Abstract Retargeting Vector Animation for Small Displays

Retargeting Vector Animation for Small Displays

Vidya Setlur Northwestern University and Nokia Research Center Xuejin Chen

USTC and Microsoft Research Asia

Yingqing Xu Microsoft Research Asia Bruce Gooch Northwestern

University

Figure 1:Preserving the spatial detail in important objects from a source animation to a smaller sized animation.

Abstract

We present a method that preserves the recognizability of key ob-ject interactions in a vector animation.The method allows an artist

to author an animation once,and then output it to any display de-vice.We speci?cally target mobile devices with small screen sizes.In order to adapt an animation,the author speci?es an importance value for objects in the animation.The algorithm then identi?es and categorizes the vector graphics objects that comprise the anima-tion,leveraging the implicit relationship between extensible Mark-up Language (XML)and scalable vector graphics (SVG).Based on importance,the animation can then be automatically retargeted for any display using artistically motivated resizing and grouping algorithms that budget size and spatial detail for each object.CR Categories:I.3.3[Computer Graphics]:Picture/Image Generation—Display Algorithms;

Keywords:perception,animation,small displays,WWW applica-tions,information visualization,non-photorealistic rendering,vec-tor graphics,XML

1Introduction

Advances in mobile devices and wireless telecommunication pro-vide users with ubiquitous access to online information and ser-vices.However,user access and interaction are still quite restricted with regard to the display of imagery such as animations,diagrams,

maps,and charts.There exists a growing need for the effective adaptation of imagery for small size displays.This work presents an algorithm for retargeting vector based animations while main-taining the recognizability of object interaction.

Effective display consists of understanding the communication goal of some form of imagery and then ?tting that imagery to the display device in a manner that aids this goal.In most animation,the story is communicated to the viewer via the interaction of a few key ob-jects .Remaining objects in the scene provide a context for this interaction,and are referred to as contextual objects .In order to achieve the communication goal of an animation on a mobile de-vice,key object interactions must be displayed at both suf?cient size and spatial detail for easy recognition.The contextual objects in the animation are less important.The premise of our method is that when the key objects are known,their features can be exagger-ated in order to render their interaction more obvious.

Objects in vector graphics images and animation are typically uni-formly scaled regardless of their importance.Therefore,we intro-duce a perceptually motivated algorithm that exploits the semantics of vector graphics data to guide the retargeting process.In addi-tion,the algorithm redistributes spatial detail among the objects in the scaled animation based on importance.

1.1Contributions

This work provides tools for artists to intuitively author and manip-ulate machine-readable forms of animation.We also demonstrate that these tools are useful for encoding multiple levels of detail in a single image to enhance the utility of mobile devices as information displays.The intellectual contribution of this work is the idea of importance tags that can be leveraged to make imagery dynamically adapt to a user’s needs.

Copyright is held by the HIT Lab NZ, University of Canterbury MUM 2005 Christchurch, New Zealand ISBN 0-473-10658-2

2Related Work

Prior work in human perception and computer graphics has estab-lished that it often becomes necessary to sacri?ce detail in order to meet the computational demands of complex scenes[O’Sullivan and Dingliana2001;Reitsma and Pollard2003].Level of de-tail(LOD)techniques for real-time rendering and other percep-tion based computer graphics problems have become necessary for meeting real-time demands for most scenes of signi?cant complex-ity and to adaptively modulate levels of detail in different parts of a simulation process.Visual artifacts that occur in areas with less amount of detail,may go unnoticed to an average viewer if these areas are perceptually less important for a given visual task.For example,the work of Chenney and Forsyth involved culling non-visible parts of the scene[Chenney and Forsyth1997].Carlson and Hodgins explored techniques for reducing the computational cost of simulating groups of creatures by using less accurate simu-lations of individuals when they are less important to the viewer or to the action in the virtual world[Carlson and Hodgins1997].Sim-ilarly,there has been work on reducing time complexity in geomet-rical models based on lower importance[Reddy1997;Funkhouser and S′e quin1993].These approaches allow speed-accuracy trade-offs to be optimized by exploiting a viewers inability to distinguish simpli?cations in less important parts of an image or animation.All these techniques demonstrate the idea that adaptive detail modula-tion can be more effective than uniformly reducing the complexity of the entire scene.Our work is inspired by this idea.While previ-ous work deals with speed and time constraints for reducing com-plexity,we address the problem of adaptation based on a size con-straint.Instead of uniformly scaling vector graphics animation,we apply adaptive detail modulation to emphasize important objects. Existing work on intelligent adaptation of images and video for smaller displays,focusses on maintaining the recognizability of more important objects in the visual scene.Suh et al.proposed a technique for automatic image thumbnail cropping based on a vi-sual attention model to detect interesting areas in the image[Suh et al.2003].This method however,crops only the most important region and does not retain the entire context of the visual scenario from the original image in the smaller sized image.The absence of contextual information,may not convey the entire visual story to the viewer.This may not be an issue for images containing a single subject,where the surrounding context is less in?uential in under-standing the content of the image.On the other hand,for images containing multiple objects or for images where the entire visual context is necessary for performing visual tasks,thumbnail crop-ping may not be suitable.Chen et al.introduced an image adap-tation technique that delivers the most important region to mobile devices[Chen et al.2003].The user can scroll between different pages of an image to view different important regions.Work by Wang et https://www.360docs.net/doc/5419229494.html,es a sampling-based dynamic attention model to ob-tain and maintain the users attention on video streams[Wang et al. 2004].The amount of visual data presented to the user is adjusted by uniformly zooming in and out of the visual scene based on user interest.Related to this work,Fan et al.introduced an approach that allows users to explicitly zoom into video frames while browsing on small displays[Fan et al.2003;Liu et al.2003].Computational at-tention models tend to perform poorly on animation,because they depend strongly on image luminance and contrast,and often do not identify features important for a visual task[Ferwerda2003].In-stead,our animation retargeting method allows users at the author-ing level to assign object importance at the authoring level.Further, our system displays all content on the screen at once,and allows differential zooming to emphasize and de-emphasize information. Rist and Brandmeier have explored automated adaptation mecha-nisms for transforming images to serve mobile devices using down-sampling and color reduction[Rist and Brandmeier2002].Mar-tin has developed a system for adaptive delivery of3D models in heterogeneous networked environments,enabling access by clients with diverse graphics capabilities[Martin2000].Marriott et al. address the client-side adaptation of documents to various view-ing conditions,such as varying screen sizes,style preferences,and different device capabilities,by including one-way constraints into SVG[Marriott et al.2002].These constraints mainly manip-ulate document layout speci?cations by declaratively specifying the desired layout of the web document.There has also been re-search on map generalization[Agrawala and Stolte2001;Neuf-fer et al.2004;Visvalingam1999].Cartographic generalization is concerned with deriving small scale,less detained maps from larger scale maps.While their work is mainly concerned with auto-matic generalization techniques for static map images,we introduce a general framework to work for both static as well as dynamic im-

agery.

Figure2:Flowchart of the animation retargeting process.The goal of the algorithm is to increase the recognizability of the key objects, while simplifying contextual objects in order to maintain the net spatial detail of the retargeted animation.Here,the boat is exag-gerated,while the tree is simpli?ed.

3The Retargeting Process

This work presents an algorithm for retargeting vector based anima-tions while maintaining the recognizability of object interactions. Our retargeting algorithm takes a target size and a vector animation or image as input.The XML format of the vector graphics structure is parsed to identify objects and their assigned importance.The im-portance parameter is an SVG tag set by the animation author,and is constrained to be∈[0,1].The animation is then resized using traditional graphics methods resulting in uniform scaling of all ob-jects,regardless of importance.We use the term spatial detail to

Figure4:The relationship between spatial details and features present in an object.Here,the spatial detail of an object decreases as the

number of its features reduce.(Left)Spatial detail=0.333754.(Center)Spatial detail=0.258025.(Right)Spatial detail=0.231496

.

Figure3:Illustration of the one-one correspondence between vec-

tor graphics and its underlying XML structure.

measure the feature density of objects.For example,a white sphere

has less spatial detail than a soccer ball with the same dimensions.

The overall spatial detail in the scene is redistributed,by exagger-

ating more important key objects and simplifying less important

contextual objects.The amount of exaggeration or simpli?cation is

based on an objects’importance.Figure2illustrates the outline of

the process.Section6provides a more detailed description of the

algorithm.

4The Vector Graphics Format

Our system extends the Scalable Vector Graphics(SVG)format.

SVG was developed as an open standard grammar for vector

graphics.SVG is written in XML,and can easily be extended

using XML tags.We use SVG structural tags to de?ne the building

blocks of our vector graphics data format.These tags include the element,which is the top-level description of the SVG document,a group element,which is a container element

to group semantically related Bezier strokes into an object,the element for rendering strokes as Bezier curves,and several kinds ofelements to specify motion of objects.

4.1Directed Acyclic Tree Representation

The SVG format conceptually consists of visual components that

are modeled as nodes and links.Elements are rendered in the order

in which they appear in the SVG document.Each object in the data

format can be thought of as a canvas on which paint is applied.If

objects are grouped together with atag,they are?rst rendered

as a separate group canvas,then composited on the main canvas us-

ing the?lters or alpha masks associated with the group.In other

words,the SVG document can be viewed as a directed acyclic tree

structure proceeding from the most abstract,coarsest shapes of the

objects to the most re?ned details rendered on top of these abstract

shapes.This property of SVG allows us to do a depth-?rst traver-

sal of the nodes of the tree and manipulate the detail of any object

by altering the structural de?nitions of that object.We observe that

this framework is similar to several perceptually guided model and

mesh simpli?cation techniques[Floriani et al.1997;Williams et al.

2003;Bolin and Meyer1998].SVG also tags objects throughout

an animation sequence alleviating the issue of video segmentation.

The motion of objects can be tracked through all frames of an ani-

mation by usingtags.Figure3shows a fragment of the

data format used for two objects in an animation.

4.2Assigning importance tags to SVG objects

In order to redistribute spatial detail among objects we sort them

based on importance.We provide the infrastructure for artists at

the authoring level to assign importance values to objects in an an-

imation.The artist or user has to annotate objects in a scene with

importance tags that might become cumbersome as the number of

objects in the scene increases.However,SVG has a number of

open source GUI authoring tools[Ink n.d.;Sod n.d.],and the im-

portance annotation functionality is incorporated as a plug-in to the

GUI.This allows users to mouse click and annotate importance val-

ues more easily.Importance values are tagged per scene by adding

them as attributes to the objects and propagated through the SVG

data structure.The only constraint is that the importance value is ∈[0,1],with0indicating most simpli?ed and1indicating least simpli?ed.The process is analogous to using RGB boxes in Adobe

Photoshop[Ado n.d.]to set a color,and then using sliders to?ne

tune the importance values.Once the importance tags are de?ned,

the rest of the algorithm is completely automatic.The importance

tags are hence de?ned at the authoring level and do not change with

display size.

Exaggeration Elimination Typi?cation Outline Simpli?cation

Figure5:Illustrating artistic rules for distributing spatial detail.

5Computing Spatial Detail

In order to perform differential zooming of objects in the scene,

it is necessary to compute spatial detail of each object and to be

able to redistribute this quantity based on importance.The spatial

detail indicates how rapidly luminance is changing in the neighbor-

hood of a given pixel.Figure4demonstrates that the features of

the buildings’windows become simpli?ed as the spatial detail de-

creases.The computational measure of this property is well studied

particularly for texture analysis and retrieval applications.We did

experiment with all the texture features described in[Amadasun

and King1989],including variance,but spatial detail or‘busyness

textural property’best worked for our purpose.The Neighborhood

Gray-Tone Difference Matrix NGT DM is a perceptual description

of spatial detail for an image in terms of changes in intensity and

dynamic range per unit area.The NGT DM is a matrix,in which

the i th entry is the summation of the differences between the lumi-

nance value of all pixels in the image with the luminance value of

the pixels in a neighborhood of pixel i.

We use YUV color space to compute the gray value for each pixel,

which is equal to(0.257×R)+(0.504×G)+(0.098×B)+16.

Let f(k,l)be the luminance of the pixel at(k,l).We then?nd the

average luminance over a neighborhood centered at,but excluding

(k,l).

A i=A(k,l)=

1

[

d

m=?d

d

n=?d

f(k+m,l+n)]

where d speci?es the neighborhood size,W=(2d+1)2,and

(m,n)=(0,0).

Then the i th entry in the NGT DM is de?ned as

s(i)=

i?A i

,?i∈N,i f N i=0

0,otherwise

where N i is the set of all pixels having gray tone i(except in the

peripheral regions of width d).

We then use the NGTDM to obtain the following computational

measure for spatial detail after[Amadasun and King1989].

Spatial detail=

∑G h i=0p i s(i)

∑G h i=0∑G h j=0

ip i?jp j

p i=0,p j=0

where G h is the highest gray-tone value present in the image.The

numerator is a measure of the spatial rate of change in intensity,

while the denominator is a summation of the magnitude of differ-

ences between luminance values.Each value is weighted by the

probability of occurrence.For an N×N image,p i is the probabil-

ity of occurrence of gray-tone value i,and is given by p i=N i/n2,

where n=N?2d,and N i is the set of all pixels having gray tone i

(except in the peripheral regions of width d).Spatial detail is com-

puted for a given target display size.Also,if an object changes

size‘or color during the course of the animation,spatial detail is

recomputed for the changed object.

6Spatial Detail Distribution

The goal of the retargeting process is to preserve the recognizabil-

ity of the interactions between key objects after the animation is

resized.While vector graphics animations are resolution indepen-

dent,key object interactions may not be recognizable at all sizes due

to artifacts introduced by uniform scaling.In order to automate the

process of retargeting animations,we draw inspiration from a col-

lection of perceptually based artistic techniques.These techniques

facilitate differential resizing instead of a uniform scaling.Artistic

techniques often involve de-emphasizing context objects,and in-

creasing the detail in key objects[Kowalski et al.2001;Johnston

and Thomas1995;Markosian et al.2000;Lansdown and Scho?eld

1995;Winkenbach and Salesin1994;Meier1996].Similarly,gen-

eralization is a process used by cartographers[Agrawala and Stolte

2001;Board1978;MacEachren1995]to reduce the scale and com-

plexity of imagery while maintaining detail in important elements.

The following rules are automatically applied to the object nodes in

the SVG representation of the animation based on the importance

value of the object.The rules can be classi?ed based on whether

they emphasize or de-emphasize objects.

The redistribution of spatial detail in the retargeted image is a sim-

ple budget allocation method based on the importance value of in-

dividual objects.The most important object is budgeted the largest

amount of the total spatial detail available for the image,while the

least important object is budgeted the least amount.The impor-

tance value of an object is constrained by de?nition to be∈[0,1],

and the importance values of all objects are then normalized.An

object cannot be made more detailed than the original or more sim-

pli?ed than its basic outline.Additional constraints that may affect

redistributing of spatial detail in the scene are derived from dis-

play con?gurations,and the bounds of human visual acuity.These

constraints may be dictated by the physical limitations of display

devices such as the size and resolution of display monitors,the min-

(a)(a)Original

Animation(b)(b)Scaled

Animation(c)(c)Object Enhance-

ment

(d)(d)Object Generaliza-

tion

Figure6:Objects are enhanced or generalized based on spatial budget distribution.Here,the boat is enlarged and the tree detail is simpli?ed to satisfy the spatial budget constraint.However,even though the spatial budget constraint requires the lake to be exaggerated,its bounding area is as large as the image and remains unchanged.

imum size and width of objects that can be displayed or the mini-mum spacing between objects that avoids symbol collision or over-lap.The following spatial detail redistribution algorithm computes a spacial detail constraint for every object to emphasize particular objects and to clarify by removing visual clutter:

1.Resize original vector graphics image or animation to desired

target size.All objects are uniformly scaled.

2.Look up the Importance Value of each object.

3.Normalize the spatial detail value by dividing the Original

Spatial Detail of each object by its corresponding Bounding Area.We call this the object’s Unit Spatial Detail.

4.Add the Unit Spatial Detail values of all objects to obtain the

Total Unit Spatial Detail.

https://www.360docs.net/doc/5419229494.html,pute the Weighted Unit Spatial Detail for each object,

which is the object’s Importance Value×Total Unit Spatial Detail.

https://www.360docs.net/doc/5419229494.html,pute Spatial Detail Constraint allocated for each object,

which is the Weighted Unit Spatial Detail×Bounding Area of object.

7.If(Original Spatial Detail of object

straint of object),Then apply Key Object Enhancement until Original Spatial Detail of object≥Spatial Detail Constraint of object.However,when the retarget size is very small,there may not be enough space to exaggerate the size of the object.

In such cases,the size of the objects remains the same as in the uniformly scaled image.

8.Else if(Original Spatial Detail of object>Spatial Detail

Constraint of object),Then apply Context Object Generaliza-tion until Original Spatial Detail of object≤Spatial Detail Constraint of object.

6.1Key Object Enhancement

Key object enhancement consists of both size and line exaggeration rules.These rules are applied to increase the spatial detail and visibility of the object after the vector animation or image is uniformly scaled down.Our system increases the object’s size to satisfy the spatial detail constraint.If the object is just a line stroke, such as routes in informational images,our system then applies line exaggeration,by increasing the line weight.Figure5shows both line and size exaggeration.

6.2Context Object Generalization

Generalization is a process of making entity classes less speci?c by suppressing characteristics that describe the class.These rules are applied when the spatial detail of the object needs to be reduced, after uniform scaling of the vector animation or image.Starting from leaf nodes of the SVG tree,regions in objects are eliminated based on the spatial detail constraints.

1.Elimination:The process selectively removes regions inside

objects that are too small to be presented in the retargeted im-age.Beginning from the leaf nodes of the SVG tree,that rep-resent the smallest lines and regions in an object,primitives are iteratively eliminated until the spatial detail constraint for the object is satis?ed at the new target size.Figure5shows elimination applied to the veins of a leaf.

2.Typi?cation:Typi?cation is the reduction of feature density

and level of detail while maintaining the representative dis-tribution pattern of the original feature group.Typi?cation is

a form of elimination constrained to apply to multiple simi-

lar objects.Our system applies typi?cation based on object https://www.360docs.net/doc/5419229494.html,puting object similarity is a dif?cult pattern recognition problem.We use the heuristic of tree isomor-phism within the SVG data format to compute a measure of spatial similarity.Each region of the object is represented as

a node in the tree.Nested regions form leaves of the node.

A tree with a single node(the root)is isomorphic only to a

tree with a single node that has approximately the same as-sociated properties.Two trees with roots A and B,none of which is a single-node tree,are isomorphic if and only if the associated properties at the roots are identical and there is a one-to-one correspondence between the subtrees of A and of

B.This method works well on objects that are semantically

grouped and in the same orientation.Figure5shows typi?ca-tion for removing apples from a tree.

3.Outline Simpli?cation:Often the control points of the

Bezier curves,representing ink lines at object boundaries become too close together resulting in noisy outline.Outline simpli?cation reduces the number of control points to relax the Bezier curve.We use a vertex reduction technique, which is a simple and fast O(n)algorithm.In vertex

reduction,successive vertices that are clustered too closely are reduced to a single vertex.In our system,control points with minimum separation are simpli?ed iteratively until the spatial detail constraint is reached.In Figure5the silhouettes of the mountains are simpli?ed using the vertex reduction rule.Anti-aliasing could also be applied in conjunction with outline simpli?cation to minimize the occurrence of scaling effects in the outlines of objects.

While retargeting animation containing textual objects,certain measures could be taken for greater legibility:using a thinner font, and readjusting text to prevent overlap during object enhancement. Applying the spatial distribution algorithm to Figure6,we can com-pute the following values for each object.The input importance values∈[0,1]for Object1,Object2,and Object3are0.1,0.8,and 0.7respectively.

Object

Normalized Importance0.06250.50.4375

Original Spatial Detail0.21.020.77

Unit Spatial Detail(e-005)0.8616.124.86

Weighted Unit Spatial Detail(e-005)2.6120.8718.27

Spatial Detail Constraint0.621.320.6

New Spatial Detail0.21.320.6

Figure7:Intermediate values calculating during the spatial detail

budgeting process.The goal is to make the new spatial detail of

each object as close as possible to its Spatial Detail Constraint.

However for object1,the spatial detail cannot be increased as its

area is equal to that of the retargeted area.

Notice that the?rst object is constrained by the animation’s bound-

ing size and cannot be exaggerated further,and so it spatial detail

(0.2)remains unchanged as shown in Figure6a.The spatial detail

constraint(1.32)of the second object is satis?ed by applying exag-

geration.The increase in size is shown in Figure6c.The spatial

detail of the third object reduces to the budgeted spatial detail(0.6)

by applying typi?cation.Figure6d shows that typi?cation removes

apples from the tree.

7Informational Images

The retargeting framework for animation may be extended to infor-

mational images as well(Figures9c,9d,9e).Informational images

are an abstraction,or generalization,of physical reality,and their

effectiveness as a communication medium is strongly in?uenced

by the nature of the spatial data,the form and structure of represen-

tation,the intended purpose,the experience of the viewer,and the

context and time in which the images are viewed[Butten?eld and

McMaster1991].

The retargeting process needs to exploit the artists’intentions for

each entity in the information image to create a representation con-

sistent with the knowledge conveyed by the original image.Deter-

mining the knowledge to be conveyed to the viewer,often involves

a high level semantic understanding of the context of the visual

task.Converting such a high level semantic ontology of informa-

tion into a computational form is often a non-trivial https://www.360docs.net/doc/5419229494.html,r-

mational image systems such as MapQuest[Map n.d.]and Google

Maps[Goo n.d.]work around this problem by applying differen-

tial zooming based on where the user clicks on the map.Although

our system has a similar goal as these systems,the difference in our

approach is that differential levels of detail are applied to each ob-

ject in the scene based on importance tags in the underlying XML

structure of the graphics data.Our work may be extended to lo-

cation based services by using Global Positioning Systems(GPS)

to guide the annotation of objects with importance tags.Here,the

contribution of this work is the methods for increasing and reducing

complexity in the image,resulting in differential zooming.

8Results and Discussion

Our results demonstrate that the animation retargeting method per-

forms reasonably well on vector graphics and images,where se-

mantically important objects are rendered with greater clarity,while

unimportant objects maintain the context of the animation or the in-

formation conveyed to the user.

We ran the algorithm on an Intel(R)Xeon(TM)CPU3.06GHz pro-

cessor with2GB RAM.The memory requirement for running the

algorithm is29+8MB.The run-time performance is as follows:

Windmill example(Figure1):1817ms

Boat example(Figure6):2459ms

House example(Figure8):1927ms

Frog example(Figure10a):1394ms

Eiffel tower example(Figure10b):1942ms

Map1example(Figure10c):2255ms

Map2example(Figure10d):1426ms

Map3example(Figure10e):752ms

While the importance values are an effective way of designating

key objects in an animation clip,these parameters often need to

be tuned by the animation author for a given display.Figure8

shows the variation in retargeted results depending on which object

is more important.In addition,unless the artist speci?cally groups

objects with implicit visual relationships these relationships may be

destroyed by the retargeting process.

In the case of animations involving temporally consistent objects,

we apply object transformations to the entire scene rather than on

a frame-by-frame basis.This is because SVG provides the advan-

tage of declarative animation rather than frame based animation.

However,for objects temporally varying in size and/or color,spa-

tial detail needs to be calculated at each new instance of change

in object state.The process could get more complex particularly

when key objects become context objects and vice-versa.The au-

thor may then have to annotate importance tags to every new state

of the vector object.

The exaggeration and generalization rules that we use may have

a non-linear effect on computed value of spatial detail.This can

result in a noisy version of an animation at small target sizes.This

effect becomes more evident as the target animation or image size

becomes very small.The semantic grouping of objects also affects

the performance of the algorithm.For example in Figure6,the

island is grouped with the water.Since this object cannot be further

exaggerated,both the island and water remain the same size as in

the uniformly scaled animation.However,ungrouping the water

(a)(a)Original

Animation(b)(b)Scaled Anima-

tion

(c)(c)Retargeted

1(d)(d)Retargeted2

Figure8:Importance can in?uence which objects are enhanced and simpli?ed.(c)Importance for car=0.9,houses in background=0.2, houses in front=0.2,sky with moon and clouds=0.0.(d)Importance for car=0.2,houses in background=0.2,house in front=0.7,sky with moon and clouds=0.0.

and island,allows the island to become exaggerated although the water object will remain the same.

Object integrity depends on how the SVG animation is laid out. For example,consider the car in Figure8.If the car is rendered on the same layer as the road,then the car and road have an explicit relationship that will be maintained by the object transformations. However,if the car is authored as a new layer on top of the road, then the car and road have only an implicit relationship and it may become semantically dif?cult to ascertain whether the relationship should be maintained by the object transformations.

Survey:We conducted a web survey,asking users to provide feed-back about the retargeted vector graphics results.We used the sur-vey described by Agrawala and Stolte[Agrawala and Stolte2001] as a basis for ours.272people took the survey on animation and183 people volunteered for the informational images’survey.The sur-vey gave us useful feedback about relative judgments with regard to vector animation and vector informational images.76.1%of the participants said that the retargeted animation was more effective than the uniformly scaled animation,and85.8%of the participants thought that the retargeted informational images were more effec-tive than their uniformly scaled counterparts.56.25%of the par-ticipants said that they would use retargeted animation rather than scaled,26.47%would use retargeted animation along with scaled, and only17.28%would not use retargeted animation.69.4%of par-ticipants said that they would use retargeted informational images instead of scaled images,22.96%would use retargeted informa-tional images along with scaled images,and7.65%would not use retargeted informational images.

9Conclusion

In this paper we have introduced an algorithm for automatically re-targeting vector based animation and informational images to small display sizes.We introduce a framework for users to annotate ob-jects in an animation with importance values,and a system for applying differential resizing and simpli?cation to objects in the scene.By allowing objects to be annotated with importance tags, detail in the vector graphics imagery can be distributed accordingly. This work potentially has applicability for automatic cartography, location-based services,and game interfaces using vector graphics.10Acknowledgements

We would like to thank the reviewers for their valuable suggestions and feedback.Thanks to Amod Setlur,Amy Gooch and the rest of the Northwestern University graphics group for their comments and critical review.A special thanks also goes out to the artists at Microsoft Research Asia who designed the input material for our system.This material is based upon work supported by the Na-tional Science Foundation under grant numbers IIS-0097456IIS-0416284.Any opinions,?ndings,conclusions or recommendations expressed in this material are those of the authors and do not nec-essarily re?ect the views of the sponsors.

References

https://www.360docs.net/doc/5419229494.html,.Adobe Photoshop.

A GRAWALA,M.,AND S TOLTE,C.2001.Rendering effective route maps:im-

proving usability through generalization.In SIGGRAPH2001:Proceedings of the28th annual conference on Computer graphics and interactive techniques, ACM Press,241–249.

A MADASUN,M.,AND K ING,R.1989.Textural features corresponding to textual

properties.In IEEE Trans.Sys.Man,Cybern.,vol.19,1264–1274.

B OARD,C.1978.Map reading tasks appropriate in experimental studies in carto-

graphic communication.Canadian Cartographer15,1,1–12.

B OLIN,M.R.,AND M EYER,G.W.1998.A perceptually based adaptive sampling

algorithm.In Proceedings of the25th annual conference on Computer graphics and interactive techniques,ACM Press,299–309.

B UTTENFIELD,B.,AND M

C M ASTER,R.1991.Map Generalization:Making

Rules for Knowledge Representation.Longman,London.

C ARLSON,D.A.,AN

D H ODGINS,J.K.1997.Simulation levels of detail for

real-time animation.In Proceedings of the conference on Graphics interface ’97,Canadian Information Processing Society,1–8.

C HEN,L.-Q.,X IE,X.,M A,W.-Y.,AN

D Z HOU,H.-Q.2003.Image adaptation

based on attention model for small-form factor devices.In Proceeding of the 9th International Conference on Multimedia Modeling,IEEE,421–439.

C HENNEY,S.,AN

D F ORSYTH,D.1997.View-dependent culling of dynamic sys-

tems in virtual environments.In SI3D’97:Proceedings of the1997symposium on Interactive3D graphics,ACM Press,55–58.

F AN,X.,X IE,X.,Z HOU,H.-Q.,AND M A,W.-Y.2003.Looking into video

frames on small displays.In Proceedings of the eleventh ACM international conference on Multimedia,ACM Press,247–250.

F ERWERDA,J.2003.Three varieties of realism in computer graphics.In Proceed-

ings SPIE Human Vision and Electronic Imaging.

F LORIANI,L.D.,M AGILLO,P.,AND P UPPO,E.1997.Building and travers-

ing a surface at variable resolution.In Proceedings of the8th conference on Visualization’97,IEEE Computer Society Press,103–ff.

F UNKHOUSER,T.A.,AND S′E QUIN,C.H.1993.Adaptive display algorithm for

interactive frame rates during visualization of complex virtual environments.

In SIGGRAPH’93:Proceedings of the20th annual conference on Computer graphics and interactive techniques,ACM Press,247–254.

https://www.360docs.net/doc/5419229494.html,/.Dynamic Interactive Maps.

https://www.360docs.net/doc/5419229494.html,/.Open Source Linux/Windows Scalable Vector Graphics Editor.

J OHNSTON,O.,AND T HOMAS,F.1995.The Illusion of Life:Disney Animation.

Disney Editions.

K OWALSKI,M.A.,H UGHES,J.F.,R UBIN,C.B.,AND O HYA,https://www.360docs.net/doc/5419229494.html,er-guided composition effects for art-based rendering.In Proceedings of the2001 symposium on Interactive3D graphics,ACM Press,99–102.

L ANSDOWN,J.,AND S CHOFIELD,S.1995.expressive rendering:A review of nonphotorealistic techniques.In IEEE Computer Graphics and Applications, vol.15,29–37.

L IU,H.,X IE,X.,M A,W.-Y.,AND Z HANG,H.-J.2003.Automatic brows-ing of large pictures on mobile devices.In Proceedings of the eleventh ACM international conference on Multimedia,ACM Press,148–155.

M AC E ACHREN,A.M.1995.How Maps Work.The Guilford Press.

https://www.360docs.net/doc/5419229494.html,/.Consumer-focussed Interactive Mapping Website.

M ARKOSIAN,L.,M EIER, B.J.,K OWALSKI,M. A.,H OLDEN,L.S., N ORTHRUP,J.D.,AND H UGHES,J.F.2000.Art-based rendering with con-tinuous levels of detail.In NPAR2000:Proceedings of the1st international symposium on Non-photorealistic animation and rendering,ACM Press,59–

66.

M ARRIOTT,K.,M EYER,B.,AND T ARDIF,L.2002.Fast and ef?cient client-side adaptivity for svg.In Proceedings of the eleventh international conference on World Wide Web,ACM Press,496–507.

M ARTIN,I.M.2000.Arte:an adpative rendering and transmission environment for3d graphics.In MULTIMEDIA’00:Proceedings of the eighth ACM interna-tional conference on Multimedia,ACM Press,New York,NY,USA,413–415.M EIER,B.J.1996.Painterly rendering for animation.In SIGGRAPH1996:Pro-ceedings of the23rd annual conference on Computer graphics and interactive techniques,ACM Press,477–484.

N EUFFER,D.,B ELL,M.,AND W OODSFORD,P.2004.Cartographic generalisa-tion on the basis of model generalisation.Symposium Praktische Kartographie Konigslutter.

O’S ULLIVAN,C.,AND D INGLIANA,J.2001.Collisions and perception.ACM Trans.Graph.20,3,151–168.

R EDDY,M.1997.Perceptually Modulated Level of Detail for Virtual Environ-ments.PhD thesis,University of Edinburgh.

R EITSMA,P.S.A.,AND P OLLARD,N.S.2003.Perceptual metrics for character animation:sensitivity to errors in ballistic motion.ACM Trans.Graph.22,3, 537–542.

R IST,T.,AND B RANDMEIER,P.2002.Customizing graphics for tiny displays of mobile devices.Personal Ubiquitous Computing6,4,260–268.

https://www.360docs.net/doc/5419229494.html,/.Open Source Linux/Windows Vector-based Drawing Program.

S UH,B.,L ING,H.,B EDERSON,B.B.,AND J ACOBS,D.W.2003.Automatic thumbnail cropping and its effectiveness.In Proceedings of the16th annual ACM symposium on User interface software and technology,11–99.

V ISVALINGAM,M.1999.Aspects of line generalisation.3rd Workshop of ICA Working Group on Map Generalisation.

W ANG,J.,R EINDERS,M.J.,L AGENDIJK,R.L.,L INDENBERG,J.,AND K ANKANHALLI,M.S.2004.Video content representation on tiny devices.

In Proc.Of IEEE Conference on Multimedia and Expo.

W ILLIAMS,N.,L UEBKE,D.,C OHEN,J.D.,K ELLEY,M.,AND S CHUBERT,B.

2003.Perceptually guided simpli?cation of lit,textured meshes.In Proceedings of the2003symposium on Interactive3D graphics,ACM Press,113–121.

W INKENBACH,G.,AND S ALESIN,https://www.360docs.net/doc/5419229494.html,puter-generated pen-and-ink illustration.In SIGGRAPH1994:Proceedings of the21st annual conference on Computer graphics and interactive techniques,ACM Press,91–100.

a)The importance are mountain=0.2,grass=0.2,pond=0.4,frog=0.6,?y=0.8.The?y and frog are more emphasized.

b)The importance are sky=0.2,grass=0.4,tower=0.6,plane=0.8.The plane is more emphasized.

c)The importance are background(land,water)=0.2,route lines=0.9,city labels=0.9,speckles=0.2.

d)The importance are background(land,water)=0.2,route lines=1.0,city labels=1.0,speckles=0.3.

e)The importance are green background=0.2,sun and clouds=0.4,temperature labels=0.8.

Original image Scaled image Retargeted image

Figure9:A comparison between uniform scaling and our automatic animation retargeting method.The original images have been shown smaller than their actual sizes due to space constraints.The images and animation are provided in the supplementary materials.

通讯录管理系统的设计与实现

课程设计报告 通讯录管理系的设计与实现 姓名:钟婷英 班级:计122 学号:1213023039 时间:2014年1月10日 1,问题描述 通讯录是用来记载和查询联系人通讯信息的工具,电子通讯录已经为手机,电子词典等设备中不可缺少的工具软件,请设计一个能够满足这种需求的软件,基本功能模块如下图所示。 输入:记录的录入。 显示:通讯录的显示。 查找:按指定方式,输入关键字,查找指定记录。 插入:实现记录的添加或在指定位置插入记录。 保存:将内存中正在被操作的通讯录以文件形式保存到磁盘。 读入:保存的逆操作,讲存在磁盘中的通讯录文件读到内存中。 排序:按指定关键字对通讯录数据进行排序。 修改:提供修改某条记录的功能。 移动:移动记录在通讯录中的存储位子,使其被查找或显示时的位序前移或后移。 退出:结束程序运行。 2,设计要求 (1)设计通讯录数据的逻辑结构和物理结构。 (2)通讯录至少包括下列数据信息:姓名,电话,单位等。 (3)完成图示基本功能。 (4)软件易用,操作简单。 (5)根据自己使用通讯录体会扩充其他功能,如按姓名查找,按号码查找,按序号删除等。 (6)设计足够多的测试用例 主程序 输 入 显示 查找 插入 删除 保存 读入 排序 修改 移动 退出

(7)数据输入有效性检验:如姓名不能为空,号码中不能有非法字符等。(8)提供分组管理的相关功能,如:分组显示,加入组,组创建,组查询等。(9)可视化的界面设计。 3,概要设计 1,使用struct data struct addressList定义结构体类型,struct data结构体中包括年月日的定义,strcut addressList中包括联系人ID账号,名字,性别,名族,生日,手机号码,QQ号码和家庭地址等。 struct date { int year; int month; int day; }; struct addressList { char ID[10]; char name[10]; char gender[4]; char minzu[2]; date birthday; char shoujihao[14]; char QQ[11]; char address[40]; }; 2,程序设计过程中用到的函数有: int zhujiemian( ); void tianjia(fstream & ); void xiugai(fstream & ); void shanchu(fstream & ); void chazhao(fstream & ); void liulan(fstream & ); int findRecord(fstream &, const char *); int getAmount(fstream & ); 3,整个程序用的是面向对象的方法,在主函数中调用各种函数,来实现通讯录的功能。在主函数中,使用的是c++语言中的开关语句(switch)用来选择通讯录的各种功能。

ALEVEL数学术语

一般词汇 数学mathematics, maths(BrE), math(AmE) 公理axiom 定理theorem 计算calculation 运算operation 证明prove 假设hypothesis, hypotheses(pl.) 命题proposition 算术arithmetic 加plus(prep.), add(v.), addition(n.) 被加数augend, summand 加数addend 和sum 减minus(prep.), subtract(v.), subtraction(n.) 被减数minuend

减数subtrahend 差remainder 乘times(prep.), multiply(v.), multiplication(n.) 被乘数multiplicand, faciend 乘数multiplicator 积product 除divided by(prep.), divide(v.), division(n.) 被除数dividend 除数divisor 商quotient 等于equals, is equal to, is equivalent to 大于is greater than 小于is lesser than 大于等于is equal or greater than 小于等于is equal or lesser than 运算符operator 数字digit 数number

自然数natural number 整数integer 小数decimal 小数点decimal point 分数fraction 分子numerator 分母denominator 比ratio 正positive 负negative 零null, zero, nought, nil 十进制decimal system 二进制binary system 十六进制hexadecimal system 权weight, significance 进位carry 截尾truncation 四舍五入round

最新整理英国高中Alevel课程介绍培训资料

英国高中Alevel课程介绍 一、课程体系 英国高中课程(General Certificate of Education Advanced Level)简称A-Level课程,于1951年在英国正式启用。它是英国的全民课程体系,也是英国学生的大学入学考试课程,A-Level课程证书被几乎所有英语授课的大学作为招收新生的入学标准。因此,A-Level课程被国际教育界誉为“金牌”教育方式(British Golden Education System)。英国学生一般在16岁或稍大一些开始学习这种课程,圆满修完这种课程即可进入大学就读。这种课程可以简单理解为中国的高中。能否上英国大学特别是好的名牌大学,A Level成绩是关键。 二、课程的权威性 该课程体系的教学大纲、课程设置及其考试分别由英国四个主要考试 局Cambridge International Examinations,简称 CIE, Oxford Cambridge and RSA Examinations 简称 OCR, Assessment and Qualifications Alliance 简称AQA 和EDEXEL设计并组织,其权威性得到了国际上的广泛认可。迄今为止,全球已有5000多个教育机构开设了英国高中课程,每年有数百万学生参加由这些考试局组织的统一考试。由于该课程的科学性和权威性,新加坡甚至直接将该课程考试作为大学入学的全国统一考试。 三、教学质量控制 英国国家考试局对每一个开设A-Level的高级附属中心都进行严格的教学质量控制措施。每一位教授A-Level课程的老师都经过严格的筛选和测评。同时,老师们也可以通过多种渠道得到英国国家考试局的协助和培训。为了监控分布在世界上150多个国家教育中心的教学质量,这些考试局已经在全球各地建立了完善的组织网络;通过其批准的高级附属中心,不定期地对教学质量进行检查和评定。从而保证每一个就读A-Level课程的学生能接受到高质量的教育。 四、A-Level课程的优点 除大学预科课程之外,A-Level课程是中国学生入读英国大学的最佳途径。这是因为A-Level课程要大大优于大学基础课程,其优点有以下三方面: 第一、中国学生在国内的高一或高二的在校学生可以赴英国学习A-Level课程。这样,他们再经过两年的学习就可以进入英国大学就读,而不是像在中国那样,高中毕业然后还要学习一年的大学预科课程,才能入读英国大学。 第二、这种课程是为中国学生进入英国大学做准备的理想课程。无论是在学业方面还是在语言方面都会高于大学基础课程可达到的程度。中国学生要用英语学习各门课程,亲自体验新的教学方法,其英语也会达到相当熟练的程度。 第三、牛津、剑桥、帝国理工和伦敦大学学院这样的名牌英国大学几乎是从不录取大学预科的学生,而只录取A-Level毕业证书或同等学历的学生。同样,如果没有A-Level毕业证书或同等学历,要想就读像医科或医疗卫生领域的某些课程

通讯录系统设计说明书

通讯录系统设计说明书(不少于2500字) 一、设计思想 通讯录管理系统是每一个用户管理通讯录的不可缺少的一个管理信息系 统,它的内容对于用户的管理者来说是至关重要的,所以通讯录管理系统应 该能够为每一个用户的管理者提供充足的信息和快捷的查询手段,大大的方便用户合理的管理通讯录。 作为计算机应用的一部分,使用计算机对通讯录进行管理,具有着手工管理 所无法比拟的优点,如:检索迅速、查找方便、可靠性高、存储量大、保密性好、寿命长、成本低等。这些优点能够极大地提高通讯录管理的效率,也是用户理财的科学化、正规化管理,与先进科学技术接轨的重要条件。 开发这一系统的好处大约有以下几点: 第一、可以存储大量的通讯录信息,安全、高效; 第二、只需一档案录入员即可操作系统,节省人力; 第三、可以迅速查到所需通讯录信息。 二、系统架构及运行环境 系统架构: 运行环境: 1、操作系统:Microsoft Windows Server 2008,Windows XP,Windows 7,Windows 8,Windows 10 2、技术平台:.Net Framework 3.5 三、系统数据库介绍 用户:用户名,密码 联系人:联系电话,姓名,工作单位,电子邮件,头像 用户登录

联系人 数据库表结构:登录表

联系人表 四、系统功能模块介绍 本系统由1个功能模块(主界面)和5个表单(新增联系人,删除联系人,修改联系人信息,视图,搜索联系人)组成。 主要功能: (1)录入所有通讯人员的相关信息,当单击新增按钮时,就会弹出

增加信息的窗体。 (2)修改当前记录:当选择功能菜单时,会出现一个新用户界面对话框用户根据对话框提示进行当前记录的数据的修改直到修改完所有的信息 (3)删除记录:当用户选择要删除人员的姓名即可删除 (4)查询记录:本程序可以通过姓名、电话进行查询。 五、系统主要功能模块详细设计及实现 登录窗体

数据结构通讯录管理系统的设计与实现

课程设计报告 课程设计名称:数据结构课程设计 系:三系 学生姓名: 班级: 学号: 成绩: 指导教师: 开课时间:2011-2012学年一学期 宿迁学院 课程设计任务书 课程名称:数据结构 指导教师: 专业班级: 学生姓名: 起止日期: 设计题目一:通讯录管理系统的设计与实现

1 概述 现状分析 课程设计是实践教学中的重要环节,它以某一门课程为基础,涉及和课程相关的各方面知识,是一门独立于课程外的特殊课程。课程设计就是让所有同学对课程更全面的应用。本次实验项目“通讯录管理”就是针对数据结构的一门应用较为广泛的系统管理方法。 实现意义 本次实验应用性能很好,结构清楚,能随时添加、删除、查找、修改、输出联系人;并且可以用姓名、编号两种方式;而且其中增加了排序功能,使得插入之后排序为接下来的操作提供便利,操作更精确,以人性化的方式展现出来,效果十分突出。 2 系统分析 编程完成通讯录的一般性管理工作如通讯录中记录的增加、修改、查找、删除、输出等功能。每个记录包含编号、姓名、性别、电话号码、住址个人基本信息。用《数据结构》中的链表做数据结构结合c语言基本知识编写一个通讯录管理系统。本程序相对简单,使用方便,几乎不用特殊的命令,只需按提示输入即可。对于建立通讯录管理系统,则需了解并掌握数据结构与算法的设计方法,尤其在算法方面,链表及结点的联系,提高综合运用所学的理论知识和方法独立分析和解决问题的能力。 3 概要设计 算法的设计 本实验从整体上分为七大模块:(1)通讯录链表的建立;(2)通讯者结点的插入;(3)通讯者结点的查询;(4)通讯者结点的删除;(5)通讯者结点的修改;(6)通讯录链表的输出;(7)退出通讯录管理通讯者结点的删除系统。 通讯录系统图 系统功能模块图如图所示:

alevel 数学介绍

10月的Alevel已经结束一段时间了,而明年的Alevel还会远?每年都有新的考生参加其中,想必给位都在努力学习吧。那么今年数学考试有哪些变化呢,下面就为大家介绍一下。 Edexcel去年第一次开始考新版大纲,也就是这里看到的P打头的科目,Pure纯数部分,以前是C打头的叫做Core。 国际版新版大纲中只有P1-P4和D1(Decision1,决策数学,跟计算机有点关系,一般会放在高数里面学)的大纲变了,其他的都没有变。今年10月的考试还是新旧版考试都存在的过渡阶段。 一、参加10月份考试的大致分两类人: 1、补考; 2、基础好的或者暑期预学了提早参加考试。 对于补考的学生来说,大部分是选其中一门进行补考,只需要冲刺这门就可以,一般来说都是补考C34。因为数学A*的标准要求C34达90%,总分达80%。C34重点内容也有很多。 比如三角函数(trigonometry),比如微分(differentiation),比如积分(integration),甚至重点内容还会交叉,顺带考一些小的知识点,比如可以用一个parametricequation的题把上述三个重点全串在一起。但如果说重中之重,那一定是integration。Integration里面的内容过于繁杂,列表如下。

6.1-6.4和6.6是积分的计算,是提醒大家有几个不常见的公式在公式表上都有给出,6.5和6.7是积分的应用,包括C12中的求面积和体积。最重要的还是微分的计算,这块是基础,所以要求学生能够熟练做出以下的积分是很有必要的: 6.2部分 6.3部分

6.4部分 这些做好了,微积分就不用再害怕了,才能披荆斩棘继续进行下一步积分的应用。至于其他的知识点,比如经常会出现错误的微分chain rule,这里就不一一说明。大家在刷题过程中要了解自己在哪里容易错,然后对这些点进行挨个击破。 学通国际课程培训中心自2008年起一直致力于ALEVEL、IGCSE、IB、AP、SAT2等主流国际课程中30多门科目的提分与培优,经11年深耕教学,目前已拥有教师团队80余人,其中20%为博士,80%为名校海归硕士,平均国际课程教龄8年以上,每年

学生通讯录管理系统的设计与实现

学生通讯录管理系统的设计与实现

学生通讯录管理系统的设计与实现 问题描述: 纸质的通讯录已经不能满足实际需求,容易丢失,查找困难等问题是纸质通讯录所不能克服的缺点。“学生通讯录管理系统”是为了帮助老师、同学,或者其它一些需要使用的通讯录的人员进行管理和应用的一种应用程序。 需求分析: 1)输入数据建立通讯录。 2)查询通讯录中满足要求的信息。 3)插入新的通讯录信息。 4)删除不需要的通讯录信息。 5)查看所有的通讯录信息。 主界面设计要求: 1)通讯录的建立 2)插入通讯录记录 3)查询通讯录记录 4)删除通讯录记录 5)显示通讯录记录 6)退出系统 设计要求: A.建立通讯录时,每个学生的信息包括:学号,姓名,电话。

B.查找时,学号、姓名、电话均能够作为查询字段。 C.查看所有的通讯录信息时,所有记录需要时有序的(按学号排序,按姓名排序(字典序),按电话号码排序)。 D.存储结构:要求使用顺序存储结构。 E.数据使用:使用本班级的具体信息。 需求分析: 本次设计目的是学生信息管理系统,可存入每个学生的基本信息,所有学生信息都可根据名字、学号、电话、邮箱进行查询,也都能够根据这四个基本信息检索到一个学生并删除其数据。输入形式:student.txt,以文件形式进行输入。 输出形式:根据不同的输入进行不同的操作。 达到功能:能插入一个学生的信息,能删除一个学生的信息,能查询一个学生的信息。 测试数据:班上70个同学的基本数据。 概要设计: 数据类型:顺序链表 ArrayList类 学生数据结构:StuData类包含name、id、phone、email四个String基本类型。 所有操作写在Structure中,包含insert、remove、query、printAll。 Main函数用Java标准输入,循环输入,用switch判断输入进行

ALEVEL数学术语

数学mathematics, maths(BrE), math(AmE) 公理axiom 定理theorem 计算calculation 运算operation 证明prove 假设hypothesis, hypotheses(pl.) - 命题proposition 算术arithmetic 加plus(prep.), add(v.), addition(n.) 被加数augend, summand 加数addend 和sum 减minus(prep.), subtract(v.), subtraction(n.) 被减数minuend ~ 减数subtrahend 差remainder 乘times(prep.), multiply(v.), multiplication(n.) 被乘数multiplicand, faciend 乘数multiplicator 积product 除divided by(prep.), divide(v.), division(n.) 被除数dividend # 除数divisor 商quotient 等于equals, is equal to, is equivalent to 大于is greater than 小于is lesser than 大于等于is equal or greater than 小于等于is equal or lesser than 运算符operator - 数字digit 数number 自然数natural number 整数integer 小数decimal 小数点decimal point } 分数fraction 分子numerator 分母denominator 比ratio 正positive 负negative 零null, zero, nought, nil 十进制decimal system > 二进制binary system 十六进制hexadecimal system 权weight, significance 进位carry 截尾truncation 四舍五入round 下舍入round down 上舍入round up — 有效数字significant digit 无效数字insignificant digit 代数algebra 公式formula, formulae(pl.) 单项式monomial 多项式polynomial, multinomial 系数coefficient 未知数unknown, x-factor, y-factor, z-factor : 等式,方程式equation 一次方程simple equation 二次方程quadratic equation 三次方程cubic equation 四次方程quartic equation 不等式inequation 阶乘factorial

alevel数学试卷答案[推荐]

alevel数学试卷答案 一、填空题 1.一元二次方程的一般形式是__________. 2将方程-5x2+1=6x化为一般形式为__________. 3.将方程(x+1)2=2x化成一般形式为__________. 4.方程2x2=-8化成一般形式后,一次项系数为__________,常数项为 __________. 5.方程5(x2-x+1)=-3x+2的一般形式是__________,其二次项是 __________,一次项是__________,常数项是__________. 6.若ab≠0,则x2+x=0的常数项是__________. 7.如果方程ax2+5=(x+2)(x-1)是关于x的一元二次方程,则a__________. 8.关于x的方程(m-4)x2+(m+4)x+2m+3=0,当m__________时,是一元二次方程,当m__________时,是一元一次方程. 二、选择题 1.下列方程中,不是一元二次方程的是( ) A.2x2+7=0 B.2x2+2x+1=0 C.5x2++4=0 D.3x2+(1+x) +1=0 2.方程x2-2(3x-2)+(x+1)=0的一般形式是( ) A.x2-5x+5=0 B.x2+5x+5=0 C.x2+5x-5=0 D.x2+5=0 3.一元二次方程7x2-2x=0的二次项、一次项、常数项依次是( ) A.7x2,2x,0 B.7x2,-2x,无常数项 C.7x2,0,2x D.7x2,-2x,0 4.方程x2-=(-)x化为一般形式,它的各项系数之和可能是( ) A. B.-C. D. 5.关于x的方程(ax+b)(d-cx)=m(ac≠0)的二次项系数是ac,则常数项为( ) A.m B.-bd C.bd-m D.-(bd-m) 6.若关于x的方程a(x-1)2=2x2-2是一元二次方程,则a的值是( ) A.2 B.-2 C.0 D.不等于2 7.若x=1是方程ax2+bx+c=0的解,则( ) A.a+b+c=1 B.a-b+c=0 C.a+b+c=0 D.a-b-c=0 8.关于x2=-2的说法,正确的是( ) A.由于x2≥0,故x2不可能等于-2,因此这不是一个方程 B.x2=-2是一个方程,但它没有一次项,因此不是一元二次方程

通讯录管理系统的设计与实现

数据结构实验报告 实验名称:通讯录管理系统的设计与实现 试验时间:2011.1.13 班级:姓名 学号: 指导老师:1.问题描述: 通讯录是用来记录,查询联系人通讯信息的工具。电子通讯录已成为手机,电子词典等电子设备中不可缺少的工具软件。设计一个能够,满足这种需求的软件。 基本功能模块:输入,显示,查找,插入,删除,保存,读入,排序,修改,移动,退出。 2.设计要求: (1)基本要求 1.设计通讯录数据的逻辑结构和物理结构。 2.通讯录至少包含下列数据信息:姓名,电话,地址等。 3.完成图示基本功能。 4.软件易用,操作简单。 5.根据自己使用通讯录的体会,扩充其他功能,如按姓名查找,按学 号查找,按序号查找等。 (2)较高要求 1.数据输入有效性检验:如姓名不能为空,号码中不能有非法字符等。 2.提供分组管理的相关功能,如:分组显示,加入组,组创建,组查 询等。 3.可视化的界面设计。 3.测试案例:

请输入您的选择(0--6): 1 分别输入编号,姓名,性别,电话,地址(输入0 结束通信录的建立): 编号:01 姓名:张三 电话:152****1919 地址:2-222 编号:0 请输入您的选择(0--6): 2 编号:01 姓名:张三 电话:152****1919 地址:2-222

是否继续添加?(Y/N):N 请输入您的选择(0--6): 3 请选择查询的方式(1 编号,2 姓名):1 请输入编号:01 编号:01 姓名:张三 电话:152****1919 地址:2-222 请问是否继续查询?(Y/N):N

请输入您的选择(0--6): 4 输入删除编号:01 删除学生信息如下: 编号:01 姓名:张三 电话:152****1919 地址:2-222 请输入您的选择(0--6): 5 通讯录的全部信息如下: *****编号*****姓名*****性别*****电话*****地址*****

英国Alevel数学教材内容汇总.doc

Core Mathematics1(AS/A2)——核心数学1 1.Algebra and functions——代数和函数 2.Quadratic functions——二次函数 3.Equations and inequalities——等式和不等式 4.Sketching curves——画图(草图) 5.Coordinate geometry in the (x,y)plane——平面坐标系中的坐标几何 6.Sequences and series——数列 7.Differentiation——微分 8.Integration——积分 Core Mathematics2(AS/A2)——核心数学2 1.Algebra and functions——代数和函数 2.The sine and cosine rule——正弦和余弦定理 3.Exponentials and logarithm——指数和对数 4.Coordinate geometry in the (x,y)plane——平面坐标系中的坐标几何 5.The binomial expansion——二项展开式 6.Radian measure and its application——弧度制及其应用 7.Geometric sequences and series——等比数列 8.Graphs of trigonometric functions——三角函数的图形 9.Differentiation——微分 10.Trigonometric identities and simple equations——三角恒等式和简单的三角等式 11.Integration——积分 Core Mathematics3(AS/A2)——核心数学3 1.Algebra fractions——分式代数 2.Functions——函数 3.The exponential and log functions——指数函数和对数函数 4.Numerical method——数值法 5.Transforming graph of functions——函数的图形变换 6.Trigonometry——三角 7.Further trigonometric and their applications——高级三角恒等式及其应用 8.Differentiation——微分 Core Mathematics4(AS/A2)——核心数学4 1.Partial fractions——部分分式 2.Coordinate geometry in the (x,y)plane——平面坐标系中的坐标几何 3.The binomial expansion——二项展开式 4.Differentiation——微分 5.Vectors——向量 6.Integration——积分

通讯录管理系统的设计与实现

大连民族大学 计算机科学与工程学院实验报告 实验题目: 1. 学生信息管理系统的设计与实现 2. 暴力算法在旅行商问题中的应用 课程名称:信息系统开发案例 实验类型:□演示性□验证性□操作性□设计性 综合性 专业:软件工程班级:144 学生姓名:赵耀学号:2014082430 实验日期:2017年3月6日—4月27日 实验地点:金石滩校区I303机房 实验学时:24学时实验成绩: 指导教师:赵戈

通讯录管理系统的设计与实现 摘要 本项目用C++语言开发了一个简单的通讯录管理系统,该系统能对联系人信 息进行“增删改查”。系统的UI设计基于Windows系统自带的控制台。测试结 果表明该通讯录管理系统可以稳定正确运行,具有较高的可靠性。 关键词:通讯录管理系统;C++语言;Windows 控制台 目录 1.选题的背景和意义 (3) 2.需求分析 (3) 2.1 用例图 (3) 2.2 用例文本 (4) 3.总体设计 (5) 3.1 通讯录管理系统功能模块图 (5) 3.2 主控main函数执行流程图 (6) 3.3 执行流程图的解释说明 (6) 3.4 存储结构设计 (7) 4.详细设计 (8) 5程序运行结果 (9) 6总结和展望 (9) 7附录 (10) 程序源代码: (10)

1.选题的背景和意义 当今时代,计算机已经成为人们生活中不可或缺的一部分,它打破了地域时间限制,改变了人们的工作和生活方式。人们之间的联系越来越便捷,这就使得要经常与很多人保持着联系,而单纯依靠人脑已经很难记住所有人的联系方式还有其各做附加信息。通讯录系统能方便用户的需求,满足用户迅速、准确的查找修改或者删除联系人信息,把各个联系人信息以文件保存。本文介绍了c++编写简易通讯录管理:系统的分析,功能模块的设计,系统的流程图及运行界面。此系统的主要管理的信息由:联系人的姓名、性别、电话号码,加深对c++语言程序设计的理解,提高算法设计的能力,锻炼编程的能力。用c语言编程一个通讯录管理系统软件,要求能实现通讯录管理系统中的增加信息,删除信息,显示通讯里的所有信息,按名字查询信息,保存通讯录,退出系统。。 2.需求分析 2.1 用例图 通讯录管理系统的用例图如下图所示: 图2.1 用例图

通讯录系统的设计说明书

通讯录系统的设计说明书 R—日11级1班11号 金伯胤

1概述 (3) 1.1系统简述 (3) 1.2软件设计目标 (3) 1.3参考资料 (3) 1.4版本记录 (3) 2术语表 (3) 3用例 (4) 3.1系统用例图 (4) 3.2用例描述 (4) 3.2.1添加联系人 (4) 3.2.2删除联系人 (5) 3.2.3查找联系人 (5) 3.2.4修改联系人 (6) 4设计概述 (7) 4.1简述 (7) 5静态模型 (7) 5.1系统类图 (7) 6动态模型 (8) 6.1场景 (8) 6.1.1场景1:用户浏览通讯录 (8) 6.1.2场景2:生成授权码 (9) 6.1.3场景3 : 使用授权码 (10) 6.2状态图 (11) 6.2.1系统登录状态图 (11) 6.2.2联系人状态图 (12) 6.2.3用户状态图 (13) (13) 7非功能性需求 (13) 7.1.系统未来的方向 (13)

1概述 1.1系统简述 本系统是市面上常见的也被广为人用使用的通讯录系统。但是它与其他通讯录不同的一点的特点就是通过网络“分享”自己的联系人。想象一个场景,添加联系人时往往会遇到对方名字打不出来的尴尬,或是开会时,大家分享一位联系人时要记录姓名、电话、宅电、公司、地址等等。。。很不效率。通过本系统用户只要输入一段特的数字或扫一下二维码就可以将一位或多位特定的联系人同步到自己的通讯录中,是不是很方便。通过网络,将自己本地的通讯录上传到“云端”,用户可以在更换设备时就不必再次手动录入通讯录了,只要一键同步到本地即可。还有更多功能等待你去探索。科技本该让生活跟简单。 1.2软件设计目标 由于通讯录系统已经非常成熟了,本次设计希望突出“分享”这个功能,并且使用交互式设计更加人性化,其他通讯录的基本功能就不赘述。 1.3参考资料 2014年暑季课程设计《普通通讯录系统的设计》 1.4版本记录 本文档于15.01.13完成 文档中的参考绘图与15.01.10完成 2术语表 联系人被此系统使用查找、添加、删除、修改等功能的信息。 用户通过此系统使用查找、添加、删除、修改等功能的人。 系统联系人通讯录系统。 J2EE规范 J2EE(Java 2 Platform,Enterprise Edition)是SUN公司定义的一个开发分布式企业级应用的规范。它提供了一个多层次的分布式应用模型和一系列开发技术规范。 DBMS 数据库管理系统(DataBase Management System)是一种操纵和管理数据库的大型软件,是用于建立、使用和维护数据库。它对数据库进行统一的管理和控制,以保证数据库的安全性和完整性。用户通过数据库管理系统访问数据库中的数据,数据库管理员也通过DBMS进行数据库的维护作。

精编level数学简介

精编l e v e l数学简介 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

第三节英国A-level数学课程 一.A-level课程优势及其介绍 英国高中课程(General Certificate of Education Advanced Level )简称A-Level课程,它是英国的普通中等教育证书考试高级水平课程,是英国的全民课程体系,也是英国学生的大学入学考试课程,就像我国的高考一样,A-Level课程证书被几乎所有英语授课的大学作为招收新生的入学标准。在中国开设A-Level课程旨在为中国学生提供进入国外大学的有效途径,具体目标为:培养在国内初高中成绩优秀的学生进入世界顶尖大学;培养在国内初高中成绩中等的学生进入世界一流大学;培养在国内初高中成绩一般的学生考取适合自己的大学。 这种课程要求学生学习三门或四门主科课程并参加毕业考试,考试合格者即可进入大学就读。学生的考试成绩及其所选修的A-Level课程在很大程度上决定着能否进入理想的大学和学习所选择的学位课程。英国的大多数中学开设的A-Level课程科目相当广泛,有文科、商科、经济、语言、数学、理科、计算、法律、媒体、音乐等。 该课程体系的教学大纲、课程设置及其考试分别由英国四个主要考试局 Cambridge International Examinations, 简称CIE, Oxford Cambridge and RSA Examinations 简称OCR, Assessment and Qualifications Alliance 简称AQA 和EDEXCEL等设计并组织,其权威性得到了国际上的广泛认可。迄今为止,全球已有5000多个教育机构开设了英国高中课程,每年有数百万学生参加由这些考试局组

C语言通讯录系统课程设计报告

通讯录系统的设计与实现桂林电子科技大学电信三班傅得耕 3.1系统的需求分析 通讯录系统作为一个应用软件将为人民提供一个可以串联人与人之间的信息的一个平台。根据系统界面的提示信息对通讯录进行查询、初始化等操作。 系统功能需求分析描述如下: (1)创建联系人。 (2)显示所有联系人:显示可以进行的操作。 (3)删除联系人。 (4)查询:根据姓名进行查询,并可显示所有关于该人的信息。 (5) :退出。 3.2系统的设计 3.2.1 系统的总体设计 下面从系统的整体流程的功能模块、系统界面及数据结构进行总体设计。 (1)总体思想 本系统主要设计思想是实现通讯录系统信息的创建联系人、删除、查找等主要功能。系统的设计方法是结构化实际方法,系统用C语言进行开发用户可以清晰的了解联系人的情况。 (2)系统模块结构图 根据需求分析结果,通讯录系统可以分为五大模块:创建联系人模块、显示功能模块、查找联系人功能模块、删除联系人模

块以及退出模块。 ㈡查询人物信息 进入此菜单功能模块,输入您要查询的图书的名字。 图书查询模块流程如图: 3.3 创建

删除系统 3.4 源代码 #include #include #include #define LEN sizeof(struct people) struct people { char name[10]; char address[50]; char postcode[7]; char phonenum[12]; struct people * next; }; int n = 0, c; static struct people * head; void insert(); void show();

A Level数学公式书

Edexcel GCE in Mathematics Mathematical Formulae and Statistical Tables For use in Edexcel Advanced Subsidiary GCE and Advanced GCE examinations Core Mathematics C1 – C4 Further Pure Mathematics FP1 – FP3 Mechanics M1 – M5 Statistics S1 – S4 For use from January 2008 UA018598

TABLE OF CONTENTS Page 4 Core Mathematics C1 4 Mensuration 4 Arithmetic series 5 Core Mathematics C2 5 Cosine rule 5 Binomial series 5 Logarithms and exponentials 5 Geometric series 5 Numerical integration 6 Core Mathematics C3 6 Logarithms and exponentials 6 Trigonometric identities 6 Differentiation 7 Core Mathematics C4 7 Integration 8 Further Pure Mathematics FP1 8 Summations 8 Numerical solution of equations 8 Coordinate geometry 8 Conics 8 Matrix transformations 9 Further Pure Mathematics FP2 9 Area of sector 9 Maclaurin’s and Taylor’s Seri es 10 Taylor polynomials 11 Further Pure Mathematics FP3 11 Vectors 13 Hyperbolics 14 Integration 14 Arc length 15 Surface area of revolution UA018598 – Edexcel AS/A level Mathematics Formulae List: C1 – C4, FP1 – FP3 – Contents Page – Issue 1 – September 2007 1

通讯录管理系统设计说明书

通讯录管理系统设计说明书 系统概述: 随着毕业的来临,我们就将面临分离。为了能在毕业后,能够方便联系我们在大学其间的同学朋友,通讯录就是一个可以帮我们方便查找同学朋友的工具。 随着计算机的普及,人们的生活摆脱了传统式的记事本、电话簿,越来越多的靠计算机来帮助人们记住这些事情,极其简便。这就需要有一个使用的通讯录管理系统,用户可以方便的通过自己电脑的通讯录管理系统,来随时查阅自己所需要的信息,而不必再大费周折去翻开那繁琐的记事本。 通讯录管理系统是一个专门针对储存用户联系方式以及一些简单个人信息的实用管理系统,它方便了用户对众多客户、朋友、同事等个人信息的储存和快速查阅的功能,大大减少了查找过程的时间。 关键字:插入,删除,查找,输出。 需求分析: 调查用户需求: 随着同学们的即将毕业,蹋出社会,交际难免地逐渐扩大,与外界联系将更为广泛和密切,传统的手工通讯录、地址簿已经难以满足快节奏、高效率的现代生活的需求。经常发生要在几十甚至上百张名片中找出某一张名片的情况,若由手工完成效率十分低。当交际扩大后,传统的手工通讯录非常不方便,不易查询、修改、存放,不易保密,容易遗失。 由计算机带来管理庞大而繁杂的通讯录是非常合适的,不仅查询和修改方便,并且效率高,速度快,完全能够满足现代化交际活动的要求,同时也更方便同学们联系交往。 本系统专门用于个人通讯信息管理的小型应用软件,主要提供个人通讯信息的登记、修改、浏览、查询和打印等功能。

1.用户的主要信息需求: ①对个人通讯信息资料进行登记、修改、浏览。 ②对个人通讯信息资料进行按姓名和学号查询。 ③对个人通讯信息资料进行打印输出。 系统功能设计与分析: 1.功能模块图 2.功能设计 (1)新建通讯录功能 增加一个新的记录,并保存通讯录; (2)搜索通讯录功能

英国A-level数学教材内容汇总大全

英国A-LEVEL教材汇总 Core Mathematics1(AS/A2)——核心数学1 1.Algebra and functions——代数和函数 2.Quadratic functions——二次函数 3.Equations and inequalities——等式和不等式 4.Sketching curves——画图(草图) 5.Coordinate geometry in the (x,y)plane——平面坐标系中的坐标几何 6.Sequences and series——数列 7.Differentiation——微分 8.Integration——积分 Core Mathematics2(AS/A2)——核心数学2 1.Algebra and functions——代数和函数 2.The sine and cosine rule——正弦和余弦定理 3.Exponentials and logarithm——指数和对数 4.Coordinate geometry in the (x,y)plane——平面坐标系中的坐标几何 5.The binomial expansion——二项展开式 6.Radian measure and its application——弧度制及其应用 7.Geometric sequences and series——等比数列 8.Graphs of trigonometric functions——三角函数的图形 9.Differentiation——微分 10.Trigonometric identities and simple equations——三角恒等式和简单的三角等式 11.Integration——积分 Core Mathematics3(AS/A2)——核心数学3 1.Algebra fractions——分式代数 2.Functions——函数 3.The exponential and log functions——指数函数和对数函数 4.Numerical method——数值法 5.Transforming graph of functions——函数的图形变换 6.Trigonometry——三角 7.Further trigonometric and their applications——高级三角恒等式及其应用 8.Differentiation——微分 Core Mathematics4(AS/A2)——核心数学4 1.Partial fractions——部分分式 2.Coordinate geometry in the (x,y)plane——平面坐标系中的坐标几何 3.The binomial expansion——二项展开式 4.Differentiation——微分

个人通讯录系统设计

个人通讯录系统设计 摘要: 系统主要为满足单个用户对联系人的管理和查询工作而设计。系统使用Visual Basic 作为编程语言、选用Access 2003作为后台数据库,并用ADO对象和ADO Data 控件进行数据库编程,实现了用户对联系人信息的添加、查询、浏览、修改、删除和对基本用户的管理。 系统设计突出个性化、人性化的特点。界面美观,友好.登录后即出现欢迎画面,为防止用户出现密码遗忘的情况,系统还创新性地设计了密码保护程序。用户可通过回答密码提示问题,找回自己遗忘的密码,实现登录.用户可以随时修改密码,还可通过系统获得必要的帮助,查看系统的介绍。 关键字:通讯录 VB Access 目录: 一、选题背景—------—-----—--—---—-——---———-----——----— --—---——--—-2 1、系统开发背景—----——--—-—--—----—-——-—————--—- -------—-—--———2 2、设计思路——-——---—--———--—-—-—--------——--—-———- —---———--—-—-3 3、系统指导思想------——--—--—-—-———-—-—--—---——--—-—-—----—-——-3 4、应解决的主要内容----—--——---——-----—--—-—-----—-——-— --—----3 二、可行性分析--—--—-—-——-------——-------——--—-—--—-------—--————4

1、技术可行性—----—-———--—---—--—--———---—---——--—-——-—-——-—-——4 2、经济可行性---—--———-—--—--———----——-—--——-------—--—-----———4 3、环境可行性-———-—-—-———-—-——----——-————-——-—-------—----—--—-5 4、进度可行性-—-----——-—-—-———-—---—---————-------—-——--———----5 三、需求分析-—---—--------——-———-——-——-—-—------—-—-—-——-—-—-—5 1、用户需求分析--—-—-——-----—----————-—-—-----—---—--———-——--—-5 2、业务流程分析-----—--—------—--—-----——-—--—---—————-—-—---—-6 3、数据流程分析—---——-——---—---------—--—-—-——-----——----—-----6 4、数据字典--———---—---—--—-——---——----———-------—----------—7 5、处理逻辑分析-—-------—---—-—--—--—-—-—--—-—-—--—--—-—--—---16 四、系统设计-—---—---—----—----——---—-----—-—-—--------—--————--16 1、总体结构设计-————-—---—-------—--—-—--—-———-——--—-—-----—--16

相关文档
最新文档