关於热阻

关於热阻
关於热阻

导热系数、传热系数、热阻值概念及热工计算方法(简述实用版)

导热系数、传热系数、热阻值概念及热工计算方法 导热系数λ[W/(m.k)]: 导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,℃),在1小时内,通过1平方米面积传递的热量,单位为瓦/米?度(W/m?K,此处的K可用℃代替)。导热系数可通过保温材料的检测报告中获得或通过热阻计算。 传热系数K [W/(㎡?K)]: 传热系数以往称总传热系数。国家现行标准规范统一定名为传热系数。传热系数K值,是指在稳定传热条件下,围护结构两侧空气温差为1度(K,℃),1小时内通过1平方米面积传递的热量,单位是瓦/平方米?度(W/㎡?K,此处K可用℃代替)。传热系数可通过保温材料的检测报告中获得。 热阻值R(m.k/w): 热阻指的是当有热量在物体上传输时,在物体两端温度差与热源的功率之间的比值。单位为开尔文每瓦特(K/W)或摄氏度每瓦特(℃/W)。 传热阻: 传热阻以往称总热阻,现统一定名为传热阻。传热阻R0是传热系数K的倒数,即R0=1/K,单位是平方米*度/瓦(㎡*K/W)围护结构的传热系数K值愈小,或传热阻R0值愈大,保温性能愈好。 (节能)热工计算: 1、围护结构热阻的计算 单层结构热阻:R=δ/λ 式中:δ—材料层厚度(m);λ—材料导热系数[W/(m.k)] 多层结构热阻: R=R1+R2+----Rn=δ1/λ1+δ2/λ2+----+δn/λn 式中: R1、R2、---Rn—各层材料热阻(m.k/w) δ1、δ2、---δn—各层材料厚度(m) λ1、λ2、---λn—各层材料导热系数[W/(m.k)] 2、围护结构的传热阻 R0=Ri+R+Re 式中: Ri —内表面换热阻(m.k/w)(一般取0.11) Re —外表面换热阻(m.k/w)(一般取0.04) R —围护结构热阻(m.k/w) 3、围护结构传热系数计算 K=1/ R0 式中: R0—围护结构传热阻 外墙受周边热桥影响条件下,其平均传热系数的计算 Km=(KpFp+Kb1Fb1+Kb2Fb2+ Kb3Fb3 )/( Fp + Fb1+Fb2+Fb3) 式中:Km—外墙的平均传热系数[W/(m.k)] Kp—外墙主体部位传热系数[W/(m.k)]

电子效应及位阻效应在有机化学中的应用

电子效应及位阻效应在有机化学中的应用 刘晓 (西北大学化学系06级材料化学专业 西安 710069) 摘要:电子效应及位阻效应贯穿着整个有机化学的学习,故其在有机化学中有着广泛的应用。但由于所掌握的知识有限,我仅将所学的具有代表性的知识进行整理小结,为以后的学习奠定基础。 关键词:电子效应 诱导效应 共轭效应 位阻效应 一.引言 在有机化学的学习中我们应该都碰到了这样或那样的问题,有些问题的答案需要我们死记硬背,但有些问题的解答则有章可循.比如亲电加成的方向性,芳香族化合物的酸性,消去反应的方向性等,只要我们掌握了电子效应和位阻效应在这些反应中所起的作用,那么这类问题便迎刃而解了.那么电子效应,位阻效应到底在有机化学中扮演着一个怎样的角色呢? 二.电子效应与位阻效应的简介 电子效应是指电子密度分布的改变对物质性质的影响。电子效应可以根据作用方式分为诱导效应和共轭效应两种类型。 诱导效应 1.诱导效应的定义 一般以氢为比较标准,如果电子偏向取代基,这个取代基是吸电子的,具有吸电子的诱导效应,用-I (Inductive effect )表示; CR 3 X Y H 3 CR 3 -I 效应 标准 +I 效应 2.诱导效应的特点 诱导效应是沿σ键传递的,离吸(或斥)电子基团越远,效应越弱。大致隔三个单键后,诱 导效应就很弱,可忽略不计了。例如C H 3CH 2 CH 2CH 2 CH 2 Cl δ δ δ δ δ δ + ++, 其中δ表示微 小,δδ表示更微小,依此类推。 诱导效应有叠加性,当两个基团都能对某一键产生诱导效应时,这一键所受的诱导效应是这几个基团诱导效应的总和。方向相同时叠加,方向相反时互减。 诱导效应只改变键的电子云密度分布,不改变键的本质。无论所受诱导效应的大小和方向如何,σ键仍是σ键,π键仍是π键。 3.诱导效应的强弱,取决于基团吸电子能力或斥电子能力的大小。 下列是一些能产生诱导效应的基团 吸电子基团:带正电荷的基团,如:-OR2+、-NR3+ ;卤素原子,如:-F 、-Cl 、-Br 、-I ;带氧原子或氮原子的基团,如:-NO2、>C =O 、-COOH 、-OR 、-OH 、-NR2;芳香族或不饱和烃基,如: -C 6H 5、-C ≡R 、-CR =CR 2 斥电子基团:带负电荷的基团,如:-O-、-S-、-COO-;饱和脂肪族烃基,如: -CR 3、-CHR 2、-CH 2R 、-CH 3

(精品)热阻及热导率的测量方法

热阻及热导率测试方法 范围 本方法规定了导热材料热阻和热导率的测试方法。本方法适用于金属基覆铜板热 阻和导热绝缘材料热阻和热导率的测试。 术语和符号 术语 热触热阻 contact resistance 是测试中冷热两平面与试样表面相接触的界面产生热流量所需的温差。接触热阻 的符号为R I 面积热流量areic heat flow rate 指热流量除以面积。 符号 下列符号适用于本方法。 λ:热导率,W/(m﹒K); A:试样的面积,m 2 ; H:试样的厚度,m; Q:热流量,W 或者 J/s; q:单位面积热流量,W/ m 2 ; R:热阻,(K﹒m 2 )/W。 原理 本方法是基于测试两平行等温界面中间厚度均匀试样的理想热传导。 试样两接触界面间的温 度差施加不同温度,使得试样上下两面形成温度梯度,促使热流量全部垂直穿过试样测试表 面而没有侧面的热扩散。 使用两个标准测量块时本方法所需的测试: T1=高温测量块的高温,K; T2=高温测量块的低温,K; T3=低温测量块的高温,K; T4=低温测量块的低温,K; A=测试试样的面积,m 2 ; H=试样的厚度,m。 基于理想测试模型需计算以下参数: T H:高温等温面的温度,K; T C:低温等温面的温度,K; Q:两个等温面间的热流量 热阻:两等温界面间的温差除以通过它们的热流量,单位为(K﹒m 2 )/W; 热导率:从试样热阻与厚度的关系图中计算得到,单位为W/(m.K)。

接触热阻存在于试样表面与测试面之间。 接触热阻随着试样表面特性和测试表面施加给试样 的压力的不同而显著变化。因此,对于固体材料在测量时需保持一定的压力,并宜对压力进 行测量和记录。热阻的计算包含了试样的热阻和接触热阻两部分。 试样的热导率可以通过扣除接触热阻精确计算得到。 即测试不同厚度试样的热阻,用热阻相 对于厚度作图,所得直线段斜率的倒数为该试样的热导率,在厚度为零的截取值为两个接触 界面的接触热阻。如果接触热阻相对于试样的热阻非常小时(通常小于1%),试样的热导率 可以通过试样的热阻和厚度计算得出。 通过采用导热油脂或者导热膏涂抹在坚硬的测试材料表面来减小接触热阻。 仪器 符合本测试方法的一般特点要求的仪器见图A.1和图A.2。 该套仪器增加测厚度及压力监测等 功能,加强了测试条件的要求来满足测试精度需要。 仪器测试表面粗糙度不大于0.5μm;测试表面平行度不大于5μm。 精度为1μm归零厚度测试仪(测微计、LVDT、激光探测器等)。 压力监测系统。 图A.1 使用卡路里测量块测试架 图A.2 加热器保护的测量架 热源可采用电加热器或是温控流体循环器。主热源部分必需采用有保护罩进行保护, 保护罩 与热源绝缘,与加热器保持±0.2K的温差。避免热流量通过试样时产生热量损失。无论使用 哪一种热源,通过试样的热流量可以用测量块测得。 热流量测量块由测量的温度范围内已知其热导率的高热导率材料组成。为准确测量热流量, 必须考虑热传导的温度灵敏度。推荐测量块材料的热导率大于50 W/(m.K)。 通过推算测量块温度与测试表面的线性关系(Fourier传热方程),确定测量块的热端和冷端 的表面温度。 冷却单元通常是用温度可控的循环流体冷却的金属块,其温度稳定度为±0.2 K。 试样的接触压力通过测试夹具垂直施加在试样的表面上,并保持表面的平行性和对位。

名词解释

(1)分析功能团:是在有机试剂分子中存在着一些基团,这些基团在不同的试剂分子中,但与一定的金属离子反应时,表现出一致的共性,这样的反应基团就称为这种离子 或这些离子的分析功能团。 (2)Cmc效应:溶液浓度在cmc以下时,溶液中基本上是单个表面活性剂分子,当表面吸附量随浓度增加而趋于饱和后,浓度超过cmc时,单个表面活性剂分子浓度不再增加,而是胶束浓度增加。 (3)螯合效应:是指在相同配位原子与统一金属离子生成相同数目配位化学键的情况下,由配体形成的螯合物,要比由简单配位形成的配合物稳定得多,这种螯合物具有特 殊稳定性称为螯合效应。 (4)熵效应:螯合试剂与金属离子形成螯合物的反应过程中,系统的熵变值比形成简单配合物反应的系统熵变值大,所以螯合试剂与金属离子更易形成螯合物。 (5)环效应:假定构成螯环的原子全部以单键联接,两共价键间的正常夹角为109.5°,也就是说在环结构中键夹角越接近109.5°越稳定。 (6)加重效应:随螯合试剂分子中憎水基团的加大,所形成的螯合物在水中的溶解度减小,检出限灵敏度提高,这种作用称为憎水基的加重效应。 (7)生色效应: (8)空间位阻效应:当取代基处于螯合剂某些特定位置时,能使螯合物的稳定性下降,由取代基位置而引起的螯合物稳定性下降的作用,称为取代基的空间位阻效应。(9)增溶效应:由亲水基团引起的溶解性增强称为亲水基团的增溶效应。 (10)软硬酸碱规则:硬碱优先与硬酸配位,软碱优先与软酸配位。 (11)溶剂化作用:在水溶液中,由于溶质能与水形成氢键,从而增进溶解度,这种作用称为溶剂化作用。 2.表面活性剂主要有哪几种类型?每一种写一个具体结构式。 答:分为阴离子表面活性剂,阳离子表面活性剂,两性表面活性剂,非离子型表面活性剂以及其他类型。 其中:阴离子表面活性剂——十四烷基磺酸钠 阳离子表面活性剂——氯化十六烷基三甲基铵 两性表面活性剂——十二烷基氨基丙酸 非离子型表面活性剂——聚氧乙烯烷基胺 其他类型——全氟辛酸钾

电子效应

电子效应 电子效应:取代基不同而对分子性质产生的影响。取代基效应可以分为两大类。一类是电 子效应,包括场效应和诱导效应、共轭效应。电子效应是通过键的极性传递所表现的分子 中原子或基团间的相互影响,取代基通过影响分子中电子云的分布而起作用。另一类是空 间效应,是由于取代基的大小和形状引起分子中特殊的张力或阻力的一种效应,空间效应也 对化合物分子的反应性产生一定影响。由于取代基的作用而导致的共有电子对沿共价键转移 的结果。 诱导效应:当电负性不同的两个原子结合时,共价键就有一定的极性,再多原子分子中, 这种极性会通过静电诱导作用而影响到它的相邻部分,使成键电子云偏移到电负性较大部 分。 双原子分子: 多原子分子: 这种由于原子或基团电负性的影响沿着分子中的键传导,引起分子中电子云按一定方向 转移或键的极性通过键链依次诱导传递的效应称为诱导效应(inductive effects )或I 效应。 这种效应如果存在于未发生反应的分子中就称为静态诱导效应。诱导效应的传导是以静电诱 导的方式沿着单键或重键传导的,只涉及到电子云密度分布的改变,引起键的极性改变, 一般不引起整个分子的电荷转移、价态的变化。这种影响沿分子链迅速减弱,实际上,经 过三个原子之后,诱导效应已很微弱,超过五个原子便没有了。 诱导效应的方向:诱导效应的方向以氢原子作为标准。 -氯代乙酸的酸性。氯原 (位阻效应) 空间效应 取代基效应 空间传递 场效应 (σ, π) ( π-π, (σ- π,σ- p) 诱导效应 共轭效应 超共轭效应 电子效应 -+++|?|?|?|?|?|?|?C X B A A B C |?|?|?|?|?|?|?+++-Y C X C H C Y _I D§ó| D§ó|I +±è??±ê×?

常用材料的导热系数表

材料的导热 傅力叶方程式: Q=KA△T/d, R=A△T/Q Q: 热量,W;K: 导热率,W/mk;A:接触面积;d: 热量传递距离;△T:温度差;R: 热阻值 导热率K是材料本身的固有性能参数,用于描述材料的导热能力。这个特性跟材料本身的大小、形状、厚度都是没有关系的,只是跟材料本身的成分有关系。所以同类材料的导热率都是一样的,并不会因为厚度不一样而变化。 将上面两个公式合并,可以得到 K=d/R。因为K值是不变的,可以看得出热阻R值,同材料厚度d是成正比的。也就说材料越厚,热阻越大。 但如果仔细看一些导热材料的资料,会发现很多导热材料的热阻值R,同厚度d并不是完全成正比关系。这是因为导热材料大都不是单一成分组成,相应会有非线性变化。厚度增加,热阻值一定会增大,但不一定是完全成正比的线性关系,可能是更陡的曲线关系。 根据R=A△T/Q这个公式,理论上来讲就能测试并计算出一个材料的热阻值R。但是这个公式只是一个最基本的理想化的公式,他设定的条件是:接触面是完全光滑和平整的,所有热量全部通过热传导的方式经过材料,并达到另一端。 实际这是不可能的条件。所以测试并计算出来的热阻值并不完全是材料本身的热阻值,应该是材料本身的热阻值+所谓接触面热阻值。因为接触面的平整度、光滑或者粗糙、以及安装紧固的压力大小不同,就会产生不同的接触面热阻值,也会得出不同的总热阻值。 所以国际上流行会认可设定一种标准的测试方法和条件,就是在资料上经常会看到的ASTM D5470。这个测试方法会说明进行热阻测试时候,选用多大的接触面积A,多大的热量值Q,以及施加到接触面的压力数值。大家都使用同样的方法来测试不同的材料,而得出的结果,才有相比较的意义。 通过测试得出的热阻R值,并不完全是真实的热阻值。物理科学就是这样,很多参数是无法真正的量化的,只是一个“模糊”的数学概念。通过这样的“模糊”数据,人们可以将一些数据量化,而用于实际应用。此处所说的“模糊” 是数学术语,“模糊”表示最为接近真实的近似。 而同样道理,根据热阻值以及厚度,再计算出来的导热率K值,也并不完全是真正的导热率值。 傅力叶方程式,是一个完全理想化的公式。我们可用来理解导热材料的原理。但实际应用、热阻计算是复杂的数学模型,会有很多的修正公式,来完善所有的环节可能出现的问题。 总之: a. 同样的材料,导热率是一个不变的数值,热阻值是会随厚度发生变化的。 b. 同样的材料,厚度越大,可简单理解为热量通过材料传递出去要走的路程越多,所耗的时间也越多,效能也越差。 c. 对于导热材料,选用合适的导热率、厚度是对性能有很大关系的。选择导热率很高的材料,但是厚度很大,也是

常用材料的导热系数表

常用材料的导热系数表

材料的导热率 傅力叶方程式: Q=KA△T/d, R=A△T/Q Q: 热量,W;K: 导热率,W/mk;A:接触面积;d: 热量传递距离;△T:温度差;R: 热阻值 导热率K是材料本身的固有性能参数,用于描述材料的导热能力。这个特性跟材料本身的大小、形状、厚度都是没有关系的,只是跟材料本身的成分有关系。所以同类材料的导热率都是一样的,并不会因为厚度不一样而变化。 将上面两个公式合并,可以得到 K=d/R。因为K值是不变的,可以看得出热阻R值,同材料厚度d是成正比的。也就说材料越厚,热阻越大。 但如果仔细看一些导热材料的资料,会发现很多导热材料的热阻值R,同厚度d并不是完全成正比关系。这是因为导热材料大都不是单一成分组成,相应会有非线性变化。厚度增加,热阻值一定会增大,但不一定是完全成正比的线性关系,可能是更陡的曲线关系。 根据R=A△T/Q这个公式,理论上来讲就能测试并计算出一个材料的热阻值R。但是这个公式只是一个最基本的理想化的公式,他设定的条件是:接触面是完全光滑和平整的,所有热量全部通过热传导的方式经过材料,并达到另一端。 实际这是不可能的条件。所以测试并计算出来的热阻值并不完全是材料本身的热阻值,应该是材料本身的热阻值+所谓接触面热阻值。因为接触面的平整度、光滑或者粗糙、以及安装紧固的压力大小不同,就会产生不同的接触面热阻值,也会得出不同的总热阻值。 所以国际上流行会认可设定一种标准的测试方法和条件,就是在资料上经常会看到的ASTM D5470。这个测试方法会说明进行热阻测试时候,选用多大的接触面积A,多大的热量值Q,以及施加到接触面的压力数值。大家都使用同样的方法来测试不同的材料,而得出的结果,才有相比较的意义。 通过测试得出的热阻R值,并不完全是真实的热阻值。物理科学就是这样,很多参数是无法真正的量化的,只是一个“模糊”的数学概念。通过这样的“模糊”数据,人们可以将一些数据量化,而用于实际应用。此处所说的“模糊” 是数学术语,“模糊”表示最为接近真实的近似。 而同样道理,根据热阻值以及厚度,再计算出来的导热率K值,也并不完全是真正的导热率值。 傅力叶方程式,是一个完全理想化的公式。我们可用来理解导热材料的原理。但实际应用、热阻计算是复杂的数学模型,会有很多的修正公式,来完善所有的环节可能出现的问题。 总之: a. 同样的材料,导热率是一个不变的数值,热阻值是会随厚度发生变化的。 b. 同样的材料,厚度越大,可简单理解为热量通过材料传递出去要走的路程越多,所耗的时间也越多,效能也越差。 c. 对于导热材料,选用合适的导热率、厚度是对性能有很大关系的。选择导热率很高的材料,但是厚度很大,也是 性能不够好的。最理想的选择是:导热率高、厚度薄,完美的接触压力保证最好的界面接触。 d、使用什么导热材料给客户,理论上来讲是很困难的一件事情。很难真正的通过一些简单的数据,来准确计算出选 用何种材料合适。更多的是靠测试和对比,还有经验。测试能达到产品要求的理想效果,就是最为合适的材料。 e、不专业的用户,会关注材料的导热率;专业的用户,会关注材料的热阻值。

导热系数和热阻的实际应用

导热系数和热阻的实际应用 夏俊峰 2015.08.05 第3版 前言 本文第1版最早于2007年7月发布在中国光学光电子行业论坛上,之后在2009年8月修改为第2版。本次做了全面的修改,增加了模拟计算的内容,以说明如何来正确认识热阻概念。并通过简单介绍模拟软件中有关接触热阻的设置问题,让读者更好地认识导热系数和热阻的实际应用。需要说明的是,本文是讨论仅在热传导方面,所有概念的定义也是针对热传导而言的。并且本文主要是针对LED 应用方面来谈的。 第一章 有关理论知识介绍 要讲导热系数和热阻的问题,首先要搞清楚这两个概念的定义。而要明确定义,必须要先介绍导热的基本理论。 在传热学中,关于热传导的基本理论就是傅里叶定律。对于一维热传导,傅里叶定律表述为:单位时间内通过厚度为L 的热量Q 与厚度两边的温度变化率ΔT 及平板面积A 成正比,即: L ΔT λA t Q -= ——(1) 式中:λ是材料的导热系数。负号表示热量自温度高向温度低方向传递。 对于上述导热定律,读者必须清楚,公式(1)仅是针对一维、热流密度均匀、测温的平面上温度均匀相等的情况。也就是说,引起ΔT 的因素是通过面积A 的热量Q。如果热源有部分热量没有经过面积A,则不能计算在内。 单位时间内传导的热量,就是热功率,用P 表示,单位是:瓦(W)。 由公式(1)可以得知: 导热系数λ是指在稳定传热条件下,单位时间内通过物体单位距离、单位截面积的平行面、产生1度温差的热量。其单位为:瓦/(米·度)。 导热系数和温度有关。具体相关参数要查阅相关物料手册。 对公式(1)做个变换,可以得到: A L T - P λ?= ——(2) 令: A λL R =θ ——(3) 公式(2)就可以简化为: θ R T P ?= ——(4)

位阻效应

位阻效应 轨道杂化程度的不同对键长会有一定程度的影响,如由SP3、SP2、SP杂化形成的碳-碳轨道中的S成分依次增多,其相应的键长也依次缩短,但是这种变化对化学键的热稳定性的影响几乎不显示明显的差别。通常情况下,长键比短键更为常见,其主要原因是由于原子间斥力的增强比其它一些因素引起的成键轨道电子云密度降低所导致的键长增长更明显。Ruchardt和Bechhaus[1]对各种取代基对取代乙烷的中心碳碳键的性能的影响进行了广泛的研究。他们认为,随着取代基团的增大,位阻效应的增加,首先引起中心碳碳单键的形变,如键弯曲和转动等,而使键的力常数减小。在只有排斥作用时,要使键长超过0.1600nm必须是在取代基团非常拥挤的情况下才会发生。如化合物1的中心碳碳键长为0.1641nm。 通过对不同配比的丙烯酸乙酯—苯乙烯共聚乳液在不同PH值的粘度的测定,结果表明:苯乙烯位阻效应对乳液增稠效果有极大的影响,大体积侧链含量增加,空间位阻效应增大,乳液的增稠效果降低。在实际应用中为了满足某些特殊需要,在丙烯酸共聚体系中引进苯乙烯,在兼顾增稠效果的前提下,含量低于50℅有效,10~20℅更为适宜,苯乙烯含量大于50℅时,乳液几乎失去增稠作用。

空间位阻效应 摘要空间位阻效应主要指分子中某些原子或基团彼此接近而引起的空间阻碍作用。如酶反应中空间位阻会降低其催化活性。在配位化合物中,当向一个配体引入某些较大基团后,由于产生空间位阻,影响它与中心原子形成配位化合物。空间产生影响的事实,每个原子在分子中占有一定的空间。如果原子是太接近了一起,有一个相关的费用在能源由于重叠的电子云(圣保利或生现斥力),这可能会影响分子和首选形状(构)的反应。 因分子中靠近反应中心的原子或基团占有一定的空间位置,而影响分子反应活性的效应。降低分子反应活性的空间效应称“空间阻碍”。 空间位阻效应 空间位阻效应主要指分子中某些原子或基团彼此接近而引起的空间阻碍作用。如酶反应中空间位阻会降低其催化活性。在配位化合物中,当向一个配体引入某些较大基团后,由于产生空间位阻,影响它与中心原子形成配位化合物。空间产生影响的事实,每个原子在分子中占有一定的空间。如果原子是太接近了一起,有一个相关的费用在能源由于重叠的电子云(圣保利或生现斥力),这可能会影响分子和首选形状(构)的反应。 空间位阻效应-基本介绍 空间位阻效应 因分子中靠近反应中心的原子或基团占有一定的空间位置,而影响分子反应活性的效应。降低分子反应活性的空间效应称“空间阻碍”。例如,邻位双取代的苯甲酸的酯化反应要比没有取代的苯甲酸困难得多。同样,邻位双取代的苯甲酸酯也较难水解。这是由于邻位上的基团占据了较大的空间位置,阻碍了试剂(水、醇等)对羧基碳原子的进攻。相反,反应物转变为活性中间体的过程中,如降低反应物的空间拥挤程度,则能提高反应速度。这种空间效应称“空间助效”。例如,叔丁基正离子比甲基正离子容易形成,这是因为在形成叔丁基正离子的反应中,空间拥挤程度降低得多一些,而在形成甲基正离子的反应中,空间拥挤程度相对降低得少一些。空间效应是影响有机反应历程的重要因素。空间位阻效应又称立体效应。主要是指分子中某些原子或基团彼此接近而引起的空间阻碍和偏离正常键角而引起的分子内的张力。如酶反应中空间位阻会降低其催化活性。在配位化合物中,当向一个配体引入某些较大基团后,由于产生空间位阻,影响它与中心原子形成配位化合物。如乙二胺(在配位化学中简写为en)易生成二乙二胺合铜(II)离子[Cu(en)2]2+,但N,N,N′,N′-四甲基乙二胺(tmen),由于每个N上有两个甲基,空间位阻较大,不能生成[Cu(tmen)2]2+。空间阻碍一般会降低反应速率,例如,在溴代烷的双分子亲核取代反应中,由于烷基体积的增大,引起空间阻碍,使反应速率变小。然而在有些反应中,

常用导热系数单位之间的换算关系

常用导热系数单位之间的换算关系 下表为常用导热系数单位换算表。 上表中,关于几种温度单位: 开氏温度(K ):国际单位制基本单位。绝对零度℃为0开氏度。 摄氏温度(℃):一个大气压下,规定水的冰点为0℃,沸点为100℃。 华氏温度(℉):一个大气压下,规定水的冰点为32℉,沸点为212℉。 温度单位之间的换算关系为: 摄氏度与开氏度:K=℃- 摄氏度与华氏度:℉=(9/5)*℃+32 摄氏度与华氏度:K=5/9(℉+ 1 根据预制直埋保温管规范推算 2 根据埋深和聚氨酯和玻璃钢的承重计算 已知保温材料导热系数外墙保温厚度怎么计算 首先明确你用的外墙要达到什么标准,是50节能、还是65节能标准。以65%节能为例,传热系数Km≤ W/()。其倒数即为符合墙体传热阻,再减去内外墙传热阻以及基墙传热阻就可以得到你用的外墙的热阻,再根据公式R = δ/λ(热阻=材料厚度/导热系数),即可算出你所需要的厚度。 隔热保温层厚度计算

2009-05-25 13:37:15|分类:个人日记 |标签: |字号大中小订阅 聚氨酯泡沫塑料作为隔热保温材料已广泛用于建筑、冷库、油管、保温管道等。 正确地确定隔热层厚度将大大地节省原料,降低材料费用。 绝热工程包括保温和保冷两方面的内容。 经济厚度计算方法是一种最广泛使用的方法。 把绝热材料的投资和热冷损失的费用综合考虑后得出一种经济厚度,此时保温与保冷费用和热损失费用之和为最小。 一般控制绝热层表面单位面积的热损失不大于规定值。 在实际计算中,保温层表面温度ts如何确定与各方面都有关系。 从能耗考虑,ts与大气温度t0越接近越好,但是,相应的其投资费用也越大。 反之,则能源又随投资费用的减少而大幅度的增加。 因此,保温保冷层表面温度应分别高于大气温度和露点温度。 同时,式中a1的值(外部传热系数)对保温的场合往往直接取10,对保冷取7。 例1,某冷库,库内最低温度为-20℃,夏季平均气温为30℃,湿度为85%,采用聚氨酯泡沫作绝热材料,其厚度应为多少 已知tf=-20℃ta=30℃λ=Kcal/m·h·℃a1=7Kcal/m2·h·℃ ts的求法: ts为绝热层表面露点温度,查阅饱和蒸汽压表得: 30℃时的饱和蒸汽压为柱 ×=

热阻与热阻抗Word版

热传导的基础理论 傅立叶方程 对界面材料的热传导,一般按一维来处理,其热传导过程可用傅立叶方程描述: Q=KA△T/d ┄┄┄┄┄┄┄ (1) 式中:K:导热系数,W/m.k A:接触面积,m2 Q:趁热量,W △T:热量流入面与流出面之间的温差,℃d:壁面的厚度,m 导热系数 导热系数是描述材料导热能力的一个物理量,为单一材料的固有特性,与材料的大小、形状无关。而对于采用玻璃丝网或聚合物膜加固的界面材料,由于其导热系数取决于不同材料层的相对厚度及导热的方向性能,所以用相对导热系数来表征材料的导热性能更合适。 热阻 热阻表示单位面积、单位厚度的材料阻止热量流动的能力,表示为: Rθ=d/K (2) 对于单一材料,材料的热阻与材料的厚度成正比;对于非单一材料,总的趋势是材料的热阻随材料的厚度增加而增大,但不是纯粹的线形关系。 热阻抗 对于界面材料,用特定装配条件下的热阻抗来表征界面材料导热性能的好坏更合适,热阻抗定义为其热阻和与接触表面间的接触热阻之和,表示如下: Zθ=d/(K.A)+Ri (3) 表面平直度、表面粗糙度、紧固压力、材料厚度和压缩模量将对接触热阻产生影响,而这些因素又与实际应用条件有关,所以界面材料的热阻抗也将取决于实际装配条件,其影响因素有:接触面积A:接触面积增加,装配热阻即减小。 材料厚度d:绝缘厚度增加,材料的装配热阻增大。 装配压力(Pressure):在理想条件下,装配压力增加,热阻减小,但压 力增加到一定值后,热阻减小的幅度很小,该点的压力则为材料的最佳 压力值。另外,装配热阻的大小还跟测试方法有关。 界面材料的测试方法 热阻抗的测试方法 ASTM D5470规定的测试方法 遵照美国ASTM D5470-93标准其测试原理图如右图所示: 测试头为圆柱体:截面积1in2 表面粗糙度:小于1μm 材料为:铝6160 T6 加热块及平衡加热器材料为:铜 压力:500PSI±1psi 平衡判定:10分钟内温度变化:小于1℃ ASTM D5470 测试方法示意图 计算方法为: 热量(Heat): Q cal1,2= Kcal1,2 A cs m1,2(W) 平均热量(Average Heat): Q avg=( Q cal1+ Q cal2)(W)

空间位阻效应

1简介 2基本介绍 3类型分析 4电子影响 5科技运用 6胺醚的制备 7现实意义 8实例分析 空间位阻效应主要指分子中某些原子或基团彼此接近而引起的空间阻碍作

因分子中靠近反应中心的原子或基团占有一定的空间位置,而影响分子反应活性 空间位阻效应

空间位阻障碍或阻力位时发生的大小群体分子阻止化学反应,观察有关小分子。 空间位阻效应 氢键和较少形式的联系。这粘接用品分子的基本骨架是修改的源头。这些源 空间位阻效应

头包括空间位阻互动上文所述。基本键和空间位阻有时不足以解释许多结构,性能和反应。因此,空间位阻效应往往是对比和补充电子的影响暗示的影响作用,如诱导,同时,轨道对称性,静电相互作用和自旋态。还有更深奥的电子效果,但这些是最重要的考虑结构 生热耗高的问题,开发了包括溶液的新型催化剂、计算机流程模拟优 空间位阻效应 综合效能达到国外最先进催化剂的水平,吸收能力比Benfield溶液提高10%~30%,再生 以内,达到90年代国际先进水平,依此模型开发的气体净化节能辅助操作软件,实现了从

空间位阻效应 空间位阻效应的认识是至关重要的化学,生物化学和药理学。在化学,空 空间位阻效应

空间位阻效应 子的敏感度,使得煤浆稳定程度有了较大的提高,不产生沉淀的放置时间比目前国内常用添加剂至少延长了一倍以上,制浆浓度提高1%—2%。当ecdp共混量高达25%时,常温常 生基团迁移的特点,先将蔗糖中的伯羟基利用空间位阻效应保护起来,再经乙酞化、去保护基、基团迁移、氯化、脱乙酞基等步骤合成三氯蔗糖,显然,反应过程过于繁琐而缺乏开发前景。另外,从分子大小上分析,蛋白质的分子量在数千以上,实验所用bsa的分子量达6万以上,而多酚类物质的分子量仅为几百,发生二聚、三聚之后,其分子量也远小于蛋白质的 于3万的级分,由于大分子的空间位阻效应,水泥颗粒表面仍存在着一些未被木钙分子所

热阻的实际应用

图1

公式(2)则是根据材料特征来计算热阻。利用公式(2),可以不用做实际的测量实验,利用各材料的导热系数和各组成材料的几何形状,就可以计算出热阻。这对做模拟计算是非常好的理论依据。同时,公式(2)更容易让人理解热阻产生的本质。 三、导热系数与热阻的应用问题 采用热阻的概念,只能是两个系统保持不变的情况下来分析、比较系统的热状态。两个系统若有改变,比较的结果可能完全相反。 比如,两种不带铝基板的1W白光LED,见图2和图3,它们的结构尺寸见图4和图5,根据铜底座尺寸,按照公式(2)计算,图3产品的中心轴向热阻应是图2产品的1.54倍。可在实际使用中,图3的芯片温度要低。怎么会这样?因为,它的底板下部的面积大,便于热流横向扩展。上面的计算没有考虑热流横向扩展!它们实际应用时,还必须要加散热器,见图5。通常散热器是铝合金材料,导热系数远小于纯铜材料。图2的LED接触面小,热量在往散热器上传导时,横向的热阻就大了;而图3的产品由于铜底座面积大,热量便于横向散开传导到散热器上,使得热流密度减小,将热量更有效地传导到散热器的外部翅片上。所以,虽然图3的结构纵向路径长了,但由于有了好的横向路径,其实热阻反倒小了。 再比如,两个材料、工艺相同制成的散热器,A表面积比B表面积大一倍,似乎A的热阻比B小,A要好。可是,给B配上风扇,B的热阻就会小于A。事实上是B和风扇形成了系统,是这个系统比A好。并不是A比B的热阻小而最终在使用上A比B系统好。A和B的比较就没有意义,因为B不是单独使用。 这个例子是有实际应用意义的。在设计产品的散热器结构时,我们可能采用两种方案:只用散热器自然散热和散热器加风扇散热。在采用风扇散热时,可以选取一个较小的散热器,其与风扇组合的散热效果可能远优于只采用一个较大的散热器的效果。虽然小散热器的热阻大于大散热器的热阻,但在两个系统中,我们也不能单以两个散热器的热阻大小来说好坏。 在系统构成后,不用热阻的概念,通过温度值就可以知道导热效果的差异。这里“系统的构成后”是指相比较的系统的结构确定,热源确定。可以测试相关点的温度就知道结果。没有必要已经知道了相关点的温度后再去算出个热阻来。通过相关点的温度值已经很明确了哪个好,哪个不好。如果说不是测试,而是要通过模拟计算得到结果的话,在模拟计算中,也是通过导热系数和结构参数,先算出相关点的温度。计算得到了各点的温度,导热好坏也就明了了。也可以不需要再多算一步来算出热阻值。 对于热系统间的比较,仅仅知道各系统的热阻值,也无法比较哪个好坏。 举例说明。两个不同LED灯具,采用相同型号、规格和数量的LED,它们的芯片PN结到灯具最外端的热阻不同。可是这两个灯具设计的芯片工作电流是不同的。一个灯具的工作电流比另一个要小的多,即使这个灯具的热阻大些,它的芯片温度还是要低,它的寿命相对就要好。所以,给出热阻值而不同时了解其它相关条件,单从热阻值来比较这两个灯具,是没有意义的。而若给出灯具在正常工作条件下的温度值,则可以很好低判定它们的热状况好坏了,由此才可以推断哪个灯具的可靠性和寿命会好。

空间位阻效应

空间位阻效应 又称立体效应。主要是指分子中某些原子或基团彼此接近而引起的空间阻碍和偏离正常键角而引起的分子内的张力。 1简介 空间位阻效应主要指分子中某些原子或基团彼此接近而引起的空间阻碍作用。如酶反应中空间位阻会降低其催化活性。在配位化合物中,当向一个配体引入某些较大基团后,由于产生空间位阻,影响它与中心原子形成配位化合物。空间产生影响的事实,每个原子在分子中占有一定的空间。如果原子是太接近了,两个相邻的原子就会形成重叠的电子云(表现为斥力),这可能会影响分子和首选形状(构)的反应。 2基本介绍 空间位阻效应图示 因分子中靠近反应中心的原子或基团占有一定的空间位置,而影响分子反应活性的效应。 降低分子反应活性的空间效应称“空间阻碍”。例如,邻位双取代的苯甲酸的酯化反应要比没有取代的苯甲酸困难得多。同样,邻位双取代的苯甲酸酯也较难水解。这是由于邻位上的基团占据了较大的空间位置,阻碍了试剂(水、醇等)对羧基碳原子的进攻。相反,反应物转变为活性中间体的过程中,如降低反应物的空间拥挤程度,则能提高反应速度。这种空间效应称“空间助效”。例如,叔丁基正离子比甲基正离子容易形成,这是因为在形成叔丁基正离子的反应中,空间拥挤程度降低得多一些,而在形成甲基正离子的反应中,空间拥挤程度相对降低得少一些。空间效应是影响有机反应历程的重要因素。空间位阻效应又称立体效应。主要是指分子中某些原子或基团彼此接近而引起的空间阻碍和偏离正常键角而引起的分子内的张力。如酶反应中空间位阻会降低其催化活性。在配位化合物中,当向一个配体引入某些较大基团后,由于产生空间位阻,影响它与中心原子形成配位化合物。如乙二胺(在配位化学中简写为en)易生成二乙二胺合铜(II)离子[Cu(en)2]2+,但N,N,N′,N′-四甲基乙

常见材料导热系数(史上最全版)

导热率K是材料本身的固有性能参数,用于描述材料的导热能力,又称为热导率,单位为W/mK。这个特性跟材料本身的大小、形状、厚度都是没有关系的,只是跟材料本身的成分有关系。不同成分的导热率差异较大,导致由不同成分构成的物料的导热率差异较大。单粒物料的导热性能好于堆积物料。 稳态导热:导入物体的热流量等于导出物体的热流量,物体内部各点温度不随时间而变化的导热过程。 非稳态导热:导入和导出物体的热流量不相等,物体内任意一点的温度和热含量随时间而变化的导热过程,也称为瞬态导热过程。 导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,°C),在1秒内,通过1平方米面积传递的热量,用λ表示,单位为瓦/米·度 导热系数与材料的组成结构、密度、含水率、温度等因素有关。非晶体结构、密度较低的材料,导热系数较小。材料的含水率、温度较低时,导热系数较小。 通常把导热系数较低的材料称为保温材料(我国国家标准规定,凡平均温度不高于350℃时导热系数不大于(m·K)的材料称为保温材料),而把导热系数在瓦/米摄氏度以下的材料称为高效保温材料。 导热系数高的物质有优良的导热性能。在热流密度和厚度相同时,物质高温侧壁面与低温侧壁面间的温度差,随导热系数增大而减小。锅炉炉管在未结水垢时,由于钢的导热系数高,钢管的内外壁温差不大。而钢管内壁温度又与管中水温接近,因此,管壁温度(内外壁温度平均值)不会很高。但当炉管内壁结水垢时,由于水垢的导热系数很小,水垢内外侧温差随水垢厚度增大而迅速增大,从而把管壁金属温度迅速抬高。当水垢厚度达到相当大(一般为1~3毫米)后,会使炉管管壁温度超过允许值,造成炉管过热损坏。对锅炉炉墙及管道的保温材料来讲,则要求导热系数越低越好。一般常把导热系数小于0。8x10的3次方瓦/(米时·摄氏度)的材料称为保温材料。例如石棉、珍珠岩等填缝导热材料有:导热硅脂、导热云母片、导热陶瓷片、导热矽胶片、导热双面胶等。主要作用是填充发热功率器件与散热片之间的缝隙,通常看似很平的两个面,其实接触面积不到40%,又因为空气是不良导热体,导热系数仅有,填充缝隙就是用导热材料填充缝隙间的空气. 傅力叶方程式: Q=KA△T/d, R=A△T/Q Q: 热量,W K: 导热率,W/mk A:接触面积 d: 热量传递距离△T:温度差 R: 热阻值 将上面两个公式合并,可以得到 K=d/R。因为K值是不变的,可以看得出热阻R值,同材料厚度d是成正比的。也就说材料越厚,热阻越大。 但如果仔细看一些导热材料的资料,会发现很多导热材料的热阻值R,同厚度d并不是完全成正比关系。这是因为导热材料大都不是单一成分组成,相应会有非线性变化。厚度增加,热阻值一定会增大,但不一定是完全成正比的线性关系,可能是更陡的曲线关系。 实际这是不可能的条件。所以测试并计算出来的热阻值并不完全是材料本身的热阻值,应该是材料本身的热阻值+所谓接触面热阻值。因为接触面的平整度、光滑或者粗糙、以及安装紧固的压力大小不同,就会产生不同的接触面热阻值,也会得出不同的总热阻值。 — 所以国际上流行会认可设定一种标准的测试方法和条件,就是在资料上经常会看到的ASTM D5470。这个测试方法会说明进行热阻测试时候,选用多大的接触面积A,多大的热量值Q,以及施加到接触面的压力数值。大家都使用同样的方法来测试不同的材料,而得出的结果,才有相比较的意义。 通过测试得出的热阻R值,并不完全是真实的热阻值。物理科学就是这样,很多参数是无法真正的量化的,只是一个“模糊”的数学概念。通过这样的“模糊”数据,人们可以将一些数据量化,而用于实际应用。此处所说的“模糊” 是数学术语,“模糊”表示最为接近真实的近似。

热阻值和导热系数关系审批稿

热阻值和导热系数关系 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

(R值)与(U值) ? R值和U值是用于衡量建筑材料或装配材料热学性能的两个指标。R值代表建筑材料阻止热量穿过的能力。R值越高,材料的阻热和隔热性能越高。 U值的意义则与之相反。U值代表不同材料表面之间的热传导量。U值越低,表示热传导量就越低,材料的隔热效果就越好。 基本材料的热导率 所有的建筑材料都有各自的热导率,热导率的单位是W/Mk。导热系数是指在稳定的传热条件下,单位截面、厚度的材料在单位温差和单位时间内直接传导的热量,单位是"瓦/(米·开尔文)。 材料的热导率越低,代表产品的隔热性能越好。岩棉是最理想的隔热材料之一,其热导率很低,因而产品隔热效果良好。 材料的热导率(用K或λ表达),有不同的标准,比如欧盟标准(EN),美国标准(ASTM)以及其他国际或地方标准。利用K值可以衡量材料或的热阻值(R值)和热导系数(U值)。 R值(热阻值) 热阻值(R值)与材料的厚度和热导率有关。需要注意的是,在热导率恒定的前提下,材料厚度越高,热阻值也越高。 R = d / k 其中: R 表示热阻值

d 表示材料厚度(单位米) k 表示热导率 材料的热阻值(R值)会影响房屋及屋顶的建造效果。传统的建筑材料通常是砖、水泥、瓦片、钢筋和木头,这些材料的热阻性能不是很好。 采用特殊材料进行隔热处理,效果非常良好。采用岩棉隔热,同等厚度岩棉的隔热效果超过砖头的隔热效果20倍,同等厚度岩棉的热阻性能是水泥热阻性能的40倍以上。第三方独立研究显示,采用隔热材料改善能效是最可行的方法。 ? U值(热导系数) 建筑物的热导系数(U值)表示在稳定传热条件下,单位面积的建筑截面材料,两表面在单位空气温差和单位时间内直接传导的热量,单位是"瓦/(米2·开尔文)。 U = 1 / Rt 其中Rt代表材料总的热阻值: Rt = Ro + d1 / k1 + d2 / k2 + ........... dn / kn + Ri 在该等式中: Ro 代表外表面的空气薄层热阻 单位 (m2K/W) Ri 代表内表面的空气薄层热阻单位 (m2K/W) k 代表基本材料的热导率单位 (W/mK)

围护结构热阻及保温计算

导热系数、传热系数(热阻值R、导热系数λ、修正系数、厚度---节能计算)概念及热工计算方法 导热系数: 导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,℃),在1小时内,通过1平方米面积传递的热量,单位为瓦/米?度(W/m?K,此处的K可用℃代替)。 传热系数: 传热系数以往称总传热系数。国家现行标准规范统一定名为传热系数。传热系数K值,是指在稳定传热条件下,围护结构两侧空气温差为1度(K,℃),1小时内通过1平方米面积传递的热量,单位是瓦/平方米?度(W/㎡?K,此处K可用℃代替)。 (节能)热工计算: 1、围护结构热阻的计算 单层结构热阻: R=δ/λ 式中:δ—材料层厚度(m) λ—材料导热系数[W/(m.k)] 多层结构热阻: R=R1+R2+----Rn=δ1/λ1+δ2/λ2+----+δn/λn 式中: R1、R2、---Rn—各层材料热阻(m.k/w) δ1、δ2、---δn—各层材料厚度(m) λ1、λ2、---λn—各层材料导热系数[W/(m.k)] 2、围护结构的传热阻 R0=Ri+R+Re 式中: Ri —内表面换热阻(m.k/w)(一般取0.11) Re —外表面换热阻(m.k/w)(一般取0.04) R —围护结构热阻(m.k/w) 3、围护结构传热系数计算 K=1/ R0 式中: R0—围护结构传热阻 外墙受周边热桥影响条件下,其平均传热系数的计算 Km=(KpFp+Kb1Fb1+Kb2Fb2+ Kb3Fb3 )/( Fp + Fb1+Fb2+Fb3) 式中: Km—外墙的平均传热系数[W/(m.k)] Kp—外墙主体部位传热系数[W/(m.k)] Kb1、Kb2、Kb3—外墙周边热桥部位的传热系数[W/(m.k)] Fp—外墙主体部位的面积 Fb1、Fb2、Fb3—外墙周边热桥部位的面积 4、单一材料热工计算运算式 ①厚度δ(m) = 热阻值R(m.k/w) * 导热系数λ[W/(m.k)] ②热阻值R(m.k/w) = 1 / 传热系数K [W/(㎡?K)] ③厚度δ(m) = 导热系数λ[W/(m.k)] / 传热系数K [W/(㎡?K)]

相关文档
最新文档