牛奶中蛋白质含量的测定

牛奶中蛋白质含量的测定
牛奶中蛋白质含量的测定

牛奶中蛋白质含量的测定

摘要:通过国标牛奶中蛋白质的测定找出它的不足之处,用新的方法进行蛋白质的测定。

关键词:蛋白质测定凯氏定氮法微波消解—凯式定氮法 Bradford法甲醛值滴定法

牛奶是一种营养丰富而全面的理想食品,是人体所需蛋白质的重要来源,蛋白质是牛奶中的主要营养指标。因此,牛奶中蛋白质的测定是一件非常重要的事,也是大家非常关注的事。

用凯氏定氮的方法检测蛋白质含量。

蛋白质测定的国标规定方法——凯氏定氮法介绍【GB/T 5009.5—1985】

食品中蛋白质的测定方法

本标准适用于各类食品中蛋白质的测定。

1 原理

蛋白质是含氮的有机化合物。食品与硫酸和催化剂一同加热消化,使蛋白质分解,分解的氨与硫酸结合生成硫酸铵。然后碱化蒸馏使氨游离,用硼酸吸收后再以硫酸或盐酸标准溶液滴定,根据酸的消耗量乘以换算系数,即为蛋白质含量。

2 试剂

所有试剂均用不含氨的蒸馏水配制。

2.1 硫酸铜。

2.2 硫酸钾。

2.3 硫酸。

2.4 2%硼酸溶液。

2.5 混合指示液:1份0.1%甲基红乙醇溶液与5份0.1%溴甲酚绿乙醇溶液临用时混合。也可用2份0.1%甲基红乙醇溶液与1份0.1%次甲基蓝乙醇溶液临用时混合。

2.6 40%氢氧化钠溶液。

2.7 0.05N硫酸标准溶液或0.05N盐酸标准溶液。

3 仪器

定氮蒸馏装置:如图所示。(图略)

4 操作方法

4.1 样品处理:精密称取0.2~2.0g固体样品或2~5g半固体样品或吸取10~20ml液体样品(约相当氮30~40mg),移入干燥的 100ml或500ml定氮瓶中,加入0.2g硫酸铜,3g硫酸钾及20ml硫酸,稍摇匀后于瓶口放一小漏斗,将瓶以45°角斜支于有小孔的石棉网上。小心加热,待内容物全部炭化,泡沫完全停止后,加强火力,并保持瓶内液体微沸,至液体呈蓝绿色澄清透明后,再继续加热0.5h。取下放冷,小心加20ml 水。放冷后,移入100ml容量瓶中,并用少量水洗定氮瓶,洗液并入容量瓶中,再加水至刻度,混匀备用。取与处理样品相同量的硫酸铜、硫酸钾、硫酸按同一方法做试剂空白试验。

4.2 按图装好定氮装置,于水蒸气发生瓶内装水至约2/3处,加甲基红指示液数滴及数毫升硫酸,以保持水呈酸性,加入数粒玻璃珠以防暴沸,用调压器控制,加热煮沸水蒸气发生瓶内的水。

4.3 向接收瓶内加入10ml 2%硼酸溶液及混合指示液1滴,并使冷凝管的下端插入液面下,吸取10.0ml样品消化稀释液由小玻杯流入反应室,并以10ml水洗涤小烧杯使流入反应室内,塞紧小玻杯的棒状玻塞。将10ml 40%氢氧化钠溶液倒入小玻杯,提起玻塞使其缓缓流入反应室,立即将玻塞盖紧,并加水于小玻杯以防漏气。夹紧螺旋夹,开始蒸馏。蒸气通入反应室使氨通过冷凝管而进入接收瓶内,蒸馏5min。移动接受瓶,使冷凝管下端离开液面,再蒸馏1min。然后用少量水冲洗冷凝管下端外部。取下接收瓶,以0.05N硫酸或0.05N盐酸标准溶液滴定至灰色或蓝紫色为终点。

同时吸取10.0ml试剂空白消化液按4.3操作。

4.4 计算

式中:X——样品中蛋白质的含量,%; V1——样品消耗硫酸或盐酸标准液的体积,ml; V2——试剂空白消耗硫酸或盐酸标准液的体积,ml;

N——硫酸或盐酸标准溶液的当量浓度; 0.014——1N硫酸或盐酸标准溶液1ml 相当于氮克数; m——样品的质量(体积),g(ml); F——氮换算为蛋白质的系数。蛋白质中的氮含量一般为15~17.6%,按16%计算乘以6.25即为蛋白质,乳制品为6.38,面粉为5.70,玉米、高粱为6.24,花生为5.46,米为5.95,大豆及其制品为5.71,肉与肉制品为6.25,大麦、小米、燕麦、裸麦为5.83,芝麻、向日葵为 5.30。

附加说明:本标准由全国卫生标准技术委员会食品卫生标准分委员会提出,由卫生部食品卫生监督检验所归口。本标准由卫生部食品卫生监督检验所负责起草。

微波消解—凯式定氮法凯式定氮法是测定蛋白质含量的法定方法,测定结果稳定、准确,但此方法存在消解时间长,使用消解溶剂用量大,易造成环境污染等缺点。而微波消解具有操作简便、消解速度快、所需消解溶剂少、消解能力强等优点。本文采用微波消解法代替凯式定氮法中的消化方式,减少了试剂用量,缩短了消解时间。试验表明,该测定方法与传统的凯式定氮法无显著性差异,适用于大批量蛋白质含量的测定。

仪器 MDS-2003F 微波消解仪;凯式定氮蒸馏装置;KDN-08C 型恒温消解仪;FA2004 型电子天平;可调温电炉。所用玻璃仪器均以 20 %硝酸浸泡过夜,用水冲洗,去离子水冲洗干净。

主要试剂硫酸,优级纯;过氧化氢(30 %),分析纯;硫酸铵(标准品);氢氧化钠溶液(400 g/L);硼酸溶液(20 g/L);盐酸标准溶液(0.050 8 mol/L);甲基红-溴甲酚绿混合指示剂(1 份 0.1 %甲基红乙醇溶液与 5 份 0.1 %溴甲

酚绿乙醇溶液临用时混合)。

样品消化准确称取 0.5 g 样品放入消解罐中,加入 3 mL 硫酸和 1.5 mL 过氧化氢,盖好密封碗,装好罐,在设定的消解程序下进行消解处理,如样品消解不完全有黑色碳粒,可再加入 0.5 mL 硫酸和 0. 5 mL 过氧化氢继续消解。消

解完毕,待消解罐充分冷却后,将消解液转移至 25 mL 容量瓶中,用少量去离子水洗涤盖子、安全阀和消解罐的内壁一并转入容量瓶,用去离子水定容待测。同时做空白试验。

样品测定取 5 mL 消化好的样品溶液进行凯式定氮蒸馏,加入一定量的 40 %的氢氧化钠溶液使蒸馏器内的内溶物变棕色为止,馏出液用 0.050 8 mol/L 的标准盐酸滴定,溶液颜色由蓝色变为紫红色为滴定终点,计算蛋白质含量。总蛋白质/%=M(V1-V2)*14*6.38*100/1000/W 式中:M 为标准盐酸的摩尔浓度,mol/L;V1为滴定样品时消耗盐酸溶液的体积,mL;V2为滴定空白消化液时消耗盐酸的体积,mL;W 为样品的重量,g;14为氮的相对原子量。

微波消解是近年来产生的一种崭新的样品处理技术,它结合了高压消解和微波快速加热两方面的性能。该法的优点是:①微波加热是“内加热”,具有加热速度快、加热均匀、无温度梯度、无滞后效应等特点。②消解样品的能力强,特别是一些难溶样品,传统的消解方式需要数小时甚至数天,而微波消解只需要几分钟至十几分钟。③溶剂用量少,用密封容器微波溶样时,溶剂没有蒸发损失,一般只需溶剂 5 mL~10 mL。④减少了劳动强度,改善了操作环境,避免了有害气体排放对环境造成的污染。⑤由于样品采用密闭消解,有效地减少了易挥发元素的损失。

优点将蛋白质测定中消解方法改为微波消解法,由于样品与试剂的反应是在密闭的容器内进行的,所以对环境的污染大大减小,采用硫酸和过氧化氢混合液为消解试剂,试剂用量少,消化速度快且消化彻底。仪器在设定的程序下,可自动完成消解操作,操作方便,减轻了分析人员的工作强度,提高了工作效率。

三聚氰胺事件引发的食品安全问题已经影响了整个食品行业。它属于难代谢物质,如果进入人和动物体内能不同程度的导致肾衰竭或者死亡,还能导致结石诱发膀胱和泌尿系统疾病,因此对牛奶中的蛋白质测定也提出了更高的要求。经典的食品蛋白质(包括牛奶)含量的测定,方法繁琐,耗时长,最关键的是样品中所有的含氮物质中所含的氮元素,都被转换成硫酸铵,充当了蛋白质含量。因此导致了个别不法商家向牛奶中添加含氮物质如尿素、三聚氰胺等,危害消费者的身体健康。牛奶中蛋白质的测定,一般使用凯氏定氮法,须经强酸消化,然后蒸馏,再经滴定,方法繁琐,耗时长(约需2-3h);而且凯氏定氮法测定的是样品中所有的含氮物质,无法区分蛋白质氮还是非蛋白质氮,而采用Bradford 法测定蛋质含量,步骤简单,耗时短(约需0.5h),并且考马斯亮蓝试剂与尿素和三聚氰胺不发生显色反应,可用于牛奶中蛋白质含量的快速测定。样品、干扰品制备用水将牛奶稀释得50倍牛奶稀释样品;另取部分稀释液加入尿素使之浓度为0.2mg/mL,再取部分稀释液加入三聚氰胺使之浓度为0.5mg/mL。

材料、试剂与仪器牛奶;染色剂:考马斯亮蓝,称取100mg考马斯亮蓝G-250染料溶于50mL95%的乙醇后,再加120mL85%磷酸,用水稀释定容到1L。混合指示剂:10mL1g/L的甲基红乙醇溶液与5mL1g/L的亚甲基蓝乙醇溶液混合。盐酸标准滴定液:0.0530mol/L。标准蛋白质溶液:1.0mg/mL的牛血清白蛋白;尿素、三聚氰胺、硫酸铜、硫酸钾、浓硫酸、硼酸、氢氧化钠、

95%乙醇:皆为国产分析纯;可见分光光度计:722N,上海精密科学仪器有限公司;凯氏定氮仪:江苏江都市红旗玻璃厂;分析天平:AR1140。

Bradford法操作步骤

(1)标准曲线的制作:取7支试管,依次加入0,0.01,0.02,0.04,0.06,0.08,0.10mL的1.0mg/mL标准蛋白质溶液,用水补充到0.1mL,最后加入5.0mL考马斯亮蓝染色剂,每加完1管立即混匀。反应2-5min后比色,以0管调零,于595nm波长测定各管吸光度,并制作标准曲线。

(2)待测管:取30支试管分为3组,第一组加入0.1mL的50倍牛奶稀释样品,第二组加入0.1mL的尿素干扰样品,第三组加入0.1mL的三聚氰胺干扰样品,测定吸光度。根据标准曲线求得相应蛋白质含量。

(3)凯氏定氮法操作步骤取10支定氮瓶,分别加入5.0mL牛奶,加硫酸铜0.2g,硫酸钾6g,硫酸20mL,2粒玻璃珠,瓶口置一漏斗,置于电热板上小心加热,待内容物完全碳化,加大火力,消化至透明,继续加热半小时放冷,将消化液定容至50mL。同时做空白。向收集瓶内加入10.0mL硼酸溶液(20g/L)及2滴混合指示液。取10mL消化液由小玻杯加入反应室,用10mL水洗涤,再加10.0mL氢氧化钠溶液(400g/L),盖紧塞子,加水密封,加紧旋夹,蒸馏10min。蒸馏液用0.0530mol/L盐酸滴定液滴定,计算出样品蛋白质含量。氮换算蛋白质系数以6.38计.

比较试验中按照牛奶内最大含氮量加入干扰物三聚氰胺或尿素,结果显示,干扰物三聚氰胺或尿素,对吸光度无影响。因此对于Bradford法而言,牛奶中添加三聚氰胺或尿素,无法提高表观蛋白质含量,这是Bradford法与凯氏定氮法最大的区别。本法存在的问题是,所测定的蛋白质含量与凯氏定氮法所测定的含量有一定偏差,经多次测定结果比较,将Bradford法测定结果乘以1.1等于凯氏定氮法结果,目前,尚不了解引起该偏差的原因。

甲醛值滴定法快速测定牛奶中蛋白质含量

我国现行国家标准方法是以食品中的含氮量为依据测定蛋白质含量,测得的结果不完全是蛋白质,还包括一些非蛋白质类的含氮物质,如尿素氮、游离氨氮、无机氨盐等;国标GB/T 5009·5—2003食品中蛋白质的测定规定的凯氏定氮法、可见分光光度法完成一个样品的测定,需要3 h以上,不能满足快速测定的需要,更难以解决牛奶中蛋白质的掺伪检验难题。本文参考文献资料[2]研究并建立了牛奶中蛋白质的快速检验方法-甲醛值滴定法,测定牛奶蛋白质中游离氨基酸含量,计算求得牛奶中蛋白质含量。本方法准确、简便、快速并有效地解决了非蛋白质类的含氮物质对牛奶与奶制品中蛋白质测定结果的干扰问题。

方法原理牛奶中蛋白质含量与游离氨基酸含量呈良好的正相关。氨基酸为两性电解质,在接近中性的水溶液中,全部解离为双极离子。当甲醛溶液加入后,与中性的游离氨基酸中非解离型氨基反应,生成单羟甲基和二羟甲基诱导体,使氨

基酸失去氨基特性,游离的羧基(-COOH)可以用标准碱溶液滴定,根据碱溶液的消耗量得出游离氨基酸含量,乘以经验常数计算出蛋白质的含量。

仪器碱式滴定装置。样品3个品牌的成品纯牛奶和1个企业的鲜原料牛奶。试剂饱和草酸钾溶液:330 g/L;酚酞指示液:5g/L,用乙醇溶液配制;氢氧化钠标准溶液[c(NaOH)=0·1 mol/L];氢氧化钠标准滴定溶液[c(NaOH)=0·05 mol/L];中性甲醛水溶液。

测定方法准确吸取奶样10·0 ml于三角瓶中,加入0·5 ml饱和草酸钾溶液和0·5 ml酚酞指示液,约2 min后用0·1 mol/L氢氧化钠标准溶液滴定至粉红色。然后加入2 ml中性甲醛溶液,再用0·05 mol/L氢氧化钠标准滴定溶液滴定至粉红色,记录滴定消耗的0·05 mol/L氢氧化钠标准滴定溶液的毫升数。

结果表述牛奶中蛋白质的含量X(g/100 ml)

=CV1*0·014*6·38×100*100/5.006/V 式中:C—氢氧化钠标准滴定溶液的浓度,单位为mol/L;V1—加入中性甲醛溶液后,滴定试样消耗氢氧化钠标准定溶液的体积,单位为ml;0·014—1ml 1 mol/L氢氧化钠标准溶液相当于氮的克数;6·38—氮换算为蛋白质的系数;100/5·006—经验常数,由本方法实测值与国标法(凯氏定氮)测定值相比较计算得出;V—样品的体积,ml成品。计算结果保留三位有效数字。

现行国标方法不能排除非蛋白氮对测定结果的影响,而甲醛值法有效地解决了非蛋白氮干扰问题,适用于牛奶与奶粉中重要的营养指标蛋白质的快速定量检验。本方法与现行的国标方法(凯氏定氮法)相比,牛奶中蛋白质的测定时间缩短为3-5 min,提高工作效率约50倍,适用于牛奶中蛋白质的快速定量检验。

此外,还有一些方法来测定牛奶中蛋白质的含量,比如用直接电位法测定牛奶中蛋白质含量等等。

参考文献:

1.蛋白质测定的国标规定方法——凯氏定氮法【GB/T 5009.5—1985】

2.沈文,陈均志,代春吉微波消解—凯式定氮法测定牛奶中蛋白质含量食品

研究与开发2009(5)30-5

3.田志梅甲醛值滴定法快速测定牛奶中蛋白质含量中国食品卫生杂志

2008.20-3

4.张志涛刘金生等Bradford法测定牛奶中蛋白质含量安全与检测2011.5

食品中蛋白质的测定实验报告

1.目的 掌握凯氏定氮法测蛋白质的原理、操作、条件、注意事项。 2.原理 蛋白质是含氮有机化合物。食品与硫酸和催化剂一同加热消化,使蛋白质分解。分解的氨与硫酸结合生成硫酸铵。然后碱化蒸馏使氨游离,用硼酸吸收后在以硫酸或盐酸标准溶液滴定,根据酸的消耗量计算含氮量再乘以换算系数,即为蛋白质含量。 3.试剂 3.1浓硫酸、硫酸铜、硫酸钾,所有试剂均用不含氮的蒸馏水配制 3.2混合指示液 1份(1g/L)甲基红乙醇溶液与5份1g/L溴甲酚氯乙醇溶液临用时混合。 也可用2份甲基红乙醇溶液与1份1g/L次甲基蓝乙醇溶液临用时混合。 3.3氢氧化钠溶液(400g/L) 3.4标准滴定溶液 硫酸标准溶液[c(1/2H2SO4)=0.0500mol/L]或盐酸标准溶液[c(HCl) 0.0500mol/L] 3.5硼酸溶液(20g/L) 4.仪器 定氮蒸馏装置 5.样品 全蛋(2.47g) 6.操作 6.1样品处理 准确称取2—5g半固体样品,小心移入干燥洁净的500mL凯氏烧瓶中,然后加入研细的硫酸铜0.5g,硫酸钾10g和浓硫酸20mL,轻轻摇匀后于瓶口放一小漏斗,将瓶以45°角斜放于加有石棉网的电炉上,小火加热,待内容物全部炭化后,泡沫完全消失后,加强火力,并保持瓶内液体微沸,至液体呈蓝绿色呈请透明后,再继续加热0.5h,取下放冷,慢慢加入20mL水。 放冷后,移入100mL容量瓶中,并用少量水洗定氮瓶,洗液并入容量瓶中,再加水至刻度,混匀备用。取与处理样品相同的硫酸铜、硫酸钾、硫酸按同一方法做试剂空白试验。 6.2连接装置 装好定氮装置,于水蒸气发生器内装水至2/3处,加甲基红指示剂数滴及少量硫酸,以保持水呈酸性,加入数滴玻璃珠以防暴沸,用调压器控制,

牛奶中部分成分的分析.

牛奶中部分成分的分析 1.实验目的 1.1设计合适的实验方法来分析牛奶中蛋白质与钙的含量 1.2学习利用等电点沉淀法从牛奶中制备酪蛋白 1.3熟悉可见光分光光度计的操作。 1.4加强对沉淀、抽滤、溶液配制等基本操作的锻炼。 1.5掌握双缩脲法测定蛋白质的原理和方法。 1.6掌握配位滴定法测定液体食品中钙含量的原理和方法。 1.7通过与牛奶包装上注明的含量比较,学会对自己实验分析结果进行客观评价。 2. 实验原理 牛乳中的主要的蛋白质是酪蛋白,含量约为35g·L-1。酪蛋白是一些含磷蛋白质的混合物,等电点为4.7。利用等电点时溶解度最低的原理,将牛乳的pH调至4.7时,酪蛋白就沉淀出来。用乙醇洗涤沉淀物,除去脂类杂质后便可得到纯酪蛋白。 双缩脲(NH2CONHCONH2)在碱性溶液中与硫酸铜反应生成紫红色化合物,称为双缩脲反应,蛋白质分子中含有许多肽键在碱性溶液中也能与Cu2+反应产生紫红色化合物。在一定范围内,其颜色的深浅与蛋白质浓度成正比。因此,可以利用比色法测定蛋白质浓度。双缩脲法是测定蛋白质浓度的常用方法之一。操作简便、迅速、受蛋白质种类性质的影响较小,但灵敏度较差,而且特异性不高。除-CONH-有此反应外,-CONH2、-CH2NH2、-CS-NH2等基团也有此反应。 钙与身体健康息息相关,钙除成骨以支撑身体外,还参与人体的代谢活动,它是细胞的主要阳离子,还是人体最活跃的元素之一,缺钙可导致儿童佝偻病,青少年发育迟缓,孕妇高血压,老年人的骨质疏松症。缺钙还可引起神经病,糖尿病,外伤流血不止等多种过敏性疾病。补钙越来越被人们所重视。牛奶中含有易被人体吸收得钙,有些牛奶产品中还特地加钙而成为钙奶。对于液体牛奶中钙的含量,可采用EDTA法进行直接测定。考虑到牛奶中含有Fe3+、Al3+等干扰离子,可以加入少量三乙醇胺以消除它们的,调节pH≈12~13,以铬蓝黑R作指示剂,指示剂与钙生成红色的络合物,当用EDTA 滴定至计量点时,游离出指示剂,溶液呈现蓝色。 3. 实验步骤

6种方法测定蛋白质含量

6种方法测定蛋白质含量 [ 文章来源: | 文章作者: | 发布时间:2006-12-25| 字体: [大 中 小] 一、微量凯氏(kjeldahl )定氮法 样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。若以甘氨酸为例,其反应式如下: nh 2ch 2cooh+3h 2so 4——2co 2+3so 2+4h 2o+nh 3 (1) 2nh 3+h 2so 4——(nh 4)2so 4 (2) (nh 4)2so 4+2naoh ——2h 2o+na 2so 4+2nh 3 (3) 反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。 为了加速消化,可以加入cuso4作催化剂,k2so4以提高溶液的沸点。收集氨可用硼酸溶液,滴定则用强酸。实验和计算方法这里从略。 计算所得结果为样品总氮量,如欲求得 样品中蛋白含量,应将总氮量减去非蛋白 氮即得。如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。 二、双缩脲法(biuret 法) (一)实验原理 双缩脲(nh3conhconh3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与cuso4形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。 紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1-10mg 蛋白质。干扰这一测定的物质主要有:硫酸铵、tris 缓冲液和某些氨基酸等。 此法的优点是较快速 ,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。 (二)试剂与器材

食品中蛋白质含量的测定

食品中蛋白质含量的测定 院系:机械工程学院;专业:食品科学与工程;年级10级;班级:一班;姓名:姜海洋;学号:201044035 摘要 随着食品工业的快速发展,人们对食品中营养元素的要求越来越严格。蛋白质是人体生命的物质基础,是人体重要的营养元素,测定蛋白质的含量有利评价食品的营养价值,合理开发利用食品资源。同时对提高产品质量,优化食品配方有重要意义。 关键字:食品蛋白质含量测定 前言 化学分析是一门以实验动手为基础的理论课程。其主要以化学分析为基础,根据物质分子的一些理化特征:酸碱特性,氧化还原特性等用一些化学试剂、仪器设备等对一些物质成分进行定性定量的分析。当代的化学分析其主要应用于食品行业。通过一些理化特性对食品中的营养素、添加剂、有害物质进行测定,对现在食品的检测、研发等具有重要意义。 蛋白质的组成: 蛋白质是复杂的含氮有机化合物,分子质量很大,主要化学元素为C、H、O、N,在莫些蛋白质中还含有P、S、C u、F e、Ⅰ等元素。这些元素在蛋白质中的含量如下表:

从表中可以看出,蛋白质的平均含氮量为16%,这也是蛋白质元素组成的一个特点,也是凯氏(kjedahl)定氮法测定蛋白质含量的一个计算基础: 蛋白质含量(%)=蛋白质含氮量(%)*6.25 式中6.25即16%的倒数为1g氮含量。由于食物中另外两种重要的营养元素——碳水化合物、脂肪中含有C、H、O,不含N,所以含氮是区别于其他有机物的主要标志。 蛋白质在人体中的重要性及其测定意义: 蛋白质是生命存在的物质基础,是构成生物体细胞组织的重要成分,一切有生命的活体均含有不同类型的蛋白质。蛋白质又是食品的重要组成成分之一,也是食品中重要营养元素指标。蛋白质主要为人体提供必需的氨基酸,在构成蛋白质的20中主要氨基酸中亮氨酸、异亮氨酸、赖氨酸、苯丙氨酸、蛋氨酸、苏氨酸、色氨酸和缬氨酸8中氨基酸在人体中不能合成,必须依靠食品提供,在正常情况下,视频提供的总热量中蛋白质提供11%--13%。部分蛋白质是生物催化剂如:酶和激素,以控制机体的生长、消化、代谢、分泌和能量转意等变化,蛋白质还是人体免疫作用所必需的物质,可以形成抗体以预防疾病的感染。因此,蛋白质是人体重要的营养物质也是食品中重要的营养成分,此外,在食品加工过程中,蛋白质及其分解产物对食品色、香、味和产品质量都有一定的影响,。测定食品中蛋白质的含量,对于评价食品的营养价值,合理开发利用食品资源,提高食品加工质量,优化食品配方,核算经济成本和控制生产过程均具有重要意义。

蛋白质的测定方法

蛋白质的测定方法 测定食物中的蛋白质含量有二种方法,一是凯氏微量法,二是自动定氮分析法。 一.凯氏微量法 有手工滴定定氮和自动定氮仪定氮,实验者可根据经济条件设备而定。 1.原理 蛋白质是含氮的有机化合物。食品与硫酸和催化剂一同加热消化,使蛋白质分解,分解的氨与硫酸结合生成硫酸铵。然后碱化蒸馏使氨游离,用过量硼酸吸收后再以硫酸或盐酸标准溶液滴定,根据酸的消耗量乘以换算系数,即为蛋白质含量。 2NH2(CH2)2COOH+13H2SO4 (NH4)2SO4+6CO2+12SO2+16H2O (NH4)2SO4+2NaOH 2NH3+2H2O+Na2SO4 2.方法 本法参照GB 5009.5 -85 适用于各类食品及饲料中蛋白质的测定 3.试剂 所有试剂均用不含氨的蒸馏水配制。试剂均为分析纯。 3.1硫酸铜 3.2硫酸钾 3.3浓硫酸 3.4 2%硼酸溶液(或1%的硼酸) 3.5 混合指示剂:1份0.1%甲基红乙醇溶液与5份0.1%溴甲酚绿乙醇溶液临用时混合。也可用2份0.1%甲基红乙醇溶与1份0.1%次甲基蓝乙醇溶液临用时混合。 3.6饱和氢氧化钠:500g氢氧化钠加入500ml水中,搅拌溶解,冷却后放置数日,澄清后使用。 3.7 0.01mol/L或0.05mol/L盐酸标准溶液:需标定后使用(配制及标定方法见附录) 4.仪器 消化炉凯氏定氮蒸馏装置万分之一电子天平 凯氏定氮蒸馏装置:如图所示 5. 操作步骤 5.1样品处理:精密称取0.1~2.0g固体样品或2~5g半固体样品或吸取液体样品5~20ml,放入100ml或500ml凯氏烧瓶中,加入0.2g硫酸铜,0.3g硫酸钾及3~20ml浓硫酸,放置过夜后小心加热,待内容物全部炭化,泡沫完全停止后,加强火力,并保持瓶内液体微沸,至液体呈蓝绿色澄清透明后,取下放冷后用约2~10ml蒸馏水冲洗瓶壁,混匀后继续加热至液体呈蓝绿透明,取下放冷,小心加10~20ml水混匀,放冷后,移入100ml容量瓶中,并用少量水洗定氮瓶,洗液并入容量瓶中,再加水至刻度,混匀备用。取与处理样品相同量的硫酸铜、硫酸钾、硫酸按同一方法做试剂空白实验。 5.2按图装好定氮装置,于水蒸气发生瓶内装水至约2/3处,加甲基红指示液数滴及数毫升硫酸,以保持水呈酸性,加入数粒玻璃珠以防暴沸,加热煮沸水蒸气发生瓶内的水。 5.3向接收瓶内加入10ml ,1~2%硼酸溶液及混合指示液1滴,并使冷凝管的下端插入液面下,吸取10ml样品消化稀释液由小玻璃杯流入反应室,并以10ml水洗涤小烧杯使之流入反应室内,塞紧小玻璃杯的棒状玻璃塞。将3~10ml饱和氢氧化钠溶液倒入小玻璃杯中,提起玻璃塞使其缓缓流入反应室,立即将玻璃塞盖紧,并加水于小玻璃杯中以防漏气。加紧螺旋夹,开始蒸馏。蒸气通入反应室使氨通过冷凝管而进入接收瓶内,蒸馏2min,移动接收瓶,使冷凝管下端离开液面,然后用少量中性水冲洗冷凝管下端外部,再蒸馏1min取下接收瓶,以0.01或0.05mol/L盐酸标准溶液滴定至灰色或蓝紫色为终点。 同时吸取10ml试剂空白消化液按5.3操作。 6. 计算

牛奶中酪蛋白的提取与分析

实验题目:牛奶中酪蛋白的提取与分析实验材料:牛奶 小组成员: 实验时间:

一:实验题目:牛奶中酪蛋白的提取与分析 二:报告撰写者 三、小组成员 实验仪器 温度计、布氏漏斗(*)、pH试纸(*)、抽滤瓶(*)水浴锅、烧杯、量筒、表面皿(*)、电子天平(*)、2个1000ml的容量瓶(*)、2张醋酸纤维薄膜(2cm×8cm 厚度120nm)成品(*)、培养皿9—10cm(*)、毛细管(*)、尺子、铅笔、单面刀片(*)、镊子、普通滤纸(*)、电泳槽、玻璃板8cm ×12cm(*)、752型分光光度计(*)、细布(*)、、、的移液管、试管、试管架、 四、实验材料 牛奶(蒙牛特仑苏和伊利金典) 五、实验试剂 特仑苏400ml、金典200ml、巴比妥(*)、巴比妥钠(*)、氨基黑10B(*)、50ml甲醇AR(*)、100ml冰醋酸AR(*)、95%的乙醇250ml(*)、95%的乙醚100ml(*)、L的乙酸100ml(*)、L的乙酸钠100ml(*)、25g氢氧化钠固体(*)标准酪蛋白、15mg五水硫酸铜(*)、60mg酒石酸钾钠(*)所需试剂配制方法: 乙醇乙醚混合液的配制: 10ml95%的乙醇 10ml95%的乙醚 乙醇钠缓冲液的配制: 配制乙醇乙醚1:1的混

L 的乙酸51ml L 的乙酸钠49ml 巴比妥钠缓冲液的配制: 巴比妥 巴比妥钠 染色液的配制: 氨基黑10B 50ml 甲醇AR 10ml 冰醋酸AR 漂洗液的配制: 45ml95%乙醇AR 5ml 冰醋酸AR 蒸馏水 透明液的配制: 25ml 的冰醋酸AR 75ml 的无水乙醇AR L 氢氧化钠溶液的配制: 16g 的氢氧化钠固体定容至1000ml 10%氢氧化钠溶液的配制: 5g 的氢氧化钠固体定容至50ml 双缩脲试剂的配制: 15mg 五水硫酸铜 配制巴比妥钠缓冲液(,./L ), 将上 +40ml 蒸馏水, 混匀既得染 配制的乙酸钠缓冲液(l ) 混匀得染色液 混匀得透明液 溶于5ml 蒸馏水,在搅拌情况下,加入10%氢氧化钠溶液3ml ,用

蛋白质测定实验报告

蛋白质测定方法——化学报告

蛋白质的检测 酚试剂法灵敏度较高 20~250mg 费时蛋白质在碱性溶 液中其肽键与 Cu2+螯合,形成 蛋白质一铜复合 物,此复合物使 酚试剂的磷钼酸 还原,产生蓝色 化合物 酚类、柠檬 酸、硫酸铵、 tris缓冲液、 甘氨酸、糖 类、甘油等均 有干扰作用 由上表可大致了解五种检测蛋白质的方法,下面以实验的形式进行详细阐述:

1 材料与方法 1.1 仪器材料 (1)仪器:凯氏定氮仪、紫外分光光度计、可见光分光光度计、工作离心机、布氏漏斗、抽滤泵。 (2)试剂及原材料:牛奶、酸奶、豆浆、0.12mol/LpH=4. 7醋酸- 醋酸钠缓冲液、乙醇-乙醚等体积混合液、浓H2SO4 、40%氢氧化钠、30%过氧化氢、2%硼酸溶液、0. 050molPL标准盐酸溶液、硫酸钾- 硫酸铜接触剂、混合指示剂、标准蛋白溶液、双缩脲试剂、考马斯亮蓝G- 250试剂。 1.2 实验方法 (1)凯氏定氮法测定蛋白质含量 将待测样品与浓硫酸共热,含氮有机物即分解产生氨(消化) ,氨又与硫酸作用,变成硫酸铵。为了加速消化,可以加入CuSO4 作催化剂和加入K2SO4 以提高溶液的沸点,而加入30%过氧化氢有利于消化溶液的澄清。消化好的样品在凯氏定氮仪内经强碱碱化使之分解放出氨,借蒸汽将氨蒸至定量硼酸溶液中,然后用标准盐酸溶液进行滴定,记录,计算出样品含氮量。每个样品做三次重复测定,取平均值。 (2)紫外吸收法测定蛋白质含量 蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共轭双键,使蛋白质具有吸收紫外光的性质,吸收峰在280nm处,其吸光度(即光密度值)与蛋白质含量成正比。此外,蛋白质溶液在238nm的光吸收值与肽键含量成正比。利用一定波长下,蛋白质溶液的光吸收值与蛋白质浓度的正比关系,可以进行蛋白质含量的测定。 紫外吸收法简便、灵敏、快速,不消耗样品,测定后仍能回收使用。低浓度的盐,例如, 生化制备中常用的(NH4)2SO4 等和大多数缓冲液不干扰测定,特别适用于柱层析洗脱液的快速连续检测,因为此时只需测定蛋白质浓度的变化,而不需知道其绝对值。 此法的特点是测定蛋白质含量的准确度较差,干扰物质较多,在用标准曲线法测定蛋白质含量时,对那些与标准蛋白质中酪氨酸和色氨酸含量差异大的蛋白质有一定的误差,故该法适于用测定与标准蛋白质氨基酸组成相似的蛋白质。若样品中含有嘌呤、嘧啶及核酸等吸收紫外光的物质,会出现较大的干扰。核酸的干扰可以通过查校正表,再进行计算的方法加以适当的校正。但是因为不同的蛋白质和核酸的紫外吸收是不相同的,虽然经过校正,测定的结果还是存在一定的误差。 此外,进行紫外吸收法测定时,由于蛋白质吸收高峰常因pH的改变而有变化,因此要注意溶液的pH值,测定样品时的pH要与测定标准曲线的pH相一致。取待测样品制成蛋白浓度大约在0. 1~1. 0mgPmL的蛋白质溶液,用紫外分光光度计进行比色,对照标准曲线得出样品含氮量。每个样品做3次重复测定,取平均值。 (3)双缩脲法测定蛋白质含量

食品中蛋白质的测定方法

食品中蛋白质的测定方法 蛋白质的测定方法分为两大类:一类是利用蛋白质的共性,即含氮量,肽链和折射率测定蛋白质含量,另一类是利用蛋白质中特定氨基酸残基、酸、碱性基团和芳香基团测定蛋白质含量。但是食品种类很多,食品中蛋白质含量又不同,特别是其他成分,如碳水化合物,脂肪和维生素的干扰成分很多,因此蛋白质的测定通常利用经典的剀氏定氮法是由样品消化成铵盐蒸馏,用标准酸 液吸收,用标准酸或碱液滴定,由样品中含氮量计算出蛋白质的含量。由于食品中蛋白质含量不同又分为凯氏定氮常量法、半微量法和微量法,但它们的基本原理都是一样的。 一凯氏定氮法 我们在检验食品中蛋白质时,往往只限于测定总氮量,然后乘以蛋白质核算系数,得到蛋白质含量,实际上包括核酸、生物碱、含氮类脂、叶啉和含氮色素等非蛋白质氮化合物,故称为粗蛋白质。 (一) 、常量凯氏定氮法 衡量食品的营养成分时,要测定蛋白质含量,但由于蛋白质组成及其性质的复杂性,在食品分析中,通常用食品的总氮量表示,蛋白质是食品含氮物质的主要形式,每一蛋白质都有其恒定的含氮量,用实验方法求得某样品中的含氮量后,通过一定的换算系数。即可计算该样品的蛋白质含量。 一般食品蛋白质含氮量为l6 %,即1份氮素相当于6.25 分蛋白质,以此为换算系数6.25 ,不同类的食物其蛋白质的换算系数不同. 如玉米、高梁、荞麦, 肉与肉制品取6.25 ,大米取 5.95 、小麦粉取 5.7, 乳制品取 6.38 、大豆及其制品取5.17 ,动物胶 5.55 。 测定原理: 食品经加硫酸消化使蛋白质分解,其中氮素以氨的形式与硫酸化合成硫酸铵。然后加碱蒸馏使氨游离,用硼酸液吸收形成硼酸铵,再用盐酸标准溶液或硫酸标准溶液滴定,根据盐酸消耗量计算出总氮量,再乘以一定的数值即为蛋白质含量,其化学反应式如下。 ⑴消化反应:有机物(含C、N、H、0、P、S等元素)+H2S04 -T(NH4)2SO4+CO0 +S02f +S03+H3PO4+C02 (2) 蒸馏反应:(NH4)2SO4+2NAOH—2NH3T +2H2O+NA2SO4 2NH3+4H3B04 (NH4)2B4O7+5H2O (3) 滴定反应:(NH4)2B4O7+2HCH+5H2O T2NH4CH+4H3BC或(NH4)2B407+H2S04+5H20- (NH4)9SO4+4H2BO2 试剂与仪器: 1、硫酸钾; 2、硫酸铜;

牛奶中蛋白质的测定分析

牛奶中蛋白质的测定分析蛋白质是生物的重要组成部分,在人类发现蛋白质后一直没有停下过研究得脚步。蛋白质是生命的物质基础 没有蛋白质就没有生命。因此,它是与生命及与各种形式的生命活动紧密联系在一起的物质。机体中的每一个细胞和所有重要组成部分都有蛋白质参与。蛋白质是构成生物体细胞组织的重要成分。食物中的蛋白质是人体中氮的惟一来源, 具有糖类和脂肪不可替代的作用。蛋白质与营养代谢、细胞结构、酶、激素、病毒、免疫、物质运转和遗传等密切相关, 其分离与定性、定量分析是生物化学和其他生物学科、食品检验、临床检验、诊断疾病、生物药物分离提纯和质量检验中最重要的工作。随着分析手段的不断进步, 对食品中蛋白质含量的测定方法也正向准确和快速的方向发展。在实验室提取蛋白质的过程中,目标蛋白质的来源是广泛的,而不同的样品中目标蛋白质的含量是不同的,为了得到更多的目标蛋白,就需要了解样品中蛋白质的含量。在实际的生活中也需要运用蛋白质含量的测定,例如牛奶、奶粉中蛋白质含量。记得前几年轰动一时三聚氰胺事件,国家的标准蛋白质检测方法被不法分子所利用,通过蛋白质检测方法的缺陷来谋取暴利。目前常用的蛋白质检测方法有五种:凯式定氮法、福林-酚法、考马斯亮蓝法、紫外法、双缩脲法。不同的方法有不同的优缺点。 一、双缩脲法 双缩脲在碱性溶液中与硫酸铜反应生成紫红色化合物,称为双缩脲反应,蛋白质分子中含有许多肽键在碱性溶液中也能与

Cu2+反应产生紫红色化合物。在一定范围内,其颜色的深浅与蛋白质浓度成正比。因此,可以利用比色法测定蛋白质浓度。双缩脲法是测定蛋白质浓度的常用方法之一。操作简便、迅速、受蛋白质种类性质的影响较小,但灵敏度较差,而且特异性不高。除-CONH-有此反应外,-CONH2、-CH2NH2、-CS-NH2等基团也有此反应。 二、考马斯亮蓝法 考马斯亮蓝法测定蛋白质浓度,是利用蛋白质与染料结合的原理定量测定微量蛋白浓度的方法。这种蛋白质测定法快速、灵敏、优点突出,因而得到广泛的应用。考马斯亮蓝法是目前灵敏度最高的蛋白质定量方法。考马斯亮兰G-250染料,在酸性溶液中与蛋白质结合,使染料的最大吸收峰( ma )位置由465 nm变为595 nm,溶液颜色也由棕黑色变为兰色。通过测定595 nm处光吸收的增加量可知与其结合蛋白质的量。研究发现,染料主要是与蛋白质中的碱性氨基酸(特别是精氨酸)和芳香族氨基酸残基结合。 考马斯亮蓝染色法的突出优点是: (1)灵敏度高,据估计比Lowry法约高四倍,其最低蛋白质检测量可达1 mg。这是因为蛋白质与染料结合后产生的颜色变化很大,蛋白质-染料复合物有更高的消光系数,因而光吸收值随蛋白质浓度的变化比Lowry法要大得多。 (2)测定快速、简便,只需加一种试剂。完成一个样品的测定,只需要5分钟左右。由于染料与蛋白质结合的过程,大约只要2分钟即

蛋白质含量测定方法汇总

实验七蛋白质含量测定 测定蛋白质的定量方法有很多,目前常用的有染料法,双缩脲(Biuret)法,酚试剂法(Lowry)法及紫外吸收法。 [目的要求] 1.掌握测定蛋白质的含量基本方法。 2.了解染料法、双缩脲法、Lowry法和紫外吸收法测定原理。 一、染料法 [实验原理] 在酸性溶液中染料考马斯亮蓝G-250与蛋白质结合,此时考马斯亮蓝G-250颜色从红色变为蓝色,吸收高峰从460nm移至595nm。利用这个原理可以测定蛋白质含量。 该法近年在某些方面有取代经典的Lowry法趋势,因为它操作简单,反应时间短,染料-蛋白质颜色稳定,抗干扰性强。本法的缺点是:对于那些与标准蛋白氨基酸组成有较大差异的蛋白质,有一定误差,因为不同的蛋白质与染料的结合是不同的,故该法适合测定与标准蛋白质氨基酸组成相近的蛋白质。 [器材] 吸量管;试管;721型分光光度计 [试剂] 1.标准牛血清白蛋白溶液:配成0.1mg/ml的溶液。 2.待测蛋白质溶液。 3.染料溶液:称取考马斯亮蓝G-250 0.1g溶于95%的酒精50ml,再加入85%的浓磷酸100ml,用水稀释至1000ml,混匀备用。

[操作步骤] 1.标准曲线的绘制: 按上表分别向各支试管内加入各种试剂,充分混匀,5min后在595nm波长处以0号管调零,测定各管吸光度值(A)。以吸光度值为纵坐标,蛋白质浓度为横坐标绘制标准曲线。 2.样品测定: 取1ml样品溶液(约含25~250微克蛋白质),加入染料溶液5ml混匀,5min后测定其595nm吸光度值,对照标准曲线求得蛋白质浓度。 二、双缩脲(Biuret)法测定蛋白质含量 [实验原理] 在碱性溶液中,双缩脲(H2N-CO-NH-CO-NH2)与二价铜离子作用形成紫红色的络合物,这一反应称双缩脲反应。凡分子中含二个或二个以上酰胺基(—CO-NH2),或与此相似的基团[如—CH2-NH2,—CS-NH2,—C(NH)NH2]的任何化合物,无论这类基团直接相连还是通过一个碳或氮原子间接相连,均可发生上述反应。蛋白质分子含有众多肽键(—CO-NH—),可发生双缩脲反应,且呈色强度在一定浓度范围内与肽键数量即与蛋白质含量

食物中蛋白质含量的测定

一、实验摘要: 蛋白质是含一定量氮的有机化合物。其测定方法也有很多种。不同的方法都有其优点和缺点,以及它们的适用范围不同。 紫外吸收法(方便快捷,0.2-2mg/ml) 凯氏定氮法(粗蛋白测定,0.2 – 2.0mg /ml) 双缩脲法(1-10mg /ml) 福林酚法(0.005-0.10mg /ml) G250 (0.025-0.20mg /ml) (考马氏亮蓝法) BCA法(0.010-1.2mg/ml;0.0005-0.001mg/ml) 此次实验采用牛奶样品在凯氏烧瓶中经浓硫酸和催化剂消化后,使蛋白质分解,产成的氨与硫酸结合生成硫酸铵,再在强碱条件下蒸馏出氨,并用硼酸吸收,以标准盐酸滴定,根据标准酸消耗的量,乘以一定系数,即可计算样品中蛋白质的含量。此次实验中使用的是乳制品,系数F=6.38.这种测定方法即为凯氏定氮法。因为食品中除蛋白质外,还含有其他含氮物质,所以此蛋白质称为粗蛋白质。此次实验后,我们组的最终得率为2.77%。 二、实验目的: 1、学习凯氏定氮法测定蛋白质的原理 2、掌握凯氏定氮法的操作技术,包括样品的消化处理,蒸馏、滴定及蛋白 质含量计算等 3、侧面了解测定食品中蛋白质含量的多种方法和优劣 三、基本原理: 利用浓硫酸及催化剂与食品试样一同加热消化,使蛋白质分解,其中C、H 形成CO 2、H 2 O逸出,而氮以氨的形式与硫酸作用,形成硫酸铵留在酸液中。然后 将消化液用NaOH碱化,蒸馏,使氨游离,用水蒸气蒸出,被硼酸吸收。用标准盐酸溶液滴定所生成的硼酸铵,从消耗的盐酸标准液计算出总氮量,再折算为粗蛋白含量。 1.有机物中的氮在强热和CuSO4,浓H2SO4作用下,消化生成(NH4)2SO4 反应式为:H2SO4==SO2↑+ H2O +[O] R-CH2-COOH+[O]==R-CO-COOH+ NH3↑

食品中蛋白质的含量测定

蛋白质的测定方法 测定食品中的蛋白质含量有二种方法,一是凯氏微量法,二是自动定氮分析法。 一.凯氏微量法 有手工滴定定氮和自动定氮仪定氮,实验者可根据经济条件设备而定。 1.原理 蛋白质是含氮的有机化合物。食品与硫酸和催化剂一同加热消化,使蛋白质分解,分解的氨与硫酸结合生成硫酸铵。然后碱化蒸馏使氨游离,用过量硼酸吸收后再以硫酸或盐酸标准溶液滴定,根据酸的消耗量乘以换算系数,即为蛋白质含量。 2NH2(CH2)2COOH+13H2SO4 (NH4)2SO4+6CO2+12SO2+16H2O (NH4)2SO4+2NaOH 2NH3+2H2O+Na2SO4 2.方法 本法参照GB 5009.5 -85 适用于各类食品及饲料中蛋白质的测定 3.试剂 所有试剂均用不含氨的蒸馏水配制。试剂均为分析纯。 3.1硫酸铜 3.2硫酸钾 3.3浓硫酸 3.4 2%硼酸溶液(或1%的硼酸) 3.5 混合指示剂:1份0.1%甲基红乙醇溶液与5份0.1%溴甲酚绿乙醇溶液临用时混合。也可用2 份0.1%甲基红乙醇溶与1份0.1%次甲基蓝乙醇溶液临用时混合。 3.6饱和氢氧化钠:500g氢氧化钠加入500ml水中,搅拌溶解,冷却后放置数日,澄清后使用。 3.7 0.01mol/L或0.05mol/L盐酸标准溶液:需标定后使用(配制及标定方法见附录) 4.仪器 消化炉凯氏定氮蒸馏装置万分之一电子天平 凯氏定氮蒸馏装置:如图所示 5. 操作步骤 5.1样品处理:精密称取0.1~2.0g固体样品或2~5g半固体样品或吸取液体样品5~20ml,放入100ml 或500ml凯氏烧瓶中,加入0.2g硫酸铜,0.3g硫酸钾及3~20ml浓硫酸,放置过夜后小心加热,待内容物全部炭化,泡沫完全停止后,加强火力,并保持瓶内液体微沸,至液体呈蓝绿色澄清透明后,取下放冷后用约2~10ml蒸馏水冲洗瓶壁,混匀后继续加热至液体呈蓝绿透明,取下放冷,小心加10~20ml水混匀,放冷后,移入100ml容量瓶中,并用少量水洗定氮瓶,洗液并入容量瓶中,再加水至刻度,混匀备用。取与处理样品相同量的硫酸铜、硫酸钾、硫酸按同一方法做试剂空白实验。

牛奶中酪蛋白含量的测定

牛奶中酪蛋白的提取及含量测定 一、实验原理 1、牛乳的主要成分:碳水化合物(5%)、脂类(4%)、蛋白质(3.5%)、维生素、微量元素(Ca、P等矿物质)、水(87%) 牛奶中的糖主要是乳糖。乳糖是一种二糖,它由D?半乳糖分子和D?葡萄糖分子通过P -1,4-糖昔键连接而成。乳糖溶于水,不溶于乙醇,当乙醇混入乳糖水溶液中时,乳糖会结晶出来,从而达到分离的目的。 牛奶中的蛋白质主要是酪蛋白和乳清蛋白两种,其中酪蛋白占了牛乳蛋白质的80%。酪蛋白是白色、无味的物质,不溶于水、乙醇等有机溶剂,但溶于碱溶液。而乳清蛋白水合能力强,分散性强,在牛乳中呈高分子状态。 2、等电点沉淀法: 在等电点时,蛋白质分子以两性离子形式存在,其分子净电荷为零(即正负电荷相等),此时蛋白质分子颗粒在溶液中因没有相同电荷的相互排斥,分子相互之间的作用力减弱,其颗粒极易碰撞、凝聚而产生沉淀,所以蛋白质在等电点时,其溶解度最小,最易形成沉淀物。酪蛋白的等电点为4.7左右(不同结构的酪蛋白等电点有所不同),本实验中将牛乳的pH调值4.7时,酪蛋白就沉淀出來。 市售牛奶通常会添加耐酸碱稳定剂來增加粘稠度,以致即使pH调至等电点酪蛋白也沉淀的很少,故实验时可将pH稍微调过多一点再调回等电点。同时,市售牛奶由于生产过程通常导致酪蛋白组分发生变化,因而使pl偏离了 4.7,通常偏酸。3、酪蛋白的提纯 根据乳糖、乳清蛋白等和酪蛋白的溶解性质差异,可以用纯水洗涤来除去乳糖、乳清蛋白等溶于水的杂质,再用乙醇除去脂类,然后过渡到用乙瞇洗涤,由于乙瞇很快挥发,最终得到纯粹的酪蛋白结晶。 4、蛋白质含量的测定(考马斯亮蓝结合法) 考马斯亮蓝能与蛋白质的疏水微区结合,这种结合具有高敏感性。考马斯亮蓝G520的磷酸溶液呈棕红色,最大吸收峰在465nm o当它与蛋白质结合形成复合物时呈蓝色,其最大吸收峰变为595nm o在一定范围内,考马斯亮蓝G520- 蛋白质复合物呈色后,在595nm下,吸光度与蛋白质含量呈线性关系,故可以测定蛋白质浓度。 二、实验器材与试剂 1、器材:恒温水浴锅、离心机、抽滤装置、蒸发皿、精密pH试纸、旋涡混合器、紫外分光光度计、试管四、5mL吸管、50mL容量瓶、100mL ft筒、电子分析天平 2、试剂:鲜牛奶、pH4.7醋酸■醋酸钠缓冲溶液、乙醇■乙艇混合液(95%乙醇、无水乙瞇体积比1: 1)、0.9%NaCl溶液、标准蛋白液(0.1mg/mL牛血清蛋白)、考马斯亮蓝G520染液 三、实验操作记录 1、酪蛋白的制备 将20mL牛奶盛于100mL的烧杯中加热到40*C,在搅拌下慢慢加入预热至40?C、pH4.7的醋酸缓冲溶液20mLo用冰醋酸调节溶液pH至4.7,此时即有大量的酪蛋白沉淀析出。将上述悬浮液冷却至室温,离心Smin (4000r/min),弃去上清液,沉淀即为酪蛋白粗品。

大米中蛋白质含量的测定

目的意义: 水稻是重要的粮食作物之一,其品质优劣是值得人们重视的问题。一个高产水稻品种,往往由于食味差、或营养不丰富,而不受大众的欢迎。因此,在保证高产的同时,还要改善稻米的品质。本实验将测定大米品质的几个重要生化指标,为水稻育种提供理论依据。 Ⅰ大米蛋白质含量的测定——考马斯亮兰G—250法 一、原理 考马斯亮G—250是一种染料,在游离状态下呈红色,在465nm波长处有最大光吸收。它能与蛋白质稳定结合,结合蛋白质后变为青色,在595nm处有最大吸收,在一定蛋白质浓度范围内(0~1000μg/ml),蛋白质—色素结合物在595nm波长下的光吸收与蛋白质含量成正比,故可用于蛋白质的定量测定。该法反应迅速,蛋白质与考马斯亮兰G—250的结合反应能在2分钟内达到平衡。结合物在室温下1小时内保持稳定,反应非常灵敏,可测出微克级蛋白质含量,是最近新发展起来的一种较理想的蛋白质定量法。 二、实验材料、仪器及试剂 1.仪器: 721型分光光度计离心机50ml容量瓶10ml刻度试管研钵量筒移液管 2.试剂: (1)牛血清白蛋白(1000μg/ml):称取100.00mg牛血清白蛋白,溶于100ml蒸馏水中,配制成标准蛋白质溶液。 (2)考马斯亮兰G-250溶液:称取100ml考马斯亮兰G—250,溶于50ml 90%乙醇中,加入85%(W/V)的磷酸100ml,最后用蒸馏水定容到1000ml,过滤,常温下可放置1个月。 (3)0.1mol/LnaOH:称取4g氢氧化纳,用蒸馏水溶解,并定容至1000ml。 3.材料:大米粉 三、实验方法 1.标准曲线的制作: 取6只10ml刻度试管,编号,按下表数据配制牛血清白蛋白标准溶液。准确吸取上述各管溶液0.1ml,对应放于另外6支10ml刻度试管中,加入5ml考马斯亮兰G-250溶液,盖塞,将试管中溶液给向倒转混合,放置2分钟后,用10mm光径的比色杯在595nm波长下比色。以光密度值为纵坐标,以蛋白质浓度值为横坐标,制作出标准曲线。 2.样品中蛋白质提取: (1)准确称取稻米粉0.5克,放入研钵中,加2ml0.1mol/L NaOH,研磨成匀浆,转入到10ml离心管中,再用6ml 0.1mol/ L NaOH分三次洗涤研钵,洗液一并转入10ml离心管中,

几种蛋白质含量测定方法的比较

几种蛋白质含量测定方法的比较 【摘要】:蛋白质含量测定方法,是生物化学研究中最常用、最基本的分析之一。目前常 用的方法有凯氏定氮法、双缩脲法(Biuret)、紫外吸收法、考马斯亮蓝法(Bradford),Folin —酚试剂法(Lowry)杜马斯燃烧法。其中Bradford 法灵敏度颇高,比紫外吸收法灵敏10~20 倍,比Biuret法灵敏100 倍以上。凯氏定氮法虽然比较复杂,但较准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。过去Folin—酚试剂法法是应用最广泛的一种方法,由于其试剂乙的配制较为困难(现在已可以在本公司订购),近年来逐渐被考马斯亮兰法所取代。测定农产品中全氮的凯氏定氮法在许多国家已被杜马斯然烧定氮法所代替,杜马斯燃烧法是基于在高温下(大约 900 ℃),通过控制进氧量、氧化消解样品的原理而进行氮测定的。这6种方法并不能在任何条件下适用于任何形式的蛋白质,每种方法都有其优缺点,在选择方法时应考虑:⑴实验对测定所要求的灵敏度和精确度;⑵蛋白质的性质;⑶溶液中存在的干扰物质;⑷测定所要花费的时间 【关键词】:凯氏定氮法双缩脲法紫外吸收法考马斯亮蓝法 Folin—酚试剂法杜马斯燃烧法 一、凯氏定氮法 1.1原理 凯氏定氮法测定蛋白质分为样品消化、蒸馏、吸收和滴定4 个过程。其原理是样品中含氮有机化合物与浓硫酸在催化剂作用下共热消化,含氮有机物分解产生氨,氨又与硫酸作用,变成硫酸铵。然后加碱蒸馏放出氨, 氨用过量的硼酸溶液吸收,再用盐酸标准溶液滴定求出总氮量换算为蛋白质含量。 1.2特点 凯氏定氮法是目前分析有机化合物含氮量常用的方法,是测定试样中总有机氮最准确和最简单的方法之一,被国际国内作为法定的标准检验方法。凯氏定氮法样品的最佳消化条件为硫酸铜2.50 g, 硫酸钾0.10 g,浓硫酸4.00 mL;硫酸铜的用量为影响消化时间的主要因素,硫酸钾和浓硫酸用量为第二和第三主要因素;用此最佳条件做实验, 消化时间仅为12 min;与其他硫酸铜、硫酸钾、浓硫酸用量方法对比,该法所需消化时间最短,试剂用量减少,可降低实验成本,也降低了对环境的污染。 凯氏定氮法适用范围广泛,测定结果准确,重现性好,但操作复杂费时,试剂消耗量大。若采用模块式消化炉代替传统的消化装置, 可同时测定几份样品,节省时间,提高了工作效率,适用于批量蛋白质的测定,具有准确、快速、简便、低耗、稳定的优点。 二、双缩脲法(Biuret ) 2.1原理 双缩脲(NH3CONHCONH3)是两个分子脲经180 ℃左右加热,放出1 个分子氨后得到的产物。在强碱性溶液中,双缩脲与CuSO4 形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能够以1 个中间碳原子相连的肽键,这类化合物都有双缩脲反应。紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。

蛋白质含量的测定

蛋白质含量的测定 实验三蛋白质含量的测定 衡量食品的营养成分时,要测定蛋白质含量,但由于蛋白质组成及其性质的复杂性,在食品分析中,通常用食品的总氮量表示,蛋白质是食品含氮物质的主要形式,每一蛋白质都有其恒定的含氮量,用实验方法求得某样品中的含氮量后,通过一定的换算系数。即可计算该样品的蛋白质含量。 一般食品蛋白质含氮量为l0,如肉、蛋、豌豆、玉米等,其换算系数为6.25,小麦取5.70,大米5.95、乳制品6.38、大豆5.17,动物胶5.55。 一、目的与要求: 掌握微量凯氏法测定蛋白质总氮量的原理及操作技术。包括样品的消化,蒸馏吸收及滴定与含氮量的计算。 二、原理: 凯氏定氮法:食品经加硫酸消化使蛋白质分解,其中氮素与硫酸化合成硫酸铵。然后加碱蒸馏使氨游离,用硼酸液吸收后,再用盐酸或硫酸滴定根据盐酸消耗量,再乘以一定的数值即为蛋白含量,其化学反应式如下。 ( 1 ) 2NH(CH)COOH+13HS0 (NH)2S0+6C0+12S0+ 16H 2222444222 (2)(NH)SO+2NAOH-----2NH+2HO+NASO 4242224 (3)2NH+4HBO----(NH)BO+5HO 33342472 (4) (NH)B0+HS0+5H0-(NH)SO+4HBO 424724249422 三、试剂与仪器: 1、硫酸钾 2、硫酸铜 3、硫酸

4、2,硼酸溶液 5、40,氢氧化钠溶液 6、混合指示剂:把溶解于95,乙醇的0.l,溴甲酚绿溶液10毫升和溶于95,乙醇的0.l,甲基红溶液2毫升混合而成( 7、0.OINHCL标准溶液或0(01N硫酸标准溶液( 8、凯氏微量定氮仪一套。 9、定氮瓶100m1或50ml一只。 10、三角瓶150ml 3只。 11、量筒50ml、lOml、lOOml。 12、吸量管10ml只。 13、酸式滴定管1支。 14、容量瓶100毫升1只。 15、小漏斗1只。 四、操作方法: 1、样品处理:精密称取0.2-2.0g固体样品或2-5g半固体样品或吸取10-20ml 液体样品(约相当氮30-40mg),移入干燥的100ml或500ml定氮瓶中,加入0.2g

牛奶的蛋白含量高吗

牛奶的蛋白含量高吗 很多人选择牛奶就是因为觉得牛奶里面的蛋白含量特别的高,其实对牛奶是否含有过高的蛋白含量,很多人感觉还是一个疑问,也是一个未知数,蛋白含量对人体的好处特别的多,蛋白质的食物吃了之后可以补钙,补锌,还有强壮骨骼的作用和功效,那么牛奶蛋白含量高吗?下面我们就来介绍下。 牛奶是高蛋白食物吗? 牛奶是高蛋白食物吗?肯定的回答是:牛奶含有一定蛋白质,但绝不是高蛋白食物。蛋白质是生命细胞的组成部分,几乎所有的天然食物中都含有蛋白质。相对来说,蔬菜、水果、藻类、薯类等因含有大量水分,蛋白质含量较低,多在0.5%-2%;粮食类含水量低,蛋白质含量在7%-15%;淀粉豆类(如红豆、绿豆)在20%左右,大豆却可高达35%-40%,因此,人们通常说,豆类与豆制品是蛋白质的优质来源。 相对植物类食物蛋白质含量的参差不齐,动物类食物均为蛋白质的良好来源。各种肉类、鱼类、贝类和蛋奶均含有丰富的蛋白质,但是按照鲜重来计算,肉类和鱼贝类的蛋白质含量最高,

可达15%-20%,蛋类在12%左右,牛奶却只有3%左右。这也说明,牛奶中真正含有的蛋白质并不多,多喝一大杯奶所摄入的蛋白质,或许你只需要吃一口肉就补回来了。因此,牛奶并不是补充蛋白质的最佳食物选择。 含蛋白质高的食物 含蛋白质最多的食物是黄豆,每100克含36.3克; 含蛋白质最多的动物是鸡肉,每100克含23.3克; 食物中以豆类、花生、肉类、乳类、蛋类、鱼虾类含蛋白质较高,而谷类含量较少,蔬菜水果中更少。人体对蛋白质的需要不仅取决于蛋白质的含量,而且还取决于蛋白质中所含必需氨基酸的种类及比例。由于动物蛋白质所含氨基酸的种类和比例较符合人体需要,所以动物性蛋白质比植物性蛋白质营养价值高。 在植物性食物中,米、面粉所含蛋白质缺少赖氨酸,豆类蛋白质则缺少蛋氨酸和胱氨酸,故食混合性食物可互相取长补短,大大提高混合蛋白质的利用率,若再适量补充动物性蛋白质,可大大提高膳食中蛋白质的营养价值。虽然人乳、牛乳、鸡蛋中的蛋白质含量较低,但它们所含的必需氨基酸量基本上与人体相符,

食品中蛋白质含量测定

实验一食品中蛋白质含量测定(凯氏定氮法) 一、目的与要求 1、学习凯氏定氮法测定蛋白质的原理。 2、掌握凯氏定氮法的操作技术,包括样品的消化处理、蒸馏、滴定及蛋白质含量计算等。 二、实验原理 1、消解:蛋白质是含氮的化合物。食品与浓硫酸在催化剂作用下共同加热消化,使蛋白质分解,产生的氨与硫酸结合生成硫酸铵而留在消化液中,然后加碱蒸馏使氨游离,用硼酸吸收后,再用盐酸标准溶液滴定,根据酸的消耗量来乘以蛋白质换算系数,即得蛋白质含量。因为食品中除蛋白质外,还含有其它含氮物质,所以此蛋白质称为粗蛋白。 NH 2(CH2) 2 COOH+13H 2 SO 4 =(NH 4 ) 2 SO 4 +6CO 2 +12SO 2 +16H 2 O 浓硫酸将有机物炭化后为碳、氢与氮,将形成的碳氧化: 2H 2SO 4 +C(Δ)=CO 2 +2H 2 O+2SO 2 ↑ 生成的二氧化硫将氧化态的氮还原为氨而自身被氧化为三氧化硫,氨随之与硫酸反应生成硫酸铵, H 2SO 4 +2NH 3 =(NH 4 ) 2 SO 4 在消解试验中,为了加速蛋白质的分解,缩短消解时间,常常加入下列物质: (1)硫酸钾:一般浓硫酸的沸点为340℃,但加入硫酸钾后,硫酸不断分解,水不断溢出引起硫酸钾浓度不断增加,沸点因此而增加。 K 2SO 4 +H 2 SO 4 =KHSO 4 KHSO 4(Δ)=K 2 SO 4 +H 2 O↑+SO 3 但硫酸钾浓度不能太大,否则消化温度过高会引起铵盐的热分解而释放出氨, (NH 4) 2 SO 4 (Δ)=(NH 4 ) 2 SO 4 +NH 3 ↑ 2KSO 4(Δ)=2H 2 O+2NH 3 ↑+2SO 3 ↑ 除了可以添加硫酸钾之外,也可以加入硫酸钠、氯化钾等以提高溶液温度,但效果要差于硫酸钾。 (2)硫酸铜:硫酸铜可以催化反应。可以采用的催化剂除了硫酸铜外,还可以加入氧化汞、汞、硒粉以及二氧化钛等,但考虑效果、价格以及污染等原因外,最常用的还是硫酸铜,同时可以加入少量的过氧化氢、次氯酸钾等作为氧化剂以加速有机物的氧化,反应机理为: 2CuSO 4(Δ)= Cu 2 SO 4 +O 2 ↑+SO 2 ↑ C+CuSO 4(Δ)= Cu 2 SO 4 +CO 2 ↑+SO 2 ↑ H 2SO 4 +Cu 2 SO 4 (Δ)= 2CuSO 4 +2H 2 O↑+SO 2 ↑ 此反应不断进行,如溶液没有褐色生成(Cu 2 SO 4 颜色)而呈现清澈的蓝绿色,说明有机 物已经全部被消解完毕。因此,在试验过程中,硫酸铜不但能够催化反应,而且能够指示反

相关文档
最新文档