Lifespan predict of PTH

Predicting Plated Through Hole Life at Assembly

and in the Field from Thermal Stress Data

Michael Freda

Sun Microsystems, Inc.

Menlo Park, CA

Dr. Donald Barker

University of Maryland

College Park, MD

Abstract:

Over the past ten years, two new test methods: Interconnect Stress Test [1] and Highly Accelerated Thermal Shock [2] have been developed to perform thermal cycling testing and in particular, to measure plated through hole reliability. Both of these test methods have proved useful in their ability to quantify plated through hole reliability and have gained a wide level of acceptance and creditability within the industry. Along with more tradition air-to-air and liquid-to-liquid thermal cycle methods, these two new test methods expand the test methods available to the interconnect industry. While the number of testing options for plated through hole thermal cycling has increased, there has been little work performed within the industry on developing methods to analyze and use the data coming from these new test methods.

This paper covers use of IST testing to obtain plated through hole cycle to failure data followed by methods to analyze and plot the data over a wide range of temperatures. In particular, the paper will focus on the use of material properties like the modulus as a function of temperature and the coefficient of thermal expansion as a function of temperature to calculate the stress on a plated through hole versus temperature. In this paper we will also explore the use of the Inverse Power Law (IPL) to analyze the plated through hole stress versus cycle to failure relationship. Once we have used IPL to established the cycle to failure relationship to stress for a given laminate and PCB design, it is then possible to estimate the number of cycles to failure in the field as a function of the number of cycles of assembly stress, the peak assembly temperature, and the maximum temperature in the field.

Keywords

IST, HATS, Lead-Free, CTF, Cycles to Failure, Via Reliability, PTH Reliability

Introduction

Sun Microsystems, Inc. has utilized IST for the past seven years. Early in that usage of IST Sun performed testing using multiple preconditioning steps from ambient to 230°C to simulate eutectic tin/lead assembly and rework followed by testing from ambient to 150°C. IST test equipment has a minimum temperature of ambient so, all further references will list only the peak temperature and ambient is 22°C. Typical preconditioning levels used were 0x, 3x, and 6x at 230°C and test results clearly show the negative impact of thermal cycling at assembly peak temperatures. As the high-end server product that initially utilized IST for plated through hole reliability confirmation moved into full production, Sun standardized our IST test protocol at 6x preconditioning at 230°C followed by thermal cycling to 150°C. The typical IST cycle is a linear ramp from ambient to peak in three minutes followed by a two-minute cool down back to ambient. In-situ electrical resistance heating circuits heat the IST coupon to peak temperature. Blowers using ambient air cool the IST coupon down. During Sun’s initial three-four years of using IST and as pcb fabricator processes improved, IST testing at 6x at 230°C followed by thermal cycling at 150°C often led to long test times, due in part to Sun’s requirement for test to failure.

About three years ago, Sun started to introduce thermally resistant, phenolic cured laminate materials into production to gain experience for the upcoming industry wide shift to lead-free assembly. Using phenolic laminate materials, the cycles to failure increased dramatically making IST test times burdensome, especially when preconditioning at 230°C for eutectic solder assembly. Additionally, Sun began test of lead-free laminate materials during this period, but the actual peak temperatures that would be required for lead-free assembly remained a bit of an unknown. For all the reasons discussed above, Sun started to use cycle to failure testing at temperatures above laminate material Tg. Figure 1 shows a comparison of HATS and IST test temperature range. You can see that the test temperature range of IST is well suited for testing above laminate material Tg. IST testing above laminate material Tg is quick and cost effective due to low cycles to failure. With appropriate reliability software, it is possible to use this data to predict cycles to failure at any potential lead-free assembly

Sun has previously reported on IST testing performed on thick, high aspect ratio pcb fabs using test to failure at multiple temperatures [3, 4]. This work showed promise in our effort to develop a new test and data analysis method, but since that work had many design of experiment (DoE) factors relating to board design, a couple of pcb fabrication variables, plus DoE factors in the testing and analysis the result was a small sample size per cell. Therefore, the testing that reported in this paper focuses on the development of improved test and data analysis methods. The IST coupons used are from a high volume, high-end server CPU card. By using a mature pcb fab design with no design or pcb fabrication variables, we are able to focus on the test and data analysis variables and use a larger sample size per cell.

Figure 1 – Comparison of HATS and IST test temperature

ranges to Field Life and Lead-Free Assembly temperatures.

Test and Analysis DoE Description

The product selected for test in this paper is the CPU Uniboard that is used in a number of Sun’s high-end servers. The current version of the Uniboard has four dual core processors per card, and 32 DIMM sockets that accommodate up to 64 Gb of on-board random access memory. There are also eight level 2 cache memory cards with 512 Mb of SRAM memory each. The largest system manufactured that utilizes the Uniboard CPU card has a maximum configuration of 144 CPU cores per system. The CPU board and IST coupons which are fabricated on the same panel are 26 layers, 2.8mm thick (110 mil), high resin percent, 0.35mm (13.8 mil) minimum drill diameter, uses a phenolic cured FR-4 laminate material, and has both

Cu/HASL plating and selective Cu/Ni/Au plating. For this paper, only the Cu/HASL IST coupons were tested.

Figure 1 – Pictures of Sun high-end servers. The two largest systems

on the left use the Uniboard CPU card shown on the right.

The IST coupon fabricated on the Uniboard panel has the following design features:

?27.9 x 76.2 x 2.8mm (1.1 x 3.0 x .110 inch)

? 1.5mm hole pitch (.060 inch)

?144 PTH interconnect holes drilled at .35mm (.0138 inch) diameter; a 8:1 aspect ratio

?PTH interconnect daisy chain runs from layer 1 to 26 to 1 to 26…

?144 POST interconnect holes drilled at .85mm (.0335 inch) diameter; a 3.3:1 aspect ratio

?POST interconnect daisy chain runs from layer 2 to 3 to 2 to 3… and from layer 25 to 24 to 25 to 24…

?The PTH interconnect holes are orientated interstitial to the POST interconnect holes

IST Testing and Data Analysis Above Tg

Initial IST testing was performed above Tg as shown in Table 1. Testing was performed at four temperatures above Tg: 215°C, 235°C, 255°C, and 275°C. Shown is the sample size for both the initial DoE plan and the actual DoE. Graph 1 shows the Lognormal plot of cycles to failure versus cumulative failure percent for the IST testing above Tg. The data follows expected trends, i.e., the higher the test temperature, the shorter plated through hole life. For this reason, a sample size of 12 coupons per cell was deemed sufficient.

Table 1 – Planned and actual DoE sample size per cell.

Graph 2 uses the same raw data as Graph 1. The difference is the analysis method used where instead of performing an independent Lognormal analysis on the cycle to failure data for each test temperature; the analysis uses all data from the multiple test temperatures to obtain a best fit to both a Lognormal distribution and an Inverse Power Law (IPL) relationship. Sun typically uses a Lognormal distribution since our experience shows that it is a better fit than a two-parameter Weibull distribution in the majority of cases (Lognormal goodness of fit parameter is better than Weibull in >50% of the cases). An added benefit is the Lognormal distribution usually has a better fit to early life failures that is Sun’s primary concern. Nonetheless, use of a Weibull distribution should yield similar results to those in this paper. Sun uses the 1% cumulative failure rate to rank laminate materials and the pcb fabricators plated through hole formation processes; it is hard to separate the effect of these two from each other. Mathematical descriptions in terms like Scale Factor, Location, MTTF, Characteristic Life, Eta, Beta, etc. are difficult to relate to for many people. It is easy to explain T1%, it is the number of cycles where one would expect a 1% cumulative failure or when you would expect the first failure if testing 100 parts. Additionally, T1% is sensitive to both the location (indicative of process used) and slope (indicative of process variation) of the Lognormal distribution making it a useful “single” parameter to summarize results from multiple parameter distributions.

We used the Inverse Power Law relationship since it is widely recognized that non-ferrous metals like copper usually follow the IPL relationship [5, 6]. Models like Arrhenius or Eyring are not appropriate since they deal with failure modes that are thermally induced. At first glance, this may also appear to be the case with the fatigue failure of plated through holes during thermal cycle testing. Nonetheless, in the temperature range that we study in this paper, metallic copper is not going through any physical change. Since it is a pure metal and there are no chemical reactions to occur, an activation energy based model like Arrhenius is not appropriate. What is happening is that there is stress applied due to the high Z-axis coefficient of thermal expansion of the epoxy/glass laminate material which surrounds the copper plated through hole structure and creates tensile stress on the copper. This makes the IPL relationship the appropriated model to follow. Latter in this paper we will discuss converting data from temperature versus cycles to failure to the more correct stress versus cycles to failure relationship.

The equation for the IPL relationship follows. As shown in equation 2, it is easy to perform a Logarithmic transformation on the IPL relationship followed by rearrangement so it follows a conventional linear slope/intercept model of f(x) = m*x + c. In the graphs that follow it is common to see a Log/Log scale in use.

L(V) = 1/KV n eq. 1

Log10 L(V) = - nLog10V - Log10K eq. 2

Where,

L represents a quantifiable life measure; for this paper both Mean life and T1% life are used

V represents the stress level

K is one of the model parameters to be determined, (K>0)

N is another model parameter to be determined

During our testing above Tg, we decided to IST test at four temperatures for a number of reasons:

1.To allow making an estimate of cycles to failure over the full range of assembly temperatures

2.By graph cycles to failure versus test temperature we gain insight into the shape of the failure curve

3.To see if testing at high temperatures introduces new failure modes

4.To better understand the safety margins of the laminate materials

In selecting four temperatures above Tg, 215°C is about the lowest you can go and still be far enough above the Tg transition zone where there are significant changes in laminate material properties. The rational for using 275°C is to see if there are changes in via failure modes at temperatures above the expected maximum Sn/Ag/Cu lead-free soldering temperature zone.

relationship used to establish the best fit to the data at multiple

temperatures. The RED lines show estimated CTF at 245°C.

Neither Graph 1 nor Graph 2 display an obvious failure mode shift as the test temperature is increased. Nonetheless, IST test at 275°C did result in two POST interconnect failures out of 12 IST coupons. To check if a failure mode shift was occurring, we looked at the resistance shift on the POST interconnect daisy chain in the IST coupon versus temperature. A typical IST coupon design has two daisy chains referred to as a PTH and POST daisy chain. The PTH daisy chain is for test of small via diameters, runs from layer 1 to 26 to 1 to26…, and is sensitive to fatigue in the center of the via. The POST daisy chain is for test of large via diameters, runs from layer 2 to 3 to 2 to 3… and from layer 24 to 25 to 24 to 25…, and is sensitive to interconnect separation between the plating in the hole to the inner layer connection pad.

In large, thick, high-end server pcb fabs with small pitch BGA components, the normal failure mode is fatigue of the small diameter plated through holes. The failure criteria used by Sun is a 10% resistance increase over the initial resistance of either daisy chain, which ever fails first. With the exception of the two IST coupons that failed for POST interconnect separation at 275°C, the remaining 46 coupons from test above Tg were all PTH failures. Graph 3 is important, it clearly shows the increase in resistance on the POST interconnect daisy chain as the IST test temperature is increased. So, even though only 2 of 48 IST coupons failed due to POST interconnect failure, Graph 3 shows there is a definite shift from small plated through hole interconnect failure to large plated through hole POST interconnect separation failure as the assembly peak temperature increased. Due to this failure mode shift on the 275°C IST data and concern that the cycle to failure data at 215°C is too close to the Tg transition zone, data from 235°C and 255°C is used to make the IPL/Lognormal estimate of cycles to failure at a Sn/Ag/Cu assembly temperature of 245°C. We will use 245°C as our lead-free assembly temperature for the remainder of this paper. From the data obtained from cycle to failure test of laminate material above Tg and data analysis method we utilized, it is easy to estimate cycles to failure at other temperatures within the range of 215°C to 275°C. Graph 4 shows the IPL/Lognormal plot and Table 2 summarizes the analysis from the three temperature combinations investigated.

255°C. The RED lines show estimated CTF at 245°C.

Table 2 – Cycle to failure estimates versus failure rate.

CTF at 245C from IPL/Log Normal Model

T1%

T50%

Temperatures Used for Model LCI Nominal UCI

215, 235, 255, and 275C 15.35 17.70 19.27 31.23

215, 235,and 255C 13.58 16.45 18.30 29.35

255C 12.34 15.94 17.92 28.93

235

and

IST Testing and Data Analysis Below Tg

After completion of IST testing and data analysis above Tg, the team at Sun selected the preconditioning temperature to use (245°C) and the number of preconditioning cycles to use (2x, 6x, and 10x). Since IST test equipment is small and modular with each test machine holding six coupons, we started testing with preconditioning and then cycle to failure at the higher temperature of 150°C. At no time did we attempt to test more than six coupons of any single test condition at a time. In hindsight, this was fortunate since the cycles to failure for IST coupons with low preconditioning cycles and coupons tested

preconditioning of 18x at 245°C and forego testing in three cells with either a low number of preconditioning cycles, a low peak temperature below Tg, or both since they would have taken too long to cycle to failure. See Table 1 for the original DoE plan and the actual DoE we ended up using.

From the perspective of data analysis, combining data from test above Tg, and test below Tg using different levels of preconditioning was a challenge. As previous mentioned, while the IPL relationship is valid for non-ferrous metals, we need to understand the stress versus temperature to enable plotting of cycles to failure versus stress. This is due to the large change in laminate material properties below and above Tg. In past work Sun has tested Miner’s Rule (also called the Palmgren-Miner cycle-ratio summary theory) [8], but the amount of data was not statistically significant. Miner’s Rule does not deal with temperature versus stress issue already discussed, and over the wide temperature range in which we are interested, changes in failure modes can invalidate predictions made at low temperature. This paper will now look at a number of data analysis techniques, including Miner’s Rule, to address these problems.

Table 3 – All data from the IST testing discussed in this paper

listed below. The method used to derive the stress levels discussed later.

Graph 5 uses a graphical method plotting the T1%, 90% lower two-sided confidence interval and using 6x thermal cycles at 245°C to estimate cycles to failure at a 95°C peak field use condition. From this, we estimate 550,000 cycles to failure in the field. At 365 thermal cycles per year (considered worst case for high-end servers), this is equivalent to over 1,500 years of field life! In Graph 6, we plotted all the raw data to give a feel for the variation. Instead of using the T1% value, we try to stay below the worse case data point. On both Graph 5 and Graph 6, we assume there is an inflection point (or discontinuity) in the laminate Tg transition zone with data below Tg and data above Tg following a different trend line. While this is a good assumption, where to place this inflection point is a matter of judgment that can have a significant effect on the cycle to failure estimates at a 95°C field life temperature. It also should be noted that on both graphs, the data for 6x and 10x preconditioning seems to be reversed with 10x having life close to 6x or if anything a bit longer. We have no good explanation for this other than a combination of a relatively small sample size and random chance.

confidence interval versus temperature.

Graph 6 – Log-log plot of all cycle to failure data versus temperature.

In earlier work of this type performed at Sun [3, 4], we noticed a discontinuity in the IPL/Lognormal distribution in data below Tg versus data above Tg. In that earlier analysis, the data to the left (below Tg) had a steeper slope than the data to the right (above Tg). This data does not appear to follow the same trend. At this point we do not know if this is due differences in the laminate material used or due differences in the pcb fab design, e.g., a much thinner pcb fab.

Regression Analysis using Miner’s Rule

One common method to analyze paired data is the use of multiple regression. In this analysis example, we decided to use Miner’s Rule that has the form of:

n1/N1 + n2/N2 + + n i/N i = C eq. 3

Where n 1, 2, … i is the number of thermal cycles applied to the IST coupon at a specific temperature or stress level N 1, 2, … i is the know number of cycles to failure, i.e., the life at a specific temperature or stress level C is a constant determined by experimentation and is usually found in the range of 0.7 ≤ C ≤ 2.2 If C=1 then Miner’s Rule becomes a simple equation of what proportion of life is used at each temperature

Since we performed all testing below Tg with preconditioning, we do not know the values for N 120C , N 135C , or N 150C . From testing above Tg, we do know the value of N 245C . From testing below Tg, we know the number of preconditioning cycles used, the number of cycles to failure after preconditioning at three temperatures, and have a large set of data to utilize. We have 138 data points to use to predict the four unknowns: N 120C , N 135C , N 150C , and C. At first glance, equation 3 does not seem to follow the format for multiple regression. Therefore, our first step is to transform the general equation 3, customize it for our data, and then transform it to fit a multiple regression format.

n 120C /N 120C + n 135C /N 135C + n 150C /N 150C + n 245C /N 245C = C eq. 4

next, define INVN x = 1/N x and then substitute it into eq. 4 to get eq. 6

eq. 5

n 120C *INVN 120C + n 135C *INVN 135C + n 150C *INVN 150C + n 245C *INVN 245C = C

eq. 6

Since n 245C *INVN 245C is know, we can further rearrange this to

- n 245C *INVN 245C = n 120C *INVN 120C + n 135C *INVN 135C + n 150C *INVN 150C - C eq. 7

This equation now has the form of f(x, y, z) = a*x + b*y + c*z + d eq. 8

and we will solve it for INVN 120C , INVN 135C , INVN 150C , and C (a, b, c, and d)

We performed regression analysis using Minitab Release 14. The regression equation obtained is:

- n 245C *INVN 245C = n 120C *.00002103 + n 135C *.00008322 + n 150C *.00019318 - .67899

eq. 9

.67899 = n 120C *.00002103 + n 135C *.00008322 + n 150C *.00019318 + n 245C *INVN 245C eq. 10

.67899 = n 120C /47,551 + n 135C /12,016 + n 150C /5,177 + n 245C *INVN 245C

eq. 11

Table 4 – Regression analysis output using Miner’s Rule with Minitab Release 14.

We can make a number of observations from the regression analysis results. Review of the R-Sq value of 54.4% and R-

Sq(adj) value of 53.4% in Table 4 that are indicators of the goodness of fit of the model shows they are not the highest numbers, but they are reasonable. Considering that the cycle to failure data for each precondition level and subsequent thermal cycling below Tg had a minimum range of 2:1 from high to low, than with this amount of variation in the raw data used to construct the model, you will not get a high R-Sq value. If you look at the Analysis of Variance section in Table 4, the largest portion of sum of squares (SS) error is due the regression factors with n120 and n150 being the largest two contributors to the SS variation.

Graphs 7 through 9 are various residual plots from the regression analysis. Although we looked hard at the residual plots, no specific cause for the residuals was determined. We thought that the manufacturing date/lot code of the IST coupon might be a factor. To test this we rated each combination of preconditioning level and subsequent thermal cycling below Tg. IST coupons in the upper quartile of cycles to failure in each combination were assigned a value of +1, coupons in the lower quartile were assigned a value of -1, and those in between were assigned a value of zero. Then we totaled each date/lot code score and divided the total by the number of coupons in each date/lot code. We then used the resulting score to order the date/lot codes from one (the best with highest positive score) to seven (the worst with lowest negative score). We than ran the multiple regression analysis again, but this time we included a term for the rating of the date/lot code. The R-Sq values from this analysis did not support adding another term and the residual plot (Graph 9) did not show any strong date/lot code relationship.

Graph 8 shows the residuals versus the number of preconditioning cycles at 245°C. This graph does show a trend, but we were unable to identify the cause at the time of writing this paper. One suspect is the 18x preconditioning since the cells with this high level of preconditioning also had the most outliers. In addition, all but one of the 18x residuals was less than zero.

cycles shows a dip in cycles to failure with more preconditioning.

not seem to be a trend between date codes. Therefore, the final regression

model does not include a term for the data code.

One final observation is that the size of the coefficients from the multiple regression study, i.e., the predicted N x values, are a good indicator of both the cycles to failure and the acceleration factors (AF) one would expect for thermal cycling without preconditioning.

N120 = 47,551 cycles to failure, obtained from multiple regression AF245-120 = 1,644

N135 = 12,016 cycles to failure, obtained from multiple regression AF245-135 = 415.3

N150 = 5,177 cycles to failure, obtained from multiple regression AF245-150 = 178.9

N245 = 28.93 cycles to failure, obtained from Lognormal distribution AF245-245 = 1

After completion of the Miner’s Rule regression analysis, there remain two major issues with the analysis: 1) it returns averaged numbers for estimates of cycles to failure at temperature hiding the inherent variability of the raw data and 2) it does not address the large change in laminate material properties below and above Tg. Graph 10 shows one answer to the first issue, a Monte Carlo simulation that uses the coefficients from the Miner’s Rules regression model and the coefficients for the standard error to predict cycles to failure with variation. Once the Monte Carlo model is developed, it is very easy to vary the number of preconditioning cycles at 245°C to gage the effect on field life with a 95°C peak temperature. The second issue, addressing the large change in laminate material properties below and above Tg requires a new analysis approach. We discuss this in the next section.

Graph 10 – Shows CTF versus Peak-Ambient temperature as assembly

preconditioning at 245°C is varied from 2 cycles to 15 cycles. Each of the

four temperatures per graph contains 1000 simulated data points.

Using TMA and DMA Data to Derive the Temperature versus Stress Relationship

Graphs 11 and 12 both show the large change in laminate material properties below and above Tg. Each graph shows the results from laminate material testing on one of the five date/lot codes tested (lot 0505C). Graph 11 shows an increase in the coefficient of thermal expansion (Z-axis CTE) tested using thermal mechanical analysis (TMA) from 28.9 PPM/°C below Tg to 128.7 PPM/°C above Tg; a 4.45 times increase. Graph 12 shows a decrease in the tested storage modulus using dynamic mechanical analysis (DMA) from 18,000 MPa below Tg to 2500 MPa above Tg; a 7.2 times decrease. Tables 4 and 5 summarize the laminate material test data for five date/lot codes.

Graph 11 – TMA plot of Z-axis expansion versus temperature for board date code 0505C.

Graph 12 – DMA plot of modulus versus temperature for board date code 0505C.

Table 4 – Z-axis expansion rate and Tg data from TMA testing.

Table 5 – Modulus and Tg data from DMA testing.

We used a simple 1st order approximation to derive the temperature versus stress relationship:

https://www.360docs.net/doc/5e18932798.html,e the expansion rate data from TMA in small increments and use it to calculate the strain for each small

temperature increment (typically <1°C)

a.Where Strain = (L higher temp – L original temp)/L original temp where L is the length

2.Look-up the Modulus at temperature for each expansion increment

3.Calculate the incremental stress (Stress = Strain × Storage Modulus) for each temperature increment

4.Calculate the cumulative stress by adding each increment of stress as temperature rises from ambient to 275°C peak Graph 13 shows the Temperature versus Stress relationship obtained using this method for one of the laminate material date/lot codes tested. Table 6 is a convenient cross reference of temperature versus stress on the copper plated through hole for the temperatures used in this paper. Knowing this relationship allows us to quantify the stress on the copper plated through hole from some of the temperature differences. For example, the lead-free assembly stress for Sn/Ag/Cu solder at 245°C is 111.6 MPa; this is 9% higher than the comparable eutectic solder assembly stress of 102.4 MPa at 215°C.

Table 6 – Cross-reference table from temperature to Z-axis stress on the copper PTH.

Analysis of Cycle to Failure Data versus Stress

Now that we understand the stress on the copper plated through hole versus temperature relationship, we will use that information to make additional plots of cycles to failure versus stress. Graph 14 is a log-log scatter plot of all the raw data. The lines projecting to 95°C use Miner’s Rule. In fact, switching from cycle to failure versus temperature to cycle to failure versus stress has no effect on the Miner’s Rule relationship. Classic Miner’s Rule plots are S-N plots so Graph 14 should be closer to Palmgren and Miner’s original intend, but in the Table 7 comparison of results, Graph 14 shows the highest cycles to failure estimates of any of the analysis methods.

Graphs 15 through 17 use the IPL/Lognormal curve fitting capability of Reliasoft ALTA Version 6. The difference between the three graphs is the preconditioning at 245°C ranging from 6x, 10x, and 18x. In addition, we established a separate

IPL/Lognormal relationship for data below and above Tg. Nonetheless, it does look like the data from 215°C (102.4 MPa) falls close to the relationship established from data below Tg. It is possible that 215°C was at a low enough temperature that it did not exhibit any hint of the failure mode shift from PTH to POST interconnect failure. Table 7 shows four estimates using this analysis method including 18x with four outliers removed (graph not included) and 18x with all data including four obvious outliers. As noted earlier, we added 18x preconditioning to the original DoE plan after testing had started. 18x used due to very long cycles to failure at lower preconditioning cycles and lower thermal cycle temperatures. In hindsight, may be 15x preconditioning would have been a better choice, 18x does appear to be a bit excessive. Graph 17 clearly shows the effect of including the four outliers, it leads to a large drop in the cycles to failure and a skewed distribution. Once again, the cause is excessive preconditioning, if we had looked more carefully at the data analysis from testing above Tg, we would

blue lines of cycles to failure versus stress based upon Miner’s Rule.

estimates made below and above Tg due to preconditioning of 6x at 245°C below Tg.

estimates made below and above Tg due to preconditioning of 10x at 245°C below Tg.

estimates made below and above Tg due to preconditioning of 18x at 245°C below Tg. This plot includes all data points from testing with 18x preconditioning at 245°C including four outliers omitted from earlier analysis.

Table 7 – A comparison of CTF estimates using a number of analysis methods. Even with excessive

preconditioning of 18x (>2.5x what is allowed on actual product with eutectic solder)the worst case

estimate of cycles to failure is 3,500 cycles; equivalent to >9 years in the field at one thermal cycle/day.

Comparison of Results

There is a wide difference in the results in Table 7. Some of this may be due to the inclusion of data with 18x preconditioning and the variability it adds. In general, the closer you get to the failure threshold during preconditioning, the wider the variability since a difference in one or two cycles to failure at the 245°C preconditioning temperature is equivalent to 170 to 3,000 cycles at thermal cycle temperatures. Looking at 6x preconditioning which is the equivalent to assembly and 2x rework, the lowest estimate is 17,000 cycles to failure from the various analysis methods. At 365 cycles per year, this is equivalent to 46 years of field life.

We need to discuss the resources needed to perform this type of thermal cycle testing. Those resources fall into three areas: 1) cost to fabricate test coupons, 2) cost of testing, and 3) cost of data analysis. The focus of this paper is to develop methods that can save cost in areas 1 and 2, even though it may add cost in 3. When we add the cost from these three areas together, our goal is a net cost reduction. Testing above Tg at multiple temperatures is fast and cost effective. For the 48 coupons tested above Tg, the average was 39 cycles to failure. In comparison, testing below Tg is slow and expensive. For the 138 coupons tested below Tg, the average was 3000 cycles to failure. In this paper, we looked at a number of variations in the amount of preconditioning and thermal cycle temperatures. Once we develop a valid method, then we can reduce the number of test conditions.

The method of using Miner’s Rule and multiple regression followed by Monte Carlo simulation was complex and time consuming to develop, but does show promise. Nonetheless, with the proper statistical analysis tools multiple regression analysis is straight forward and fast. The Monte Carlo simulation was difficult the first time around, but lends itself to automation using a spreadsheet with macros or perhaps using a programming language like Matlab. The biggest issue we see with Miner’s Rule is the need for a significant amount of data below Tg to make accurate predictions. The data below Tg is the most expensive to obtain due to the long to cycle to failure time.

Developing a method to merge TMA and DMA data to make a temperature versus stress curve was difficult the first time, but this method also lends itself to automation with a spreadsheet or Matlab. We feel that understanding the temperature versus stress curve is very important since it provides insight into what the laminate material is doing to the plated through hole. Understanding the temperature/stress relationship is also the key to performing testing in the Tg transition zone where test time should be fast, but where we can stay below the Tg where the PTH to POST interconnect failure mode shift occurs. Conclusions and Summary

A number of data analysis methods for understanding plated through hole reliability versus temperature were developed, tested, and hold promise. In particular, we developed a method to produce a temperature versus stress curve from TMA and DMA testing of laminate material that is an important step forward. By understanding the stress applied to the copper plated through hole over a wide temperature range, we have more freedom to choose what temperatures we use to test. Since copper is stable in the temperature that we are interested in, knowing the stress on copper versus temperature means we no longer need to avoid testing in the laminate materials Tg transition zone.

Use of the data and analysis methods developed in this paper allow dropping the number of test conditions used to characterize a laminate material and pcb fab design. We would recommend testing above Tg, for example, 210°C, 235°C, 260°C, and 285°C to investigate failure mode shifts like the shift from PTH fatigue failure to POST interconnect separation, delamination, and in general, the laminate material safety margins at lead-free assembly conditions. This data is quick to get and provides insight into the plated through hole life that is useful for setting up test conditions for test below Tg. An example for test below Tg is 6x preconditioning at 245°C followed by thermal cycle to failure at 130°C, 180°C, and 210°C (50, 75, and 101 MPa). Assuming there is sufficient safety margin when extrapolating cycles to failure to field use conditions, this would be sufficient testing to estimate field life

There is an old saying “There is No Free Lunch” that is very appropriate here. The new analysis methods investigated in this paper hold the promise of reducing sample size and testing costs, but do require more advanced analysis expertise. So, in the short term the saying still holds true... Long term, these new analysis methods bring a much deeper understanding of plated through hole reliability at both assembly and in the field and this understanding is valuable to assist in making smarter business decisions and in reducing the amount of testing.

Future Work

Sun plans to perform additional thermal cycle life testing to understand plated through hole reliability in a lead-free assembly environment. In particular, we will continue to work on a couple of the most promising methods to improve them. We also plan to evolve from the 1st order stress on copper versus temperature model used in this paper to a model that incorporates the mechanical properties of both laminate material and the copper plating.

We encourage other parties to work in this area of plated through hole cycle to reliability and failure analysis and appreciate all constructive criticism of this work.

Acknowledgements

PWB Interconnect Solutions, Bill Birch, Neil Copeman, Jason Furlong

Sanmina-SCI, Owego, NY, Don Taylor

Sun Microsystems, Inc., Dave Love, Karl Sauter, Charlotte Stoutamire, Dave Towne, Derek Tsai

University of Maryland-CALCE, Dr. Michael Pecht

Software Used in the Data Analysis

Microsoft Office Excel 2003

Minitab Release 14

Reliasoft ALTA Version 6

Sun Microsystems StarOffice Version 8

Acronyms Used

BGA – Ball Grid Array

CI – Confidence Interval

CPU – Central Processing Unit

CTF – Cycles to Failure

DMA – Dynamic Mechanical Analysis

DoE – Design of Experiment

HATS – Highly Accelerated Thermal Stress

IPL – Inverse Power Law

IST - Interconnect Stress Test

LCI – Lower Confidence Interval

PCB – Printed Circuit Board

PCB Fab – another name for a PWB

PTH – Plated Through Hole

PWB – Printed Wiring Board

Tg – T sub G or Glass Transition Temperature

TMA – Thermal Mechanical Analysis

UCI – Upper Confidence Interval

References

https://www.360docs.net/doc/5e18932798.html,

2.

3.Jason Furlong, Michael Freda, “Application of Reliability/Survival Statistic to Analyze Interconnect Stress Test Data

to Make Life Predictions on Complex, Lead-Free Printed Circuit Board Assemblies,” Cologne, Germany, Proceedings of EPC 2004, 5 October 2004.

4.Michael Freda, “Interconnect Stress Testing, Historical Baseline Cycle to Failure Data and Analysis Results from

Upcoming Generation of Lead-Free Servers,” Dongguan, Peoples Republic of China, HKPCA 2004 Conference, 9 December 2004.

5.“Inverse Power Relationship Introduction,” at https://www.360docs.net/doc/5e18932798.html,/AccelTestWeb/inverse_power_law

6.Don Barker, Craig Hillman, et al, Meeting at University of Maryland, College Park, MD., 12 May 2005.

7.Don Barker, private email on Storage and Loss Modulus, 25 July 2005.

8.J.E. Shigley and C.R. Mischke, “Mechanical Engineering Design, Fifth Edition,” McGraw-Hill Book Company, pages

309-311, 1989.

9.Don Barker, Meeting at University of Maryland to discuss method to develop the stress on copper versus temperature

curve, College Park, MD., 18 May 2005.

10.Joe Smetana, Ken Ogle, “Via (Plated Through Hole) Integrity with Lead-Free Soldering,” Proceedings of IPC/APEX

2006, Anaheim, CA, 8-10 February 2006.

工艺技术员岗位工作职责

工艺技术员岗位工作职责 1、在生产技术部门的领导下,负责车间生产的工艺技术工作和 工艺管理工作。 2、编制产品生产的工艺文件,制定材料消耗工艺定额;根据工艺需要,设计工艺装备并负责工艺工装的验证和改进工作;设计车间产 品物流和区域功能平面布置图。 3、工艺人员要深入生产现场,掌握质量情况;指导、督促车间一线生产及时解决生产中出现的技术问题,搞好工艺技术服务工作。 4、负责新产品图纸的会签和新产品批量试制的工艺工装设计, 完善试制报告和有关工艺资料,参与新产品鉴定工作。 5、承担工艺技术管理制度的起草和修订工作,组织相关人员搞 好工艺管理,监督执行工艺纪律。 6、组织领导新工艺、新技术的试验研究工作,抓好工艺试验课 题的总结与成果鉴定,并组织推广应用。搞好工艺技术资料的立卷、归档工作。 7、协助公司人力资源部门搞好对职工的技术教育及培训。 8、积极开展技术攻关和技术改进工作,对技术改进方案与措施,负责签署意见,不断提高工艺技术水平。 9、负责本技术部门的生产工艺方针目标的展开和检查、诊断、 落实工作。 10、完成总工程师布置的各项临时任务。 1、对在计划规定期限内未完成工艺准备工作,而影响新产品试 制进度和生产任务完成负责。 2、对因工艺编制或工装设计问题,导致产品大量报废或返修, 造成经济损失负一定责任。

3、对解决生产中发生的工艺技术问题不及时处理,并影响生产 负责。 4、对审查签署的工艺技术文件、产品技术条件、工艺标准、工 艺规程等工艺资料的正确性、合理性、完整性负责。 5、对原材料工艺消耗定额存在计算方法或数值错误,造成浪费 或损失现象负责。 6、对由于工艺设计不合理,造成不良影响负责。 7、工艺负责人对公司要求制定的生产工艺方针目标的及时展开、检查、诊断和落实负责。 8、对在工艺技术资料发生失、泄密现象负责。 9、工艺人员协助生产总调度工作,对公司生产技术部总调度布 置的工作负责。 1、负责产品设计,经总工程师批准后下达到工序,检查和调整 上机工艺。 2、上机工艺检查的信息反馈,参与原毛、半制品和成品的检验,评判技术品级。 3、工作巡回,指导和参与半制品及成品的试验。 4、协助总工程师进行全面质量管理、参与质量守关活动。 5、负责轮班试验数据和汇总与存档。 6、完成上级交办的临时性工作。

信息技术部职责与岗位说明书

省级分公司信息技术部工作职责 在总公司信息技术部指导下,负责分公司信息建设及管理,负责分公司应用系统的运行、维护和管理,负责信息技 术基础设施及平台的配备及其运行、维护和管理,为公司经营管理提供有效的技术支持。 (1)根据信息技术发展战略规划,按照总公司的统一部署,负责辖区内信息中心的建设与管理,满足公司经营管理的需要; (2)根据全系统数据中心建设的实施战略,实施业务及 经营管理数据的统一和集中管理; (3)负责应用系统的运行、维护和管理,及时解决运行中出现的问题,提供相关技术培训,保障应用系统正常运行; (4)负责分公司信息中心的运行、维护及管理,及时处理 在运行过程中出现的各种问题,并保障系统与数据安全; (5)根据分公司经营管理的有关需求,收集、整理、及时提供有关信息和数据,并提供相关的技术支持; (6)根据总公司的统一部署,配备信息技术设备,建立并更新分公司及下属公司的信息技术基础设施及平台,同时提供运行支持、维护和管理,确保其安全、有效运行。 (7)领导交办的其他工作。 岗位说明书

说栏 岗位目的 用一句话概括该岗位对组织机构的贡献和设立的意义: 根据总公司信息化战略规划以及全省业务发展要求,制定、组织实施全省信息技术工作计划,协调上下级公司信息技术部、省级公司相关部门、中国人寿系统外相关部门和合作单位,确保全省信息系统安全、稳定、有效运行,为公司运营提供有效的信息技术 服务。 岗位任职要求

该岗位所需的最低资格要求 计算机本科或以上学历,5年以上信息技术工作经验,3年以上保险行业经验,2年以上管理经验。 岗位说明书 说明栏 岗位目的 用一句话概括该岗位对组织机构的贡献和设立的意义: 根据部门要求,组织全省信息系统及平台的日常运行、维护、管理工作,组织非总公司集中

船舶轴带发电机

船舶轴带发电机 一、主要类型 ●频率变动型 ●频率稳定型 ●复合型 l:轴带发电机;2 :晶闸管整流器;3 :电抗器;4 :晶闸管道变器;5 :短路电抗器;6 :同步调相机;7 :励磁变换器;8 :控制装置;9 :励磁变压器;10 :负载 ●关键问题:根据主机的运行条件,对主机转速的变化进行补偿,以获得恒频、恒压的电力 转速补偿方式: 无频率补偿型:发电机的频率随主机转速而变化 频率补偿型:采用机械或电气的控制手段保持船舶电网的频率 变距桨和轴带发电机

工作原理:发电机与主机转轴靠机械传动装置(减速齿轮箱)联在一起 缺点:①输出电源频率受主机负荷变化的影响;②可以和其他发电机并联运行,但时间不宜过长;③输出功率的大小受主机允许输出功率的限制; 三、定距浆船舶的轴带发电机 船舶电气安全管理 一、船舶照明系统的维护保养 1. 照明系统的维护周期和要求★ 测量线路的绝缘电阻 检查灯头接线是否老化和开断 检查室外灯具水密性能与锈蚀 开航前,应检查航行灯、信号灯的供电电源、灯具及故障报警装置 探照灯、运河灯在使用前应检查其电源、开关、连接电缆和灯具的水密性能及绝缘电阻情况 2. 照明系统维护保养注意事项★ 尽量避免带电更换灯泡,更换的灯泡应与电源电压一致,功率不能超过灯具允许的容量。 在检修某些特殊部位,例如辅锅炉内部、柴油机曲轴箱、压载舱、储水柜等地方需用临时照明时,必须使用带有安全网罩的36 V以下的低压灯。 装卸易燃危险货物时,不可使用携带式货舱灯。 应急照明灯具应涂以红漆标记,以示区别。经常检查灯泡是否良好,损坏的应及时更换.。 甲板、船桥等露天投光灯具,开灯前应先脱去帆布,用完要及时将帆布罩妥。 室外水密插座,通电前先检查插头螺母是否旋紧,取出插头前检查电源是否切断,用毕后应旋紧防水盖。 需要张挂彩灯时,要考虑到供电线路和开关的载流量、各相电流分配是否平衡,并要配备好保护装置。油船严禁张挂彩灯 二、船舶电气火灾的预防★ 1.电气设备起火原因 电气设备的绝缘下降或损坏,电气线路发生短路、接地等 故障引起的火花; 电气设备长期过载、超负荷工作,温升超过允许值,甚至燃烧; 继电器、接触器通断‘情况不良,灭弧不好; 直流电机换向不好,换向火花过大; 导体或电缆连接点松动,接触不好,引起局部发热甚至燃烧。 2.电气设备的防火要求 经常检查电气线路及设备的绝缘电阻,发现接地、短路等故障时要及时排除; 电气线路和设备的载流量必须控制在额定范围内; 严格按施工要求,保证电气设备的安装质量;

工艺技术员岗位职责及任职要求

工艺技术员岗位职责及任职要求 岗位关系 在车间副主任领导下,从事工艺技术管理工作。 1 职责与职权 1.1 主要职责 1.1.1 负责贯彻执行公司及车间各项生产管理制度和工艺艺技术规程。 1.1.2 组织对化工工段、班组进行技术指导,风险识别评价。 1.1.3 负责编制、修订化工岗位责任制、岗位操作法、生产工艺技术规程及车间开、停车方案,事故预案,公司控风险消减措施的判定,公司控设备检修的风险评价。 1.1.4 负责编报技措、安措、环措的计划;组织开展群众性的技术革新活动。 1.1.5 负责车间与质管、环保、计量、生产技术等职能科室的联系;组织实施质管、环保、节能措施。 1.1.6 负责操作记录、工艺图纸和技术资料的管理,做到台帐、资料完整齐全。

1.1.7 组织车间员工技术培训,指导化工岗位技术练兵。 1.1.8 参与车间各类事故的调查、处理。 1.1.9 编制工艺月报和生产技术工作总结。 2 主要职权 2.1 对化工班组执行技术规程的情况有检查、考核指导权。 2.2 对本车间工艺事故的处理有建议权。 2.3 对新技术、新工艺的引进使用有建议权。 2.4 对化工生产有技术指导权,对其违章操作有制止权。 3 学历与专业 3.1 学历层次 大学专科毕业 3.2 专业类别 无机化工、高分子化工、化学纤维、精细化工、石油加工等专业之一。 4 知识要求 4.1 基础知识

掌握化工原理、物理化学、无机化学、化工热力学、分析化学等基础理论知识。 4.2 专业知识 熟练掌握无机化工工艺学、化学反应工程学、化工过程分析等专业知识。 4.3 相关知识 掌握化工设备、机械制图;熟悉化工仪表、电子学;了解电子计算机应用等相关知识。 4.4 管理知识 掌握生产管理、技术管理;熟悉全面质量管理、目标管理、HSE管理、系统分析、预测与决策技术;了解本公司有关企业管理的规章制度。 4.5 政策法规知识 了解计量法、环保法、能源管理条例等法规知识。 5 工作能力 5.1 分析判断能力 5.1.1 能提出本车间工艺技术方面的问题,并进行综合判断,提出相应的对策。 5.1.2 能对合理化建议进行分析、判断,为领导决策提

船用主机轴带稳频发电机简介

船用主机轴带稳频发电机简介 1.主机轴带稳频发电机的应用 船舶在选用主柴油机时,要考虑海况,船况,柴油机安全等功率储备。该储备须达到额定功率的10%~15%。如果船舶航行于平静的海面,并且船舶出厂不久或坞修之后,这时海况及船况良好,主柴油机就有较大的功率储备没有得到充分利用,另外,主柴油机大都在部分负荷下运行,而在低于75%~85%额定功率的低负荷下运行时,其经济性将下降,如果利用轴带发电机,可以使主机长时间在较高负荷下运行,从而具有良好的经济性。对于货船,一般来说其电站功率为主机额定功率的5%左右。轴带发电机完全能满足船舶正常航行的电力需要。主机轴带发电机因其良好的经济性而得到广泛应用。 2.采用主机轴带稳频发电机的优越性 降低主机燃油消耗,提高综合经济性 主机配备轴带发电机后,可以长期在较高负荷下运行,油耗率的依降低。另外,主机效率一般比辅助柴油机要高,而且主柴油机一般燃用劣质燃油,从而进一步降低了燃料费用,提高了综合经济性。 利于能量综合利用 主机配备轴带发电机,船舶正常航行时由轴带发电机供电,不必使用辅助柴油机,因此可以省去副机动力系统的功耗,而主机辅助系统功耗基本不变,目前,船舶副机的排烟余热一般没有得

到利用,而四冲程的辅助柴油机较二冲程的主柴油机排烟温度高,因此浪费了大量排气余热。 如果设置主机轴带发电机,辅助柴油机因运行时间少,其排气余热浪费减少,而主机的排气余热可以得到更为有效的利用。 减少润滑油消耗及副机维修保养费用 船舶正常航行时,由主机轴带发电机供电,于是辅助柴油机运行时间大大缩短,其滑油耗量减少,磨损减少,运行维护费用因此降低。 改善工作条件 机舱噪声可以减轻,从而改善工作条件。 3.轴带稳频发电机特点 WP-H系列船用稳频轴带发电机是本厂自主研发的新一代节能新产品,具有核心知识产权,国家专利。是利用船舶航行主机动力附轴带动的轴带发电机,具有输出频率及电压稳定可靠的特点,其节能效果特别显著。在船舶主机不稳定转速(从怠速至高速)的动力输入到稳频发电机上,给船舶提供各项性能可靠的优质电源。 WP-H系列船用稳频发电机主要适用于运输船舶、工程船舶、渔业船舶等,当主动力转速通过增速离合器输入转速在900-2300r/min范围内变化时,发电机的输出频率始终稳定值为50±1HZ,输出电压始终稳定为400V±1%,目前生产的功率范围为:15KW-120KW. WP-H系列船用稳频发电机具有结构设计先进、性能优良、质量可靠、运行稳定等特点,产品符合GB12975-91《船用同步发电机通用

氰化镀铜

氰化镀铜工艺在电镀中的应用及常见故障处理 氰化镀铜带给人体健康危害及废物处理问题,在厚镀层已减少使用。但是由于无氰镀铜工艺不够成熟,存在着产品不太稳定、结合力不理想、对前处理要求高、废水处理困难等缺点,在实际应用中仍然不能大范围的取代氰化镀铜工艺。故而氰化镀铜仍大量应用于打底电镀工艺中,如用于钢铁、锌合金、铝合金、铜合金、镁合金、镍合金和铅合金等金属及合金上。 推出了两种氰化镀铜工艺:DL-3&4高效能氰化镀铜工艺和DCU-60光亮氰化镀铜工艺,在满足上述要求的基础上还具有以下优点:柔软的可塑性镀层、容易抛光、良好的导电性、良好的可焊性、易与其他金属电沉积等等。下面就其工艺特点、操作条件等进行一一介绍: 一、工艺特点 DL-3&4高效能氰化镀铜工艺DCU-60光亮氰化镀铜工艺 1.铜镀层结晶细致,光亮及均匀。 2.电流密度范围宽阔,覆盖能力极佳。 3.有机或无机杂质容忍度高,易于控制。 4.适用于钢铁、铜、青铜等不同基体的工件,尤为适合于锌合金压铸件。 5.镀液可用氰化钾或氰化钠配制,效果同样理想。1.为电镀锌基铸件时必备的铜层。 此光亮氰化铜镀层平滑、紧密、幼细,故可增加电镀氰化铜时间,使整件锌基铸件完全被铜层遮盖好,以后镀上酸铜及光亮镍时,不至发生毛病。 2.电流密度范围广阔,沉积速度较快。3.可作滚镀及挂镀。 4.杂质容忍量高,易于控制。 5.如镀件全部为钢铁工件时,氢氧化钠含量可调高至10-30克/升。 二、镀液组成及操作条件 DL-3&4高效能氰化镀铜工艺DCU-60光亮氰化镀铜工艺氰化铜(CuCN)53-71克/升氰化亚铜50-70克/升氰化钠(NaCN)73-98克/升氰化钠70-100克/升氢氧化钠(NaOH)1-3克/升氢氧化钠1-3克/升DCU-01诺切液30-50毫升/升DCU-01诺切液30-50毫升/升

车间工艺技术员岗位职责

车间工艺技术员岗位职责 目的:为了使车间工艺技术员明确自己的职责,熟悉与其职责相关的工作要求,避免或 降低混淆、差错等风险的发生,特制定本文件。 范围:适用于车间工艺技术员岗位。 责任:工艺技术员、车间副主任、车间主任、人力行政部经理、生产管理负责人。 内容: 1. 任职工艺技术员的素质特征及素质描述: 1.1具有药学或中药学相关或相近的专业技术能力,熟悉药品生产工艺流程和工艺规程,熟知药品生产标准操作规程(SOP),了解相应车间工序的设备。 1.2具有较强的药品质量意识,熟知药品相关法律法规,熟练运用GMP规范和公司药品质量管理文件及标准操作规程(SMP、SOP)的规定,熟悉药品中间产品、待包装产品、成品的质量要求。 1.3具有较强的管理水平,具有较强的事业心和责任心,日常车间生产安排合理, 人员调配到位,能保证按计划完成生产任务量,保证产品质量。 1.4 具有很强的分析和判断能力,在药品生产中对生产过程中出现的问题、现象, 能正确分析、判断,及时快速反应或者及时予以解决。 1.5具有较强的协调沟通能力,能合理调配安排本车间的人员、合理安排本车间人 员的工作任务,能强有力的协调车间之间、车间与相关职能部门之间的工作,保障本车 间日常生产作顺利进行。 2. 工艺技术员的岗位职责: 2.1 车间工艺技术员对车间主任负责,在车间主任领导下,负责本车间的生产技术 质量管理工作,在业务上接受公司技术部的指导。 2.2 负责产品岗位(或工序)标准操作规程的编写修订工作,批准后组织执行。 2.3 承担日常工艺查证工作,日常监督检查本车间工艺规程及岗位操作规程的执行 情况,对车间工艺纪律执行负责。 2.4 协助车间主任对车间员工的工艺规程和与GMP相关的管理规程的培训工作,组织员工学习工艺规程和各种标准操作规程,并严格监督执行。 2.5 参与制订(或修订)中间产品、待包装产品及成品质量标准,并贯彻执行,对 车间的产品(中间产品、待包装产品及成品)的质量负责。 2.6 负责产品批记录的制定和修订工作,认真检查批记录的填写和保存情况,定时

碱性无氰镀铜——取代氰化镀铜工艺

碱性无氰镀铜——取代氰化镀铜工艺 第35卷增刊材料保护 Vol N。10 35 旦竺:!!!! —型翌主生二坐二L一一!坠:!垦垦!垒垦!!塞Q!堡!蔓!Q盟 碱无性氰镀铜 ——取代氰化镀铜工艺 韩书梅(翟叙 。 (深圳市圣维健化工有限公司,深圳518000) [摘要】介绍了氰化镀铜的取代工艺一碱性无氰镀铜。该工艺已稳定用于生产。希望谊工艺能对取代氰化饿铜作

出贡献。 [关键词】无氰镀铜;预饺铜;碱性垃铜 1 【中围分类号]TQl53 [文献标识码]B 01[文章编号】1001—1560(2002)增干q一0055 氰化镀铜在电镀行业具有广泛的应用价值,尽管近年来在 作为铁件电镀cu,NVcr、Al件电镀C#Ni,Cr和Cu件电镀Cu , N“Cr的底层方面,己尽可能的被其它非氰镀层所取代,但是 为zn合金压铸件的打底层,氰化饿铜具有无可比拟的优势,作 然被广泛应用。仍 2镀液配方及操作条件我国电镀工作者一直在致力于取代氰化镀铜的工作,在上 个世纪八十年代,曾出现过柠糠酸盐镀铜,HEDP镀铜等工艺, 滚挂镀镀由于存在不同程度的缺点,应用面有局限且商品化程度不高,难项目 最佳范围最佳范围 以大量推广。20世纪九十年代初期,无氰镀铜工艺己在国外得 8 6,10 6 4,8 Cu,(g?L。1) 以发展,并己商品化”】,用以取代氰化镀铜工艺。据资料介绍, 500 450,550 500 450,550 SWJ一8000,(ml?L1) 这类镀铜工艺通常是以羧酸、胺、磷酸盐为二价铜离子的鳌合 50 40,60 40 30,50 K2CO】,(g?L。) 剂,可以获得符合预镀要求的铜镀层。该工艺己用于汽车保险 适置光亮剂SWJ一8001 适量 杠预镀,零件电镀,装饰电镀的预镀层,还可作为热处理防止掺

服装公司技术部工作职责(1)

技术部工作职责 岗位说明书 一、岗位名称:CAD 制版 二、所属部门:技术部 三、直接上级:技术部主任 四、直接下属: 五、核心职责:按时、按质、按量完成上级分配工作 六、具体职责: 1、对工作认真,按时完成上级下达任务; 2、在制版过程中注意每个细节尽量按客户要求做好,对不合理及时提出来 得以尽快解决; 3、版形注意美观合体,注重省工省料增加效益; 4、制作过程中有问题及时和相关人员沟通,合理简单化,而不影响其效果; 5、推大货纸版时应认真核对客人及业务员反馈的意见,对尺寸、板型、细 节上应得到业务员确认后方可做。 6、加强与本部门或其它相关部门沟通,并提供相应部门所需技术资料; 7、热爱本职工作,爱护公司设备; 8、努力提高自我技术多为公司贡献。 七、主要权限: 1、对工作提出自己的意见和建议; 2、不合理的尺寸要求更改,按版形要求做正确的样品。 直接上级签名:岗位执行人签名: 日期:日期: 一、岗位名称:技术部主任 二、所属部门:技术部 三、直接上级:技术厂长 四、直接下级:打板员、CAD排版员、样品组长、主辅料配备员 五、核心职责:负责技术部的全面运作管理,为业务和生产流程提供正确有 效的技术支持 六、具体职责: 1、全面负责技术部管理,合理组织和调配人力、物力、设备,保质保量按 时完成公司所需的样衣、纸板、尺寸单、工艺单、算料单(单耗)的制 作任务,并及时提供给相关部门; 2、负责下属人员的工作安排、职任确定、工作协调、检查考核、任免奖惩 申报等项工作,保证部门人员责任清晰、目标明确、精简高效; 3、负责制订和建立技术部的工作流程、工作程序、技术标准和规范以及

轴带发电机(中英对照)

4 轴带发电机 Shaft generator 4.1 功率输出 / 恒频装置 PTO/CF (Power Take Off / Constant Frequency ) ○ 1 液压马达 Hydrostatic motor ○ 2 输出轴 Output shaft ○ 3 液压泵 Hydrostatic pump ○ 4 多摩擦片离合器 Multi-disc clutch ○ 5 输入轴 Input shaft ○ 6 控制器 Controller ○ 7 接线端 Terminal 2, 功率输出 / 齿轮恒定传动机构 - 类型 1 PTO/GCR (Power Take Off / Gear Constant Ratio) transmission gear - type1 ○1 ○2 ○3 ○4 ○5 ○6 ○7

○ 1 发电机 Alternator ○ 2 固定扭力联轴器 Torsional rigid coupling ○ 3 升速机构 Step-up gear ○ 4 主机侧 Main engine side ○ 5 支撑轴承 Support bearing ○ 6 弹性联轴器 Flexible coupling 3, 功率输出 / 齿轮恒定传动机构 - 类型2 PTO/GCR (Power Take Off / Gear Constant Ratio) transmission gear – type2 ○1 ○2 ○3 ○4 ○5 ○6

○ 1 组合挡油环和带齿联轴器Combined slinger and toothed coupling ○ 2 曲轴机构 Crankshaft gear ○ 3 发电机 Alternator ○ 4 支架 Brackets ○ 5 机座 Bed-frame ○ 6 带齿联轴器 Toothed coupling ○ 7 多摩擦片离合器 Multi-disc clutch 4, 功率输出 / 恒频装置 - 前端安装 PTO/CF (Power Take Off / Constant Frequency )- Front end installation ○1 ○2 ○3 ○4 ○5 ○6 ○7

氰化镀铜故障及其处理方法:镀层粗糙且色泽暗红资料

氰化镀铜故障及其处理方法:镀层粗糙且色泽暗红 可能原因原因分析及处理方法(1)镀液温度太低处理方法:用玻璃温度计测量槽液温度,并调整温度到标准值(2)阴极电流密度太大处理方法:a.检查并校核电流表的准确度;b.准确测量工件的受镀面积,并按工艺规范设定电流值,详见故障现象l4(1)的相关论述(3)阳极面积太小处理方法:a.调整阳极与阴极的面积比为2:1左右。计算阳极面积时,阳极正反面的面积均应计算在内。阳极背面,可按实际面积的1/2计。这样计算的都是表观面积。在实际生产中,应根据电解液成分的分析结果,调整阳极数量b.使用部分不溶性阳极(约为总阳极面积的5%~l0%),借以调节铜离子含量和保持阴阳极面积比。目前不溶性阳极有不锈钢板、铁板、石墨板等,以不带入有害杂质和成本适中为准则(4)镀液中游离氰化钠含量太低处理方法:①化学分析方法准确分析,并调整到标准值,同时控制铜和游离氰化钠的比值如下a.在预镀铜溶液中Cu:游离NaCN=1:(0.6~O.8)b.在一般镀铜液中Cu:游离NaCN一1:(0.5~0.7)C.在含有酒石酸盐和/或硫氰酸盐的镀铜液中挂镀:Cu:游离NaCN=1:(0.4~0.6)滚镀:Cu:游离NaCN=1: (0.6~0.7) 氰化钾镀铜液Cu:游离KCN=1:(0.2~O.3) ②从生产中发生的现象进行判断(由于阳极钝化)a.阳极区溶

液出现浅蓝色。由于游离氰化钠过低,阳极表面上会有不溶性的氰化亚铜薄膜黏附,使阳极的活化表面减小,从而使阳极电流密度增大,阳极电势变正,导致阳极有二价铜离子溶解进入溶液,使阳极区溶液显浅蓝色b.阳极板上有浅青色(绿色)的薄膜。由于上列原因,二价铜离子进入阳极区溶液,并在阳极表面产生难溶的氢氧化铜,形成浅青色(绿色)的薄膜C.阳极上析出的气泡较多,并能嗅到氨味。由于阳极钝化后发生析氧反应40H-—4e- ——2H2O O2↑析出的氧又 促使NaCN分解2NaCN 2NaOH 2H2O 02——2Na2C03 2NH3↑NaCN分解引起其含量进一步降低,从而使阳极钝化更加严重,这将造成恶性循环d.工作时槽电压升高。由于阳极钝化,电势变正,导致槽电压升高出现以上现象,对有分析设备的厂家,根据分析结果进行分析调整;无分析设备的厂家,可少量多次补加氰化钠,随时观察电镀层质量,直至出现淡粉红色、有光泽的铜镀层为止③钝化后的铜阳极处理。a.将阳极取出刷洗,除去表面的钝化膜,然后在氰化物镀铜液中(不通电)浸几分钟;b.增大阳极面积,以降低阳极电流密度;C.提高镀液氰化钠的含量;d.加入适量的酒石酸盐,并适当提高操作温度(5)镀液中锌杂质的影响处理方法一:硫化钠处理a.调整游离氰化钠的含量,有分析条件的工厂,将游离氰化钠的含量调到上限值,以保证镀液中的铜离子充分络合,无分析条件的工厂,观察镀液颜色,由青灰色变成

工段工艺技术员岗位职责示范文本

工段工艺技术员岗位职责 示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

工段工艺技术员岗位职责示范文本使用指引:此管理制度资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1、负责炼钢工艺技术工作,建立合理的工艺制度,努 力促进完成上级机关下达的质量消耗和品种等各项指标。 2、掌握铁水、废钢、石灰、合金、炉衬砖及其散壮炉 料的质量使用情况,并负责炉前所需原材料的抽查检验。 3、负责规范炉前的工艺操作,吹氩站的合金微调,温 度调节及吹氩喂丝工艺操作。 4、负责不断提高员工的操作技术水平,操作要点的执 行,参加转炉生产和质量事故分析会,总结经验教训,提 出改进措施。 5、负责落实本工段的贯标认证的质量记录工作。 6、负责制订和修改转炉工艺技术操作规程和操作要 点。

7、努力完成转炉工段的科研、攻关及新产品试制任务、提出方案写出总结报告。 8、负责提供转炉工段的工艺图纸生产用工具图纸,处理转炉工段日常生产中的工艺技术问题。 9、抓好转炉工段员工的技术教育、培训工作,不断提高转炉系统工人的工艺技术理论水平。 10、负责转炉系统的维修计划,并督促其执行。 11、完成上级或科级领导布置的临时性工作或任务。 请在此位置输入品牌名/标语/slogan Please Enter The Brand Name / Slogan / Slogan In This Position, Such As Foonsion

氰化镀铜电镀溶液中主成份的分析方法研究

龙源期刊网 https://www.360docs.net/doc/5e18932798.html, 氰化镀铜电镀溶液中主成份的分析方法研究作者:马文慧 来源:《科技创新与应用》2013年第25期 摘要:氰化镀铜是最早应用且应用范围最广的一种镀铜方法。其电镀液呈强碱性,主要 组成为一价铜离子与氰根相结合形成的铜氰络合物及大量的游离氰化物,此外还含有一定量的酒石酸盐、碳酸钠等。本文对氰化镀铜电镀溶液中的这几种主成份的分析方法进行了研究,以期为氰化镀铜电镀溶液的分析提供一定理论支持。 关键词:铜氰络合物;镀铜电解液;分析方法 1 引言 随着现代工业的发展,电镀企业也越来越多,而许多电镀企业在使用的氰化电镀溶液都不太合格,又因为在电镀过程中,电镀溶液的成份在不断发生变化,所以对氰化镀铜溶液的主要成份的测定就变的十分必要。在实际生产中,很多厂家采用的分析方法不恰当,对企业的生产造成了很大的损失。据统计,每年因为此类问题造成的损失高达几十亿,所以对氰化镀铜电镀溶液的主要成份的分析方法研究具有十分重要的现实意义和使用价值。本文根据生产实际调研和文献资料查阅,对氰化镀铜电镀溶液的主要成份的分析方法进行了系统的整理和研究,以期望对生产企业提供有效的支撑。 2 氰化镀铜电镀溶液中主成份的分析方法 2.1 铜氰络合物含量测定 铜氰络合物在电镀溶液中的含量以氰化亚铜(CuCN)形式存在,其测定方法主要有碘量法、EDTA滴定法及电解法等。其中EDTA滴定法以其操作简便、方法灵敏度高、检出限低等特点最为常用,其原理如下所述。取适量电镀溶液,添加一定量过硫酸铵,过硫酸铵可以使氰化物分解,同时一价铜离子被氧化,变成二价铜离子,以PAN(1-(2-吡啶偶氮)-2-萘酚)为指示剂,在微氨性溶液中使用EDTA溶液进行滴定。该滴定在pH=2.5~10范围内均可顺利进行,溶液由红色变为绿色时为滴定终点。计算公式为:CuCN(g/mL)=M*V*0.0895,其中M 为EDTA溶液的浓度,V为消耗EDTA溶液的毫升数。 2.2 游离氰化物含量测定 氰化铜电镀溶液中含有游离氰化物最多的是游离氰化钠(NaCN)和游离氰化钾(KCN),含量测定主要采用滴定法。硝酸银和游离氰化物会生成稳定的银氰络合物,以碘化钾(KI)为指示剂,当反应完全时,过量硝酸银与KI反应生成碘化银(AgI)黄色沉淀,化学反应式如下:

轴带稳频发电机简介

轴带稳频发电机简介 1.主机轴带稳频发电机的应用 船舶在选用主柴油机时,要考虑海况,船况,柴油机安全等功率储备。该储备须达到额定功率的10%~15%。如果船舶航行于平静的海面,并且船舶出厂不久或坞修之后,这时海况及船况良好,主柴油机就有较大的功率储备没有得到充分利用,另外,主柴油机大都在部分负荷下运行,而在低于75%~85%额定功率的低负荷下运行时,其经济性将下降,如果利用轴带发电机,可以使主机长时间在较高负荷下运行,从而具有良好的经济性。对于货船,一般来说其电站功率为主机额定功率的5%左右。轴带发电机完全能满足船舶正常航行的电力需要。主机轴带发电机因其良好的经济性而得到广泛应用。 2.采用主机轴带稳频发电机的优越性 降低主机燃油消耗,提高综合经济性 主机配备轴带发电机后,可以长期在较高负荷下运行,油耗率的依降低。另外,主机效率一般比辅助柴油机要高,而且主柴油机一般燃用劣质燃油,从而进一步降低了燃料费用,提高了综合经济性。 利于能量综合利用 主机配备轴带发电机,船舶正常航行时由轴带发电机供电,不必使用辅助柴油机,因此可以省去副机动力系统的功耗,而主机辅助系统功耗基本不变,目前,船舶副机的排烟余热一般没有得

到利用,而四冲程的辅助柴油机较二冲程的主柴油机排烟温度高,因此浪费了大量排气余热。 如果设置主机轴带发电机,辅助柴油机因运行时间少,其排气余热浪费减少,而主机的排气余热可以得到更为有效的利用。 减少润滑油消耗及副机维修保养费用 船舶正常航行时,由主机轴带发电机供电,于是辅助柴油机运行时间大大缩短,其滑油耗量减少,磨损减少,运行维护费用因此降低。 改善工作条件 机舱噪声可以减轻,从而改善工作条件。 3.轴带稳频发电机特点 WP-H系列船用稳频轴带发电机是本厂自主研发的新一代节能新产品,具有核心知识产权,国家专利。是利用船舶航行主机动力附轴带动的轴带发电机,具有输出频率及电压稳定可靠的特点,其节能效果特别显著。在船舶主机不稳定转速(从怠速至高速)的动力输入到稳频发电机上,给船舶提供各项性能可靠的优质电源。 WP-H系列船用稳频发电机主要适用于运输船舶、工程船舶、渔业船舶等,当主动力转速通过增速离合器输入转速在900-2300r/min范围内变化时,发电机的输出频率始终稳定值为50±1HZ,输出电压始终稳定为400V±1%,目前生产的功率范围为:15KW-120KW. WP-H系列船用稳频发电机具有结构设计先进、性能优良、质量可靠、运行稳定等特点,产品符合GB12975-91《船用同步发电机通用

工程技术员岗位说明书(20200517140630)

工程技术员岗位说明书 篇一:施工技术员岗位职责 技术员岗位职责 一、熟悉施工图纸,掌握施工规范、标准、图集中的基本内容,严格执行公司、项目部的各项规章制度及工序文件。 二、参与编写施工组织设计及专项施工方案、技术措施并监督执行情况。 三、负责对劳务分包单位进行分部分项技术交底,检查、督促施工班组按各级技术交底要求进行施工。 四、参加图纸会审,做好图纸审查意见的收集、汇总及图纸会审记录的整理工作。 五、做好施工图纸、设计变更等技术文件的收发、登记工作。 六、参与本项目测量、定位、放线、计量技术复核、隐蔽验收等工作,及时准确填写有关技术表格,做好有关记录工作。 七、处理施工中一般性的技术问题,对劳务公司提出的图纸及技术问题进行审核、处理并与上级技术主管部门沟通解决。负责制定质量问题整改措施。 八、在项目技术负责人的授权下,参与对设计院、工程部、监理的部分技术交涉、管理工作。起草须交请上述单位的技

术核定、设计变更、技术签证等。 九、负责施工现场(试)验的监督、管理工作。 十、参与新工艺、新技术、新材料、新设备的实施工作。 十一、做好工作日记,记录每日工作情况,定期组织统一 汇总汇报。十二、上级领导安排的其他工作。 篇二:项目技术员岗位职责 项目技术员岗位职责 1、熟悉设计图纸,参与设计交底及图纸会审,整理交底 及会审纪要,下达并实施对各作业班组的各类技术交底工 作; 2、参与编写施工组织设计,负责编写分部分项工程施工方 案,并组织实施; 3、负责实施本项目测量定位、放线、计量、技术复核工作,及时准确填写好有关技术表格,做好有关记录工作,做好施 工日志; 4、监督、指导各施工班组按设计图纸、施工规范、操作规 程、工程标准及施工 组织设计的要求进行施工,对违章作业提出整改,签发处罚 通知,直至纠正; 5、在公司有关职能部门的授权下,参与对设计院、业主、 监理公司、质检站的部分技术交涉、管理工作,起草须交请 上述单位的技术核定、设计变更、技术签证等资料;

常用电镀种类及介绍

一、电镀层种类 1、硬铬在严格控制温度与电流密度(较装饰镀铬高)的条件下,从镀铬液中获得的硬度较高、耐磨性好的硬铬层。 2、乳色铬通过改变镀铬溶液的工作条件,获得的孔隙少、具有较高抗蚀能力、而硬度较低的乳白色铬镀层。 二、氧化及钝化 1、阳极氧化通常指铝或铝合金制品或零件,在一定的电解液中和特定的工作条件下作为阳极,通过直流电流的作用,使其表面生成一层抗腐蚀的氧化膜的处理过程。 2、磷化钢铁零件在含有磷酸盐的溶液中进行化学处理,使其表面生成一层难溶于水的磷酸盐保护膜的处理过程。 3、发蓝钢铁零件在一定的氧化介质中进行化学处理,使其表面生成一层蓝黑色的保护性氧化膜的处理过程。 4、化学氧化在没有外电流作用下,金属零件与电解质溶液作用,使其表面上生成一层氧化膜的处理过程。 5、电化学氧化以浸入一定的电解质溶液中的金属零件作为阳极,在直流电作用下,使其表面生成氧化膜的电化学处理过程。 6、化学钝化在没有外电流作用下,金属零件与电解质溶液作用,使其表面上生成一层钝化膜的处理过程。 7、电化学钝化以浸入一定电解质溶液中的金属零件作为阳极,在直流电作用下,使其表面生成一层钝化膜的处理过程。 三、电解 1、电解在外电流通过电解液时,在阳极和阴极上分别进行氧化和还原反应,将电能变为化学能的过程。 2、阳极电解以零件作为阳极的电解过程。 3、阴极电解以零件作为阴极的电解过程。 四、镀前处理 1、化学除油在含碱的溶液中,借助皂化和乳化作用,除去零件或制品表面油垢的过程。 2、有机溶剂除油利用有机溶剂对油垢的溶解作用,除去零件或制品表面油垢的过程。 3、电化学除油(即电解除油)在含有碱的溶液中,以零件作为阳极或阴极,在电流作用下,除去零件或制品表面油垢的过程。 4、化学酸洗在含酸的溶液中,除去金属零件表面的锈蚀物和氧化物的过程。 5、化学抛光金属零件在一定组成的溶液中和特定条件下,进行短时间的浸蚀,从而将零件表面整平,获得比较光亮的表面的过程。 6、磨光利用磨轮来磨削零件表面上的粗糙不平处,从而提高零件表面的平整程度的过程。 7、机械抛光借助于粘有精细磨料和抛光膏的高速抛光轮,对零件进行轻微磨削和整平,从而获得光亮表面的机械加工过程。 8、喷砂利用净化的压缩空气,将干砂流强烈的喷射到金属零件表面以进行清理或粗化的加工过程。 五、电镀 1、电流密度一般指电极(如电镀零件)单位面积表面通过的电流值,通常用A/dm2作为度量单位。 2、极化通常指直流电流通过电极时,电极电位偏离其平衡电位的现象。在电流作用下,阳极的电极电位向正的方向偏移,称为阳极极化;阴极的电极电位向负的方向偏移,称为阴极极化。

工艺技术员岗位说明书4

工艺技术员岗位说明书4 长丝一厂原液车间工艺技术员岗位说明书基本情况岗位名称工艺技术员岗位编号 CS1-YY-004 所属部门一厂原液车间 直接上级正.副主任直接下属岗位编制1人所属系列专员所属岗序岗位设置目的负责原液工艺技术管理,确保工艺稳定。 核心工作职责和内容工作衡量标准 1.负责平衡生产调度工作,及时召开各有关人员研究分析车间各主要生产指标完成情况.存在的问题及改进措施。 生产工艺稳定2. 负责Ⅰ级.Ⅱ级工艺参数落实,参与本车间Ⅲ级工艺参数的确定,更改和审核。 及时.准确。 3. 对全车间各工序的工艺控制.操作进行检查.监督,确保工艺上机,保障安全生产。 细致.全面。 4. 协调生产进度及问题处理,负责收集生产.质量信息,对工艺事故调查分析.汇总.上报工艺主任.主任。 及时5. 参与工艺试验和质量改进活动,并对结果进行书面总结上报车间,及技术资料的汇总.管理。 科学性.及时性。 6. 按厂部生产计划和调度指令组织车间生产,对工艺波动组织调查分析,处理上报,组织制定纠正和预防措施和实施。

7. 负责工艺生产情况的总结和工艺的重大调整.布置.检查督促。 及时.有效。 辅助性工作内容考核标准完成上级交办的其他工作。 及时.准确。 主要职权业务类对工作改进有建议权。 费用审批类人事类工作沟通关系内部关系汇报 1.向主任或副主任汇报 生产情况。 督导运转工段长,计划.统计员的工作。 协调协调生产过程中相关工作外部关系任职资格最低学历中专相关资格证书初级职称专业知识化纤工艺及相关生产管理专业知识工作环境有毒有害工作经验3年以上值班技术员工作经验, 熟悉车间及相关单位的协调关系。 技能技巧1.熟悉产品相关基础知识及相关生产管理专业知识。 2.有较准确的信息沟通能力,能及时处理生产制造中的一般问题。 3.电脑基础知识。 能力素质1.具有学习.创新能力,分析问题.解决问题的能力,组织能力。 2.具有沟通能力.协调能力,处事灵活和较强的应变能力。

工艺技术员的岗位职责

工艺技术员的岗位职责 责任并不是你的负担,而是一种你应具有的信念,做一个有责任心的人吧。下面是我整理的工艺技术员岗位职责,供你参考,希望能对你有所帮助。 【第1篇】工艺技术员岗位职责 1、辅助实验产品的开发与改良; 2、负责车间半成品的检测; 3、负责实验仪器设备的管制与保养; 4、协助生产技术、工艺的的设计与改良; 5、负责生产过程中的技术指导和支持; 6、负责产品质量的监督及不良品的处理; 7、协助生产领班对员工进行定期技术培训。 【第2篇】工艺技术员岗位职责 1.监控现场生产工艺条件是否符合规定的要求,教导执行人员按要求执行工艺流程及作业方法 2.对出现不符合要求的工艺问题进行信息收集,分析、处理,跟踪改善过程及效果确认,保证生产正常运行 3.协调设备、模修,质量,生产共同解决生产的日常问题就,监督执行工艺改善,异常处理流程 4.维护及改善工艺参数,工艺流程改善,对超出工作能力及范围,影响工艺稳定运行的因素,及时汇报相关工程师或主管 5.协助,配合本部门工程师及主管安排的的相关工作

6.协助工程师制作样件,验证工程师的工艺设想,提出改进意见。 7.收集、整理、分析工艺问题维修记录 8.适时提出合理化建议,积极参与全员质量管理 9.部门/公司安排的其他工作内容. 【第3篇】工艺技术员岗位职责 1、编制生产相关作业指导书,作业指引; 2、设备的调试校准,校准工具耗材的盘点管控; 3、工艺异常统计、分析、报告、优化改良; 4、设备的日常PM巡检,校准耗材的盘点管控; 5、及时完成上级交排任务,协助上级做好工艺管控工作; 6、样品试做跟进统计分析汇报; 7、生产相关人员的工艺培训,工艺文件的维持管控; 【第4篇】工艺技术员岗位职责 1.协助工程师对表面加工区域设备进行校正、维护。 2.协助工程师保证生产工艺稳定,使生产保持持续改进。 3.协助工程师进行新的产品和新的生产工艺的开发和验证。 4.组织领班、培训员对生产情况、设备,和各工序文件进行监测,适时提出改进意见。 5.协助工程师或其他相关人员对产品缺陷进行分析并找到解决方案。 6.协助集团的专家、工程师进行新工艺、新设备的安装和调试 7.协助设备工程师或维修技术人员进行设备维修。 8.负责完成工程师交与的与生产工艺改进或坏品分析的试验跟进,记录数

氰化镀铜工艺介绍

氰化物镀铜技术的介绍和说明 氰化物镀铜和氰化镀铜是常见的电镀铜工艺! 铜:标准电极电位较正,有良好的稳定性,质地柔软、韧性好,是热和电的良好导体,铜层孔隙少、作用不仅可以提高基体金属与表面镀层的结合强度,同时也可减少整个镀层的孔隙,从而提高了镀层对基体的防护性能。在电镀生产中通常采用铜+镍+铬的组合工艺加工方法来获得有较好防腐的、装饰性良好的镀层。 目前,由于锌合金压铸件制作成本低、制作工艺较易,锌制品作用大增,锌合金压铸件用于制作饰品、拉链头、工艺品等,而锌合金压铸件无法承受酸性镀液的腐蚀,所以,人们常用氰化物镀铜作锌合金压铸件的预镀层。这是由于铜底层保护了锌合金压铸件不受酸性镀液的腐蚀,并防止了置换镀,而使铜上的镀镍层具有较好的结合性,提高了锌合金压铸件镀层的抗蚀性能。 但是氰化物镀铜存在着毒性较大的缺点。同时必须考虑废水和废气的处理。 一、氰化物镀铜的特点: 氰化物镀铜是应用最广泛、最早的古老镀铜方法。镀液以氰化钠作络合剂,络合铜离子,也就是铜氰络合物[铜氰络离子Cu(CN)3]2-和一定量的游离氰化物(CN-)组成,呈强碱性。氰化钠有很强的活化能力和络合能力、又是强碱型,所以具有以下四个特点:特点一、这个电镀工艺的镀液有一定的去油和活化的能力; 特点二、氰化物络合能力很强、槽液的阴极极化很高,所以具有优良的均镀能力和覆盖能力,能在各种金属基体上镀上结合力很好的铜层; 特点三、各种杂质对镀液影响较少,工艺规范要求较宽,容易控制,基本上能适应各种形状复杂的零件电镀要求。 特点四、氰化镀铜所获得的镀层表面光亮,结晶细微,孔隙率低。容易抛光,具有良好的导电性和可焊性。 氰化物镀铜在整个电镀工序中是一个较重要环节,因此,一个电镀技师的现场控制水平决定了产品的电镀质量。 二、氰化物镀铜的镀液成分: 1.主盐:氰化亚铜(CuCN)、是供给镀液铜离子(Cu-)的来源,配制溶液时以氰化亚铜形式加入,而在实际生产中通常控制金属铜含量(氰化亚铜含金属铜70.9%),因为铜含量与游离氰化物有一定的比例关系。笔者认为氰化亚铜宜控制在35-80g/L之间较为合适,亚铜含量高,上铜速度快,生产效率高,但氰化亚铜过高,问题也明显增多,起泡的几率加大了很多。氰化亚铜太低时,阴极极化值增大,电流效率显著下降,允许的工作电流密度低,电镀速度慢,效率低。 总的来说氰化亚铜的含量多少,与不同的零件金属基体有关,其配方及操作条件也稍有改变,如;滚镀普通铁件打底的碱铜一般30-50g/l,但锌合金压铸件就不同了,因锌合金压铸件打底铜层要加厚,铜层厚度一般不低于5μm,所以,电镀锌合金压铸件的溶液氰化亚铜的含量要达到50-80g/L。应该注意的一点,平时如需补加氰化亚铜、不能用镀液来溶解,一定要用纯水溶解,而且一定要与氰化钠反应完全、方可加入镀槽。 经常有岗位技工问;为什么按分析结果补好氰化亚铜,补加后的一段时间内、镀层的质量比没补前更差?实际上这问题很简单,这就是把没反应完全的材料、加入镀槽的明显表现。特别是用槽液来溶解亚铜的,更不容易及时、完全的反应好。如条件许可,最好的方法是;用

相关文档
最新文档