继电器工作原理及作用

继电器工作原理及作用

控制继电器

控制继电器用于电路的逻辑控制,继电器具有逻辑记忆功能,能组成复杂的逻辑控制电路,继电器用于将某种电量(如电压、电流)或非电量(如温度、压力、转速、时间等)的变化量转换为开关量,以实现对电路的自动控制功能。

继电器的种类很多,按输入量可分为电压继电器、电流继电器、时间继电器、速度继电器、压力继电器等;按工作原理可分为电磁式继电器、感应式继电器、电动式继电器、电子式继电器等;按用途可分为控制继电器、保护继电器等;按输入量变化形式可分为有无继电器和量度继电器。

有无继电器是根据输入量的有或无来动作的,无输入量时继电器不动作,有输入量时继电器动作,如中间继电器、通用继电器、时间继电器等。

量度继电器是根据输入量的变化来动作的,工作时其输入量是一直存在的,只有当输入量达到一定值时继电器才动作,如电流继电器、电压继电器、热继电器、速度继电器、压力继电器、液位继电器等。

电磁式继电器

在控制电路中用的继电器大多数是电磁式继电器。电磁式继电器具有结构简单、价格低廉、使用维护方便、触点容量小(一般在5A以下)、触点数量多且无主、辅之分、无灭弧装置、体积小、动作迅速、准确、控制灵敏、可靠等特点,广泛地应用于低压控制系统中。常用的电磁式继电器有电流继电器、电压继电器、中间继电器以及各种小型通用继电器等。

电磁式继电器的结构和工作原理与接触器相似,主要由电磁机构和触点组成。电磁式继电器也有直流和交流两种。图1-11为直流电磁式继电器结构示意图,在线圈两端加上电压或通入电流,产生电磁力,当电磁力大于弹簧反力时,吸动衔铁使常开常闭接点动作;当线圈的电压或电流下降或消失时衔铁释放,接点复位。

1、电磁式继电器的整定

继电器的吸动值和释放值可以根据保护要求在一定范围内调整,现以图1-11所示的直流电磁式继电器为例予以说明。

(1)转动调节螺母,调整反力弹簧的松紧程度可以调整动作电流(电压)。弹簧反力越大动作电流(电压)就越大,反之就越小。

(2)改变非磁性垫片的厚度。非磁性垫片越厚,衔铁吸合后磁路的气隙和磁阻就越大,释放电流(电压)也就越大,反之越小,而吸引值不变。

(3)调节螺丝,可以改变初始气隙的大小。在反作用弹簧力和非磁性垫片厚度一

定时,初始气隙越大,吸引电流(电压)就越大,反之就越小,而释放值不变。

2、电磁式继电器的特性

继电器的主要特性是输入-输出特性,又称为继电特性,如图 1-11(b)所示。

当继电器输入量X由0增加至X2之前,输出量Y为0。当输入量增加到X2时,继电器吸合,输出量Y为1,表示继电器线圈得电,常开接点闭合,常闭接点断开。当输入量继续增大时,继电器动作状态不变。

当输出量Y为1的状态下,输入量X减小,当小于X2时Y值仍不变,当X再继续减小至小于X1时,继电器释放,输出量Y变为0,X再减小,Y值仍为0。

在继电特性曲线中,X2称为继电器吸合值,X1称为继电器释放值。k =X1/X2,称为继电器的返回系数,它是继电器的重要参数之一。

返回系数k值可以调节,不同场合对k值的要求不同。例如一般控制继电器要求k值低些,在0.1~0.4之间,这样继电器吸合后,输入量波动较大时不致引起误动作。保护继电器要求k值高些,一般在0.85~0.9之间。k值是反映吸力特性与反力特性配合紧密程度的一个参数,一般k值越大,继电器灵敏度越高,k值越小,灵敏度越低。

中间继电器

中间继电器是最常用的继电器之一,它的结构和接触器基本相同,如图1-12(a)所示,其图形符号如图1-12(b)所示。

中间继电器在控制电路中起逻辑变换和状态记忆的功能,以及用于扩展接点的容量和数量。另外,在控制电路中还可以调节各继电器、开关之间的动作时间,防止电路误动作的作用。中间继电器实质上是一种电压继电器,它是根据输入电压的有或无而动作的,一般触点对数多,触点容量额定电流为5A~10A左右。中间继电器体积小,动作灵敏度高,一般不用于直接控制电路的负荷,但当电路的负荷电流在5A~10A以下时,也可代替接触器起控制负荷的作用。中间继电器的工作原理和接触器一样,触点较多,一般为四常开和四常闭触点。

常用的中间继电器型号有JZ7、JZ14等。

图1-12 中间继电器的结构示意图及图形符号

电流继电器和电压继电器

1、电流继电器

电流继电器的输入量是电流,它是根据输入电流大小而动作的继电器。电流继电器的线圈串入电路中,以反映电路电流的变化,其线圈匝数少、导线粗、阻抗小。电流继电器可分为欠电流继电器和过电流继电器。

欠电流继电器用于欠电流保护或控制,如直流电动机励磁绕组的弱磁保护、电磁吸盘中的欠电流保护、绕线式异步电动机起动时电阻的切换控制等。欠电流继电器的动作电流整定范围为线圈额定电流的30%~65%。需要注意的是欠电流继电器在电路正常工作时,电流正常不欠电流时,欠电流继电器处于吸合动作状态,常开接点处于闭合状态,常闭接点处于断开状态;当电路出现不正常现象或故障现象导致电流下降或消失时,继电器中流过的电流小于释放电流而动作,所以欠电流继电器的动作电流为释放电流而不是吸合电流。

过电流继电器用于过电流保护或控制,如起重机电路中的过电流保护。过电流继电器在电路正常工作时流过正常工作电流,正常工作电流小于继电器所整定的动作电流,继电器不动作,当电流超过动作电流整定值时才动作。过电流继电器动作时其常开接点闭合,常闭接点断开。过电流继电器整定范围为(110%~400%)额定电流,其中交流过电流继电器为(110%~400%)I N,直流过电流继电器为(70%~300%)I N。

常用的电流继电器的型号有JL12、JL15等。

电流继电器作为保护电器时,其图形符号如图1-13所示。

2、电压继电器

电压继电器的输入量是电路的电压大小,其根据输入电压大小而动作。与电流继电器类似,电压继电器也分为欠电压继电器和过电压继电器两种。过电压继电器动作电压范围为(105%~120%)U N;欠电压继电器吸合电压动作范围为(20%~50%)U N,释放电压调整范围为(7%~20%)U N;零电压继电器当电压降低至(5%~25%)U N时动作,它们分别起过压、欠压、零压保护。电压继电器工作时并联在电路中,因此线圈匝数多、导线细、阻抗大,反映电路中电压的变化,用于电路的电压保护。

电压继电器常用在电力系统继电保护中,在低压控制电路中使用较少。

时间继电器在控制电路中用于时间的控制。其种类很多,按其动作原理可分为电磁式、空气阻尼式、电动式和电子式等;按延时方式可分为通电延时型和断电延时型。下面以JS7型空气阻尼式时间继电器为例说明其工作原理。

空气阻尼式时间继电器是利用空气阻尼原理获得延时的,它由电磁机构、延时机构和触头系统3部分组成。电磁机构为直动式双E型铁心,触头系统借用LX5型微动开关,延时机构采用气囊式阻尼器。

空气阻尼式时间继电器可以做成通电延时型,也可改成断电延时型,电磁机构可以是直流的,也可以是交流的,如图1-15所示。

现以通电延时型时间继电器为例介绍其工作原理。

图1-15(a)中通电延时型时间继电器为线圈不得电时的情况,当线圈通电后,动铁心吸合,带动L型传动杆向右运动,使瞬动接点受压,其接点瞬时动作。活塞杆在塔形弹簧的作用下,带动橡皮膜向右移动,弱弹簧将橡皮膜压在活塞上,橡皮膜左方的空气不能进入气室,形成负压,只能通过进气孔进气,因此活塞杆只能缓慢地向右移动,其移动的速度和进气孔的大小有关(通过延时调节螺丝调节进气孔的大小可改变延时时间)。经过一定的延时后,活塞杆移动到右端,通过杠杆压动微动开关(通电延时接点),使其常闭触头断开,常开触头闭合,起到通电延时作用。

当线圈断电时,电磁吸力消失,动铁心在反力弹簧的作用下释放,并通过活塞杆将活塞推向左端,这时气室内中的空气通过橡皮膜和活塞杆之间的缝隙排掉,瞬动接点和延时接点迅速复位,无延时。

如果将通电延时型时间继电器的电磁机构反向安装,就可以改为断电延时型时间继电器,中断电延时型时间继电器所示。线圈不得电时,塔形弹簧

将橡皮膜和活塞杆推向右侧,杠杆将延时接点压下(注意,原来通电延时的常开接点现在变成了断电延时的常闭接点了,原来通电延时的常闭接点现在变成了断电延时的常开接点),当线圈通电时,动铁心带动L型传动杆向左运动,使瞬动接点瞬时动作,同时推动活塞杆向左运动,如前所述,活塞杆向左运动不延时,延时接点瞬时动作。线圈失电时动铁心在反力弹簧的作用下返回,瞬动接点瞬时动作,延时接点延时动作。

时间继电器线圈和延时接点的图形符号都有两种画法,线圈中的延时符号可以不画,接点中的延时符号可以画在左边也可以画在右边,但是圆弧的方向不能改变,如图1-15(b)和(d)所示。

空气阻尼式时间继电器的优点是结构简单、延时范围大、寿命长、价格低廉,且不受电源电压及频率波动的影响,其缺点是延时误差大、无调节刻度指示,一般适用延时精度要求不高的场合。常用的产品有JS7-A、JS23等系列,其中JS7-A系列的主要技术参数为延时范围,分0.4s~60s和0.4s~180s两种,操作频率为600次/h,触头容量为5A,延时误差为±15%。在使用空气阻尼式时间继电器时,应保持延时机构的清洁,防止因进气孔堵塞而失去延时作用。

时间继电器在选用时应根据控制要求选择其延时方式,根据延时范围和精度选择继电器的类型。

热继电器主要是用于电气设备(主要是电动机)的过负荷保护。热继电器是一种利用电流热效应原理工作的电器,它具有与电动机容许过载特性相近的反时限动作特性,主要与接触器配合使用,用于对三相异步电动机的过负荷和断相保护。

三相异步电动机在实际运行中,常会遇到因电气或机械原因等引起的过电流(过载和断相)现象。如果过电流不严重,持续时间短,绕组不超过允许温升,这种过电流是允许的;如果过电流情况严重,持续时间较长,则会加快电动机绝缘老化,甚至烧毁电动机,因此,在电动机回路中应设置电动机保护装置。常用的电动机保护装置种类很多,使用最多、最普遍的是双金属片式热继电器。目前,双金属片式热继电器均为三相式,有带断相保护和不带断相保护两种。

1、热继电器的工作原理

图1-16(a)所示是双金属片式热继电器的结构示意图,图1-16(b)所示是其图形符号。由图可见,热继电器主要由双金属片、热元件、复位按钮、传动杆、拉簧、调节旋钮、复位螺丝、触点和接线端子等组成。

双金属片是一种将两种线膨胀系数不同的金属用机械辗压方法使之形成一体的金属片。膨胀系数大的(如铁镍铬合金、铜合金或高铝合金等)称为主动层,膨胀系数小的(如铁镍类合金)称为被动层。由于两种线膨胀系数不同的金属紧密地贴合在一起,当产生热效应时,使得双金属片向膨胀系数小的一

侧弯曲,由弯曲产生的位移带动触头动作。

热元件一般由铜镍合金、镍铬铁合金或铁铬铝等合金电阻材料制成,其形状有圆丝、扁丝、片状和带材几种。热元件串接于电机的定子电路中,通过热元件的电流就是电动机的工作电流(大容量的热继电器装有速饱和互感器,热元件串接在其二次回路中)。当电动机正常运行时,其工作电流通过热元件产生的热量不足以使双金属片变形,热继电器不会动作。当电动机发生过电流且超过整定值时,双金属片的热量增大而发生弯曲,经过一定时间后,使触点动作,通过控制电路切断电动机的工作电源。同时,热元件也因失电而逐渐降温,经过一段时间的冷却,双金属片恢复到原来状态。

热继电器动作电流的调节是通过旋转调节旋钮来实现的。调节旋钮为一个偏心轮,旋转调节旋钮可以改变传动杆和动触点之间的传动距离,距离越长动作电流就越大,反之动作电流就越小。

热继电器复位方式有自动复位和手动复位两种,将复位螺丝旋入,使常开的静触点向动触点靠近,这样动触点在闭合时处于不稳定状态,在双金属片冷却后动触点也返回,为自动复位方式。如将复位螺丝旋出,触点不能自动复位,为手动复位置方式。在手动复位置方式下,需在双金属片恢复状时按下复位按钮才能使触点复位。

2、热继电器的选择原理

热继电器主要用于电动机的过载保护,使用中应考虑电动机的工作环境、起动情况、负载性质等因素,具体应按以下几个方面来选择:

(1)热继电器结构型式的选择:星形接法的电动机可选用两相或三相结构热继电器,三角形接法的电动机应选用带断相保护装置的三相结构热继电器。

(2)热继电器的动作电流整定值一般为电动机额定电流的1.05~1.1倍。

(3)对于重复短时工作的电动机(如起重机电动机),由于电动机不断重复升温,热继电器双金属片的温升跟不上电动机绕组的温升,电动机将得不到可靠的过载保护。因此,不宜选用双金属片热继电器,而应选用过电流继电器或能反映绕组实际温度的温度继电器来进行保护。

速度继电器

速度继电器又称为反接制动继电器,主要用于三相鼠笼型异步电动机的反接制动控制。图1-17为速度继电器的原理示意图及图形符号,它主要由转子、定子和触头3部分组成。转子是一个圆柱形永久磁铁,定子是一个鼠笼型空心圆环,由硅钢片叠成,并装有鼠笼型绕组。其转子的轴与被控电动机的轴相连接,当电动机转动时,转子(圆柱形永久磁铁)随之转动产生一个旋转磁场,定子中的鼠笼型绕组切割磁力线而产生感应电流和磁场,两个磁场相互作用,使定子受力而跟随转动,当达到一定转速时,装在定子轴上的摆锤推动簧片触点运动,使常闭触点断开,常开触点闭合。当电动机转速低于某一数值时,定子产生的转矩减小,触点在簧片作用下复位。

常用的速度继电器有JYl型和JFZ0型两种。其中JYl型可在700~

3600 r/min范围工作,JFZ0-1型适用于300~1000r/min,JFZ0-2型适用于1000~3000r/min。

一般速度继电器都具有两对转换触点,一对用于正转时动作,另一

对用于反转时动作。触点额定电压为380V,额定电流为2A。通常速度继电器动作转速为130r/min,复位转速在100r/min以下

液位继电器主要用于对液位的高低进行检测并发出开关量信号,以控制电磁阀、液泵等设备对液位的高低进行控制。液位继电器的种类很多,工作原理也不尽相同,下面介绍JYF-02型液位继电器。其结构示意图及图形符号如图1-18所示。浮筒置于液体内,浮筒的另一端为一根磁钢,靠近磁钢的液体外壁也装一根磁钢,并和动触点相连,当水位上升时,受浮力上浮而绕固定支点上浮,带动磁钢条向下,当内磁钢N极低于外磁钢N极时,由于液体壁内外两根磁钢同性相斥,壁外的磁钢受排斥力迅速上翘,带动触点迅速动作。同理,当液位下降,内磁钢N极高于外磁钢N极时,外磁钢受排斥力迅速下翘,带动触点迅速动作。液位高低的控制是由液位继电器安装的位置来决定的。

压力继电器主要用于对液体或气体压力的高低进行检测并发出开关量信号,以控制电磁阀、液泵等设备对压力的高低进行控制。图1-19为压力继电器结构示意图及图形符号。

压力继电器主要由压力传送装置和微动开关等组成,液体或气体压力经压力入口推动橡皮膜和滑杆,克服弹簧反力向上运动,当压力达到给定压力时,触动微动开关,发出控制信号,旋转调压螺母可以改变给定压力。

时间继电器的作用及功能原理

时间继电器的作用及功能原理 2011年11月04日11:30?来源:本站整理?作者:秩名?我要评论(0) 时间继电器是一种使用在较低的电压或较小电流的电路上,用来接通或切断较高电压、较大电流的电路的电气元件,也许可以这样说:用来控制较高电压或较大功率的电路的电动开关:给继电器工作线圈一个控制电流,继电器就吸合,对应的触点就接通或断开。在供电电路中,继电器也被称为接触器。 关键字:时间继电器,继电器 从驱动时间继电器工作的电源要求(驱动线包工作电压)来分,一般继电器分交流继电器与直流继电器,分别用于交流电路和直流电路,另外,依据其工作电压的高低,有6、9、12、24、36、110、220、380等不同的工作电压,使用于不同的控制电路上。时间继电器另一个区分点是它的触点(执行接通或断开被控制电路的开关),分别有常开、常闭、转换的区别,另外还有触点多少的区别,可以控制多大的工作电压及电流(即触点允许控制的功率)的区别,供不同用途选用;另外特殊触点还有带自锁(动作后即使控制电压消失,触点自己保持失去控制时的状态),带延时吸合或延时释放功能等种类,供特殊情况下使用。 1.时间继电器当吸引线圈通电或断电后其触点经过一定延时再动作的继电器。 (1)结构(图2-3) (2)时间继电器的符号(图2-4) (3)时间继电器认识 类型认识:电磁式、空气阻尼式、电动式、电子式 ①直流电磁式时间继电器——用于直流电气控制电路中,只能直流断电延时动作。 优点:结构简单、运行可靠、寿命长;缺点:延时时间短。 ②空气阻尼式时间继电器——利用空气阻尼作用获得延时。 分:通电延时、断电延时两种。 ③电子式时间继电器——分R-C式晶体管和数字式时间继电器。 优点:延时范围宽、精度高、体积小、工作可靠。 晶体管式时间继电器以RC电路电容充电时电容器上的电压逐步上升的原理为基础。电路有单结晶体管电路和场效应管电路两种。

继电器的工作原理和特性及作用!

继电器的工作原理和特性及作用! 工作原理和特性 当输入量(如电压、电流、温度等)达到规定值时,使被控制的输出电路导通或断开的电器。可分为电气量(如电流、电压、频率、功率等)继电器及非电气量(如温度、压力、速度等)继电器两大类。具有动作快、工作稳定、使用寿命长、体积小等优点。广泛应用于电力保护、自动化、运动、遥控、测量和通信等装置中。 继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。故在电路中起着自动调节、安全保护、转换电路等作用。 继电器目前已广泛应用于计算机外围接口设备、恒温系统、调温、电炉加温控制、电机控制、数控机械,遥控系统、工业自动化装置;信号灯、调光、闪烁器、照明舞台灯光控制系统;仪器仪表、医疗器械、复印机、自动洗衣机;自动消防,保安系统,以及作为电网功率因素补偿的电力电容的切换开关等等,另外在化工、煤矿等需防爆、防潮、防腐蚀场合中都有大量使用。

继电器的作用 继电器是具有隔离功能的自动开关元件,广泛应用于遥控、遥测、通讯、自动控制、机电一体化及电力电子设备中,是最重要的控制元件之一。 ....继电器一般都有能反映一定输入变量(如电流、电压、功率、阻抗、频率、温度、压力、速度、光等)的感应机构(输入部分);有能对被控电路实现“通”、“断”控制的执行机构(输出部分);在继电器的输入部分和输出部分之间,还有对输入量进行耦合隔离,功能处理和对输出部分进行驱动的中间机构(驱动部分)。 ....作为控制元件,概括起来,继电器有如下几种作用: .....1) 扩大控制范围。例如,多触点继电器控制信号达到某一定值时,可以按触点组的不同形式,同时换接、开断、接通多路电路。 .....2) 放大。例如,灵敏型继电器、中间继电器等,用一个很微小

继电器的基本知识

继电器的定义、分类、命名 一、继电器的定义 1、继电器的定义 继电器:当输入量(或激励量)满足某些规定的条件是能在一个或多个电器输出电路中产生跃变的一种器件 2、继电器的继电特性 继电器输出入量和输出量之间在整个变化过程中的相互关系成为继电器的继电特征或控制特征.用x表示输入回路量,y表示输出回路的输出量,如图1所示.当输出量x 连续变化到一定量xa时,输出量y发生跃变,有0增加到ya值,则是输入量继续增加,是输出保持不变.相反,当减少到xb是,y又突然由ya减少到0.xa被称为继电器的动作值,xb被称为继电器的释放值,ya即是继电器的负载. 二、继电器的分类 1、按继电器的工作原理或结构特征分类 (1)电磁继电器:利用输入电路内点路在电磁铁铁芯与衔铁间产生的吸力作用而工作的一种电气继电器。 直流电磁继电器:输入电路中的控制电流为直流的电磁继电器。 交流电磁继电器:输入电路中的控制电流为交流的电磁继电器。 磁保持继电器:利用永久磁铁或具有很高剩磁特性的铁芯,是电磁继电器的衔铁在其线圈断点后仍能保持在线圈通电时的位置上的继电器。 (2)固体继电器:指电子元件履行其功能而无机械运动构件的,输入和输出隔离的一种继电器。 (3)温度继电器:当外界温度达到给定值时而动作的继电器。 (4)舌簧继电器:利用密封在管内,具有触电簧片和衔铁磁路双重作用的舌簧的动作来开,闭或转换线路的继电器。 干簧继电器:舌簧管内的介质的介质为真空,空气或某种惰性气体,即具有干式触点的舌簧继电器。 湿簧继电器:舌簧片和触电均密封在管内,并通过管底水银槽中水银的毛细作用,而使水银膜湿润触点的舌簧继电器。 剩簧继电器:由剩簧管或有干簧关于一个或多个剩磁零件组成的自保持干簧继电器。 舌簧管:同理舌簧管有干簧管,湿簧管,剩簧管三种类型。 (5)时间继电器:当加上或除去输入信号时,输出部分需延时或限时到规定的时间才闭合或断开其被

继电器的工作原理和作用

继电器的工作原理 简介 当输入量(如电压、电流、温度等)达到规定值时,使被控制的输出电路导通或断开的电器。可分为电气量(如电流、电压、频率、功率等)继电器及非电气量(如温度、压力、速度等)继电器两大类。具有动作快、工作稳定、使用寿命长、体积小等优点。广泛应用于电力保护、自动化、运动、遥控、测量和通信等装置中。 1、电磁继电器的工作原理和特性 电磁式继电器一般由铁芯、线圈、衔铁、触点簧片等组成的。只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,

从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)释放。这样吸合、释放,从而达到了在电路中的导通、切断的目的。对于继电器的“常开、常闭”触点,可以这样来区分:继电器线圈未通电时处于断开状态的静触点,称为“常开触点”;处于接通状态的静触点称为“常闭触点”。 继电器的输入信号x从零连续增加达到衔铁开始吸合时的动作值xx,继电器的输出信号立刻从y=0跳跃到y=ym,即常开触点从断到通。一旦触点闭合,输入量x继续增大,输出信号y将不再起变化。当输入量x从某一大于xx值下降到xf,继电器开始释放,常开触点断开。我们把继电器的这种特性叫做继电特性,也叫继电器的输入-输出特性。 释放值xf与动作值xx的比值叫做反馈系数,即Kf= xf /xx 触点上输出的控制功率Pc与线圈吸收的最小功率P0之比叫做继电器的控制系数,即Kc=PC/P0 2、热敏干簧继电器的工作原理和特性 热敏干簧继电器是一种利用热敏磁性材料检测和控制温度的新型热敏开关。它由感温磁环、恒磁环、干簧管、导热安装片、塑料衬底及其他一些附件组成。热敏干簧继电器不用线圈励磁,

时间继电器的工作原理

一、继电器的工作原理和特性继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。故在电路中起着自动调节、安全保护、转换电路等作用。1、电磁继电器的工作原理和特性电磁式继电器一般由铁芯、线圈、衔铁、触点簧片等组成的。只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)吸合。这样吸合、释放,从而达到了在电路中的导通、切断的目的。对于继电器的“常开、常闭”触点,可以这样来区分:继电器线圈未通电时处于断开状态的静触点,称为“常开触点”;处于接通状态的静触点称为“常闭触点”。2、热敏干簧继电器的工作原理和特性热敏干簧继电器是一种利用热敏磁性材料检测和控制温度的新型热敏开关。它由感温磁环、恒磁环、干簧管、导热安装片、塑料衬底及其他一些附件组成。热敏干簧继电器不用线圈励磁,而由恒磁环产生的磁力驱动开关动作。恒磁环能否向干簧管提供磁力是由感温磁环的温控特性决定的。3、固态继电器(SSR)的工作原理和特性固态继电器是一种两个接线端为输入端,另两个接线端为输出端的四端器件,中间采用隔离器件实现输入输出的电隔离。固态继电器按负载电源类型可分为交流型和直流型。按开关型式可分为常开型和常闭型。按隔离型式可分为混合型、变压器隔离型和光电隔离型,以光电隔离型为最多。. 二、继电器主要产品技术参数1、额定工作电压是指继电器正常工作时线圈所需要的电压。根据继电器的型号不同,可以是交流电压,也可以是直流电压。2、

安全继电器工作原理

安全继电器工作原理 关于安全继电器工作原理,实际上存在两个层面问题:一是未能区分安全继电器与普通继电器的区别。二是不清楚安全继电器如何搭建形成的安全继电器模块。大家想了解安全继电器工作原理,其实真正同应用相关的的是安全继电器模块的工作原理!基于当前安全设计在国内尚处于刚刚有所需求的实际情况,工程师无论是对安全继电器,还是安全继电器工作原理都不是特别清楚,为了更好服务设计工作,天之行愿就安全继电器工作原理同广大设计人员进行相关的交流。 第一个问题:安全继电器元件是如何构建安全继电器模块的,涉及安全继电器与普通继电器的区别 第二个问题:安全继电器工作原理才是我们搭建安全回路时,真正需要知道的! 下面我们将从三个方面予以介绍: 一、功能作用—解决什么问题? 在设备运行过程中,由于外部的原因,或者违规操作(无论是不懂导致的误动作或是疲劳导致的误动作),以及内部器件失效,都可能导致事故的出现,轻则财物损失,重则发生机毁人亡的恶性事故,为了降低这些事故的出现,我们在进行这些设备的设计时,一般都会针对相关情况做出相应的安全设计:如急停设计、安全门设计、安全光幕设计,双手启动设计,安全边沿设计等。这些设计要时刻实现相应的安全功能,必须基于所有的器件都能保持动作正常,功能完好! 显然这是一种理想状态,真实的情况是:从来没有“不坏”的器件,总是有一些器件在运行中会出现这样或那样的异常,导致其功能出现故障。这样由于

某个器件出现了故障,将会导致设计中整个安全功能的丧失,从而使得事故发生的概率大幅度的提高! 举个例子:当周围环境出现了状况,你希望急停设计启动,断电停机!当你拍下急停按钮时,由于种种原因,按钮卡阻了,接入电路中的常闭触点未能分开,自然也就无法实现断电停机----急停安全设计完全失效!又或者,当你拍下急停按钮后,急停按钮没有问题,接主电源的交流接触器发生了触头粘连,不能断开,此时你当然无法实现断电停机----急停安全设计完全失效! 在上述举例中,我们发现,任一个器件的功能异常,就可以导致整个安全设计的丧失!也许有人会说,选高品质的器件就可以解决这个问题!是的,没错,提高器件品质永远是降低事故的一个不二选择!然而,品质提高永远在路上。如何在当下现实的器件品质水平下,可靠维持安全设计功能的实现,从而降低事故发生的概率就成了一个必须解决的问题!也就是说,如何在承认器件可能存在故障的前提下,任然能维持系统安全功能不丧失,且故障能被及时检查出来!安全继电器原理就是为解决此问题而被发明出来的一个功能器件。 二、安全继电器模块动作逻辑

继电器的工作原理和作用

继电器的工作原理 简介 当输入量(如电压、电流、温度等)达到规定值时,使被控制的输出电路导通或断开的电器。可分为电气量(如电流、电压、频率、功率等)继电器及非电气量(如温度、压力、速度等)继电器两大类。具有动作快、工作稳定、使用寿命长、体积小等优点。广泛应用于电力保护、自动化、运动、遥控、测量和通信等装置中。 1、电磁继电器的工作原理和特性 电磁式继电器一般由铁芯、线圈、衔铁、触点簧片等组成的。只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,

从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)释放。这样吸合、释放,从而达到了在电路中的导通、切断的目的。对于继电器的“常开、常闭”触点,可以这样来区分:继电器线圈未通电时处于断开状态的静触点,称为“常开触点”;处于接通状态的静触点称为“常闭触点”。 继电器的输入信号x从零连续增加达到衔铁开始吸合时的动作值xx,继电器的输出信号立刻从y=0跳跃到y=ym,即常开触点从断到通。一旦触点闭合,输入量x继续增大,输出信号y将不再起变化。当输入量x从某一大于xx值下降到xf,继电器开始释放,常开触点断开。我们把继电器的这种特性叫做继电特性,也叫继电器的输入-输出特性。 释放值xf与动作值xx的比值叫做反馈系数,即 Kf= xf /xx 触点上输出的控制功率Pc与线圈吸收的最小功率P0之比叫做继电器的控制系数,即Kc=PC/P0 2、热敏干簧继电器的工作原理和特性 热敏干簧继电器是一种利用热敏磁性材料检测和控制温度的新型热敏开关。它由感温磁环、恒磁环、干簧管、导热安装片、塑料衬底及其他一些附件组成。热敏干簧继电器不用线圈励磁,

继电器的主要分类-继电器种类大全

继电器的主要分类? 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 1.按继电器的工作原理或结构特征分类 1)电磁继电器:利用输入电路内电路在电磁铁铁芯与衔铁间产生的吸力作用而工作的一种电气继电器。 2)固体继电器:指电子元件履行其功能而无机械运动构件的,输入和输出隔离的一种继电器。 3)温度继电器:当外界温度达到给定值时而动作的继电器。 4)舌簧继电器:利用密封在管内,具有触电簧片和衔铁磁路双重作用的舌簧动作来开,闭或转换线路的继电器 5)时间继电器:当加上或除去输入信号时,输出部分需延时或限时到规定时间才闭合或断开其被控线路继电器。 6)高频继电器:用于切换高频,射频线路而具有最小损耗的继电器。 7)极化继电器:有极化磁场与控制电流通过控制线圈所产生的磁场综合作用而动作的继电器。继电器的动作方向取决于控制线圈中流过的的电流方向。 8)其他类型的继电器:如光继电器,声继电器,热继电器,仪表式继电器,霍尔效应继电器,差动继电器等。 2、按继电器的外形尺寸分类 1)微型继电器 2)超小型微型继电器 3)小型微型继电器 注:对于密封或封闭式继电器,外形尺寸为继电器本体三个相互垂直方向的最大尺寸,不包括安装件,引出端,压筋,压边,翻边和密封焊点的尺寸。 3、按继电器的负载分类

1)微功率继电器 2)弱功率继电器 3)中功率继电器 4)大功率继电器 4、按继电器的防护特征分类 1)密封继电器 2)封闭式继电器 3)敞开式继电器 5、按继电器按照动作原理可分类 1)电磁型 2)感应型 3)整流型 4)电子型 5)数字型等 6、按照反应的物理量可分类 1)电流继电器 2)电压继电器 3)功率方向继电器 4)阻抗继电器 5)频率继电器 6)气体(瓦斯)继电器 7、按照继电器在保护回路中所起的作用可分类1)启动继电器 2)量度继电器 3)时间继电器 4)中间继电器 5)信号继电器 6)出口继电器

3种继电器的工作原理

3种继电器的工作原理 继电器属于一种微电控制器件,在电路中起着自动调节安全保护转换电路等作用。 继电器的工作原理 1、电磁式电磁继的工作原理: 电磁式继电器一般由铁芯、线圈、衔铁、触点簧片等组成的。只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)吸合。这样吸合、释放,从而达到了在电路中的导通、切断的目的。对于继电器的“常开、常闭”触点,可以这样来区分:继电器线圈未通电时处于断开状态的静触点,称为“常开触点”;处于接通状态的静触点称为“常闭触点”。 2、热敏干簧继电器的工作原理: 热敏干簧继电器是一种利用热敏磁性材料检测和控制温度的新型热敏开关。它由感温磁环、恒磁环、干簧管、导热安装片、塑料衬底及其他一些附件组成。热敏干簧继电器不用线圈励磁,一般称为热敏开关。而由恒磁环产生的磁力驱动开关动作。恒磁环能否向干簧管提供磁力是由感温磁环的温控特性决定的。 3、固态继电器SSR的工作原理: 一般使用于禁止电火花的地方,固态继电器是一种两个接线端为输入端,另两个接线端为输出端的四端器件,中间采用隔离器件实现输入输出的电隔离。固态继电器按负载电源类型可分为交流型和直流型。按开关型式可分为常开型和常闭型。按隔离型式可分为混合型、变压器隔离型和光电隔离型,以可控硅和光电隔离型为最多。 国内表达继电器的符号和触点方法 继电器线圈在电路中用一个长方框符号表示,如果继电器有两个线圈,就画两个并列的长方框。同时在长方框内或长方框旁标上继电器的文字符号“J”。继电器的触点有两种表示方法:一种是把它们直接画在长方框一侧,这种表示法较为直观。另一种是按照电路连接的需要,把各个触点分别画到各自的控制电路中,通常在同一继电器的触点与线圈旁分别标注上相同的文字符号,并将触点组编上号码,以示区别。继电器的触点有下面几种基本形式:

时间继电器工作原理及使用注意事项

时间继电器工作原理及使用注意事项 在交流电路中常采用空气阻尼型时间继电器,它是利用空气通过小孔节流的原理来获得延时动作的。它由电磁系统、延时机构和触点三部分组成。 时间继电器可分为通电延时型和断电延时型两种类型。 空气阻尼型时间继电器的延时范围大(有0.4~60s和0.4~180s 两种) ,它结构简单,但准确度较低。 当线圈通电(电压规格有ac380v、ac220v或dc220v、dc24v等)时,衔铁及托板被铁心吸引而瞬时下移,使瞬时动作触点接通或断开。但是活塞杆和杠杆不能同时跟着衔铁一起下落,因为活塞杆的上端连着气室中的橡皮膜,当活塞杆在释放弹簧的作用下开始向下运动时,橡皮膜随之向下凹, 上面空气室的空气变得稀薄而使活塞杆受到阻

尼作用而缓慢下降。经过一定时间,活塞杆下降到一定位置,便通过杠杆推动延时触点动作,使动断触点断开,动合触点闭合。从线圈通电到延时触点完成动作,这段时间就是继电器的延时时间。延时时间的长短可以用螺钉调节空气室进气孔的大小来改变。吸引线圈断电后,继电器依靠恢复弹簧的作用而复原。空气经出气孔被迅速排出。 时间继电器的使用注意事项: 1.必须按接线端子图正确接线、核对继电器额定电压与将接的电源电压是否相符,直流型注意电源极性。 2.对于晶体管时间继电器,延时刻度不表示实际延时值,仅供调整参考。若需精确的延时值,需在使用时先核对延时数值。 3.JS7-A时间继电器由于无刻度,故不能准确地调整延时时间,同时气室的进排气孔也有可能被尘埃堵住而影响延时的准确性,应经常清除灰尘及油污。 4.JS7- 1A, JS7-2A系列时间继电器只要将电磁线圈部分转动180°即可将通电延时改为断电延时方式。 5.JS11-系列通电延时继电器,必须在分断离合器电磁铁线圈电源时才能调节延时值;而JS11一口2系列断电延时继电器,必须在接通离合器电磁铁线圈电源时才能调节延时值。 时间继电器的接线注意事项: 第一、控制接线,你把它看成直流继电器来考虑。3、7用来接12V控制电压;2、7用来接24V控制电压。其中的7当成直流电的负极,使用时接到零线。2接220V的火线。

继电器分类及原理

继电器是什么? 继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路)。它实际上是用较小的电流去控制较大电流的一种“自动开关”。 继电器的分类: 1、按工作原理和结构特性可分为:电磁继电器、固体继电器、温度继电器、舌簧继电器、时间继电器、高频继电器、极化继电器、其他类型的继电器(有继电器,声继电器,热继电器,仪表式继电器,霍尔效应继电器,差动继电器等) 2、按动作原理可分为:电磁型、感应型、整流型、电子型、数字型等 3、按继电器的作用可分为:启动继电器、量度继电器、时间继电器、中间继电器、信号继电器、出口继电器 一、电磁继电器的工作原理和特性

电磁式继电器一般由铁芯、线圈、衔铁、触点簧片等组成的。只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)吸合。这样吸合、释放,从而达到了在电路中的导通、切断的目的。对于继电器的“常开、常闭”触点,可以这样来区分:继电器线圈未通电时处于断开状态的静触点,称为“常开触点”;处于接通状态的静触点称为“常闭触点”。 固态继电器的原理及结构 SSR按使用场合可以分成交流型和直流型两大类,它们分别在交流或直流电源上做负载的开关,不能混用。 下面以交流型的SSR为例来说明它的工作原理,图1是它的工作原理框图,图1中的部件①-④构成交流SSR的主体,从整体上看,SSR只有两个输入端(A和B)及两个输出端(C和D),是一种四端器件。 图1 工作时只要在A、B上加上一定的控制信号,就可以控制C、D两端之间的“通”和“断”,实现“开关”的功能,其中耦合电路的功能是为A、B端输入的控

时间继电器的接线方法及接线图

时间继电器的接线方法及接线图 时间继电器的电气控制系统中是一个非常重要的元器件。一般分为通电延时和断电延时两种类型。从动作的原理上有电子式、机械式等。电子式的是采用电容充放电再配合电子元件的原理来实现延时动作。机械式的样式较多,有利用气囊、弹簧的气囊式. 时间继电器的接线方法 第一、控制接线:你把它看成直流继电器来考虑。3、7用来接12V控制电 压;2、7用来接24V控制电压。其中的7当成直流电的负极,使用时接到零线。2接220V的火线。 第二、工作控制:虽然控制电压接上了,但是是否起控制作用,由面板上的计时器决定。 第三、功能理解:它就是一个开关,单刀双掷的,有一个活动点活动臂,就像常见的闸刀开关的活动刀臂一样。8是活动点,5是常闭点,继电器不动时,他们两个相连。动作时,8、6相连。 第四:负载接线:电源的零线或负极接用电器的零线或负极端。电源的火线或正极接8脚,用电器的火线端或正极接6脚,5脚空闲不用。 第五、工作原理:计时无效期间,8、5相连,相当于我们平常电灯开关断开状态。有效时,继电器动作,8、6相连,用电器得电工作,相当于我们平常电灯开关接通状态 接线插头:8针圆插头 针脚定义: 接线方式1(国内常规) 接线方式2(OMRON) 针号针定义针号针定义 1 继电器B公共端 1 外部开关公共端 2 电源零线N(AC85-265V)

3 继电器B常开触点 3 时间复位端子(RESET)/接通有效 4 继电器B常闭触点 4 计时允许端子(GATE)/断开有效 5 继电器A常闭触点 5 继电器A常闭触点 6 继电器A常开触点 6 继电器A常开触点 7 电源火线L(AC85-265V) 8 继电器A公共端 8 继电器A公共端 1,2是电源,第一组3,4是常开,3,5是常闭,,, 第二组6,7是常开,68是常闭

信号基础继电器

绪 论 一、铁路信号设备的地位是组织指挥列车运行,保证行车安全,提高运输效率,传递信息,改善行车人员劳动条件的关键设施。铁路信号的基础设备:信号继电器、信号机、轨道电路、转辙机等。 1、信号继电器是铁路信号中所用各类继电器的统称。安全型继电器是信号继电器的主要定型产品,采用24V 直流系列的重弹力式直流电磁继电器,其基本结构是无极继电器。电磁原理使其吸合,依靠重力使其复原。利用其接点控制相应的电路。在无极继电器的基础上,派生出了加强接点继电器、整流式继电器、有极继电器、偏极继电器和单闭磁继电器等以满足电路的不同要求。采用插入式结构,便于更换。交流二元二位继电器是交流感应式继电器,因其具有可靠的频率和相位选择性,在25HZ 相敏轨道电路中用做轨道继电器。动态继电器是双机热备计算机联锁的接口部件。 2、信号机和信号表示器构成信号显示,用来指示列车运行和调车作业的命令。在列车提速的情况下,迫切需要将机车信号主体化,其显示方式也逐步实现数字化。 3、轨道电路用来监督列车对轨道的占用和传递行车信息。站内采用25HZ 反

映列车占用情况。移频轨道电路是移频自动闭塞的基础,通过它发送各种行车信息。分为有绝缘和无绝缘两种。无绝缘又为谐振、衰耗式,还要研发数字编码轨道电路,以满足列车运行超速防护的需要。轨道电路有调整状态、分路状态和断轨状态三种最基本的工作状态,其基本参数有道岔电阻、钢轨阻抗等。 4、转辙机用于完成道岔的转换和锁闭,是关系行车安全的最关键设备。内锁闭方式的ZD6系列,外锁闭方式的S700K。 二、铁路信号控制设备易遭雷击,造成设备的损坏或误动,严重影响运输生产,对信号设备必须采取必要的防雷措施。凡与外线连接的信号设备必须设防雷装置。同时还需要设置防雷地线、安全地线、屏蔽地线。 三、信号设备大体上可以分为车站联锁设备、区间闭塞设备、机车信号和列车运行控制设备、调度监督和调度集中、驼峰调车、道口信号设备等,信号现代化的方向是数字化、网络化、智能化和综合化。 第一章信号继电器 第一节信号继电器概述 一、继电器的基本原理 1、组成:由接点系统和电磁系统两大部分组成,电磁系统由线圈、固定的铁心、轭铁以及可动的衔铁。接点系统由动接点、静接点构成。

信号继电器工作原理及作用大全

信号继电器工作原理及作用大全 信号继电器是铁路信号中所用各类继电器的统称。其不仅是构成各种继电式控制系统的关键,而且是电子式或计算机式控制系统的的接口部件。 ?信号继电器概述 ?安全型继电器 ?继电器的应用 一、信号继电器的基本原理 1、组成: 由接点系统和电磁系统两大部分组成,电磁系统由线圈、固定的铁心、轭铁以及可动的衔铁。 接点系统由动接点、静接点构成。 2、动作原理 当线圈中通入一定数值的电流后,由于电磁作用或感应方法产生电磁吸引力,吸引衔铁,由衔铁带动接点系统,改变其状态、从而反映输入电流的状况。 最基本的工作原理: 线圈通电→产生磁通(衔铁、铁心)→产生吸引力→克服衔铁阻力→衔铁吸向铁心→衔铁带动动接点动作→前接点闭合、后接点断开。(继电器吸起) 电流减少→吸引力下降→衔铁依靠重力落下→动接点与前接点断开,后接点闭合。(继电器落下) 可见,继电器具有开关特性,利用其接点的通、断电路,从而构成各种控制表示电路。 3、继电器的继电特性 回差特点:吸起值、释放值不一样。吸起值>释放值

二、继电器的作用 能够以极小的电信号控制执行电路中相当大的对象,能够控制数个对象和数个回路,也能控制远距离的对象。有着良好的开关性能:闭合阻抗小、断开阻抗大,有故障→安全性能,能控制多回路、抗雷击性能强、无噪声、温度影响小等。在以继电技术构成的系统中,大量使用,在以电子元件和微机构成的系统中,作为接口部件,将系统主机与信号机、轨道电路、转辙机等执行部件结合起来。 三、铁路信号对继电器的要求 1、安全、可靠 2、动作可靠、准确 3、使用寿命长 4、有足够的闭合和断开电路的能力

时间继电器工作原理及使用注意事项

时间继电器工作原理及使用注意事项

————————————————————————————————作者:————————————————————————————————日期:

时间继电器工作原理及使用注意事项 在交流电路中常采用空气阻尼型时间继电器,它是利用空气通过小孔节流的原理来获得延时动作的。它由电磁系统、延时机构和触点三部分组成。 时间继电器可分为通电延时型和断电延时型两种类型。 空气阻尼型时间继电器的延时范围大(有0.4~60s和0.4~180s 两种) ,它结构简单,但准确度较低。 当线圈通电(电压规格有ac380v、ac220v或dc220v、dc24v等)时,衔铁及托板被铁心吸引而瞬时下移,使瞬时动作触点接通或断开。但是活塞杆和杠杆不能同时跟着衔铁一起下落,因为活塞杆的上端连着气室中的橡皮膜,当活塞杆在释放弹簧的作用下开始向下运动时,橡皮膜随之向下凹, 上面空气室的空气变得稀薄而使活塞杆受到阻

尼作用而缓慢下降。经过一定时间,活塞杆下降到一定位置,便通过杠杆推动延时触点动作,使动断触点断开,动合触点闭合。从线圈通电到延时触点完成动作,这段时间就是继电器的延时时间。延时时间的长短可以用螺钉调节空气室进气孔的大小来改变。吸引线圈断电后,继电器依靠恢复弹簧的作用而复原。空气经出气孔被迅速排出。 时间继电器的使用注意事项: 1.必须按接线端子图正确接线、核对继电器额定电压与将接的电源电压是否相符,直流型注意电源极性。 2.对于晶体管时间继电器,延时刻度不表示实际延时值,仅供调整参考。若需精确的延时值,需在使用时先核对延时数值。 3.JS7-A时间继电器由于无刻度,故不能准确地调整延时时间,同时气室的进排气孔也有可能被尘埃堵住而影响延时的准确性,应经常清除灰尘及油污。 4.JS7- 1A, JS7-2A系列时间继电器只要将电磁线圈部分转动180°即可将通电延时改为断电延时方式。 5.JS11-系列通电延时继电器,必须在分断离合器电磁铁线圈电源时才能调节延时值;而JS11一口2系列断电延时继电器,必须在接通离合器电磁铁线圈电源时才能调节延时值。 时间继电器的接线注意事项: 第一、控制接线,你把它看成直流继电器来考虑。3、7用来接12V控制电压;2、7用来接24V控制电压。其中的7当成直流电的负极,使用时接到零线。2接220V的火线。

继电器的作用及分类

继电器的作用及分类 继电器是一种电控制器件。它具有控制系统(又称输入回路)和被控 制系统(又称输出回路)之间的互动关系。通常应用于自动化的控制 电路中,它实际上是用小电流去控制大电流运作的一种“自动开关”。故在电路中起着自动调节、安全保护、转换电路等作用。 器件简介 当输入量(如电压、电流、温度等)达到规定值时,继电器被所 控制的输出电路导通或断开。 输入量可分为电气量(如电流、电压、频率、功率等)及非电气 量(如温度、压力、速度等)两大类。 继电器具有动作快、工作稳定、使用寿命长、体积小等优点。广 泛应用于电力保护、自动化、运动、遥控、测量和通信等装置中。 工作原理和特性 电磁继电器 电磁继电器一般由铁芯、线圈、衔铁、触点簧片等组成的。只要 在线圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向 铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。当线圈断

电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来 的位置,使动触点与原来的静触点(常闭触点)释放。这样吸合、释放,从而达到了在电路中的导通、切断的目的。对于继电器的“常开、常闭”触点,可以这样来区分:继电器线圈未通电时处于断开状态的 静触点,称为“常开触点”;处于接通状态的静触点称为“常闭触点”。继电器一般有两股电路,为低压控制电路和高压工作电路。 固态继电器(SSR) 固态继电器是一种两个接线端为输入端,另两个接线端为输出端的四端器件,中间采用隔离器件实现输入输出的电隔离。 固态继电器按负载电源类型可分为交流型和直流型。按开关型式可分为常开型和常闭型。按隔离型式可分为混合型、变压器隔离型和光电隔离型,以光电隔离型为最多。 热敏干簧继电器 热敏干簧继电器是一种利用热敏磁性材料检测和控制温度的新 型热敏开关。它由感温磁环、恒磁环、干簧管、导热安装片、塑料衬 底及其他一些附件组成。热敏干簧继电器不用线圈励磁,而由恒磁环产生的磁力驱动开关动作。恒磁环能否向干簧管提供磁力是由感温磁 环的温控特性决定的。 磁簧继电器

继电器工作原理及作用

继电器工作原理及作用 控制继电器 控制继电器用于电路的逻辑控制,继电器具有逻辑记忆功能,能组成复杂的逻辑控制电路,继电器用于将某种电量(如电压、电流)或非电量(如温度、压力、转速、时间等)的变化量转换为开关量,以实现对电路的自动控制功能。 继电器的种类很多,按输入量可分为电压继电器、电流继电器、时间继电器、速度继电器、压力继电器等;按工作原理可分为电磁式继电器、感应式继电器、电动式继电器、电子式继电器等;按用途可分为控制继电器、保护继电器等;按输入量变化形式可分为有无继电器和量度继电器。 有无继电器是根据输入量的有或无来动作的,无输入量时继电器不动作,有输入量时继电器动作,如中间继电器、通用继电器、时间继电器等。 量度继电器是根据输入量的变化来动作的,工作时其输入量是一直存在的,只有当输入量达到一定值时继电器才动作,如电流继电器、电压继电器、热继电器、速度继电器、压力继电器、液位继电器等。 电磁式继电器 在控制电路中用的继电器大多数是电磁式继电器。电磁式继电器具有结构简单、价格低廉、使用维护方便、触点容量小(一般在5A以下)、触点数量多且无主、辅之分、无灭弧装置、体积小、动作迅速、准确、控制灵敏、可靠等特点,广泛地应用于低压控制系统中。常用的电磁式继电器有电流继电器、电压继电器、中间继电器以及各种小型通用继电器等。 电磁式继电器的结构和工作原理与接触器相似,主要由电磁机构和触点组成。电磁式继电器也有直流和交流两种。图1-11为直流电磁式继电器结构示意图,在线圈两端加上电压或通入电流,产生电磁力,当电磁力大于弹簧反力时,吸动衔铁使常开常闭接点动作;当线圈的电压或电流下降或消失时衔铁释放,接点复位。 1、电磁式继电器的整定 继电器的吸动值和释放值可以根据保护要求在一定范围内调整,现以图1-11所示的直流电磁式继电器为例予以说明。 (1)转动调节螺母,调整反力弹簧的松紧程度可以调整动作电流(电压)。弹簧反力越大动作电流(电压)就越大,反之就越小。 (2)改变非磁性垫片的厚度。非磁性垫片越厚,衔铁吸合后磁路的气隙和磁阻就越大,释放电流(电压)也就越大,反之越小,而吸引值不变。 (3)调节螺丝,可以改变初始气隙的大小。在反作用弹簧力和非磁性垫片厚度一

时间继电器的工作原理总结

时间继电器的工作原理: 1、常开延时闭合触头、常闭延时打开触头是通电延时型的时间继电器的触头,线圈通电后,延时一定时间后常开触头闭合,常闭触头打开。 2、常开延时打开触头、常闭延时闭合触头是断电延时型的时间继电器的触头,线圈通电后,常开触头闭合,线圈断电后,延时一定时间后该触头打开。常闭触头则相反。 总结:时间继电器的触点动作情况通电延时型——当吸引线圈通电后,其瞬动触点立即动作;其延时触点经过一定延时再动作。当吸引线圈断电后,所有触点立即复位。断电延时型——当吸引线圈通电后,所有触点立即动作。当吸引线圈断电后,其瞬动触点立即复位;其延时触点经过一定延时再复位,。 时间继电器的作用及功能原理 时间继电器是一种使用在较低的电压或较小电流的电路上,用来接通或切断较高电压、较大电流的电路的电气元件,也许可以这样说:用来控制较高电压或较大功率的电路的电动开关:给继电器工作线圈一个控制电流,继电器就吸合,对应的触点就接通或断开。在供电电路中,继电器也被称为接触器。关键字:时间继电器,继电器从驱动时间继电器工作的电源要求(驱动线包工作电压)来分,一般继电器分交流继电器与直流继电器,分别用于交流电路和直流电路,另外,依据其工作电压的高低,有6、9、12、24、36、110、220、380等不同的工作电压,使用于不同的控制电路上。时间继电器另一个区分点是它的触点(执行接通或断开被控制电路的开关),分别有常开、常闭、转换的区别,另外还有触点多少的区别,可以控制多大的工作电压及电流(即触点允许控制的功率)的区别,供不同用途选用;另外特殊触点还有带自锁(动作后即使控制电压消失,触点自己保持失去控制时的状态),带延时吸合或延时释放功能等种类,供特殊情况下使用。 您好,AH3-3时间继电器是属于通电延时的。 一般通电延时的继电器的工作原理如下: 继电器一般都有常开和常闭触点,接到要被控制的电路上的,通电延时继电器就是指这只继 电器在通电后并不是立即使触点状况发生变化,而是指要经过一定的延时后才动作(常闭触 点变为断开,常开触点闭合).这类继电器有两种性质,一类是机械式的,有通电后线圈带动衔铁吸合,但由于继电器的橡胶气囊放气时间的(为可在一定范围内调整的)控制,使触点延时动作;还有就是通电后使继电器内的微电机运转,经过齿轮机构的减速延时,使触点延时动作的另 一种.另外还有一类是晶体管(包括集成电路的)电路的继电器,它是靠通电后电路上的电容充电时间的控制,或者是采用"秒震荡信号"计数(即计时),来控制可控硅或晶体管导通或截止,来控制线路的通断或者推动普通继电器工作,控制电路通断来达到延时功能的.详情请关注 你按1kw=1.89-2A计算(这是运行电流),启动时瞬间电流是运行电流的3-7倍,所以选择开关时因大于实际运行电流的1.5倍(7.5kw乘以2A=15A),也就是15A的1.5倍左右,20-25A的开关就可以了。太大了浪费。电缆线选择1平方线约是5A,所以选4平方的线就可以了

继电器原理和接法

一、继电器的工作原理和特性 继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。故在电路中起着自动调节、安全保护、转换电路等作用。 1、电磁继电器的工作原理和特性 电磁式继电器一般由铁芯、线圈、衔铁、触点簧片等组成的。只要在线圈两端加上一定的电压,线圈中就会流过一定的电流,从而产生电磁效应,衔铁就会在电磁力吸引的作用下克服返回弹簧的拉力吸向铁芯,从而带动衔铁的动触点与静触点(常开触点)吸合。当线圈断电后,电磁的吸力也随之消失,衔铁就会在弹簧的反作用力返回原来的位置,使动触点与原来的静触点(常闭触点)吸合。这样吸合、释放,从而达到了在电路中的导通、切断的目的。对于继电器的“常开、常闭”触点,可以这样来区分:继电器线圈未通电时处于断开状态的静触点,称为“常开触点”;处于接通状态的静触点称为“常闭触点”。 2、热敏干簧继电器的工作原理和特性 热敏干簧继电器是一种利用热敏磁性材料检测和控制温度的新型热敏开关。它由感温磁环、恒磁环、干簧管、导热安装片、塑料衬底及其他一些附件组成。热敏干簧继电器不用线圈励磁,而由恒磁环产生的磁力驱动开关动作。恒磁环能否向干簧管提供磁力是由感温磁环的温控特性决定的。 3、固态继电器(SSR)的工作原理和特性 固态继电器是一种两个接线端为输入端,另两个接线端为输出端的四端器件,中间采用隔离器件实现输入输出的电隔离。 固态继电器按负载电源类型可分为交流型和直流型。按开关型式可分为常开型和常闭型。按隔离型式可分为混合型、变压器隔离型和光电隔离型,以光电隔离型为最多。 二、继电器主要产品技术参数 1、额定工作电压 是指继电器正常工作时线圈所需要的电压。根据继电器的型号不同,可以是交流电压,也可以是直流电压。 2、直流电阻 是指继电器中线圈的直流电阻,可以通过万能表测量。 3、吸合电流 是指继电器能够产生吸合动作的最小电流。在正常使用时,给定的电流必须略大于吸合电流,这样继电器才能稳定地工作。而对于线圈所加的工作电压,一般不要超过额定工作电压的1.5倍,否则会产生较大的电流而把线圈烧毁。 4、释放电流 是指继电器产生释放动作的最大电流。当继电器吸合状态的电流减小到一定程度时,继电器就会恢复到未通电的释放状态。这时的电流远远小于吸合电流。 5、触点切换电压和电流 是指继电器允许加载的电压和电流。它决定了继电器能控制电压和电流的大小,使用时不能超过此值,否则很容易损坏继电器的触点。 三、继电器测试 1、测触点电阻 用万能表的电阻档,测量常闭触点与动点电阻,其阻值应为0;而常开触点与动点的阻值就为无穷大。由此可以区别出那个是常闭触点,那个是常开触点。 2、测线圈电阻

时间继电器工作原理分析

时间继电器工作原理分析 星星电子网 2008-11-24 阅读:4458次 【字体:大中小】 晶体管时间继电器是目前时间继电器中发展快、品种数量较多、应用较广的一种。它和其他的时间继电器一样,由三个基本环节组成,如图1所示。根据延时环节构成原理的不同,通常分为电阻(R)、电容(C)充放电式(简称阻容式或RC式)与脉冲电路分频计数式(简称计数式)两大类。本节将简要介绍这两种时间继电器的工作原理与特性 图1时间继电器的基本环节 晶体管时间继电器。图2所示是一种最简单的RC晶体管时间继电器电路图。它用RC作延时环节;稳压管VW与晶体三极管V作比较放大环节(VW的击穿电压与V的开启电压之和U1为比较电压,也就是该电器的动作电压);电磁继电器KA为执行环节。RC晶体管时间继电器的基本工作原理是利用电容电压不能突变而只能缓慢升高的特性来获得延时的。 当合上开关S时(t=0),电源电压E就通过电阻R开始向电容C充电,此时电容上的电能被立即击穿,V不能导通,KA处于释放状态;当t=t1时,Uc增加到U1,

于是VW被击穿,V导通,电源经R与VW供给VW供给V以基极电流Ib,经过放大后推动继电器KA吸合,达到延时动作的目的。在延时时间t1内,Uc随时间的变化规律如图2b中曲线段obc所示。当断开S时,C就通过VW与V很快放电(此时它们的电阻很小),Uc很快下降,但当Uc稍许减小后VW就恢复阻断状态;V截止,KA释放,可见释放过程是非常快的,延时很小,所示该继电器为吸合延时,释放后电容上电压(电荷)将自然地放掉,到等于零时就可以接受下一次动作了。 图2: RC晶体管时间继电器的构成及RC充放电特性 从这里可以看到,当E和U1一定时,延时的大小主要决定于充电过程的快慢,即决定于R和C的大小。R大,由它所限制的充电电流就小;C大,它对电荷的容量就大;两者都将使Uc增加的变慢,延时时间加长。电工学中用乘积RC来描述衡量充电过程的快慢,称之为时间常数τ。由电工学中知道充电时Uc的变化规律为: Uc=E+(Uco-E)e-t/τ 当Uc=U1时,延时时间t1则由下式决定: ·lnE-Uco/E-U1 显然,对于时间继电器来说,我们不仅希望它具有一定大小的延时,而且还应具有一定的延时精度。由上式可见晶体管时间延时继电器的大小与精度是由电阻R、电容C、比较电压U1、电源电压E及电容初始值Uco等多方面因素所决定的。

相关文档
最新文档