓缓加热至红棕色蒸气挥尽,并继续缓缓浓缩至2~3ml,放冷,用水转入25ml量瓶中,并稀释至刻度,摇匀,即得。同法同时制备试剂空白溶液。 B法:取供试品粗粉1g,精密称定,置凯式烧瓶中,加硝酸-高氯酸(4:1)混合溶液5~10ml,混匀,瓶口加一小漏斗,浸泡过夜。置电热板上加热消解,保持微沸,若变棕黑色,再加硝酸-高氯酸(4:1)混合溶液适量,持续加热至溶液澄明后升高温度,继续加热至冒浓烟,直至白烟散尽,消解液呈无色透明或略带黄色,放冷,转入50ml量瓶中,用2%硝酸溶液洗涤容器,洗液合并于量瓶中,并稀释至刻度,摇匀,即得。同法同时制备试剂空白溶液。 C法:取供试品粗粉0.5g,精密称定,置瓷坩埚中,于电热板上先低温灰化至无烟,移入高温炉中,于500℃灰化5~6小时(若个别灰化不完全,加硝酸适量,于电热板上先低温加热,反复多次直至灰化完全),取出冷却,加10%硝酸溶液5ml使溶解,转入25ml量瓶中,用水洗涤容器,洗液合并于量瓶中,并稀释至刻度,摇匀,即得。同法同时制备试剂空白溶液。 测定法 精密量取空白溶液与供试品溶液各1ml,精密加含1%磷酸二氢铵和0.2%硝酸镁的溶液0.5ml,摇匀,精密吸取10~20μl,照标准曲线的制备项下方法次顶吸光度,从标准曲线上读出供试品溶液中铅(Pb)的含量,计算,即得。 6.1.2镉的测定(石墨炉法) 测定条件 参考条件:波长228.8nm,干燥温度100~120℃,持续20秒;灰化温度300~500℃,持续20~25秒;原子化温度1500~1900℃,持续4~5秒。 镉标准储备液的制备 精密量取镉单元素标准溶液适量,用2%硝酸溶液稀释,制成每1ml含镉(Cd)μg的溶液,即得(0~5℃贮存)。 标准曲线的制备 分别精密量取镉标准储备液适量,用2%硝酸溶液稀释制成每1ml分别含镉0ng、0.8ng、2.0ng、4.0ng、6.0ng、8.0ng的溶液。分别精密吸取10μl,注入石墨炉原子化器,测定吸光度,以吸光度为纵坐标,浓度为横坐标,绘制标准曲线。 供试品溶液的配制 同铅测定项下供试品溶液的制备。 测定法

土壤中重金属砷、镉、铅、铬、汞有效态浸提剂的研究

土壤中重金属砷、镉、铅、铬、汞有效态浸提剂的研究 随着对土壤重金属元素研究的深入,以全量土壤重金属评价土壤污染在实际应用中已显露出不足之处,而以“有效态”作为评价污染的强度指标能更好地反映土壤实际污染状况及其对植物的危害,所以重金属有效态的研究愈加重要。本文在对砷、镉、铅、铬、汞五种元素的地球化学性质和有效态分析技术的收集整理的基础上,采用三种较为常用的浸提剂盐酸、DTPA、氯化钙对安徽铜陵矿山地区,安徽长江流域重金属污染区,安徽皖南丘陵山区土壤中重金属有效态及其土壤上生长的禾本科草类植物与茶叶两类植物中重金属的含量进行相关性分析。 研究了三种浸提剂对黄棕壤、黄壤两种土壤中重金属有效态的提取效果;两种植物中重金属的含量与盐酸浸提剂提取的黄棕壤中重金属含量的相关性;三种浸提剂对酸碱度不同的黄棕壤中重金属有效态的提取效果;盐酸浸提剂在不同提取条件下对黄棕壤中重金属有效态Hg的提取效果;三种浸提剂对土壤中重金属镉、铅、铬、砷、汞五种元素的提取效果比较。主要研究结果如下:1盐酸浸提剂适合酸性土壤中大多数重金属有效态元素的提取。 0.1mol/L盐酸浸提剂对酸性黄棕壤、黄壤中重金属有效态As、Hg、Cd、Pb 提取的量与其土壤上生长的禾本科草类植物中重金属含量均呈现显著相关性,特别是黄棕壤和黄壤中的重金属有效态Cd与黄棕壤中重金属有效态Pb与土壤上生长的禾本科草类植物中重金属含量的相关性达到极显著关系。2氯化钙浸提剂对酸性黄棕壤、黄壤中的重金属有效态Cr的提取的量与其土壤上生长的禾本科草类植物均呈现显著相关性,特别是对黄棕壤的重金属有效态Cr的提取效果达到极显著关系。 说明氯化钙浸提剂适合对土壤中重金属有效态Cr的提取。3浸提剂对土壤

铅汞镉砷对人体的危害及其预防

铅汞镉砷对人体的危害 及其预防 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

铅、汞、镉、砷对人体的危害及其预防微量重金属元素与人体生命过程有着密切关系,它们虽然在体内的含量非常微小,但生理功能独特。 一、砷 砷在自然界分布很广,动物肌体、植物中都可以含有微量的砷,海产品也含有微量的砷。由于含砷农药的广泛使用,砷对环境的污染问题愈发严重,如以砷化合物作为饲料添加剂,过量添加至牲蓄食用的饲料中,就易使牲蓄体内积砷,食用了这种牲蓄的肉制品后,就容易造成中毒。砷侵入人体后,除由尿液、消化道、唾液、乳腺中排泄外,就蓄积于骨质疏松部、肝、肾、脾、肌肉、头发、指甲等部位。砷作用于神经系统、刺激造血器官,长时期的少量侵入人体,对红血球生成有刺激影响,长期接触砷会引发细胞中毒和毛细管中毒,还有可能诱发恶性肿瘤。我国食品重金属残留限量国家标准规定砷含量最高(粮食)为0.7 毫克/千克,鲜乳为0.2毫克/千克。生活饮用水国家标准限量为0.01毫克/升。 二、铅 铅是对人体危害极大的一种重金属,它对神经系统、骨骼造血功能、消化系统、男性生殖系统等均有危害。特别是大脑处于神经系统敏感期的

儿童,对铅有特殊的敏感性。研究表明儿童的智力低下发病率随铅污染程度的加大而升高。儿童体内血铅每上升10微克/100毫升,儿童智力则下降6—8分。为此,美国把普遍认为对儿童产生中毒的血铅含量下限由0.25微克/毫升,下降到0.1微克/毫升。世界卫生组织对水中铅的控制线已降到0.01微克/毫升。我国食品重金属残留量限量国家标准规定铅含量最高(豆类)为0.8毫克/千克,鲜乳为0.05毫克/千克,生活饮用水国家标准限量为0.01毫克/升。 在日常生活中,人们需要在以下六个方面加强对铅中毒的预防。 1、来自生活环境中的土壤和尘埃,玩具和学习用具,家庭装修用劣质油漆和印刷油墨,用铅壶或含铅的锡壶烫酒、饮酒,滥用含铅的丹药或偏方等。 2、食物中的铅,某些饮料、劣质食品、中草药等。某些罐装食品,由于用铅焊接缝而导致食物含铅量增加;含铅量高的食品主要有用含铅量高的容器加工成的爆米化,加入氧化铅以加快其成熟的松花蛋,大街小巷叫卖的“白馒头”也有一部分是用含铅等杂质的硫磺熏蒸而成。 3、动植物体内的铅。植物性食品的铅含量土壤、化肥、农药及灌溉用水含铅量的影响。动物性食品受铅含量受饲料、牧草、空气和饮用水含铅量的影响。

通则2321 铅镉砷汞铜测定法 中华人民共和国药典2015年版四部

2321 铅、镉、砷、汞、铜测定法 一、原子吸收分光光度法 本法系采用原子吸收分光光度法测定中药中的铅、镉、砷、汞、铜,所用仪器应符合使用要求(通则0406)。除另有规定外,按下列方法测定。 1.铅的测定(石墨炉法) 测定条件参考条件:波长283. 3nm,干燥温度100~120 ℃,持续20秒;灰化温度400~750℃,持续20~25秒;原子化温度1700~2100℃,持续4~5秒。银标准贮备液的制备精密量取铅单元素标准溶液适量,用2%硝酸溶液稀释,制成每lml含铅(Pb)lug 的溶液,即得(0~5℃贮存)。 标准曲线的制备分别精密量取铅标准贮备液适量,用2%硝酸溶液制成每lml分别含铅0ng、5ng、20ng、40ng、60ng、80ng的溶液。分别精密量取lml,精密加含1%磷酸二氢铵和0.2%硝酸镁的溶液0 .5 ml,混匀,精密吸取20ul注人石墨炉原子化器,测定吸光度,以吸光度为纵坐标,浓度为横坐标,绘制标准曲线。 供试品溶液的制备A法取供试品粗粉0.5g,精密称定,置聚四氯乙烯消解罐内,加硝酸3~5ml,混匀,浸泡过夜,盖好内盖,旋紧外套,置适宜的微波消解炉内,进行消解(按仪器规定的消解程序操作)。消解完余后,取消解内罐置电热板上缓缓加热至红棕色蒸气挥尽,并继续缓缓浓缩至2~3ml,放冷,用水转入25ml量瓶中,并稀释至刻度,摇勻,即得。同法同时制备试剂空白溶液。 B法取供试品粗粉1g , 精密称定,置凯氏烧瓶中,加硝酸-高氣酸(4:1 )混合溶液5~10ml,混勻,瓶口加一小漏斗,浸泡过夜。置电热板上加热消解,保持微沸,若变棕黑色,再加硝酸-髙氣酸(4:1)混合溶液适量,持续加热至溶液澄明后升高温度,继续加热至冒浓烟,直至白烟散尽,消解液呈无色透明或略带黄色,放冷,转入50ml量瓶中,用2%硝酸溶液洗涤容器,洗液合并于量瓶中,并稀释至刻度,摇匀,即得。同法同时制备试剂空白溶液。 C法取供试品粗粉0 .5g,精密称定,置瓷坩埚中,于电热板上先低温炭化至无烟,移人高温炉中,于500℃灰化5~6小时(若个别灰化不完全,加硝酸适童,于电热板上低温加热,反复多次直至灰化完全),取出冷却,加10%硝酸溶液5ml使溶解,转人25ml量瓶中,用水洗涤容器,洗液合并于量瓶中,并稀释

食品安全地方标准食品中铅、镉、砷、汞、铬、镍、铜、锌的

食品安全地方标准食品中铅、镉、砷、汞、铬、镍、铜、锌的测定电感耦合等离子体质谱法(ICP-MS) 编制说明 一、标准起草的基本情况(包括简要的起草过程、主要起草单位、起草人等) 本项目由贵州省卫生计生委组织了食品安全地方标准评审委员会专家组进行评审并通过立项,由贵州省产品质量监督检验院负责研制,本项目批准文号为卫计办函[2015]94号。主要起草人为:张建、韩志平、田志强、李凯、卢垣宇、孙宗奇、邵飞龙、朱丽波、李丽、周筑萍、陈兴林、罗杨。 开展方法学的研究包括样品消解前处理方法的选择、测定元素内标的选择、干扰实验等,确立了方法性能检验指标,如检出限、线性范围、重复性及准确度等。组织3家省外实验室及一家省内实验室对线性范围、定量限、准确度、精密度进行方法的协同性验证。经过数据的汇总,形成制订该地方标准的征求意见稿及编制说明。 二、标准的重要内容及主要修改情况 食品样品采用微波消解、压力罐消解及湿式消解三种消解方式,样品经消解后,消解液用电感耦合等离子体质谱仪进行测定,标准曲线法定量,同时测定铅、砷、汞、镉、钡、铬、银、镍8种元素。方法快速、准确、具有较高的灵敏度。具体实验结果如下: 1 样品消化方式选择: 1.1消解方式:采用压力罐消解、微波消解、湿式消解三种消解方式,消解效果经统计学分析,无显著性差异。 1.2 消解体系:考察硝酸消解体系和硝酸+双氧水体系的消解效果,结果显示两种消解体系的消解效果统计学上无显著性差异。为减少消解空白,本方法选用硝酸消解体系。 1.3酸度影响:酸度在30%以内,影响在10%范围之内。 2 线性范围:铅、砷、镉、钡、银0~10μg/L,汞0~1μg /L,铬、镍0~100μg /L,实际测定中可根据样品中各元素含量不同调整最佳的线性范围,各相关系数R>0.999。 3 方法检出限及定量限:制备21份消化空白,上机测定计算检出限及定量限。检出限

相关文档
最新文档