Line profiles of molecular ions toward the pre-stellar core LDN 1544

Line profiles of molecular ions toward the pre-stellar core LDN 1544
Line profiles of molecular ions toward the pre-stellar core LDN 1544

a r X i v :a s t r o -p h /0505072v 1 4 M a y 2005

Astronomy &Astrophysics manuscript no.aa2792February 2,2008

(DOI:will be inserted by hand later)

Line pro?les of molecular ions toward the pre-stellar core LDN

1544

F.F.S.van der Tak 1,P.Caselli 2,and C.Ceccarelli 3

1

Max-Planck-Institut f¨u r Radioastronomie,Auf dem H¨u gel 69,53121Bonn,Germany;e-mail:vdtak@mpifr-bonn.mpg.de

2Osservatorio Astro?sico di Arcetri,Largo E.Fermi 5,50125Firenze,Italy

3

Laboratoire Astrophysique de l’Observatoire de Grenoble,BP 53,38041Grenoble,France

Received 31January 2005/Accepted 28April 2005

Abstract.Velocity pro?les of ground state lines of H 2D +,HC 18O +and N 2H +,observed previously with the CSO and IRAM 30m telescopes,are modeled with a Monte Carlo radiative transfer program to study the temperature,density and velocity structure of the pre-stellar core LDN 1544.The H 2D +line is double-peaked like that of the other ions,but previous models that ?t the HC 18O +and N 2H +pro?les are found not to ?t the H 2D +data.Matching the H 2D +observations requires at least three modi?cations to the model at small radii:(1)the density pro?le must continue to rise inward and not ?atten o?toward the center;(2)the gas temperature must be nearly constant and not drop inwards signi?cantly;(3)the infall velocity must increase inward,in a fashion intermediate between ‘quasi-static’(ambipolar di?usion)and ‘fully dynamic’(Larson-Penston)collapse.The C 18O emission indicates a chemical age of <~0.1Myr.The e?ects of a ?attened structure and rotation on the line pro?les are shown to be unimportant,at least on the scales probed by single-dish telescopes.Alternatively,the H 2D +pro?le is a?ected by absorption in the outer layers of the core,if gas motions in these layers are su?ciently small.Key words.ISM:Molecules;ISM:individual –LDN 1544;Stars:Circumstellar matter;Stars:formation

1.Introduction

The formation of low-mass stars occurs in dense cores inside molecular clouds,although the actual mechanism by which these cores accumulate material is still dis-puted (ambipolar di?usion vs.turbulence:Shu et al.2000;Hartmann et al.2001).In any case,through the loss of turbulent and/or magnetic support,dense cores contract towards a ‘critical state’,after which gravitational collapse starts and infall occurs onto a central object,a ‘protostar’.Observers distinguish such protostars in Class 0objects,where the circumstellar envelope is much more massive than the star and accretion rates are high,and Class I objects,where star and envelope have similar masses and accretion rates have dropped (see Andr′e et al.2000for a review).During these stages,most (≈99%)of the angular momentum of the core is carried away by bipolar out-?ows,the formation of binary stars,and magnetic ?elds.The remaining 1%leads to the formation of the circum-stellar disks commonly observed in subsequent stages of pre-main sequence stars (Mundy et al.2000).This sce-nario is convincing,but many fundamental questions re-main unanswered regarding the stages before formation of a central luminous object,the so-called pre-stellar cores.Does the collapse start from a state of dynamical equi-

librium?When does a rotating structure form,and how important are the e?ects of ?attening?

Detailed kinematical studies have been carried out for the Class I object LDN 1489(Hogerheijde 2001)and the Class 0object IRAM 04191(Belloche et al.2002).These authors used the HCO +and CS molecules,respectively,to trace the velocity ?eld.However,at the low tempera-tures (<~10K)of pre-stellar cores,most neutral molecules freeze out onto dust grains.In particular,the CO and

CS molecules freeze out at n (H 2)>~10

5

cm ?3,so that these species (as well as HCO +)trace the outer parts of the cores (Bacmann et al.2003;Tafalla et al.2004).The more volatile N 2molecule remains abundant at these densities,making N 2H +and N 2D +better tracers of pre-stellar core nuclei than CO and CS (e.g.,Bergin &Langer 1997;Crapsi et al.2004).However,at the very centers of

the cores,where >~10

6

cm ?3,even N 2freezes out,caus-ing N 2H +and N 2D +to disappear from the gas phase (Bergin et al.2002;Belloche &Andr′e 2004).One of the few molecules that do not su?er from this depletion e?ect is H 2D +.This paper explores the use of H 2D +as kine-matic tracer of the centers of pre-stellar cores.We focus on the ‘prototypical’pre-stellar core LDN 1544in the Taurus molecular cloud (d =140pc)which has been well charac-

2Van der Tak et al.:Molecular line pro?les toward LDN1544

Table1.Centroids and widths of the two velocity compo-

nents.Numbers in brackets denote uncertainties in units

of the last decimal.

H2D+(110–111)7.07(3)0.29(7)0.28–0.34

7.38(3)0.27(4)

HC18O+(1–0)7.04(1)0.18(3)0.10–0.12

7.28(1)0.23(3)

N2H+(1–0,F1F=10–11)7.08(1)0.19(1)0.11–0.13

7.33(1)0.20(2)

1http://www.mpifr-bonn.mpg.de/staff/fvandertak/ratran/

2http://www.strw.leidenuniv.nl/~moldata/

Van der Tak et al.:Molecular line pro?les toward LDN 1544

3

Fig.1.Line pro?les of H 2D +(left),HC 18O +(middle)and N 2H +(right;only the F 1F =1,0–1,1hyper?ne component)observed towards the ‘dust peak’of LDN 1544.Superposed are synthetic pro?les for the best-?t static model (dotted),and infall models after Ciolek &Basu (2000)for times 2.660(dashed)and 2.684Myr (dash-dotted).The line width (static:b D =0.15km s ?1;infall:b D =0.05km s ?1)is set to match the H 2D +data.1×10?9,dropping by a factor of 5at a radius of 20′′(2800AU)(Van der Tak et al.2004)as suggested by the observations of Caselli et al.(2003).

For the velocity ?eld,we ?rst adopt static models,with zero velocity at all radii,and second models with ‘infall’velocity ?elds.There are several competing the-ories for the velocity ?eld of collapse onto a protostar.Here we consider models by Ciolek &Basu (2000),which assume that protostellar collapse is quasi-static and reg-ulated by magnetic pressure.Speci?cally,we model their simulations ‘t3’and ‘t5’which correspond to times of 2.660and 2.684Myr after the start of core collapse.At earlier times,the infall speed is very low,while later times are implausible due to the short time spent in these phases.We consider these speci?c infall models because they are known to reproduce observations of HCO +and N 2H +to-ward LDN 1544(Caselli et al.2002a).Sections 6and 8treat more general collapse models.Note that the ve-locity ?eld in the simulations by Ciolek &Basu is not spherically but axially symmetric with an axis ratio of ≈0.3(see their Figure 4).Adopting these velocity ?elds in spherical symmetry is therefore a simpli?cation;how-ever,the assumed pro?les are quite similar to those of

collapsing Bonnor-Ebert spheres,as recently shown by Myers (2005).Section 5will present fully consistent,two-dimensional models with the velocity ?eld of Ciolek &Basu.For the turbulent broadening,Doppler parameters b D between 0.05and 0.25km s ?1were tried.Smaller val-ues of b D are overwhelmed by thermal broadening;larger values do not ?t the data.Variations of b D with radius are considered in Section 9.

Figure 1shows that the total widths of the H 2D +,HC 18O +and N 2H +ground-state lines can be matched using either velocity ?eld.The best-?t static model has b D =0.15km s ?1,while b D =0.05km s ?1gives the best ?ts with the infall models.However,the observed double-peaked line shape rules out the static model,both at the dust peak and at the 20′′o?set https://www.360docs.net/doc/622614561.html,ing b D =0.05km s ?1the infall models can reproduce the HC 18O +and N 2H +line pro?les at both positions (Figure 2).The data do not allow to decide between the ‘t3’and ‘t5’solutions.However,none of these models re-produces the double-peaked H 2D +pro?le seen at the cen-tral position.

4Van der Tak et al.:Molecular line pro?les toward LDN

1544

Fig.2.As Figure 1,at 20arcseconds o?set (average NSEW)One reason for the lack of a central dip in the syn-thetic H 2D +spectrum may be that the model has H 2D +abundant at the core center,where infall velocities are low according to Ciolek &Basu (2000).Therefore we have tested the possibility that H 2D +has a shell-type distri-bution like HC 18O +and N 2H +.The H 2molecule is too light to freeze out on dust grains and cause depletion of H 2D +,but instead,conversion into D 2H +and D +3in the

gas phase (e.g.,H 2D ++HD →D 2H +

+H 2)may cause a cen-tral H 2D +hole.Formation of multiply deuterated H +3is expected at the temperature and density of the center of LDN 1544(Roberts et al.2003;Walmsley et al.2004).Support for these theories comes from the recent detec-tion of D 2H +towards the pre-stellar core LDN 1689N (Vastel et al.2004).

We have run models with the H 2D +abundance set to zero inside inner radii of 500–2500AU (in steps of 500AU),but none of these models gives a double-peaked H 2D +line pro?le.The problem is that the Ciolek &Basu

(2000)models predict infall velocities of <~0.1km s ?1

at the radii where H 2D +is abundant,much less than the observed peak separation of ≈0.26km s ?1(Table 1).Increasing the outer radius of the H 2D +shell from 3000AU to 6000AU gives too strong line intensities at the o?set position,but does produce double-peaked H 2D +pro?les at the center.However,the two peaks are not

≈equally bright as observed,but the blueshifted peak is ≈twice as strong as the redshifted one,a phenomenon known as ‘infall asymmetry’.Therefore it seems that the H 2D +line shape cannot be explained with the physical and geometrical structure adopted so far.Before chang-ing the adopted physical structure of the core,we explore deviations from the hitherto assumed spherical symmetry.

5.Axisymmetric models

Maps of dust continuum and molecular line emis-sion of LDN 1544show a ?attened structure (Ward-Thompson et al.1999;Caselli et al.2002a).For example,the 1300μm dust continuum,which should be representative of the surface density distribution,has a major axis of ≈2.′5(21000AU),an axis ratio of ≈1.7,and a position angle of 45?for the major axis.Therefore we explore the e?ects of ?attened geometry on the line pro?les.

We have constructed two-dimensional radiative trans-fer models with inner and outer radii of 70and 20000AU,on a 30×30grid,logarithmically spaced in both R and z .The density structure is as described by Ciolek &Basu (2000):an ‘infall disk’with a ?aring angle of 15?and an inclination of 74?.We adopt a time of 2.660Myr,which gives the best ?t to millimeter-wave dust continuum ob-

Van der Tak et al.:Molecular line pro?les toward LDN 1544

5

Fig.3.Radial pro?les of dust and gas temperature,and the densities of H 2,H 2D +(×2×109),HCO +(×1012)and N 2H +(×1010)in our model of LDN 1544.

servations

(Ciolek &Basu 2000).The radial infall velocity is zero at cloud center and edge,and peaks at 0.14km s ?1at a radius of 0.03pc.For the gas and dust tempera-tures,we tried a uniform value of 10K (as in the model of Ciolek and Basu)and the radial distribution by Galli et al.(2002)(assumed vertically isothermal).The abundance pro?les of N 2H +,HC 18O +and DCO +were again taken from Caselli et al.(2002b),Model 3,and for H 2D +,we used the pro?le described in §4.

These models reproduce the observed spatial distribu-tion of the DCO +2–1and N 2H +1–0lines (Caselli et al.2002a),and also predict the correct line shape for HC 18O +and N 2H +.However,they predict a single-peaked H 2D +line,which is not observed (Fig.4).

Another possible cause of the double peaked H 2D +line pro?le is rotational motion of the central part of the core.For example,Belloche et al.(2002)found the Class 0object IRAM 04191to rotate at an angular rate of ?~3.9×10?13s ?1inside a ‘centrifugal radius’r C of 3500AU.We have added rotation to the velocity ?eld by Ciolek &Basu (2000),while keeping the density and temperature structure from the previous models.Rotation rates between ?=1×10?13and 2×10?12s ?1were tried,in-side r C =3000and https://www.360docs.net/doc/622614561.html,rger values of r C are ruled out by the lack of a velocity shift of the H 2D +pro?les at the o?set positions,and also by the interferometric obser-vations of N 2H +1–0by Williams et al.(1999).We ?nd that the H 2D +line pro?le is hardly changed from the non-rotating case for r C =3000AU.For r C =6000AU,the H 2D +line is considerably broadened,and the total width of the observed H 2D +pro?le limits ?to <5×10?13s ?1.None of these models predict double-peaked line shapes.In general,both ?attening and rotation appear unimpor-

Fig.4.Results of 2D models with T kin ≡10K (dotted line)and with the temperature distribution from Galli et al (dashed line),superposed on the observations (histogram).tant for LDN 1544on the scales probed by single-dish observations.

6.Alternative temperature and density structures

The reason that the models in §§4and 5do not indicate H 2D +self-absorption may be that the H 2D +excitation temperature is almost constant in the

range of radii (<~3000AU)where H 2D

+

is abundant (H 2D +/H 2=10?9

).In particular,the models from §4with Galli’s temperature distribution have T ex =5.8–5.6K

6Van der Tak et al.:Molecular line pro?les toward LDN 1544

inside

r =3000AU (Fig.5,top),while the isothermal mod-els of §5have T ex =8.8–8.2K at these radii.

Fig.5.Excitation temperature pro?les of H 2D +110–111for the physical structures by Galli et al (top),Young et al (middle),and for the isothermal power-law model (bottom).Within the radius of high H 2D +abundance (~3000AU),T ex is practically constant in the Galli case,but has a gradient in the other cases.

In search of an excitation temperature gradient,we went back to spherically symmetric models and adopted the density and dust temperature distributions

by Evans et al.(2001),with gas temperatures calculated by Young et al.(2004).In these models for LDN 1544,the density continues to rise toward the center,rather than ?attening o?as in the model of Ward-Thompson et al.(1999).As a consequence,T ex drops from 6.9to 5.5K at radii of 500-2500AU (Fig.5,middle).

Combining this physical structure with velocity ?eld ‘t3’from Ciolek &Basu (2000),the H 2D +pro?le re-mains single peaked.This result holds also when adopt-ing constant infall speeds up to 0.2km s ?https://www.360docs.net/doc/622614561.html,rger in-fall speeds are inconsistent with the HC 18O +and N 2H +data.Even an inward increasing velocity pro?le,v =v 0(r/r 0)?0.5with r 0=104AU and v 0=0.1km s ?1,fails to produce a double peak (Fig.6).Adopting r 0=103AU and v 0=0.2km s ?1,which mimics the ‘t5’velocity ?eld (Caselli 2003)does not change this result appreciably.Furthermore,applying central holes in the H 2D +abun-dance distribution,with radii of 500-1500AU,changes the total intensity of the line,but not its shape.

To prevent T ex from dropping o?at the very center,we took the more drastic step of forcing a uniform T kin ,while keeping the density power law structure by Evans et al.Values of T kin =6K,8K,10K and 12K were tried.Fig.5(bottom)shows the T ex pro?le for T kin =8K.The H 2D +pro?les for these models show a classic ‘infall asym-metry’for abundances >~10

?9

,or a broad peak for lower abundances.The observed pro?le with two peaks of equal strength is not reproduced.Leaving the dust temperature unchanged or setting it equal to T kin makes no di?erence to these results.

Fig.6.Results of models with a power-law density dis-tribution and T kin ≡8K (dotted line)and with the gas temperature calculated by Young et al (dashed line),su-perposed on the observations (histogram).

Van der Tak et al.:Molecular line pro?les toward LDN15447 7.Self-consistent chemical model

The rate of formation of H2D+by the reaction of H+3

with HD depends mainly on the cosmic-ray ionization rate

which is not expected to change within the pre-stellar core.

However,the main destruction channel of H2D+is the re-

action with CO,the abundance of which is expected to

decrease signi?cantly at low temperatures and high den-

sities due to freeze-out on dust grains.The models so far

take depletion into account in a simpli?ed way by consid-

ering‘jumpy’H2D+abundance pro?les.This section con-

siders models that compute the abundances of H+3and its

isotopomers self-consistently across the LDN1544core. For that we adapted the model of

H+3chemistry in young

protoplanetary disks developed by Ceccarelli&Dominik (2005).These models ignore the e?ect of dynamics on the chemistry.Brie?y,the model computes the abundances of H+3,H2D+,D2H+and D+3by solving the chemical network for these species,which is mostly governed by the CO de-pletion and the cosmic-ray ionization rate(Roberts et al. 2003;Walmsley et al.2004;see the detailed discussion in Ceccarelli&Dominik2005).The model uses the‘fast’rate for the H+3+HD reaction(Roberts et al.2003)and 920K for the binding energy of CO on the grain surface (Bergin&Langer1997).The papers by Roberts et al.and Walmsley et al.discuss the uncertainties of the other rel-evant chemical reation rates such as the dissociative re-combination of H2D+,D2H+and D+3.The role of cosmic rays is twofold:on the one hand,they set the ionization degree in the gas,and therefore the total abundance of H+3 and its isotopomers in the region where CO is depleted. The larger the ionization degree,the larger the absolute abundance of H+3in all its isotopic forms.Second,the cosmic rays regulate the desorption of CO molecules from icy grain mantles back into the gas phase.The model in-cludes‘spot heating’of grains by cosmic ray impacts,but no non-thermal desorption mechanisms which are much less e?ective(Shen et al.2004).The larger the cosmic-ray?ux,the higher the CO gas-phase abundance,and the lower the abundance of the deuterated forms of H+3.

The model assumes that at time t=0,all CO is in the gas phase,so that the CO abundance is equal to the canonical value9.5×10?5with respect to H2(e.g., Frerking et al.1982).As time passes,the CO molecules condense out onto the grain mantles and disappear from the gas phase.The time scale of the CO depletion is set by the density and temperature,which are taken equal to those computed in the models of Galli et al.and Evans et al.,previously described.The result is a zone where the increased CO depletion leads to an enhanced H2D+/H+3ratio,namely an increased H2D+abundance (see also Caselli et al.2003and Ceccarelli et al.2004). Our computed H2D+,D2H+and D+3abundances coin-cide with those calculated by Roberts et al.(2003)and Walmsley et al.(2004)when the same densities are con-sidered.

Figure7shows an example of the computed H2D+, D2H+and D+3abundance pro?le across LDN1544.Also Fig.7.Calculated abundances of H2D+,D2H+and D+3 for an age of0.1Myr,a cosmic-ray ionization rate of

3×10?17s?1and the physical structure by Evans et al. (2001).The dotted lines indicate the radii equivalent to one and two CSO beams,for comparison with observa-tions.

shown is the electron fraction,which equals the total ionization.In these highly shielded regions,most charge comes from molecules,not from metals,which are also expected to be highly depleted(Caselli et al.2002b). Note that in the very inner region,the H2D+/H+3and D2H+/H+3abundance ratios have a‘plateau’,whereas the D+3/H+3abundance ratio keeps increasing.The re-sult is a‘hole’in the H2D+and D2H+abundances, because D+3becomes the charge carrier when the CO depletion is larger than~30.The result that D+3is the dominant ion at the centers of pre-stellar cores was found before by Roberts et al.(2003)and Walmsley et al. (2004);adopting the temperature and density structure from Young et al.(2004)for LDN1544,it happens at R<

3000AU.The H2D+line pro?les computed from these models depend on two major parameters:the cosmic-ray ionization rate and the time(for the CO deple-tion).We ran models varying both parameters for the two physical structures of the core,the Galli et al. and Evans et al.structure respectively.We considered ages of0.05,0.1and1.0Myr,and?xed the cosmic-ray ionization rate at the canonical value of3×10?17s?1 (Van der Tak&van Dishoeck2000).The model does not consider any shielding of cosmic rays,as in Caselli(2003).

Since the central CO–free zone grows in time,the strengths of isotopic CO lines constrain the chemical age. With the velocity?eld of Ciolek&Basu(2000),we cal-culate an intensity for the C18O1–0line in the22′′beam of the IRAM30m telescope of4.3K for t=0.05Myr, 3.5K for0.1Myr and 1.5K for 1.0Myr.The ob-served strength of≈5K(Caselli et al.2002a)thus sug-

gests an age of<

0.1Myr for LDN1544.It is not clear if these ages are compatible with our assumption of a static cloud.Models including both chemistry and dynam-ics(e.g.,Rodgers&Charnley2003;Aikawa et al.2005) are needed to address this issue.

8Van der Tak et al.:Molecular line pro?les toward LDN1544 To model the H2D+line pro?le,we assume an or-

tho/para ratio of unity as appropriate for low tempera-

tures and high densities,although the exact amount of

molecular depletion may make a factor of~2di?erence

(Pagani et al.1992;Walmsley et al.2004).Figure8shows

the H2D+line pro?les calculated for a constant infall ve-

locity of0.2km s?1and for the Ciolek&Basu velocity

?eld.The synthetic pro?les are double peaked,but show

strong infall asymmetry while two peaks of equal strength

are observed.The strong self-absorption makes the emis-

sion≈50%weaker than observed.At the o?set position,

the emission is also predicted to be asymmetric,and also

≈50%weaker than observed.

Fig.8.Results of models with a power-law density distri-

bution and the gas temperature calculated by Young et

al,the e?ect of depletion included for a chemical age of

0.1Myr for either a constant infall velocity(dotted line)or

the Ciolek&Basu velocity?eld(dashed line),superposed

on the observations(histogram).

These models seem to overestimate the depletion

of CO and the abundance of H2D+.Chemical ages

<0.05Myr do not seem plausible,but the age is uncer-

tain through the dust opacity coe?cient,which makes the

density uncertain by a factor of two.Alternatively the gas

temperature(which controls the emission)is higher than

the dust temperature(which controls the depletion).The

binding energy of CO to the grain surface may also have

been overestimated,so that CO does not stick to the sur-

face as well as assumed.We have not considered the re-

duced cosmic-ray ionization rate which previous studies of

the LDN1544core indicate in this source(Caselli et al.

2002b;Tafalla et al.2004),since the CO depletion would

be even higher,implying a worse match to the data.

8.Alternative kinematics

The infall model by Ciolek&Basu(2000)is a magneti-

cally mediated,‘quasi-static’collapse with relatively slow

infall velocities.The collapse may instead be‘dynamic’

which means that the gas never reaches equilibrium.The

most extreme case is the Larson-Penston collapse(e.g.,

Zhou1992)where the velocity reaches many times the

sound speed.We modeled the H2D+line with such a ve-

locity pro?le,but?nd that emission is predicted at much

higher velocities than observed.

Hydrodynamic simulations by Hunter(1977)show the

existence of a continuum of solutions between the extreme

static and dynamic cases.The solutions for the densityρ

at time t and radius r are

4πGρr2m0r

a

= r

where a is the sound speed,and m0is a dimensionless

parameter.The Larson-Penston collapse has m0=46.9

while m0=0.975for the quasi-static(Shu)collapse.

As examples of infall models‘intermediate’between

quasi-static and fully dynamic collapse,we have run mod-

els for Hunter’s cases11b and11d which have m0=2.577

and m0=1.138respectively.The gas and dust temper-

atures in these models are equal at10K,corresponding

to a sound speed of0.19km s?1.Fig.9presents syn-

thetic line pro?les for Model11d.Results are shown for

the case of a constant H2D+abundance and of an inner

hole in the H2D+distribution.These models have peaks

at the observed velocities,but with‘infall asymmetry’:the

blueshifted peak is stronger than the redshifted one.The

results of Model11b are similar,but with this asymmetry

more pronounced.

9.E?ect of the collisional rate coe?cient

Another potentially important parameter for the H2D+

line formation is the collisional rate coe?cient(CRC).To

quantify the sensitivity of our model results on the CRC,

we have run models with the CRC increased and decreased

by factors of3and10.These models use the power-law

density pro?le from Evans et al.(2001),the temperature

pro?le from Young et al.(2004)and the H2D+abundance

pro?le from Ceccarelli&Dominik(2005).Since the previ-

ous sections indicate that the details of the infall velocity

?eld play a minor role for our models,we simplify the

kinematics to a‘step function’in b D,the turbulent line

width.The observations suggest that b D is larger in the

(emitting)central part of the core than in the(absorbing)

outer layers,so we adopt b D=0.1km s?1at radii<103AU

and b D=0outside this radius.The model does not include

any systematic radial motions,but the increased b D at the

center is presumed to arise in infall.This setup implies the

Van der Tak et al.:Molecular line pro?les toward LDN1544

9 Fig.9.Results of models with a power-law density dis-

tribution,T kin≡10K,Hunter’s velocity pro?le‘11d’,and

with the H2D+abundance constant(dotted line)and with

an inner hole(dashed line),superposed on the observa-

tions(histogram).

existence of infall motions,while the results do not depend

on the speci?c infall model.Note that thermal broadening

is added to the turbulence at all radii.

Figure

10shows the results of models with the CRC

increased by factors of3and10above the value from

Black et al.(1990).The line strength is seen to scale with

the CRC;this trend continues for the models with the

CRC decreased below‘standard’which are not shown.

The shape of the H2D+pro?le is seen not to depend on the

CRC:both the emission from the core and the absorption

in the outer layers scale with the CRC.For the adopted

model parameters,the best?t to the observed H2D+pro-

?le would be obtained by increasing the CRC by a factor

of≈5.However,this number depends critically on several

parameters,particularly n(H2),T kin and the H2D+abun-

dance.This is why we refrain from recommending a value

for the CRC at this point.Even though n(H2)and T kin can

be obtained from other observations(as we have done),the

H2D+abundance cannot.Therefore,for the time being,

H2D+abundances can only be determined to factors of

~10accuracy.We recommend theoretical calculations of

the CRC of H2D+to improve this situation.

The fact that the simpli?ed kinematics give a better?t

to the observed H2D+pro?le than the models in Section6

implies that the infall motions toward LDN1544are

very small,in good agreement with the conclusion from

Williams et al.(1999)that the infall speed is much smaller

than the thermal,rotational and gravitational speeds in

this source.The observed intensity at the20′′o?set posi-

tion of T mb=0.4K is well reproduced by the same model

that?ts the central spectrum.The model predicts a≈20%

absorption at the line center,which the present data do

not rule out.However,better spectra at o?set positions

are needed to con?rm this prediction.

Fig.10.Results of models with the temperature den-

sity distributions from Young et al,a‘jump’in b D at

R=103AU,and with the H2D+collisional rate coe?cient

at the standard value and increased by factors of3and10

(curves from bottom to top),superposed on the observa-

tions(histogram).

10.Conclusions

Radiative transfer modeling of line pro?les of H2D+,

HC18O+and N2H+in the pre-stellar core LDN1544

shows that previous descriptions of the temperature,den-

sity and velocity structure,that reproduce HC18O+and

N2H+data,do not?t H2D+data,which probe smaller

radii.At least two modi?cations are required at these

radii,which a?ect H2D+,but not HC18O+or N2H+.

First,to make the excitation temperature of H2D+in-

crease inward,the density cannot?atten o?as proposed

by Ward-Thompson et al.(1999),but must continue to in-

crease as in the models by Evans et al.(2001).In addition,

only very small inward decreases of the gas temperature

are allowed.Observations of NH3toward a sample of pre-

stellar cores also suggest a constant kinetic temperature

with radius(Tafalla et al.2002,2004).The same result is

obtained from observations of CO isotopes toward the pre-

stellar core B68(Bergin et al.2005),suggesting that cur-

rent models of pre-stellar cores either underestimate the

dust temperature because of changes in the dust opacity,

or overestimate the gas-grain thermal coupling because

of grain growth.However,the NH3and CO observations

probe larger radii than H2D+,and interferometric obser-

vations of NH3would be valuable.

10Van der Tak et al.:Molecular line pro?les toward LDN1544

Second,the infall velocity needs to increase with ra-dius down to small radii.If cloud collapse is quasi-static and mediated by ambipolar di?usion,the central region supported by thermal pressure,where the infall speed drops to zero,must be smaller than in the models by Ciolek&Basu(2000).Alternatively,the collapse may be ‘mildly’dynamic,indicated by values of1–3for the param-eter m0(Hunter1977;Foster&Chevalier1993).Highly supersonic infall velocities,as well as large-scale rotation, are ruled out.

Alternatively,the central dip on the H2D+pro?le is due to absorption in the outer parts of the core,as seen for CS,HCO+and N2H+.However,such absorption is not seen for DCO+2–1,nor in H2D+at o?set positions. Also,to produce an absorption as narrow as observed,the outer layers of LDN1544must have essentially zero infall and turbulent motions,consistent with evidence from CS, HCO+and N2H+(Williams et al.1999).To test this‘ab-sorption’hypothesis,sensitive mapping of the H2D+line and of DCO+1–0are needed.

In the future,making full use of H2D+as kinematic probe requires maps at higher sensitivity and spatial and spectral resolution than the CSO can o?er.Other single-dish telescopes(JCMT,APEX)can ful?ll some of these requirements,but not all.Therefore,for a real break-through,interferometric observations will be crucial.The SMA will enable case studies,but only ALMA will have the sensitivity to probe many pre-stellar cores within rea-sonable times.The interpretation of the data will require good observational constraints of the gas temperature and density.In addition,theoretical calculations of the colli-sional rate coe?cients of H2D+are urgently needed.

If the current observations cannot be matched with any of these modi?cations,then we speculate that the doubled-peaked H2D+line pro?le in LDN1544is caused by the presence of two protostellar condensations,orbiting each other,in the core center.We may be witnessing the birth of a binary protostellar system.Once again,interferometer observations are required to test this hypothesis. Acknowledgements.The authors thank Malcolm Walmsley, Arnaud Belloche,Neal Evans and the anonymous referee for useful comments on the manuscript,Glenn Ciolek and Kaisa Young for sending their model results in electronic form,and Aurore Bacmann and Antonio Crapsi for help with the ob-servations.P.C.acknowledges support from the MIUR grant ‘Dust and molecules in astrophysical environments’. References

Aikawa,Y.,Herbst,E.,Roberts,H.,&Caselli,P.2005, ApJ,620,330

Andr′e,P.,Ward-Thompson,D.,&Barsony,M.2000, Protostars and Planets IV,59

Bacmann,A.,Le?och,B.,Ceccarelli,C.,et al.2003,ApJ, 585,L55

Belloche,A.&Andr′e,P.2004,A&A,419,L35Belloche,A.,Andr′e,P.,Despois,D.,&Blinder,S.2002, A&A,393,927

Bergin,E.A.,Alves,J.,Huard,T.,&Lada,C.J.2002, ApJ,570,L101

Bergin,E.A.&Langer,W.D.1997,ApJ,486,316 Bergin,E.A.,Maret,S.,&van der Tak,F.F.S.2005, in The Dusty and Molecular Universe,ed.A.Wilson (ESA-SP577),185–190

Black,J.H.,van Dishoeck,E.F.,Willner,S.P.,&Woods, R.C.1990,ApJ,358,459

Caselli,P.2003,Ap&SS,285,619

Caselli,P.,van der Tak, F. F.S.,Ceccarelli, C.,& Bacmann,A.2003,A&A,403,L37

Caselli,P.,Walmsley,C.M.,Zucconi,A.,et al.2002a, ApJ,565,331

—.2002b,ApJ,565,344

Ceccarelli,C.&Dominik,C.2005,A&A,submitted Ceccarelli,C.,Dominik,C.,Le?och,B.,Caselli,P.,& Caux,E.2004,ApJ,607,L51

Ciolek,G.E.&Basu,S.2000,ApJ,529,925

Crapsi,A.,Caselli,P.,Walmsley,C.M.,et al.2004,A&A, 420,957

Evans,N.J.,Rawlings,J.M.C.,Shirley,Y.L.,&Mundy, L.G.2001,ApJ,557,193

Foster,P.N.&Chevalier,R.A.1993,ApJ,416,303 Frerking,M.A.,Langer,W.D.,&Wilson,R.W.1982, ApJ,262,590

Galli,D.,Walmsley,M.,&Gon?c alves,J.2002,A&A,394, 275

Hartmann,L.,Ballesteros-Paredes,J.,&Bergin,E.A. 2001,ApJ,562,852

Hogerheijde,M.R.2001,ApJ,553,618 Hogerheijde,M.R.&van der Tak,F.F.S.2000,A&A, 362,697

Hunter,C.1977,ApJ,218,834

Mundy,L.G.,Looney,L.W.,&Welch,W.J.2000, Protostars and Planets IV,355

Myers,P.C.2005,ApJ,in press;astro-ph/0501127 Pagani,L.,Salez,M.,&Wannier,P.G.1992,A&A,258, 479

Roberts,H.,Herbst,E.,&Millar,T.J.2003,ApJ,591, L41

Rodgers,S.D.&Charnley,S.B.2003,ApJ,585,355 Schmid-Burgk,J.,Muders, D.,M¨u ller,H.S.P.,& Brupbacher-Gatehouse,B.2004,A&A,419,949 Sch¨o ier,F.L.,van der Tak,F.F.S.,van Dishoeck,E.F., &Black,J.H.2005,A&A,432,369

Shen,C.J.,Greenberg,J.M.,Schutte,W.A.,&van Dishoeck,E.F.2004,A&A,415,203

Shu,F.H.,Najita,J.R.,Shang,H.,&Li,Z.-Y.2000, Protostars and Planets IV,789

Tafalla,M.,Mardones,D.,Myers,P.C.,et al.1998,ApJ, 504,900

Tafalla,M.,Myers,P.C.,Caselli,P.,&Walmsley,C.M. 2004,A&A,416,191

Tafalla,M.,Myers,P.C.,Caselli,P.,Walmsley,C.M.,& Comito,C.2002,ApJ,569,815

Van der Tak et al.:Molecular line pro?les toward LDN154411 Van der Tak, F. F.S.,Caselli,P.,Walmsley,

C.M.Ceccarelli,C.,Bacmann,A.,&Crapsi,A.2004,in

The Dense Interstellar Medium in Galaxies(Springer-

Verlag),549–552

Van der Tak,F.F.S.&van Dishoeck,E.F.2000,A&A,

358,L79

Vastel,C.,Phillips,T.G.,&Yoshida,H.2004,ApJ,606,

L127

Walmsley,C.M.,Flower,D.R.,&Pineau des For?e ts,G.

2004,A&A,418,1035

Ward-Thompson, D.,Motte, F.,&Andr′e,P.1999,

MNRAS,305,143

Williams,J.P.,Myers,P. C.,Wilner, D.J.,&di

Francesco,J.1999,ApJ,513,L61

Young,K.E.,Lee,J.,Evans,N.J.,Goldsmith,P.F.,&

Doty,S.D.2004,ApJ,614,252

Zhou,S.1992,ApJ,394,204

微博与微信经营模式的SWOT对比分析

微博与微信经营模式的SWOT对比分析-新闻学 微博与微信经营模式的SWOT对比分析 ○马庆贺 【摘要】随着传播技术的革新与智能手机的普及,一个崭新的传播时代来临。微博与微信是在新技术的发展下应运而生的社交媒体,是新兴的信息发布与传播、分享与获取的平台。2009年,新浪微博上线,2011年,微信后来居上,作为后起之秀的微信正在全力赶超曾经异军突起的新浪微博。本文主要通过新浪微博与微信的SWOT对比分析,来研究二者经营模式的不同,探讨微信是否能在将来激烈的互联网产品竞争中取代新浪微博。 关键词新浪微博微信经营模式 一、微博概述 微博,也叫做微博客,用户可以通过多种渠道发布与分享140个字符之内的文字或者图像、链接、音频与视频等多种形式的信息。和其他互联网产品一样,微博也是由国外传播到中国的舶来品。2006年,Twitter的推出红遍了世界,微博逐渐进入到中国的市场。2009年8月新浪微博上线之后,依托新浪门户网站的大流量与其博客产品的好口碑,新浪微博成为了网民关注与讨论的焦点,2010年也被称作“微博元年”。2010年4月,腾讯微博上线,但因新浪微博用户活跃度高、粘性大,形成了用户规模壁垒、市场占有率高,腾讯在经过多方努力后仍未赶超新浪微博。此后,基本上没有实力相近的对手与新浪竞争,新浪微博已经成为人们口中约定俗成的“微博”产品。 二、微信概述 微信是2011年1月21日,由腾讯公司基于手机移动终端推出的一款即时聊

天通讯软件,用户可以通过网络发送语音、文字、图片、视频等消息与好友进行聊天或者多人群聊。早在微信上市之初,其信息传递形式就不再拘泥于文字或20KB(部分压缩彩信可达50KB)以下的图片+文字形式。随着后续版本的不断更新,例如像talk box功能、“查看附近的人”的陌生人交友功能等不断完善,不但丰富了信息的表现形式,更开创了信息无限传递的可能。随后,微信5.0版本的上线,让“游戏中心”、“微信支付”等商业化功能成为新的亮点,这也加速了微信打造综合性应用平台的进程,建立了自身盈利模式,填补了微信生态圈的重要一环。 三、微信与新浪微博经营模式的SWOT对比分析 1、微信对比新浪微博的Strength (1)用户粘性与用户体验。微信是一种强关系的社交软件,偏重于关系纽带,通讯属性强。注册微信需要绑定手机号码或者QQ号码与邮箱账号等,可以导入手机通讯录与QQ好友,是一个成熟稳定联系密切的熟人交际圈。通过线下真人互动带动线上好友沟通,用户粘性大,忠诚度高,信任度强。 新浪微博则是一种弱关系社交平台,偏重内容传播,媒体属性强。注册微博较为简单,准入门槛低,平台开放,没有实名制,陌生人之间也可以通过点赞、评论、转发等进行人际互动。因为新浪微博传播内容的开放性,信息传播中,畅通无阻,速度快,互动性强。 作为即时通讯软件,微信主打点对点的语音聊天,但其传播符号也非常多样化,语音,文字,图片,视频,链接,表情等都囊括在其中。语音聊天比其他传播符号能够更加准确的传递用户的心情与态度,通过语音这个载体,用户之间的沟通更加的顺畅,沟通误差较小,沟通质量得到提高与增强。通过微信传递信息的成

微博和微信的优劣比较

龙源期刊网 https://www.360docs.net/doc/622614561.html, 微博和微信的优劣比较 作者:苏茜茜 来源:《新闻世界》2013年第10期 【摘要】短短几年间,微博用它强大的吸引力,席卷着每一个乐于参与分享传播的人, 而微信用户也不断壮大。本文从拍客角度入手,分析拍客利用微博和微信举报地铁乞讨者存在差异的原因,并探讨拍客在两个不同平台上的优势和劣势。 【关键字】拍客微博微信 2010年微博的走红让大众拥有了自己的话语权,微博自媒体以其自主性和交互性得到越 来越多人的青睐。也正是这种自主性和交互性使得微博成为拍客们的一个重要发布渠道,很多拍客的作品上过热门微博,成为热门话题。每个拍客关注的偏好不同,所以受众可以根据自己的需要进行关注和互动。 微信作为新兴的手机即时通讯软件,开启了朋友圈功能以及公共账号等服务,使得拍客们开始注意到微信,并且微信的这种及时反馈性的好处开始显现。 2013年6月8日,微博用户@轨交幺幺零发布微博内容为两名网民通过不同的方式(微信和微博)举报车厢内乞讨,前者通过微信提供实时信息,并一路协助民警快速查获乞讨人员,而后者在微博的发帖却迟迟得不到民警的反应,最后@于建嵘转发并且写道“上海的警察睡觉了,上海的民政部门睡觉去了。” 在这次事件中,微信拍客得到了快速的响应并且抓到了乞讨人员,一直被大家众星捧月的微博拍客却没有发挥期待中的效果。之前微博的“随手拍照解救乞讨儿童”活动得到了各方的支持和响应,但是经历过这次事件后,微博拍客们应该思考,微博并不是万能的,目光更开阔一些,去寻找更多的途径。 本文从这次事件入手,来对比研究拍客在微博和微信这两个不同平台上传播的优势和劣势。 一、微博与微信的功能对比 1、反馈有效性 拍客在微博平台上发布照片配上文字,受众对于照片的反馈往往没有那么及时,因为微博对于大多数受众来说是获取信息的一个平台。促进微博用户评论并转发微博的首要因素是利己因素,也就是满足自身好奇心和社交需要①,所以无法很快的形成一个关注点。加上现在相关政府部门的微博管理还不够完善,所以并不能保证这条消息不被淹没在一堆@和评论里面。

功能_特点_社会效应——微博与微信的比较研究

功能·特点·社会效应——微博与微信的比较研究 【摘要】随着互联网技术的革新与web2.0时代的到来,由信息传播和媒介互动生成的社交方式日益推陈出新。毋庸置疑,拥有5.5亿网民,新浪微博 用户达5.3亿,腾讯微信用户超4亿的中国正全面迎来微媒体时代。而 微博、微信虽然均属于微媒体,但这两类社交应用的特点、功能以及社 会效应存在明显差异,在日常的生活中表现出其独特的作用和价值。【关键字】微博、微信、功能、特点、社会效应 2013年6月16日,中国微博大会在乌镇举行。大会发布了《2012—2013年微博发展研究报告》,数据显示,2013年上半年,新浪微博注册用户达到5.36亿。另一方面,微信的表现也可圈可点,仅仅两年时间,注册用户已然超过4亿。可以说,这两类社交新媒体不仅拓展了人们获取信息的渠道,更改变了他们的生活方式。 传播学者麦克卢汉说:“媒介是社会发展的基本动力,也是区分不同社会形态的标志,每一种新媒介的产生与运用,都宣告我们进入了一个新时代。”正是微媒体的蓬勃发展,人们全面迎来了一个崭新的微传播时代。 一、微博与微信的功能比较 就功能而言,微博与微信本身的定位就不一致。微博倾向于“自媒体”性质,而微信则是一款可以实现用户即时互通的社交工具。 (一)微博的功能 1、信息传播功能 微博能够实现用户掌握信息发布的自主权,在整个传播过程中,他们不仅可以获取海量的即时信息,并且能够评论、转发、收藏他人推送的信息,实现讯息的反馈。可以说微博消解了传者与受众之间的界限,实现了传播者与受传者的转移与融合。 2、人际交往功能 在微博平台,用户可以通过关注亲朋好友了解到他们的日常生活,并对其进行评价或者转发从而达到人际交往与互动。另外,关注陌生人或者被粉丝关注还可以扩大交际圈。

微博微信的对比分析

从微博和微信的对比 —试析为何微博用户流向微信和大多数普通用户一样,新浪微博也曾经是我每天必开的一个手机应用, 不管是发一些东西还是不停的看自己关注的人的刷屏,微博确实是一个很好的打发自己碎片化时间的工具。但当微信出现后,不知不觉间,每天从打开微博看一 看,开始变成一定要打开微信看一看;从希望自己的微博有评论,到开始只关注 微信的朋友圈子是否有更新。而我也发现身边朋友都在经历这种变化,微信的崛起使新浪微博用户停留时间出现显著的下降。 在微信推出之前,新浪微博其实是被名人加熟人圈带动发展起来的。微博和博客的不同之处在于140字的限制加上随时随地分享文字和图片的特性使得微 博比博客能更轻易的融入我们的生活,能让用户可以更充分的利用好碎片时间来进行更频繁更琐碎更贴近生活化的内容发布。如果说曾经广受欢迎的名人博客是让粉丝看客们每天都期待的长篇连载专栏的话,那碎片化的微博则是打开了一扇通向名人生活乃至每日喜怒哀乐内心活动的小窗。在微博中我们能更轻易更频繁的获取关注的人的生活状态以及内心独白,这正好能更好更方便的满足人们的窥探欲。 然而,对于大部分更在意社交需求的普通用户来说,在微博上发表任何内容,都是需要和朋友产生互动才会觉得有意思的。也就是让自己的被关注欲能够得到满足。但如果自己发出的内容总是得不到别人的回应,那很快就会变成一个只获取信息而不产生内容的看客。而除非自己是个很优秀很活跃的内容产生者,才能够不断吸引陌生人关注自己成为自己的粉丝。使用微博一段时间后,草根们会渐渐发现自己并不能吸引到很多陌生人来关注自己,最后大家都只是在微博上发布一些生活状态类的信息,然后在和自己认识的朋友们做互动中获得乐趣。 在微信推出之后,由于微信语音联络朋友的便捷和强需求性使得人们越来越频繁的使用微信。随着微信“朋友圈”的推出,人们也开始习惯使用“朋友圈”去发布与自己相关的各类内容,一条内容同时发表在微博和微信当中,由于微信的使用频率更高,得到周边朋友们状态信息以及大家围绕这些内容产生的互动也就会比微博更快更方便,因此人们自然而然的就会将本来都发表在微博上的内容逐渐转移到微信朋友圈当中,微博上那些更在意日常社交的用户的活跃度也就从微博转移到了微信上。 在微博和微信中,都拥有明显的媒体属性。同时,只要愿意,人人都可以快捷的成为信息传播中一个传播点。在这类新媒体平台的信息传播过程中,传播点越多,信息传播速度越快,传播面也更广。 新浪微博相比微信的优势就体现在信息传播的速度和广度上。在微博中,由于其开放的形态,一条包含热点事件的信息可以通过多个有影响力的大号发布以及互相爱特的方式很容易的展现在微博用户面前,并在很短时间内引起大量的转发和阅读。这是因为人们阅读并参与传播的所花的时间和体力成本非常之低。

微博微信作为新媒体的特征

内容提要 互联网时代下,微博微信等新媒体以其独特的媒介特性逐渐占据网络营销的重要位置。微博营销,微信营销已经成为当下的热门话题。但是纵观众多企业主的营销方式可以发现,大部分仍然在用传统媒体的营销思维运营新媒体。微博微信有其自身的特点,互联网的营销也要求不落窠臼。因而,本文试图通过对微博和微信在新媒体营销功能中做对比分析,探究其营销新思维,从而给运营人员一些启发。 本文共分为四部分。第一部分,从微博微信的定义入手,解释其产生的时代背景,为后文微博微信的对比分析做好基础。 第二部分,将结合互联网时代背景的信息传播和营销特点,对微博与微信作为新媒体的营销趋势进行共同点分析。第三部分,重点介绍微博微信在营销功能中的对比分析。主要从“媒介特性”“信息传播方式”“互动性”“关系链的延伸”这四个方面展开详尽的对比分析。 第四部分,通过对互联网的趋势观察,对微博微信未来的营销走向做出判断,也对微博微信用户,企业运营者和营销人员提出一些建议。 关键词:微博微信新媒体网络营销互联网时代

一、微博与微信出现的时代背景分析 (一)微博简介 微博,即微博客(MicroBlog)的简称,是一个基于用户关系的信息分享、传播以及获取平台,用户可以通过WEB、WAP以及各种客户端组建个人社区,以140字左右的文字更新信息,并实现即时分享。 最早也是最著名的微博是美国的twitter,根据相关公开数据,截至2010年1月份,该产品在全球已经拥有7500万注册用户。2009年8月份中国最大的门户网站新浪网推出“新浪微博”内测版,成为门户网站中第一家提供微博服务的网站,微博正式进入中文上网主流人群视野。2012年10月,有报告显示至2011年12月,中国微博用户总数达到2.498亿,成为世界第一大国。区别于其他的社交网站,微博有其独特的关注机制,单向或双向关注。一般的社交网站都只以双向关注为主要联系方式,微博的单向关注给公众人物或单位和普通用户搭建了交流平台。微博现有电脑、安卓、塞班等多种客户端,用户群广泛。每条微博都以不超140字数的文字快速传播着最新、最具有时效性的信息,而且没有浏览限制,让消息的传递过程畅通无阻,爆炸式般蔓延世界。 (二)微信简介 微信是腾讯公司推出的一款即时语音通讯软件,用户可以通过手机、平板和网页快速发送语音、视频、图片和文字。微信提供公众平台、朋友圈和消息推送等功能,用户可以通过摇一摇、搜索号码、附近的人、扫二维码方式添加好友和关注微信公众平台,同时微信帮将内容分享给好友以及将用户看到的精彩内容分享到微信朋友圈。 相比于微博,微信用户可以通过微信与好友进行形式上更加丰富的类似于短信、彩信等方式的联系。微信软件本身完全免费,使用任何功能都不会收取费用,微信时产生的上网流量费由网络运营商收取。微信作为时下最热门的社交信息平台,也是移动端的一大入口,正在演变成为一大商业交易平台,其对营销行业带

微信与其竞争对手的对比分析

(1)功能对比分析 以下为四款产品与微信的功能对比(测试设备为iphone,系统版本号4.2.1),见表1-1。 表1-1 五款产品的功能比对表 功能Live- Profile Kik Messenger 陌陌米聊微信 文件大小 4.6MB 5.2MB 8MB 10.8MB 19MB 启动速度 (三次平均) 1.9s 2.4s 2.0s 2.8s 2.0s 注 册输入密码明文,1次密文,1次密文,2次明文或密文,1次明文,1次注册账号邮箱邮箱邮箱手机号QQ,手机号,邮箱 个人信息详细,可跳过NO 详细交友信息仅姓名仅姓名 欢迎信息No Yes,1条Yes,需切换界面Yes,1条Yes,多条 主 要 功 能消息文字,图片,视频文字,图片文字,图片文字,图片,语音文字,图片,视频,语音 消息状态Yes Yes Yes Yes No 帮助直接发邮件网页本地图片本地图片在功能选项下方 群组聊天No Yes Yes Yes Yes 添加好友PIN,手机号,邮箱,通讯录,FaceBook 用户名,通讯录陌陌号,附近的人米聊号,通讯录,邮箱,姓名微信号,QQ号,手机号,通讯录,附近的人查找附近的人No No Yes Yes Yes 其 他 功 能文件共享,发短信邀请,输入状态,twitter同步聊天气泡换肤,发短信邀请同步新浪微博,排序功能,发送地理位置,黑名单,静音时间手写,涂鸦,发文字、语音新浪微博,社区广播,图片滤镜,流量统计,多语言显示照片滤镜,微博发图,推荐好友,语音记事,漂流瓶,摇一摇,通讯录同步,黑名单,静音时间,全文搜索

从功能上看,在主要功能方面五种软件大致相同,仅有一些小的差别,但在其他功能方面,微信明显具有更全面更强大的功能。 (2)优缺点分析 以下为四款产品与微信的优缺点对比,见表1-2。 表1-2 五款产品的优缺点对比表 项目LiveProfile Kik Messenger 陌陌米聊微信 优点适合有国外友人,可以与facebook、twitter同步,且会翻墙的用户,启动速度快图片收发速度快,气泡可换肤,且气泡比例协调界面清新、活泼,围绕陌生人交友功能较多界面简洁,可以统计网络流量,消息收发快与QQ、QQ信箱绑定消息集中收发,消息功能全面,多种添加好友方式,全文搜索方便 缺点功能较为单一,界面显老气,不适合绝大多数国内用户使用,国内用户群少功能较为单一,国内用户群少仅适用于相结交陌生人的用户,国内用户群少消息状态延迟高,照片滤镜速度慢,程序启动较慢附加功能太多,操作略显繁琐,测试中程序崩溃较为频繁 (3)消息收发对比分析 消息收发是用户使用此类社交软件经常会用到的功能,因此消息收发上用户体验如何,很大程度决定了用户对产品的忠诚度。以下为四款产品与微信的消息收发对比,见表1-3。 表1-3 五款产品消息收发对比表 项目LiveProfile Kik Messenger 陌陌米聊微信 优点有消息状态有消息状态;有图片缩略预览;图片消息收发快有消息状态,颜色搭配合理;消息时间条美观;图片边框协调有手写、涂鸦图片;有消息状态;对讲按钮可直接点击对话框阴影效果好;消息时间具体;表情与QQ通用 缺点表情图标需要多次点击显示消息时间文字信息乱,表情少无消息状态延迟高,状态文字不美观无消息状态;图片接收慢 (4)用户体验分析 好的产品必须要有好的用户体验,一款移动产品的用户体验大致从界面、声效、操作、功能四方面考虑,以下为四款产品与微信的用户体验对比,见表1-4。 表1-4 五款产品用户体验对比表 项目LiveProfile Kik Messenger 陌陌米聊微信 优点注册过程中的个人信息可跳过;直接显示本机通讯录;点击次数少有欢迎信息;界面中文首次启动有功能介绍;密码密文输入两次,安全有欢迎消息;密码输入有明

微博微信作为新媒体的特征

容提要 互联网时代下,微博微信等新媒体以其独特的媒介特性逐渐占据网络营销的重要位置。微博营销,微信营销已经成为当下的热门话题。但是纵观众多企业主的营销方式可以发现,大部分仍然在用传统媒体的营销思维运营新媒体。微博微信有其自身的特点,互联网的营销也要求不落窠臼。因而,本文试图通过对微博和微信在新媒体营销功能中做对比分析,探究其营销新思维,从而给运营人员一些启发。 本文共分为四部分。第一部分,从微博微信的定义入手,解释其产生的时代背景,为后文微博微信的对比分析做好基础。 第二部分,将结合互联网时代背景的信息传播和营销特点,对微博与微信作为新媒体的营销趋势进行共同点分析。第三部分,重点介绍微博微信在营销功能中的对比分析。主要从“媒介特性”“信息传播方式”“互动性”“关系链的延伸”这四个方面展开详尽的对比分析。 第四部分,通过对互联网的趋势观察,对微博微信未来的营销走向做出判断,也对微博微信用户,企业运营者和营销人员提出一些建议。 关键词:微博微信新媒体网络营销互联网时代

一、微博与微信出现的时代背景分析 (一)微博简介 微博,即微博客(MicroBlog)的简称,是一个基于用户关系的信息分享、传播以及获取平台,用户可以通过WEB、WAP以及各种客户端组建个人社区,以140字左右的文字更新信息,并实现即时分享。 最早也是最著名的微博是美国的twitter,根据相关公开数据,截至2010年1月份,该产品在全球已经拥有7500万注册用户。2009年8月份中国最大的门户新浪网推出“新浪微博”测版,成为门户中第一家提供微博服务的,微博正式进入中文上网主流人群视野。2012年10月,有报告显示至2011年12月,中国微博用户总数达到2.498亿,成为世界第一大国。区别于其他的社交,微博有其独特的关注机制,单向或双向关注。一般的社交都只以双向关注为主要联系方式,微博的单向关注给公众人物或单位和普通用户搭建了交流平台。微博现有电脑、安卓、塞班等多种客户端,用户群广泛。每条微博都以不超140字数的文字快速传播着最新、最具有时效性的信息,而且没有浏览限制,让消息的传递过程畅通无阻,爆炸式般蔓延世界。 (二)微信简介 微信是腾讯公司推出的一款即时语音通讯软件,用户可以通过手机、平板和网页快速发送语音、视频、图片和文字。微信提供公众平台、朋友圈和消息推送等功能,用户可以通过摇一摇、搜索、附近的人、扫二维码方式添加好友和关注微信公众平台,同时微信帮将容分享给好友以及将用户看到的精彩容分享到微信朋友圈。 相比于微博,微信用户可以通过微信与好友进行形式上更加丰富的类似于短信、彩信等方式的联系。微信软件本身完全免费,使用任何功能都不会收取费用,微信时产生的上网流量费由网络运营商收取。微信作为时下最热门的社交信息平台,也是移动端的一大入口,正在演变成为一大商业交易平台,其对营销行业带

相关文档
最新文档