有机酯水玻璃自硬砂在大型铸钢件造型_芯_车间应用的分析_孙先明

有机酯水玻璃自硬砂在大型铸钢件造型_芯_车间应用的分析_孙先明
有机酯水玻璃自硬砂在大型铸钢件造型_芯_车间应用的分析_孙先明

新型水玻璃自硬砂在铸钢生产中的应用

新型水玻璃自硬砂工艺在铸钢生产中的应用 一.前言 目前国内外冷凝自硬砂工艺主要分为二大类-无机类粘结剂以水玻璃砂工艺为主,有机类粘结剂以呋喃和碱性酚醛树脂砂工艺为主。以上二大类自硬砂工艺在二十世纪下半期至今在全世界铸造业应用并不断成熟完善。但此二种工艺在性能上各有特点,也存在问题。特别在铸钢、合金钢件的铸造时有明显工艺上的不足。CO2硬化水玻璃加入量高(一般为7%~8%),砂的残留强度高,溃散性差,旧砂再生回用困难。有机粘结剂树脂砂工艺的出现,在一定程度上解决了CO2水玻璃砂的固有缺陷,但碱性酚醛树脂成本高,呋喃树脂砂易出现铸件裂纹、气孔等缺陷。水玻璃“新三法”(VRH、微波烘硬、有机脂)的问世,使水玻璃的加入量降低了一半,溃散性大有改善,但新“三法”在工艺上存在着一定的缺陷,VRH法因设备投资大及铸件尺寸受真空室限制;微波烘硬法因铸型吸湿性强及电微波转化率低;回用砂率综合性能差等缺点,严重制约了水玻璃砂的发展。 随着水玻璃基础理论研究的不断进展,水玻璃砂溃散性差和旧砂再生困难等缺点并非水玻璃的固有特性。它来源于对水玻璃化学和胶体化学认识不足和使用不当(1)。目前国内以沈阳汇亚通铸造材料有限责任公司等单位在这方面的研究取得了领先。他对普通水玻璃进行一系列化学和物理改性及电离子架接,研制开发了新型水玻璃和专用酯类固化剂自硬砂工艺,为水玻璃砂的第三次中兴产生了质的飞跃。 二.新型水玻璃酯硬砂工艺的应用 我公司年产阀门承压铸钢件2000余吨,产品以单价小批量为主,壳体主要壁厚10~60mm,且薄件居多。材质牌号有普通碳素钢,耐热耐高温铬钼钢、铬钼钡钢及各种耐酸不锈钢。其中有30%是电站阀门铸件,有20%左右是出口阀门配套铸件。因此,对造型工艺及材料要求相当苛刻。我们于2000年下半年开始对原粘土砂工艺进行技术改造,要求采用新工艺、新材料,以低成本高质量满足当前生产及市场竞争的需要,在选择工艺方案阶段,我们对普通水玻璃自硬砂,呋喃树脂自硬砂及新型水玻璃自硬砂三种砂型工艺,分别在不同材质、不同品种的阀门铸钢件上进行了工艺试验,试验用原砂为福建平潭优质擦洗硅砂,粒度为40/70目,SiO2含量≥96%,含泥量和含水量分别≤0.5%,角形系数≤1.25%,试验及技术经济分析结果如表1所示。 表1三种自硬砂工艺技术经济对比 工艺 普通水玻璃自硬砂 呋喃树脂自硬砂 新型水玻璃自硬砂 硬透性好,硬化时间可调 工艺配比 4% 1.0%~1.2% 1.8%~ 2.5% 占粘结剂量12%~15% 占粘结剂量50%~60% 占粘结剂量15%~20% 材料单价(元/吨) 水玻璃-800 固化剂-1700 树脂-12600

自硬砂造型工艺研究.

自硬砂造型工艺研究 随着机械行业的发展,对外经济贸易的扩大,以及环境污染、能源紧张、材料涨价等问题的日益严重,对铸造生产和铸件质量提出了更高的要求,要能满足这些要求,特别是造型制芯工艺的选择上更应满足这些要求,先进造型制芯工艺应具备以下基本条件: ①生产的铸件质量好、尺寸精度高、铸造缺陷少; ②劳动条件好、环境污染少; ③生产成本低、生产效率高; ④最大限度地利用自然资源、节省能源。 传统的型砂工艺已经不能满足以上的条件,这就要求选用适合自己的先进型砂工艺。近几年来,主要使用的先进型砂工艺有:新型水玻璃自硬砂工艺、碱性酚醛树脂自硬砂工艺和呋喃树脂自硬砂工艺等自硬砂型砂工艺。下面以我们公司为例对型砂工艺进行简单阐述: 一.型砂工艺的选用 1.现用型砂工艺性能分析 1.1现用造型材料及造型方式 (1)面砂、芯砂——CO 硬化水玻璃砂、“70”砂、铬铁矿砂 2 (2)背砂——粘土砂 (3)手工造型 (4)烘干窑烘干小型砂型及坭芯,移动烘干大型砂型 (5)表面刷醇基涂料 1.2现造型材料的生产特点 (1)人工加砂,劳动强度大,生产效率低,砂型、坭芯的紧实度主要靠人工打风锤,硬化主; 要吹CO 2 (2)水玻璃加入量高(≥9%),造成成本高,型(芯)砂溃散性差,铸件清理难度大,效率低; (3)旧砂直接破碎再生,再生后只能作背砂,不能作面砂,回用率低,新砂耗量高,型砂成本高,废砂大量排放,严重污染环境; (4)铸件尺寸精度低,表面粗糙度差,铸件综合质量不高,后道工序工作量增大,工作效率就低; (5)型(芯)砂冬季硬透性差,CO 耗量大。 2 1.3铸件质量情况 铸件尺寸精度低,表面粗糙,多气孔、砂眼,产生裂纹多,导致后道工序修理大,成本高,效率低。 2、新型水玻璃自硬砂工艺性能分析 2.1原辅材料 (1)原砂:新工艺对原砂要求较高,尽可能选取泥份、微粉含量少,颗粒形貌好的原砂(2)改性水玻璃 (3)有机酯固化剂 2.2工艺优势及特点: (1)水玻璃加入量大大降低(2.5--3.5%); (2)型砂溃散性大大改善,铸件清砂容易; (3)旧砂可干法再生回用,回用率≥80%; (4)系列化水玻璃与固化剂配套使用,型砂综合工艺性能优良,冬季硬透性好,硬化速度可调(10-90 min),可实现大批量机械化生产;

四种自硬砂地选择

四种自硬砂的选择 随着我国机械工业产品质量的升级及出口铸件市场的不断扩大,在铸造车间技术改造中,有越来越多的企业首选自硬砂工艺替代原有粘土砂干型铸造工艺。在本企业技改中如何根据自身的产品特点选择合适的自硬砂工艺及相应设备是技改中普遍关心的核心问题。笔者结合近几年的实践就这一问题提出一点个人观点与同仁们共同探讨。 1.自硬砂工艺的选择 自硬砂工艺是指在常温下,型砂能自行硬化并获得浇注要求强度的造型工艺的统称。近几年得以较快发展的自硬砂主要有:呋喃树脂自硬砂、碱酚醛脂硬化自硬砂、脲脘树脂自硬砂(Pep—set自硬砂)、脂硬化改性水玻璃自硬砂。这些自硬砂各有优缺点,应根据各企业不同的生产及产品特点择优选用。1.1呋喃树脂自硬砂:这是应用最多、最广、工艺最成熟的自硬砂,而且相对铸件成本较低、旧砂利用率高、旧砂再生简单,是技术改造的首选自硬砂工艺。呋喃树脂砂在灰铁、球铁、铸钢、有色等铸造中都得到极其广泛地应用。但是由于呋喃树脂砂高温退让性差,树脂中含有较高的N,固化剂中含有S,因此一些壁厚不匀的铸钢件容易造成热裂,厚大铸钢件易造成N气孔,一些高牌号球铁件易造成球化衰退,一些低碳铸钢件还易造成增碳,在选用工艺及选用树脂种类时应引起足够重视。这种工艺一般用于单件小批量生产性质的铸铁生产中。 1.2碱酚醛脂硬化树脂自硬砂:其是为克服呋喃树脂自硬砂的一些缺点发展起来的,国外称α—set 工艺。由于其完全不含N,固化剂不含S,用于铸钢、合金钢铸件不会产生N气孔、针孔缺陷。由于碱酚醛树脂砂常温下只有部分树脂发生交联反应,在浇注金属受热时还有一个再硬化的过程,因此这种树脂砂的高温尺寸稳定性好,铸件尺寸精度高,因此在铸钢特别是合金钢件、大型铸钢件的生产上应用愈来愈广。但碱酚醛树脂砂常温强度较低,树脂加入量较大,铸件成本较高。碱酚醛树脂砂的硬化剂是有机脂,调节硬化时间只能用脂的品种而不能用加入量调节。另外酚醛树脂粘度较大,可存放期短,使用中需要注意。 1.3酚脲烷树脂自硬砂(Pep—set工艺):Pep—set工艺在近两年发展较快,其综合了呋喃树脂与碱酚醛树脂和特点,进一步提高了工艺适应性,其具有优越的硬化特性的同时也具有较好的高温退让性。硬化时间可以在0.5~15分钟内调整,生产效率高,有利用造型线批量生产。通过三种粘结剂组元比例的调整,可以保证足够长的可使用时间,一旦开始固化又能迅速达到浇注强度,具有较好的浇注性能及工作时间/起模时间比特性。由于高温退让性好,可以生产薄壁复杂件而不必担心铸件裂纹,既适应铸件、铸钢,也广泛用于有色合金铸件的生产,克服了呋喃树脂砂的性能缺陷,工艺适应性较强。同时对涂料要求较低,一般铸铁件不刷涂料而通过一些添加剂也能生产出表面光洁的铸件。对再生设备的要求及回收率与前两种工艺基本相同,而混砂设备需要增加一套液料系统且流量控制要求精确度较高。 Pep—set工艺一般用于薄壁复杂铸件(铸铁、铸钢、铸铝)的生产,也适宜于自动化造型线作业。对多材质、小批量生产性质也有一定适应性。 1.4脂硬化改性水玻璃砂工艺:这是为克服CO2水玻璃砂的两大难题(溃散性差、旧砂再生难)而开发的新一代水玻璃自硬砂。其基本原理是通过加入一定量的改性剂以提高水玻璃的粘结强度、降低型砂中水玻璃加入量,采用这种工艺能使水玻璃加入量降低到2.5~3.0%,溃散性接近树脂砂。该自硬砂继承了CO2水玻璃砂高温退让性好的优点,而且环保效果较好,因而在铸钢生产上得到应用。铁路提速而取消水爆清砂后,在铁路系统广泛用于摇枕、侧架铸件(薄壁复杂件)的生产。 该种工艺的粘结剂价格较之碱酚醛及Pep—set相对低一点,但一般机械再生的砂回收率只能达到80%左右,再生成本也相对较高,据一些用户反映其工艺稳定性相对差一点,可使用时间及强度随循环次数变化较大,再生砂做面砂使用时必须加入大量新砂。因此,该种工艺一般用于有特殊要求的铸钢件生产上,规模生产时应慎重选择。 2.关于自硬砂再生设备

水玻璃砂工艺

水玻璃砂工艺 3.2. 以水玻璃砂为粘结剂的型砂和芯砂 水玻璃砂在1947 年CO 2 吹气硬化法问世后就受到重视,水玻璃CO 2 吹气硬化法有气影法造型、制芯的各种优点。但传统的CO 2 吹气硬化型砂中水玻璃加入量过多,导致溃散性差、旧砂再生困难等问题。因机理研究的滞后,存在问题在相当长的时间内未解决,使其应用受到限制。 随着现代社会对环境的质量要求越来越高,水玻璃砂在环保方面的优势重新引起铸造工作者的重视,20 世纪70 年代随着水玻璃有机脂自硬法,真空置换硬化(VRH )法、微波烘干法等新工艺相继开发成功并应用于生产,型砂中水玻璃的加入量减少到CO 2 吹气硬化法的1/2 ~1/3 ,特别是近年来在水玻璃硬化机理方面深入研究所取得的发展,加上各种改性水玻璃和溃散剂的开发和应用,在解决水玻璃砂溃散性、旧砂再生和回用方面取得了突破性的进展。水玻璃砂成本低,高温退让性好,有利于环保的优势受到铸造工作者欢迎。因此水玻璃砂完全有可能成为21 世纪铸造生产的持续发展发挥重要作用。 3.2.1 CO 2 吹气硬化水玻璃砂 3.2.1 .1 CO 2 吹气硬化水玻璃砂的原理 水玻璃砂CO 2 硬化是气、液两相反应,其硬化原理见2.2.2 .2 节水玻璃的硬化。传统的CO 2 吹气硬化水玻璃砂强度低的主要原因是反应的不均匀性,大部分反应只发生在水玻璃膜的表层(图3 -17 )中的A-B 间),越往深层(图3 -17 中从A 向 E )反应越少。往往是表层过吹,而内层水玻璃反应不完全或完全未反应。CO 2 硬化水玻璃膜模数与相对厚度关系的例子如图 3 -18 所示。 水玻璃与CO 2 的化学反应可用下式表示: Na 2O · mSiO 2 · nH 2O+xCO 2 (1-x)Na 2O· mSiO 2· nH 2O+xNa 2CO 3(反应后水玻璃模数M=m/1-x) 或Na 2O · mSiO 2 · nH 2O+xCO 2 (1-2x)Na 2O· mSiO 2(n-1)H 2O+2xNaHCO 3(反应后水玻璃模数M=m/1-2x) 上面第二式为不良反应,x 值约为0.3~0.4 。反应后水玻璃的模数有所提高。同时因CO 2 露点为-30 ℃,是一种干燥剂,因此吹CO 2 有脱水作用。 传统的水玻璃CO 2 硬化法,水玻璃的粘结作用不能完善的发挥,配比中不得不多加水玻璃,导致型砂易烧结,溃散性差,旧砂再生困难。水玻璃加入量对砂型残留强度的影响如图3 -19 所示,残留强度越高,溃散性越差。如果希望改善CO 2 硬化砂工艺性能,就必须采取措施挖掘水玻璃的粘结潜力,降低水玻璃的加入量,如CO 2 的预热,间断,脉冲,稀释,定量和真空置换法或综合应用这些方法 图3 -19 水玻璃加入量对残留强度的影响 1 -水玻璃加入量是原砂重量的2.5 % 2 -水玻璃加入量是原砂重量的3.5 % 3 -水玻璃加入量是原砂重量的4.5 % 因此,采用该性水玻璃,结合科学的吹CO 2 工艺,就可以实现低水玻璃加入量,提高溃散性,达到再生方便降低成本提高效率的目的。 3.2.1 .2 CO 2 硬化砂的配比及混砂工艺 我国水玻璃CO 2 硬化砂工艺正处于变革过程中,传统的水玻璃加入量很高的落后工艺仍在许多工厂应用;另一方面,优质该性水玻璃和新的吹CO 2 工艺法也在一部分工厂成功的应用。 1 、传统工艺配比现将早年开发、现尚在一些企业应用的传统配比列于表3 -16 供参考,

水玻璃砂的吸湿特性及抗湿性研究_

1 绪论 1.1 课题来源、背景和意义 二十一世纪是绿色制造的世纪,节能减排、清洁生产已成为新世纪工业发展的必然趋势[1]。党的十六届四中全会提出“要适应我国社会的深刻变化,把和谐社会建设摆在重要位置”,并要求不断提高构建社会主义和谐社会的能力。人与自然的和谐是构建和谐社会的重要组成部分,“十一五”规划就明确提出:要坚定不移地走科学发展的道路,建设资源节约型、环境友好型社会,把经济社会发展切实转入到全面协调可持续发展道路上面来[2-3]。机械制造业是制造业的龙头,而铸造工业又是机械制造业中不可或缺的重要组成部分,所以,实现绿色铸造已经成为时代发展的潜在要求。在铸造工业生产中,砂型铸造占据了80~90%,要解决铸造工业中的绿色制造问题,主要任务就是实现砂型铸造的绿色制造[4]。 砂型铸造所用型砂有3大类:粘土型砂、树脂型砂、水玻璃型砂。粘土砂由石英砂、粘土、煤粉等构成,在浇注过程中,高温下煤粉燃烧和分解产生的有害气体导致较严重的空气污染。树脂砂通常由石英砂、树脂(呋喃树脂、酚醛树脂等)粘结剂、固化剂(对甲苯磺酸、磷酸等)组成,生产现场的空气中游离着许多有机废气(SO2、甲醛、苯、甲苯等),浇注后会产生大量的有害气体,对人体的健康非常有害。水玻璃砂由石英砂、无机水玻璃粘结剂等组成,采用 CO2气体或有机酯(如乙二醇二乙酸酯等)作固化剂,生产环境好,很少产生有害气体,生产中出现的粉尘也较少。特别是酯硬化的水玻璃砂工艺,既有型砂强度高、溃散性好等优势,又有劳动条件好、有害气体少等优点,还克服了CO2硬化普通水玻璃砂溃散性差、旧砂再生难、CO2排放增加温室效应等缺点。因此,国内外的铸造专家们普遍认为,与粘土砂产生的粉尘污染、黑色污染和树脂砂产生的化学污染相比,属无机粘结剂的水玻璃砂工艺是最有可能实现绿色清洁铸造生产的型砂工艺[5-6]。 水玻璃砂型铸造以其无色、无味、无毒,在混砂、造型、浇注和落砂过程中没有刺激性气体和有毒气体产生,对人体没有危害,以及铸造性能好等特点,在铸造

新型水玻璃自硬砂在铸造上的应用

新型水玻璃自硬砂在铸造上的应用 摘要:本文对目前国内铸钢件用造型制芯工艺及材料进行了具体的论述,对各种工艺的优缺点进行了分析,以为酯硬化水玻璃自硬砂工艺是铸钢件生产中最为合适的工艺,我单位在原酯硬化工艺的基础上,对水玻璃砂粘结剂体系进行活化改性架接,成功地研制出新型水玻璃自硬砂工艺及材料。通过对新工艺的工艺性能试验、经济技术分析,以及多个生产应用厂家的生产应用表明,新型水玻璃自硬砂工艺具有水玻璃加进量低(≤3%),型砂强度高,(抗拉0.5-1.4Mpa),型砂硬透性好,硬化速度可调,型砂溃散性好,旧砂易于干法再生回用,回用率≥80%,生产本钱低,无毒无污染,浇注出的铸伯无裂纹及气孔缺陷,铸件质量和尺寸精度可与呋喃树脂砂工艺相媲美。因此,该工艺是一种先进可靠的工艺,预计会在国内铸造行业推广应用,将会取得明显的经济及社会效益。 前言 造型制芯工艺在铸件生产过程中占有十分重要的地位,它直接影响铸件的质量,生产本钱,生产效率及环境污染。随着机械产业的发展,对外经济贸易的扩大,以及环境污染、能源紧张、材料涨价等题目的日益严重,对铸造生产和铸件质量提出了更高的要求,尤其是跨进二十一世纪的今天。 为了适应二十一世纪绿色、集约化铸造的需要,符合可持续发展战略,新一代造型制芯工艺必须满足下述几个方面的要求: 1.生产的铸件质量好,铸造缺陷少。 2.劳动条件好,对生态环境污染少。 3.最大限度地利用自然资源,节省能源。 4.生产本钱低,生产效率高。 我单位开发的新型水玻璃自硬砂工艺在这方面具有很大的上风,是符合可持续发展模式的绿色环保型造型制芯工艺。混砂机 目前国内铸钢件生产用造型制芯工艺及材料现状

有机酯自硬水璃砂工艺

有机酯自硬水玻璃砂工艺 湖北省机电研究设计院冯胜山 1 前言 造型制芯工艺在铸件生产过程中占有十分重要的地位,它直接影响铸件的质量,生产成本,生产效率及环境污染。随着机械工业的发展,对外经济贸易的扩大,以及环境污染、能源紧张、材料涨价等问题的日益严重,对铸造生产和铸件质量提出了更高的要求,尤其是跨入二十一世纪的今天。 为了适应二十一世纪绿色、集约化铸造的需要,符合可持续发展战略,新一代造型制芯工艺必须满足下述几个方面的要求: 1.生产的铸件质量好,铸造缺陷少。 2.劳动条件好,对生态环境污染少。 3.最大限度地利用自然资源,节省能源。 4.生产成本低,生产效率高。 新型酯硬化水玻璃自硬砂工艺在这方面具有很大的优势,是符合可持续发展模式的绿色环保型造型制芯工艺。 2 目前国内铸钢件生产用造型制芯工艺现状 目前,国内铸钢件用造型制芯工艺主要有两大类,无机类粘结剂系统以水玻璃砂工艺,有机类粘结剂系统以呋喃树脂砂工艺为主,两种工艺上前的使用现状主发展前景如下。2.1 CO2水玻璃砂工艺 水玻璃砂工艺具有设备简单,操作方便、无毒味、成本低廉等特点,从50年代开始广泛地用于国内铸钢件的生产,尤其是CO2水玻璃砂工艺。 CO2水玻璃砂工艺使用过程长期存在的主要问题:型砂强度低,冬季硬透性差,型(芯)溃散性差,铸件清理困难,旧砂废弃造成生态环境污染大等,这些问题严重制约了水玻璃砂工艺的应用及发展,为了最大限度地改善水玻璃砂工艺存在的问题,国内外铸造工作者付出了艰辛的努力,经过了几十年的开发研究,先后开发出许多新的材料和工艺,如水玻璃的物化改性或特殊添加材料制成的改性水玻璃或溃散剂,清理采用水爆(浴)清砂,七零砂(石灰石砂),这些方法在一定程度上满足了当时的生产急需,并且许多工艺沿用至今,但是未能在根本上解决问题,水玻璃加入量居高不下,溃散性的解决受到限制,旧砂再生还未解决,铸件质量较差。 2.2 呋喃树脂砂工艺 八十年代后期,随着对铸件质量要求的提高,树脂砂工艺在国内外得到了大面积推广及应用,尤其是呋喃树脂砂工艺,呋喃树工艺具有铸件质量好,尺寸精度高,型芯溃散好,旧砂回用方便,回用率高等特点,这些优点备受铸造工作者的青睐,但是,该工艺在使用过程中出现了许多新问题,铸件表面渗硫和型(芯)高温退让性差引起铸件出现裂纹,尤其是薄壁类铸钢件,加上生产成本高,环境污染严重,虽经广泛地开发研究,但是至今未能彻底解决这些问题,使得该工艺在铸钢件及球铁件的应用受到限制。 近几年,树脂工艺在铸造上生产过程中出现的铸年质量问题,加上生产成本、环境保护等方面的压力,使无机类的水玻璃砂系统再度成为人们关注的热点,水玻璃砂工艺只有解决了多年存在的老大难问题,解决了水玻璃加入量的问题,粘结强度的问题,型砂综合性能的问题旧砂回用的问题,才能更好地在铸件生产中推广应用。

水玻璃铸造工艺

水玻璃铸造工艺守则 文件编号:RMZZ/QG-JS-01 版本:A 修改状态:O 受控状态: 编制:吴光来日期:2004-3-1 蜡料制备 1.工艺要求: 1.1 蜡液温度:70-90℃,严禁超过90℃。 1.2 稀蜡温度:65-80℃。 1.3 蜡膏保温缸水温:48-50℃。 1.4 蜡膏应搅拌均匀呈糊状,温度控制在45-48℃,其中不允许有颗 粒状蜡料。 1.5 蜡料配方

1.5.1 正常生产采用3、4两种配方,配方5用于压制浇口棒。 1.5.2 在生产过程中必须根据蜡模质量分析结果,适量增加或减少硬 脂酸量,冬季的酸值取下限,夏季的酸值取上限。 2操作程序 2.1 启动设备,检查运转是否正常,是否漏水、漏气、漏蜡,有问题应 及时排除。检查保温缸水温是否符合工艺要求。 2.2 按蜡料配比把石蜡、硬脂酸和回收蜡分别称好,加入化蜡槽内,加 热至全熔状态,其温度不得超过90℃。 2.3 把蜡液送到蜡膏搅拌机盛蜡槽内。 2.4 将搅蜡缸内加入三分之二的蜡片,启动搅拌机进行搅蜡直至呈糊状 蜡料为止。 3注意事项 3.1 稀蜡需用100目筛过滤,去掉杂质后方能使用。 3.2 不允许有影响质量的空气和水分混入蜡膏中。 3.3 化蜡槽和盛蜡槽每月清理两次。

3.4 蜡膏保温缸、搅蜡缸属于压力容器,应定期检查有关紧固件及密封 机构的使用情况,发现问题应及时处理,正常工作压力严禁超过 0.50MPa。 4检查项目 每班必须测量蜡液温度和保温水温度3-4次,控制在工艺要求范围内并做好原始记录。 蜡模制造 1 工艺要求 1.1 室温:16-28℃(最高不超过30℃)。 1.2 蜡膏压注温度:45~48℃,压力:0.3~0.5 MPa,保压时间:3~ 10秒。 1.3 压蜡冷却水温,14~24℃,冷却时间:20~100秒。 1.4蜡模冷却水温,14~24℃,冷却时间:10~60min。 1.5蜡模清洗液温度,20~28℃,清洗液中加入0.01% JFC。 1.6 脱模剂:ZF201.

新型水玻璃自硬砂工艺在铸钢生产中的应用

新型水玻璃自硬砂工艺在铸钢生产中的应用 作者:浙江永嘉兰开铸造公司刘建强黄云天 .、八、- 一?刖言 目前国内外冷凝自硬砂工艺主要分为二大类:无机类粘结剂以水玻璃砂工艺为主,有机类粘结剂以呋喃和碱性酚醛树脂砂工艺为主。以上二大类自硬砂工艺在二十世纪下半期至今在全世界铸造业应用并不断成熟完善。但此二种工艺在性能上各有特点,也存在问题。特别在铸钢、合金钢件的铸造时有明显工艺上的不足。C02硬化水玻璃加入量高(一般为7%-8%),砂的残留强度高,溃散性差,旧砂再生回用困难。有机粘结剂树脂砂工艺的出现,在一定程度上解决了CO2水玻璃砂的固有缺陷,但碱性酚醛树脂成本高,呋喃树脂砂易出现铸件裂纹、气孔等缺陷。水玻璃“新三法” (VRH微波烘硬、有机脂)的问世,使水玻璃的加入量降低了一半,溃散性大有改善,但新“三法”在工艺上存在着一定的缺陷,VRH法因设备投资大及铸件尺寸受真空室限制;微波烘硬法因铸型吸湿性强及电微波转化率低;回用砂率综合性能差等缺点,严重制约了水玻璃砂的发展。 随着水玻璃基础理论研究的不断进展,水玻璃砂溃散性差和旧砂再生困难等缺点并非水玻璃的固有特性。它来源于对水玻璃化学和胶体化学认识不足和使用不当 (1)0目前国内以沈阳汇亚通铸造材料有限责任公司等单位在这方面的研究取得 了领先。他对普通水玻璃进行一系列化学和物理改性及电离子架接,研制开发了 新型水玻璃和专用酯类固化剂自硬砂工艺,为水玻璃砂的第三次中兴产生了质的飞跃。 二.新型水玻璃酯硬砂工艺的应用 我公司年产阀门承压铸钢件2000余吨,产品以单价小批量为主,壳体主要壁厚 10~60mm且薄件居多。材质牌号有普通碳素钢,耐热耐高温铬钼钢、铬钼钡钢及各种耐酸不锈钢。其中有30%是电站阀门铸件,有20%左右是出口阀门配套铸件。因此,对造型工艺及材料要求相当苛刻。我们于2000年下半年开始对原粘土砂工艺进行技术改造,要求采用新工艺、新材料,以低成本高质量满足当前生产及市场竞争的需要,在选择工艺方案阶段,我们对普通水玻璃自硬砂,呋喃树脂自硬砂及新型水玻璃自硬砂三种砂型工艺,分别在不同材质、不同品种的阀 门铸钢件上进行了工艺试验,试验用原砂为福建平潭优质擦洗硅砂,粒度为40 / 70 目, SiO2含量》96%,含泥量和含水量分别w 0.5 %,角形系数w 1.25 %,

水玻璃铸造工艺

水玻璃铸造工艺守则1 蜡料制备 1. 工艺要求: 1.1 蜡液温度:70-90℃,严禁超过90℃。 1.2 稀蜡温度:65-80℃。 1.3 蜡膏保温缸水温:48-50℃。 1.4 蜡膏应搅拌均匀呈糊状,温度控制在45-48℃,其中不允许有颗粒状蜡料。 1.5.1 正常生产采用3、4两种配方,配方5用于压制浇口棒。 1.5.2 在生产过程中必须根据蜡模质量分析结果,适量增加或减少硬脂酸量,冬季的酸值取下限,夏季的酸值取上限。 2 操作程序 2.1 启动设备,检查运转是否正常,是否漏水、漏气、漏蜡,有问题应及时排除。检查保温缸水温是否符合工艺要求。 2.2 按蜡料配比把石蜡、硬脂酸和回收蜡分别称好,加入化蜡槽内,加热至全熔状态,其温度不得超过90℃。 2.3 把蜡液送到蜡膏搅拌机盛蜡槽内。 2.4 将搅蜡缸内加入三分之二的蜡片,启动搅拌机进行搅蜡直至呈糊状蜡料为止。 3 注意事项 3.1 稀蜡需用100目筛过滤,去掉杂质后方能使用。 3.2 不允许有影响质量的空气和水分混入蜡膏中。 3.3 化蜡槽和盛蜡槽每月清理两次。 3.4 蜡膏保温缸、搅蜡缸属于压力容器,应定期检查有关紧固件及密封机构的使用情况,发现问题应及时处理,正常工作压力严禁超过0.50MPa。 4 检查项目 每班必须测量蜡液温度和保温水温度3-4次,控制在工艺要求范围内并做好原始记录。

蜡模制造 1 工艺要求 1.1 室温:16-28℃(最高不超过30℃)。 1.2 蜡膏压注温度:45~48℃,压力:0.3~0.5 MPa,保压时间:3~10秒。 1.3 压蜡冷却水温,14~24℃,冷却时间:20~100秒。 1.4蜡模冷却水温,14~24℃,冷却时间:10~60min。 1.5蜡模清洗液温度,20~28℃,清洗液中加入0.01% JFC。 1.6 脱模剂:ZF201. 1.7蜡模表面光洁度,形状完整,轮廓清洗,尺寸合格,不允许有缩陷,凸包裂纹等缺陷。 2 操作程序 2.1 手工制模 2.1.1检查压型的分型面、型腔、脱模机构、定位销、紧固件应完整清洁。涂擦分型剂,装配并紧固压型。 2.1.2注蜡:把蜡抢嘴对准压型的注蜡孔,旋开阀门使蜡膏注入型腔并保压3~10s,关闭阀门,移走蜡枪。 2.1.3冷却:把注满蜡膏的压型濅入水内或放在工作台上冷却,冷却时间视蜡模形状与质量要求具体掌握,一般冷却20~100s。 2.1.4取模:拆开冷却过的压型,取出蜡模并及时放入水中继续冷却。有特殊要求的蜡模应放在专用夹辅具上冷却。 2.1.5清型:用压缩空气吹除型腔、型芯上的水和蜡渣,视取模状况涂擦脱模剂。 2.1.6合型:装配清理干净的压型,按 3.1.2~3.1.5的程序再次制模。 2.1.7交班:工作完毕应把压型清理干净,打扫工作环境后交班,若不在生产时,压型应及时交还压型库保管。 2.2 机械制模 2.2.1检查压蜡机的润滑,电器、气动系统是否正常,调整限位,顶模机构,调节循环水系统和蜡膏输送系统。根据不同产品的压型注蜡孔,调整固定压蜡抢嘴的位置。 2.2.2用压缩空气吹除压型型腔内的水和蜡渣,吹刷分形剂,启动压蜡机。 2.2.3压蜡机按自控程序完成:取出蜡模,按要求放置冷却。 2.2.4按 3.2.2~3.2.4的程序连续制模。 2.2.5工作完毕应用压缩空气清除压蜡和压型上的水和蜡渣,水槽中的蜡渣和注蜡道必须清理干净,打扫工作环境后交班,并作好交接班记录。 2.3蜡模修整 2.3.1用修模刀除去分型面上的披缝和其他不应有的凸起(包括注蜡残余),用稀蜡填补缺陷并修饰光滑。 2.3.2修整合格的蜡模在清洗槽中用清洗液进行清洗,清除分型剂,用压缩空气吹除蜡模表面上的蜡屑和水分。 2.3.3清洗干净的蜡模按品种整齐摆放在规定的器具中交检查员进行验收。 3 注意事项 3.1压型应定期用煤油清洗,进行必要的保养。 3.2蜡模在运输、贮存中应轻拿轻放,不得整盘倾倒,防止变形和碰伤。 3.3蜡模贮存、时间不得超过15天,超时间的蜡模应重新检查。

水玻璃工艺二

水玻璃砂工艺二 3.2.2 水玻璃自硬砂 水玻璃砂在混砂时加入硬化剂,在室温下能够自硬;砂型(芯)在硬化后起模,称之为自硬砂。早期的水玻璃自硬砂的硬化剂多以粉状材料为主,如β硅酸二钙(赤泥、炉渣或合成β 硅酸二钙)、硅铁粉、氟硅酸钠等。使用这些粉状材料,使水玻璃加入量居高不下,导致型 砂溃散性变差。 有机酯水玻璃自硬砂以液体材料为硬化剂,相对于粉状硬化剂,水玻璃加入量降低了1/2~ 1/3,比强度提高一倍以上,1000℃残留强度降低了90%左右。表3-25是有机酯水玻璃 自硬砂与固体硬化剂自硬砂配比及性能对比。图3-26是混合料的配比(质量比)为原砂(福建水洗海砂)100,有机酯0.28,水玻璃 2.8时的有机酯硬化水玻璃砂在不同温度下的 残留强度值 图3-26 有机酯水玻璃砂不同温度下的残留强度 表3-25有机酯水玻璃自硬砂与固体硬化剂水玻璃自硬砂配比及性能对比 序号配比(质量比)性能 原砂水玻璃硬化剂其他终强度/MPa 1000 ℃残留 强度(抗压强 度)/MPa 1 100 7 赤泥4~5 ->0.9 - 2 100 6 ~7 电炉渣5~7 水1~2 0.4 ~0.7 - 3 100 5 ~6 硅铁粉1~2 ω(NaOH)= -- 10%溶液 0.5~1.0 4 100 2. 5 ~2.8 有机酯0.22~ -≈ 2 ≈ 0.2 0.34 3.2.2.1 有机酯水玻璃自硬砂的硬化机理 有机酯水玻璃自硬砂的硬化可分为如下三个阶段; 第一阶段,有机酯在碱性水溶液中发生水解,生成有机酸或醇。这个阶段时间的长短取决于 有机酯与水玻璃的互溶性和水解速度,它决定了型砂的可使用时间的长短。化学反应通式如下: RCOOR ˊ +xH 2O OH- RCOOH+Rˊ OH 第二阶段,有机酯和水玻璃反应,使水玻璃模数升高,且整个反应过程为失水反应,当反应 时水玻璃的粘度超过临界值,型砂便失去流动性而固化。化学反应通式如下: Na 2O ·mSiO 2·nH 2O+xRCOOH (1-x/2)Na 2O·mSiO 2·(n+x/2)H 2O+xRCOONa 以上两步总的反应式为: xRCOOH ˊ + Na 2O· mSiO 2· nH 2O+xH 2O (1-x/2)Na 2O· mSiO 2· (n+x/2)H 2O+xRˊ OH+xRCOONa 第三阶段,水玻璃进一步失水强化。

水玻璃法精密铸造工艺规程

水玻璃氯化铵法精密铸造工艺规程 1.目的为了便于操作者熟悉和掌握水玻璃法精密铸造的工艺特点、技术特 性,更好的在生产中加以应用,生产出优质的产品,特制定本规程。 2.适用范围本工艺规程适用于从蜡模配制到模壳浇注的全过程。 3.职责 3.1 技术部是本规程的制定和归口部门。 3.2 各工序工作人员均应按此规程进行操作。 4.工艺规程 4.1 制作蜡模 4.1.1 压制蜡模的模具应符合产品的图纸要求,经检验合格后使用。 4.1.2 蜡料应按石蜡:硬脂酸1:1进行配料,融化后加蜡屑机械搅拌成 糊状,加入压蜡机内往模具中注蜡。 4.1.3 蜡型要在模具中保压冷却才可取模,并及时对变形蜡模进行校 正,放入冷水冷却,待完全冷却后方可进行取出毛刺、修整等工 作。 4.1.4 修整好的蜡模经检验合格后,清洗表面油脂,方可与浇冒口组焊。 4.1.5 组焊好的模组,需将内外面的蜡屑清除干净后送涂挂制壳。 4.2 制壳 4.2.1 选料面层料浆用320目锆英粉,加固层料浆用200目以上的 高铝粉或焦宝石粉和石英粉,粘结剂用模数3.1~3.4,密度为 1.30~1.40的40#水玻璃。 4.2.2 选砂面层用80~100目的棕刚玉,二层用40~70目的石英砂, 三层用20~40目的石英砂,四层以后选用10~20目的石英砂。 4.2.3 料浆的配制面层与二层:将水玻璃加水稀释到密度为 1.28~1.30,然后加锆英粉,其比例为1:1.1~1.2(要注意根据 气温变化调节比例),进行机械搅拌,再加入清洗剂0.05%,消 泡剂0.05%,继续搅拌,时间不少于6小时,静置4小时熟化, 再搅拌均匀方可使用。三层过渡层用密度为1.30~1.32的水玻 璃加高铝粉和石英粉,比例为1:0.5:0.5。加固层同三层,比例略 为调厚一点。 4.2.4 料浆的粘度测定用100Ml的流量杯来测定,面层、二层及三层 为28~35秒,加固层为45~50秒。 4.2.5 挂浆将检验合格后的模组浸入搅拌均匀的料浆中,上下移动两 次,然后提出,用毛刷将字和死角处的气泡刺破并刷浆,把多余

水玻璃在铸造生产中的应用

水玻璃在铸造生产中的应用 1、概述 (1)水玻璃别名泡花碱,是硅酸钠、硅酸钾、硅酸锂和硅酸季铵盐在水中以离子、分子和硅酸胶粒并存的分散体系。 (2)纯净的水玻璃外观为无色透明的粘稠液体,当含有铁、锰、铝、钙的氧化物时,则带有黄、绿、青灰和乳白等各种颜色。 (3)一般的水玻璃指钠水玻璃,铸造中使用的水玻璃的模数通常为2<M<4。(4)水玻璃砂加热到800℃以上时具有良好的退让性,能减少铸件的热裂缺陷,但加入量偏高时,浇注后型砂的残留强度高,溃散性差。 2、特点 (1)硬化和强化:水玻璃的粘度超过浓度-模数相结合的临界值时便开始趋向硬化,硬化的水玻璃依赖进一步失水而增强,称为强化阶段。人们采取加热烘 气体硬化法、硅铁粉自硬砂等方法促使水玻璃硬化。 干、微波烘干、CO 2 (2)水玻璃粘结剂的硬化采取强脱水、少反应的原则,来增加粘结强度。(3)模数的调整:降低水玻璃的模数时,加入NaOH水溶液(质量分数为 Cl水溶液(质量分数为10%)或无定10%-20%);升高水玻璃模数时,加入NH 4 。也可按比例将高、低模数的水玻璃混合获得一种中间模数的水玻璃。型SiO 2 (4)浓度的调整:加热脱水或增水即可。铸造行业中习惯用密度来反映水玻璃的浓度,常用波美度°Be’来表示。 (5)老化与物理改性:老化指水玻璃存放过程中,其粘度和粘结强度显著下降,凝聚胶化速度加快,其实是内部能量缓慢释放的过程。通过磁场处理、超声振荡、回流加热、热压釜加热等物理改性消除水玻璃的老化情况。 (6)水玻璃砂溃散剂:多糖类、树脂类、油类、纤维素类、碳质类、无机物类、矿石类等。 )、固体(硅铁粉等)、液体(丙烯酸碳酸酯)。(7)水玻璃硬化剂:气体(如CO 2 我国供应嘴普通的MDT系列有机酯为MDT-901(慢酯)、MDT-903(快酯)、MDT-800(极慢)、MDT-Q(极快)。 3、以水玻璃为粘结剂的型砂和芯砂 吹气硬化水玻璃砂:根据不同的配比可适用于铸钢件型(芯)砂、铸(1)CO 2

水玻璃砂铸造应注意的N个问题特别是铸铁

水玻璃砂铸造应注意的N个问题特别是铸铁 国内外几十年来对树脂砂铸造工艺的应用实践表明:树脂砂虽然具有铸件尺寸精度高, 表面光洁,造型效率高,可以制造形状复杂和内部质量要求严格的铸件,旧砂回收再生容易等优点;但是,树脂砂的生产成本高,环境污染严重,在人们对于自身生存条件和环境的要求日趋严格的条件下,由于车间劳动保护和生产环境卫生方面的投资很大,树脂砂的应用受到一定限制。而水玻璃无色、无臭、无毒,在混砂造型、硬化和浇铸过程中都没有刺激性或有毒气体溢出。故近年来许多国家对水玻璃砂重新重视起来。 水玻璃砂的硬化方法可分为热硬法、气硬法和自硬法三大类,包括很多种方法。但目前 常用的硬化方法主要有以下两种: 1、普通CO2气硬法 此法是水玻璃粘结剂领域里应用最早的一种快速成型工艺,由于设备简单,操作方便, 使用灵活,成本低廉,在国内外大多数的铸钢件生产中得到了广泛的应用。 CO2气体硬化水玻璃砂的主要优点是:硬化速度快,强度高;硬化后起模,铸件精度高。 普通CO2气体硬化水玻璃砂的缺点是:型(芯)砂强度低,水玻璃加入量(质量分数)往往高达7~8%或者更多;含水量大,易吸潮;冬季硬透性差;溃散性差,旧砂再生困难,大量旧砂被废弃,造成环境的碱性污染。 2、有机酯自硬法 此法是采用液体的有机酯代替CO2气体作水玻璃的硬化剂。 这种硬化工艺的优点是:型(芯)砂具有较高的强度,水玻璃加入量可降至3.5%以下;冬季硬透性好,硬化速度可依生产及环境条件通过改变粘结剂和固化剂种类而调整(5~150min);型(芯)砂溃散性好,铸件出砂清理容易,旧砂易干法再生,回用率≥80%,减少水玻璃碱性废弃砂对生态环境的污染,节约废弃砂的运输、占地等费用,节约优质硅砂资源;型砂热塑性好,发气量低,可以克服呋喃树脂砂生产铸钢件时易出现的裂纹、气孔等缺陷;可以克服CO2水玻璃砂存在的砂型表面稳定性差、容易过吹等工艺问题,铸件质量和尺寸精度可与树脂砂相媲美;在所有自硬砂工艺中生产成本最低,劳动条件好。

水玻璃固化砂工艺

水玻璃固化砂工艺 树脂固化砂的应用实践表明,呋喃的价格较高,环境污染较大,在未来21世纪人们对于自身生存条件和环境的要求日趋严格的条件下,由于车间劳动保护和生产环境卫生方面的投资很大,从而使树脂砂的应用受到一定限制,许多国家又对水玻璃固化砂极为重视。最近十多年来,人们对于水玻璃的基本组成和“老化”现象实质的认识深化和新型硬化工艺的开发等两方面均取得了突破性进展,在型芯砂保持足够的工艺强度的条件下,水玻璃加入量(质量分数)可降至2.5%.~3.5%.,从而使水玻璃砂长期存在的溃散性差、旧砂不能回用的问题得到了较好的解决。水玻璃砂的硬化方法可分为:CO2气硬法和自硬法两种,热硬法已很少采用。 1.CO2气硬法 此法是水玻璃粘结剂领域里应用最早的一种快速成型工艺,由于操作方便、使用灵活、无毒无味、在国内外大多数的铸钢件生产中,得到了广泛的应用。 (1)硬化原理和特点水玻璃的出现已有三百多年历史,由于它的成分十分复杂、多变,它的基本组成一直没有搞清楚,对水玻璃的研究主要停留在宏观的层次上。近年来,多种先进测试手段的开发,可深入到分子范畴进行分析和研究,并发现,新制备的水玻璃是一种真溶液;但是在存放过程中,水玻璃中硅酸要进行缩聚,将从真溶液逐步缩聚成大分子的硅酸溶液,最后成为硅酸胶粒。因此,水玻璃实际上是一种由不同聚合度的聚硅酸组成的非均相混合物,易受其模数、浓度、温度、电解质含量和存放时间长短的影响。 水玻璃砂吹人CO2气体硬化时,水玻璃的表层因吸收COz而其模数升高和脱水,在酸化和脱水两重作用下,迅速硬化而形成初强度。已固化的表层水玻璃阻碍了CO2往深层渗透,内层水玻璃只能靠脱水而继续增加强度。此法缺点是:型芯砂强度低,含水量大,易吸潮,溃散性差,目前大多用于中、小型铸钢件生产。 (2)水玻璃的改性水玻璃在存放过程中分子产生缩聚,形成胶粒,可使其粘结强度下降20%~30%.,这一现象称为水玻璃老化。为了消除老化,必须对水玻璃进行改性,目前改性的方法有物理改性和化学改性两种。物理改性是用磁场、超声波、高频或加热等办法,往水玻璃中供给能量,使已聚合的胶粒解聚,聚硅酸分子重新均匀化。这种改性对高模数水玻璃有效,但是存在重新老化的问题。

水玻璃简介

硅酸钠俗称泡花碱,是一种水溶性硅酸盐,其水溶液俗称水玻璃,是一种矿黏合剂。其化学式为R2O·nSiO2,式中R2O为碱金属氧化物,n为二氧化硅与碱金属氧化物摩尔数的比值,称为水玻璃的摩数。建筑上常用的水玻璃是硅酸钠(Na2O·nSiO2)的水溶液。 水玻璃 分子式Na2O·mSiO2 石英砂和碱的配合比例即SiO2和Na2O的摩尔比决定着硅酸钠的模数M,模数即显示硅酸钠的组成,又影响硅酸钠的物理、化学性质,因此不同模数的硅酸钠有着不同的用处。广泛应用于普通铸造、精密铸造、造纸、陶瓷、粘土、选矿、高岭土、洗涤等众多领域。 技术指标 硅酸钠水溶液的技术指标 指标名称技术指标 二氧化硅(%)≥24.6 ;≥26.0 ;≥29.2 ;≥25.7 氧化钠(%)≥7.0 ;≥8.2 ;≥12.8;≥10.2 水不溶物(%)≤0.20 ;≤0.38 ;≤0.36 ;≤0.38 铁(%)≤0.02 ;≤0.09; ≤0.08 ;≤0.09 水余量 波美度35.0-37.;0. 39.-0.41;0 .50-.0.52.;0. 44-0.46 模数3.5-3.7; 3.1-3.4 ;2.2-2.5 ;2.6-2.9 固体硅酸钠的技术指标

指标名称技术指标 模数(M)3.5-3.7 ;3.1~3.4 ;2.6~2.9 ;2.2~2.5 可溶固体(%)≥99; ≥99 ;≥99 ;≥99 铁(%) 0.12 ;0.12 ;0.12; 0.10 用途 水玻璃的用途非常广泛,几乎遍及国民经济的各个部门。在化工系统被用来制造硅胶、白炭黑、沸石分子筛、五水偏硅酸钠、硅溶胶、层硅及速溶粉状硅酸钠、硅酸钾钠等各种硅酸盐类产品,是硅化合物的基本原料。在经济发达国家,以硅酸钠为原料的深加工系列产品已发展到50余种,有些已应用于高、精、尖科技领域;在轻工业中是洗衣粉、肥皂等洗涤剂中不可缺少的原料,也是水质软化剂、助沉剂;在纺织工业中用于助染、漂白和浆纱;在机械行业中广泛用于铸造、砂轮制造和金属防腐剂等;在建筑行业中用于制造快干水泥、耐酸水泥防水油、土壤固化剂、耐火材料等;在农业方面可制造硅素肥料;另外用作石油催化裂化的硅铝催化剂、肥皂的填料、瓦楞纸的胶粘剂、金属防腐剂、水软化剂、洗涤剂助剂、耐火材料和陶瓷原料、纺织品的漂、染和浆料、矿山选矿、防水、堵漏、木材防火、食品防腐以及制胶粘剂等……。分述如下: 1、涂刷材料表面,提高抗风化能力 水玻璃溶液涂刷或浸渍材料后,能渗入缝隙和孔隙中,固化的硅凝胶能堵塞毛细孔通道,提高材料的密度和强度,从而提高材料的抗风化能力。但水玻璃不得用来涂刷或浸渍石膏制品。因为水玻璃与石

【精品】水玻璃有机脂自硬砂的研究

水玻璃有机脂自硬砂的研究 一、前言: 在单件小批量的铸件生产中,我国应用自硬型砂工艺来改善手工造型工人的劳动条件,提高劳动效率,改善铸件质量,取得了积极的成果,我国从七十年代初期开始,便对水玻璃自硬砂着手研究开发。根据我国长期来在铸钢生产中应用这种自硬砂的体会,认为水玻璃有机脂没有呋喃树脂砂所存在的那么严重的环保,价格,气孔缺陷,铸钢增碳等问题,而且适应性强。 二、影响硬化反应的因素: 水玻璃有机脂自硬砂是以石英砂(或其它特种砂)为原砂,水玻璃为粘结剂,易水解的液状有机脂为硬化剂的自硬性型砂。影响水玻璃有机脂硬化反应的因素很多,其中主要有三个因素,有机脂的种类、水玻璃模数、环境温度。 1、脂的种类的影响 有机脂的种类很多,它们的化学性又大不相同,与水玻璃之间硬化反应的速度相差悬殊,据有关资料介绍可以快到几分钟,慢到几小时,这样就可以根据生产需要,选用不同速度的硬化剂搭配。 为了解决冬季MDT-901硬化反应过慢的问题,在MDT-901中加入适量的1#调节脂,硬化反应速度显著加快,表1是采用2。6模数水玻璃的对比试验数据。 2、水玻璃模数的影响 试验证明水玻璃模数越高,硬化反映速度越快。表2是不同模数的水玻璃硬化反应的数据。

混合脂和MDT—901硬化反映速度对比(其它条件相同) 表1 3、环境温度的影响 系统温度是大多数化学反应的条件之一,造型是在敞开的条件下操作,所以环境温度——气温对硬化反应速度的影响很大,为适应生产需要,低温季节必须使用硬化调节脂(见表1)表3数据说明温度对硬化反应的影响。 表2:不同模数的水玻璃硬化反应速度对比

表3:不同季节相同配方的型砂硬化反应速度对比 三、原材料及配方工艺 原材料及配方工艺 (一)原材料 1、原砂 水玻璃有机脂自硬砂对原砂的要求不象树脂砂那样苛刻,当然粒形比较好、灰、粉少,粒度分布好的原砂,水玻璃加入量可经减少,我们原则上规定,作为面砂的石英砂,其成分级别在2S以上粒度为5#(40/70或45/75目),水分含量<1,过去在生产中应用江、浙一带的人工石英砂、粒形和灰、粉含量均不够理想,因而水玻璃加入量较多,一般为原砂量的1。5%左右,采用粒形好,粉尘少的海砂,水玻璃加入量为原砂的。3%。 2、水玻璃 前面已经说明,水玻璃的模数明显影响型砂的硬化反应速度,同时对型砂强度和溃散性也有较大影响,在生产中所使用的水玻璃,其模数为2。4左右,浓度为48-52Be。 3、有机脂 脂的种类很多,而它们的化学活性又不相同,用它们作为水玻璃型砂的硬化剂,可以在很大的范围内调节反应速度,目前根据国内资源和价格情况,应用MDT—901和1#调节脂,对其质量要求如下: (1) MDT-901:脂含量>96%,游离酸含量<0。5%.

相关文档
最新文档