机械振动理论及工程应用

机械振动理论及工程应用
机械振动理论及工程应用

机械振动学学习报告

摘要:简述了机械振动学的发展历程,振动利用中的若干新工艺理论与技术,振动机械及其相关技术的应用与发展,介绍了振动在人类生活工作中起到了非常重要的作用。通过对具体实例——单电机振动给料机的计算分析,得出机械振动对机器工作性能的影响。并介绍了单自由度、多自由度的线性振动系统振动的基本理论和隔振的基本原理。关键词:机械振动;振动给料机;线性振动系统

Abstract:This paper describes the development course of study of mechanical vibration and the utilization of some new technology theory and technology. The vibration has played a very important role in human life and work. By analyzing the practical example-single motor , vibrating feeder calculation and analysis of mechanical vibration machine has influence on the performance. And introduced the single-degree-of-freedom, multi-freedom system vibration of the linear vibration of the basic theory and the basic principle of vibration isolation.

Keywords:Mechanical vibration; Vibrates the feeding machine; Linear vibration system

第一章绪论

1.1振动振动学的发展

振动振动学科是20世纪后半期逐渐形成和发展起来的一门新学科。目前正处在迅速发展过程中,由于该学科所涉及的有关技术与工业生产及人类生活联系十分密切,它能为社会创造重大的经济效益和社会效益,能为人类生活提供极大的方便和良好的服务,目前已成为人类生产活动与生活过程中一种不可缺少的手段与必要的机制。国内以闻邦椿院士为首的科研团队一直以极大的精力从事这一领域的研究,在振动利用工程这一学科的多个领域取得了一系列的研究成果,促进了该学科的形成与发展。自然界和人类社会中的某一个量随时间或大或小的变化即称为振动。振动是物质世界运动的一种基本形式,物质世界中的每一个物体及其中的每一个分子都始终处于振动之中。毫无例外,人类自身的每一器官也每时每刻都处在振动之中,例如,心脏的搏动、血液的循环、肺部的张缩呼吸、脑细胞的思维以及耳膜的振动和声带的振动等,前面所列举的这些振

动都有人体对振动的有效利用;离开这些振动人类就无法生存。从人类的生活及周围工作环境来说,也到处在利用振动。例如电视机和收音机中的振荡电路、门铃、电话机、机械表与电子表、挂钟、理发用电推子、各部门使用的各种类型的振动机、光导纤维通信技术、医疗设备中的彩超、医用CT,和核磁共振、机械设备与结构故障的振动诊断技术等等都是对振动与波动原理的实际应用,都属于振动利用的范畴;从广义的角度来看,在社会与经济生活中,例如,人口的增长与衰减、农作物虫灾发生的周期性现象、股市的升跌和振荡、社会经济发展过程中速度的增长与衰减等,都可以归纳为不同形式的振动;在自然界及宇宙中,也到处存在着振动,月亮的圆缺、潮汐的涨落、树木的年轮、一些树木和花草年复一年的发芽、生长与枯萎等等。对这些振动和波动现象进行研究,找出其内在规律,并进行有效的利用,就会对社会产生重大的社会效益与经济效益,为人类造福。

利用振动原理的设备来说,目前成功应用于工矿企业的该类设备举不胜数。。在许多部门,如采矿、冶金、煤炭、石油化工、机械,以及在人类日常生活过程中,数以万计的振动机器和振动仪器已用来完成许多不同的工艺过程,如给料、上料、输送、筛分、布料、烘干。这些机器包括振动给料机、振动输送机、振动整形机、振动筛、振动离心脱水机、振动干燥机等。除利用线性振动原理和非线性振动原理外,线性与非线性波也得到了广泛的应用。例如,在工程地质部门,利用振动所发生的应力波进行检测和地质勘探;在石油开采中,利用振动所引发的弹性波提高原油产量;在海洋工程方面,海浪波动的能量可以用来发电;在医疗方面,利用超声波等诊断和治疗疾病,彩超、医用CT和核磁共振等,都是对振动与波动原理的实际应用;超声还在其他许多行业具有广泛的用途;光导纤维和激光的应用是光波工程应用的范例,具有十分重大的理论意义与实际价值。回顾以往的历史,我们可以看到振动与波的利用曾促使一些科学技术领域与产业部门发生重大的变革,甚至引发某一领域或产业部门产生新的革命,如自同步理论的提出与研究成功地促进了惯性振动机结构与相应的制造产业的重大变化;可控电磁振动给料设备的成功应用促使某些工业企业自动化程度明显提高;振动压路机和具有振动机构的摊铺机的成功应用,使高速公路的修建质量及使用寿命得到保证与提高;石英振荡器的研究成功引发了钟表工业的革命;超声电机的研制成功使小尺寸、小功率、低转速电机的产业产生重大的变革;彩超与医用CT的研究成功使医疗检测与诊断技术产生了革命性的变化;光导纤维的研究成功促进了通信技术的革命。由此可见,振动与波的利用技术对于人类的生产活动有着很大的关联。

1.2振动利用中的若干新工艺理论与技术

研究了振动工程中若干工艺理论,并将结果应用于生产中。

(1) 物料在振动平面上及振动锥体内运动的理论。研究了直线运动、圆周运动及椭圆运动的各类振动工作面上及锥体内的物料滑行运动和抛掷运动的理论,进而提出了振动机运动学和动力学参数及工艺参数的计算方法。

(2) 物料筛分过程的理论。结合中国企业部门的需要,研究了物料筛分过程的理论。在此基础上,研究出了一种新的概率-等厚筛分的方法,并将其应用于新型筛分机械中,并在一些企业中获得了成功应用。

(3) 振动压实过程中振动摩擦的理论,首先提出了带有间隙的滞回系统的新模型。在振动情况下,物料与工件之间的摩擦、松散物料内部的摩擦都会明显的减小,在振动沉桩和振动压实过程中都是如此,因此,通过研究提出了振动摩擦的概念,并在这一问题的理论与试验的研究中,取得了一些初步的结果。

(4) 利用非线性动力学理论研究了物料的结合质量和当量阻尼。在研究含分段惯性力的非线性振动系统理论的基础上,分析了物料在振动平面上的运动特性,进而计算出在该振动系统中物料的结合系数及当量阻力系数,这为振动机械产品设计提供了有用的参考。

1.3 振动机械及其相关技术的应用与发展

振动机械(或振动仪器)作为一种特殊的设备或装置已在工业生产中得到广泛的应用。振动机械或仪器有着广泛的用途,例如给料和输送、筛分和烘干、破碎和清理、成型和压实、振捣和打拔、试验和测试、监测和诊断以及其他用途等。据初步统计,振动机械和仪器的用途和种类已达百余种,下面举出了振动机械的主要用途。

1.3.1振动干燥工艺

干燥式工业生产中一个复杂的工艺过程,该工艺是近十几年来振动利用工程发展的一项新技术。振动流化床是在普通流化床基础上发展起来的,床层除受干燥气流作用外,再附加振动作用,使之处于流化状态下进行干燥,在流化床上施加振幅和频率一定的振动,使得机内物料处于悬浮沸腾的流化状态的床层结构,利用对流、传导或辐射加热即可进行振动流化干燥作业。振动流化干燥机有多种形式,惯性式振动干燥机在实际应用中最为普遍。

1.3.2 振动破碎机的应用

物料的破碎式工矿企业应用较广的一种工艺过程,大部分开采出的矿物原料需要进行破碎和磨碎。传统的破碎机的破碎方法存在很大的局限性。例如,物料的抗压强度极限达2×108Pa时,破碎过程耗能较高,或难以破碎,或使物料过磨,所用设备业很复杂。振动破碎工艺的发展则可克服传统工艺的缺点,惯性振动圆锥破碎机利用偏心块所产生的离心力来破碎矿石或其他物料,利用挤压和冲击技术使物料破碎。惯性振动圆锥破碎机的破碎比远大于普通破碎机,而且可在很大范围内调节,在中细作业中有广泛的应用前景。

1.3.3 振动摊铺及振动压路

振动摊铺机和振动压路机是筑路作业中的关键设备,是振动技术在筑路工程中的典型应用实例。振动摊铺机在工作过程中先将物料撒布在整个宽度上,再利用熨平机构的激振器对被摊铺物料进行熨平和压实。振动系统决定了对物料摊铺的工作效率和密实效果,是决定摊铺质量的关键系统之一。

振动压路机依靠高速旋转的偏心质量块产生离心力,使振动碾作受迫振动压实路面。装在连接板上的振动马达带动偏心轴高速旋转,产生离心力使振动碾振动。装在偏心轴上的调幅装置用于改变振动的振幅,振动碾由装在梅花板上的驱动马达来驱动。由于在压路机引入振动,使路面的密实度由90%提高到95%以上,进而显著提高了其工作质量与使用寿命,这在筑路作业中具有十分重要的意义。

第二章单电机振动给料机的发展与应用

2.1、单电机振动给料机的结构、原理

由一台振动电机驱动的单电机振动给料机,作为一种新型的给料设备,目前在建材、化工等行业得到了广泛的应用。特别是在一些水泥厂的改建、扩建工程中,大量的采用单电机振动给料机,代替传统的电磁振动给料机,取得了满意的效果。

图2-1为单电机振动给料机的结构示意图。该机构主要由前、后减震弹簧,给料槽体及振动电机三部分组成。两组大小相同的偏心块,分别安装在振动电机转子轴的上下两端。当转子回转时,以偏心块产生的离心力作为激振力源,使槽体产生振动。在振动的作用下,槽中的物料将连续不断的向排料端流动,从而完成输送给料的要求。

与传统的电磁振动给料机相比,单电机振动给料机具有下述优点:重量轻;相同规

格,相同给料能力的两种给料设备,单电机振动给料机重量只是电磁给料机重量的40%-50%;结构简单

图2-1 单电机振动给料机结构示意图

2.2、动力学分析

2.2.1 振动微分方程的建立

以机器的中心O 为坐标原点O-xyz 直角坐标系(图2)。设振动电机的转子轴线位于机器的纵向对称面(xOy 片面)内,1O 点为上下偏西块离心力的合力作用点(即转子轴线的中点)。若用t ω表示偏心块的转动角度,显见偏心块的离心力F 可以分解为s sin F F t ω=和cos C F F t ω=两个分力。其中,C F 的作用线平行z 轴,s F 的作用线位于xOy 平面内。将机器作为刚体考虑,英视其为6个自由度振动系统。

在xOy 平面内,由于激振力的分力s F 的作用,机器将产生沿s F 作用力方向的直线振动。若上下偏心块的分力s F 的合力作用线1O 2O 不通过机器的重心O (见图2-2),则会

使机器产生绕z 轴的摇摆振动。现将前一种振动沿x 、y 两个坐标轴分解,于是可见力如下的振动微分方程

2cos x s mx

C x F β+= (2-1) 121122()()2sin y my

C y k k y k l k l F ?β+++++= (2-2) 22112211220()()2s J C k l k l y k l k l F l ?????++-++= (2-3)

图2-2 料体力分析图 图2-3 激振力分析图 式中x ,y ,?及其一阶、二阶导数分别为三种振动的位移,速度,加速度;m 为机器工作时的总参振质量;J ? 为机器绕z 轴的转动惯量;x C 、y C 、z C 分别为三种振动的粘性阻尼系数;1k 、2k 分别为前后减震弹簧的总刚度;1l 、2l 分别为前后

减震弹簧中心线至中心O 的距离。

在xOy 平面内,在激振力分力C F 的作用下,机器将产生沿z 方向的直线振动及绕y 轴摇摆振动。设合力作用点1O 至y 轴的距离为Oy l ,则上述两种振动的微分方程如下:

2z C mz

C z F += (2-4) 2c y J C F l ψψψ

ψ+= (2-5) 式中,,,z

z ψψ 分别为两种振动的速度和角速度。J ψ为机器绕y 轴的转动惯量。 在yOz 平面内,在激振力分力C F 的作用下,机器将产生绕x 轴摇摆振动,则振动微分方程如下:

112

22221122112211222()()222222222C ax k k k k k k k k J C L L L L y L L L L F l θθθθθ++-+-+++-= (2-6)

式中θθθ ,,分别为绕x 轴摇摆振动的角位移,角速度,角加速度;J θ

为机器绕x 轴的转动惯量;C θ为绕x 轴摇摆振动的粘性阻尼系数;1122

,,,L L L L 分别为前后各组减震弹簧中左右两个弹簧中心线至x 轴的距离。

若各组的两个弹簧均为对称机体纵向对称面安装,则有1122

,L L L L == ,于是上式变

122122()2C ax J C k L k L F l θθθθθ+++= (2-7)

设机器中心O 至振动电机转子轴线的距离为OO l = ,则由图5所示的几何关系可得

出:1

10sin ,cos sin ox oy l OG l l O H l l βββ====-。若令上下各组偏心块的偏心质量均为0m ,偏心距为e ,则离心力表达式应为20F m e ω=。将上式关系式带入上面的方程中,

于是可得下述整体后的摆动微分方程

202cos sin x mx C x

m e t ωβω+= (2-8) 202cos x mz C z

m e t ωω+= (2-9) 2002(cos sin )cos J C m e l l t ψψψ

ψωββω+=- (2-10) 222112200()2(sin cos )cos J C k L k L m e l l t θθθθθωββω+++=+ (2-11)

21211220()()2sin sin y my

C y k k y k l k l m e t ?ωβω++++-= (2-12) 2221122112200)()2sin J C k l k l y k l k l m e l ?????ωβ++-++= ( (2-13)

图2-4 电机振动分析图 图2-5 料体振动分析图

2.2.2 振动微分方程的解

由于有阻尼存在,自由振动在机器正常工作时将会消失,目前工业应用的单电机振动给料机通常都在远超共振状态下工作,阻尼对振幅的影响很小,在近似计算时可以略去不计,振动微分方程可以简化为:

202cos sin mx

m e t ωβω= (2-14)

202cos i mz

m e te θωω= (2-15) 2002(cos sin )cos J m e l l t ψψ

ωββω=- (2-16) 222112200

()2(sin cos )cos J k L k L m e l l t θθθωββω++=+ (2-17) 21211220()()2sin sin my

k k y k l k l m e t ?ωβω+++-= (2-18) 2221122112200)()2sin J k l k l y k l k l m e l ???ωβ+-++= ( (2-19)

设上述微分方程的特解形式为:

sin ,sin ,cos cos ,sin ,sin x X t z Z t t t y Y t t ωωψψωθθωω??ω===??===?

(2-20) 式中,,,,,X Y Z ?ψθ分别为各种振动的振幅(角振幅)。

对于方程(14)、(15)、(16),可以很容易得出其振幅(角振幅)的表达式为 0(2cos )/X m e m β= (2-21) 02/Z m e m = (2-22)

002(cos sin )/m e l l J ψψββ=- (2-23)

从表达式可以看出,由于该三种振动方向上的弹簧刚度为零,所以振幅均为常数。 从方程(17)可以求出绕x 轴摇摆振动的固有频率及角振幅分别为 1220122=()/k L k L J θθω+ (2-24)

20022211222(sin cos )()m e l l k L k L J θ

ωββω+Θ=+- (2-25) 最后整理可得出:

()()()2222011220112222

222sin sin ()oy o m e k l k l J l k l k l Y mJ ???ωβωβωωωω??+---??

=-- (2-26)

()()()2200120112222222sin ()oy o m e l k k l m k l k l mJ ??ωωβωωωω??+---??

Φ=-- (2-27)

2.2.3 振幅的讨论

对机器的上述振动,从保证和提高给料机的输送效率考虑,显见应加强x 和y 方向的振动,应避免和减小z 方向振动及绕x 、y 、z 轴的振动。可以看出

002cos ,2sin m l J m el J φθββ<<<<,这样即使存在绕轴和轴的摇摆振动,但由于一些影响参数的值很小,因此在机器正常工作时这两种的振动是很轻微的,对于机器的工作性能没有多大的影响。在设计单电机振动给料机时,若满足00l =及1122k l k l =条件,可以避

免绕z 轴的摇摆振动。单电机振动给料机虽然存在多种与给料方向不同的摆动,但对于机器工作性能的影响很小,可以忽略不计。

第三章 十字轴万向节传动

十字轴万向节传动以其成本低、可靠性高的特点在商用车上得到普遍应用,但由于它是不等速万向节,在万向节当量夹角不为零的情况下,输出轴的转速总是波动;作用在万向节叉平面内的附加弯矩也是波动的,且可在支承上引起波动的径向力。

3.1 万向节

3.1.1万向节的功用

万向节传动用于不同轴的两轴间甚至在工作过程中相对位置不断变化的两轴之间传递扭矩。它要求能适应转速变化、轴间存在夹角且夹角发生变化、连接长度发生变化的各种工况。汽车万向节分为普通十字轴万向节、等速万向节、挠性万向节等。普通十字轴万向节具有结构简单、制造成本低、可靠性高等优点。基于成本和可靠性考虑,一般商用车都采用普通十字轴万向节传动。

动力传动系的布置形式取决于汽车类型、使用条件及要求、发动机与传动系的结构形式及生产条件等。对于商用车,国内外一般都采用传统的FR 式,即发动机前置、后轮驱动的布置形式,变速器与主减速器之间采用多万向节传动轴传递动力。通常,商用车变速器和主减速器间距离较远,传动轴的布置形式如图3.1所示,它由万向节、传动轴、中间支承及伸缩花键等组成。

图3.1 万向传动在车上的布置方式

传动轴的任务是传递扭矩,在传动轴横断面上,传动轴管的扭转应力为:

4416()

DT D d τπ=- (3-1) 式中:T -传动轴计算转矩(Nm )

即扭转应力的分布是外圆最大,芯部逐渐减小至0,因此实心传动轴的材料得不到充分利用。传递相同扭矩,采用空心轴可以节省材料,减轻重量,并可获得较大刚度。因此,商用车传动轴一般由壁厚均匀壁薄、管径较大、扭转强度高、弯曲刚度大、适于高速旋转的低碳钢板卷制的电焊钢管制成。传动轴转速较高,所以对其平衡度要求也较高。尽管如此,一定直径和长度的轴,转速提高到某一限度时,仍会因剧烈振动而损坏,此损坏转速称为传动轴的危险转速或临界转速。单根传动轴的结构形式见图3.2。

图3.2 单根传动轴

3.1.2 中间支承结构分析

在长轴距汽车上,为了提高传动轴临界转速、避免共振,以及考虑整车总体布置上的需要,常将传动轴分段。有时,为了提高传动系的弯曲刚度、改善传动系弯曲振动特性、减小振动和噪声,也将传动轴分成两段。当传动轴分段时,需加设中间支承。 商用车的中间支承通常安装在传动轴横梁上,以补偿传动轴轴向和角度方向的安装误差,以及车辆行驶过程中由于发动机窜动或车架等变形所引起的位移,而其轴承应不受或少受由此产生的附加载荷。目前广泛采用的橡胶弹性中间支承,其结构中采用单列滚珠轴承。橡胶弹性元件能吸收传动轴的振动、降低噪声。这种弹性中间支承不能传递轴向力,它主要承受传动轴不平衡、偏心等因素引起的径向力,以及万向节上的附加弯矩所引起的径向力。当这些周期性变化的作用力的频率等于弹性中间支承的固有频率时,便发生共振。

3.2传动轴的动力学分析

3.2.1单十字轴万向节的运动学分析

商用车一般均采用普通十字轴万向节。当十字轴万向节的主动轴与从动轴存在一定夹角α时,主动轴的角速度1ω与从动轴的角速度2ω之间存在如下关系:

12221

cos 1sin cos ωαωα?=- (3-2) 式中,1? 为主动轴转角,定义为万向节主动叉所在平面与万向节主、从动轴所在平面的夹角。

十字轴万向节传动的不等速性可用转速不均匀系数k 来表示:

2m a x 2m i n 1s i n t a n

k ωω

ααω-== (3-3) 具有夹角α的十字轴万向节,仅在主动轴驱动转矩和从动轴反转矩的作用下是不能平衡的。这是因为这两个转矩作用在不同的平面内,在不计万向节惯性力矩时,它们的矢量互成一角度而不能自行封闭,此时在万向节上必然还作用有另外的力偶矩。从万向节叉与十字轴之间的约束关系分析可知,主动叉对十字轴的作用力偶矩,除主动轴驱动转矩Tl 之外,还有作用在主动叉平面的弯矩Tl ′。同理,从动叉对十字轴也作用有从动轴反转矩T2和作用在从动叉平面的弯矩T3。在这四个力矩作用下,使十字轴万向节得以平衡。

第四章 线性振动基本理论

对于商用车传动系统的振动分析,基本采用振动理论,包括单自由度线性振动、多自由度线性振动、随机振动等,以及一些工程上常用的隔振方法的应用。本章将介绍单自由度、多自由度的线性振动系统振动的基本理论和隔振的基本原理,分析振动传递率曲线和振动表达式,寻找消除或降低振动的途径。

4.1单自由度线性振动系统

对于单自由度系统,其振动方程为:

()mx

cx kx F t ++= (4-1) ()s i n F t F t ω

= 式中,m 为系统质量,c 、k 分别为系统阻尼和刚度,F(t)为激励力。

该方程的解为:

()X H F ω= (4-2)

12

1222222221111()[](1)(2)1(2)n n H k k ωλζλωωζωω??????==??-+????-+ ???????

4.2多自由度线性振动系统

多自由度系统有如下一些特征:

1)自由度数目等于独立并行的描述运动的数目;

2)多自由度系统有一个固有频率谱阵(特征频率)和相互联系的谱形阵(特征向量);

3)一个响应涉及到各个力带来的振动频率在每个模态上的贡献量;

4)每个振动响应模态类同于一个单自由度系统。

第五章 试验模态分析

由振动理论知,一个线性振动系统,当它按自身某一阶固有频率作自由谐振时,整个系统将具有确定的振动形态(简称振型或模态),描述这种振动形态的向量称为振型向量或模态向量。模态向量有一个很重要的特性,即“模态正交性”。

所谓振动模态分析法,就是利用系统固有模态的正交性,以系统的各阶模态向量所组成的模态矩阵作为变换矩阵,对通常选取的物理坐标进行线性交换,使得振动系统以物理坐标和物理参数所描述的、互相耦合的运动方程组,能够变为一组彼此独立的方程(每个独立方程只含一独立的模态坐标)。这个用模态坐标和模态参数所描述的各个独立方程为模态方程。模态分析实质上是一种坐标变换,其目的是为了解除方程的耦合,便于求解。由于坐标变换是线性变换,因而系统在原有物理坐标系中,对于任意激励的响应便可视为系统各阶模态的线性组合,故模态分析法又称为模态叠加法。而各阶模态在叠加中所占的比重或加权系数则取决于各阶的模态坐标响应。一般说来,高阶模态比低阶模态的加权系数要小得多,通常只需要选取前n 阶模态进行叠加,即可达到足够的精度。由此可知;模态分析的主要优点就在于,它能用较少的运动方程或自由度数,直观、简明而又相当精确地去反映一个结构比较复杂的系统的动态特性,从而大大减少测量、分析及计算工作量。

第六章展望

在振动利用工程的发展过程中,研究了双激振器的同步理论,促进了同步理论的应用与发展深入研究振动同步理论,并将振动同步理论扩展到控制同步、复合同步与广义同步。深入研究了机械系统的振动同步理论,除了研究并提出平面运动自同步振动机、空间运动自同步振动机同步运转的同步性判据及同步运转状态的稳定性判据以外,还研究了以下一些同步理论问题:

①提出了激振器偏转式的自同步振动机的同步性判据和同步状态的稳定性判据。

②提出了倍频同步自同步振动机的同步理论。

③研究了振动同步传动的理论。

④将同步理论扩展到控制同步和广义。

在初识经济的年代,“振动利用工程”将台在提高人民的物质与文化生活水平过程中发挥其应的有积极作用。随着科技的发展,振动利用的研究和应用早已跨出了机械工程领域,扩展到了建筑工程、矿业工程、化学工程等诸多工程领域,并将经典力学、非线性力学、振动学与机械学、电机学、材料学、自动控制、信号分析、图象处理等诸多学科紧密结合,形成了多学科互相交叉渗透的局面。由于振动现象的广义化,振动利用更延伸到了生物、农业以及社会经济领域,使得振动利用的范围大大扩展,诸多工程学科的结合体又将与生物学、农业科学、医学、经济学等学科,在更大的范围形成交叉互动。

振动在国民经济中应用越来越广泛,涉及面很广,并日益受到人们的重视。振动利用的实例很多,这里不再一一列举。振动利用的发展充实了振动利用工程学科的内涵,说明人们已经由认识振动进展到利用振动来改造世界、改善生活、创造价值,这是一个非常重要的转变,它将给振动利用工程带来一个美好的前景。

为了今后更好地促进这一学科的发展,以便使它能更好地造福人类,应从以下几个方面开展进一步的研究:

①应该大力开展“振动利用工程”实际应用的研究与开发工作,其研究范围不应只限于工程技术颔域, 还扩展到人民生活和社会经济领域之中。

②在研究振动技术实际应用的基础上,深入开展振动利用工程基础理论与工作机理的研究,为此,必须加强非线性振动与波动理论,其中包括非线性理论的解析方法与数值方法、非线性振动的稳定性以及非线性振动系统的分叉与混沌,研究分形理论与突变论在

振动利用工程中应用等。

③要加强振动技术与信息技术,即多媒体技术、集成电路技术、光导纤维技术、网络技术和人工智能技术的结合,使振动利用工程成为一种以智力为依托的高新技术,并将振动利用工程有关产业成为一种高新技术产业,在不断创新的思想的指导下促进其不断发展。

④从系统工程角度出发来开展振动利用工程学的宏观和微观的研究。

为了进一步促进这一学科的发展,有必要从系统工程角度,对该学科的理论基础、该领域有关技术的开发和应用,开展深入的研究,并通过学科交融等方式,进一步提高相关技术的理论水平及技术水平,使其成为人类生产活动和生活过程中不可缺少的手段和必要的机制,并造福人类。

机械振动发展史

公元前1000多年,中国商代铜铙已有十二音律中的九律,并有五度谐和音程的概念。在战国时期,《庄子·徐无鬼》中就记载了同频率共振现象。人们对与振动相关问题的研究起源于公元前6世纪毕达哥拉斯(Pythagoras)的工作,他通过试验观测得到弦线振动发出的声音与弦线的长度、直径和张力的关系。意大利天文学家、力学家、哲学家伽利略(Galileo Galilei)经过实验观察和数学推算,于 1 5 8 2年得到了单摆等时性定律。荷兰数学家、天文学家、物理学家惠更斯(c.Huygens)于1 6 7 3年著《关于钟摆的运动》,提出单摆大幅度摆动时并不具有等时性这一非线性现象,并研究了一种周期与振幅无关的等时摆。法国自然哲学家和科学家梅森(M.Mersenne)于1623年建立了弦振动的频率公式,梅森还比伽利略早一年发现单摆频率与摆长平方成反比的关系。英国物理学家胡克(R. Hooke)于1 6 7 8年发表的弹性定律和英国伟大的物理学家、数学家、天文学家牛顿(I. Newton)于1 6 8 7年发表的运动定律为振动力学的发 展奠定了基础。 在下面对振动发展史的简述中,主要是针对线性振动、非线性振动、随机振动以及振动信号采集和处理这三个方面进行的。而关于线性振动和非线性振动发展史的简介中,又分为理论研究和近似分析方法两个方面。

线性振动理论在1 8世纪迅速发展并趋于成熟。瑞士数学家、力学家欧拉(L. Euler)于1728年建立并求解了单摆在有阻尼介质中运动的微分方程;1 7 3 9年研究了无阻尼简谐受迫振动,并从理论上解释了共振现象;1 7 4 7年对九个等质量质点由等刚度弹簧连接的系统列出微分方程组并求出精确解,从而发现线性系统的振动是各阶简谐振动的叠加。法国数学家、力学家拉格朗日.Lagrange)于1 7 6 2年建立了离散系统振动的一般理论。最早被研究的连续系统是弦线,法国数学家、力学家、哲学家达朗伯(J. le R.d,Alembert)于1 7 4 6年发表的《弦振系统是弦线,法国数学家、力学家、哲学家达朗伯(J.1e R.d,Alem bert)于1 7 4 6年发表的《弦振动研究》将他发展的偏微分方程用于弦振动研究,得到了弦的波动方程并求出行波解。瑞士数 学家约翰第一·伯努利(J.Bernoulli)于1 7 2 8年对弦的振动进行了研究,认为弦的基本振型是正弦型的,但还不知道高阶振型的性质。与约翰第一·伯努利为同一家族的瑞士数学家、力学家丹尼尔第一·伯努利.Bernoulli)于1 7 3 5年得到了悬臂梁的振动方程,1 7 4 2年提出了弹性振动理论中的叠加原理,并用具体的振动实验进行验证。

大学 机械振动 课后习题和答案

试举出振动设计、系统识别和环境预测的实例。 如果把双轴汽车的质量分别离散到前、后轴上去,在考虑悬架质量和非悬架质量两个离散质量的情况下,画出前轴或后轴垂直振动的振动模型简图,并指出在这种化简情况下,汽车振动有几个自由度?

设有两个刚度分别为1k ,2k 的线性弹簧如图T —所示,试证明: 1)它们并联时的总刚度eq k 为:21k k k eq += 2)它们串联时的总刚度eq k 满足: 2 1111k k k eq += 解:1)对系统施加力P ,则两个弹簧的变形相同为x ,但受力不同,分别为: 1122P k x P k x =?? =? 由力的平衡有:1212()P P P k k x =+=+ 故等效刚度为:12eq P k k k x = =+ 2)对系统施加力P ,则两个弹簧的变形为: 11 22P x k P x k ?=??? ?=?? ,弹簧的总变形为:1212 11()x x x P k k =+=+ 故等效刚度为:122112 111 eq k k P k x k k k k ===++

求图所示扭转系统的总刚度。两个串联的轴的扭转刚度分别为1t k ,2t k 。 解:对系统施加扭矩T ,则两轴的转角为: 11 22t t T k T k θθ?=??? ?=?? 系统的总转角为: 1212 11 ( )t t T k k θθθ=+=+, 12111()eq t t k T k k θ==+ 故等效刚度为: 12 111 eq t t k k k =+

两只减振器的粘性阻尼系数分别为1c ,2c ,试计算总粘性阻尼系数eq c 1)在两只减振器并联时, 2)在两只减振器串联时。 解:1)对系统施加力P ,则两个减振器的速度同为x &,受力分别为: 1122 P c x P c x =?? =?&& 由力的平衡有:1212()P P P c c x =+=+& 故等效刚度为:12eq P c c c x = =+& 2)对系统施加力P ,则两个减振器的速度为: 11 22P x c P x c ? =????=?? &&,系统的总速度为:12 12 11()x x x P c c =+=+&&& 故等效刚度为:12 11 eq P c x c c = =+&

机械振动的概念

第一章绪论 1-1 机械振动的概念 振动是一种特殊形式的运动,它是指物体在其平衡位置附近所做的往复运动。如果振动物体是机械零件、部件、整个机器或机械结构,这种运动称为机械振动。 振动在大多数情况下是有害的。由于振动,影响了仪器设备的工作性能;降低了机械加工的精度和粗糙度;机器在使用中承受交变载荷而导致构件的疲劳和磨损,以至破坏。此外,由于振动而产生的环境噪声形成令人厌恶的公害,交通运载工具的振动恶化了乘载条件,这些都直接影响了人体的健康等等。但机械振动也有可利用的一面,在很多工艺过程中,随着不同的工艺要求,出现了各种类型利用振动原理工作的机械设备,被用来完成各种工艺过程,如振动输送、振动筛选、振动研磨、振动抛光、振动沉桩等等。这些都在生产实践中为改善劳动条件、提高劳动生产率等方面发挥了积极作用。研究机械振动的目的就是要研究产生振动的原因和它的运动规律,振动对机器及人体的影响,进而防止与限制其危害,同时发挥其有益作用。 任何机器或结构物,由于具有弹性与质量,都可能发生振动。研究振动问题时,通常把振动的机械或结构称为振动系统(简称振系)。实际的振系往往是复杂的,影响振动的因素较多。为了便于分析研究,根据问题的实际情况抓住主要因素,略去次要因素,将复杂的振系简化为一个力学模型,针对力学模型来处理问题。振系的模型可分为两大类:离散系统(或称集中参数系统)与连续系统(或称分布参数系统),离散系统是由集中参数元件组成的,基本的集中参数元件有三种:质量、弹簧与阻尼器。其中质量(包括转动惯量)只具有惯性;弹簧只具有弹性,其本身质量略去不计,弹性力只与变形的一次方成正比的弹簧称为线性弹簧;在振动问题中,各种阻力统称阻尼,阻尼器既不具有惯性,也不具有弹性,它是耗能元件,在有相对运动时产生阻力,其阻力与相对速度的一次方成正比的阻尼器称为线性阻尼器。连续系统是由弹性元件组成的,典型的弹性元件有杆、梁、轴、板、壳等,弹性体的惯性、弹性与阻尼是连续分布的。严格的说,实际系统都是连续系统,所谓离散系统仅是实际连续系统经简化而得的力学模型。例如将质量较大、弹性较小的构件简化为不计弹性的集中质量;将振动过程中产生较大弹性变形而质量较小的构件,简化为不计质量的弹性元件;将构件中阻尼较大而惯性、弹性小的弹性体也可看成刚体。这样就把分布参数的连续系统简化为集中参数的离散系统。 例如图1-1(a)所示的安装在混凝土 基础上的机器,为了隔振的目的,在基础下 面一般还有弹性衬垫,如果仅研究这一系统 在铅垂方向的振动,在振动过程中弹性衬垫 起着弹簧作用,机器与基础可看作一个刚体, 起着质量的作用,衬垫本身的内摩擦以及基 础与周围约束之间的摩擦起着阻尼的作用 (阻尼用阻尼器表示,阻尼器由一个油缸和 活塞、油液组成。活塞上下运动时,油液从 间隙中挤过,从而造成一定的阻尼)。这样图1-1(a)所示的系统可简化为1-1(b)所示的

(共振现象及其应用)的开题报告

毕业设计开题报告

共振现象及其应用 班级:08级物理师范(2)班姓名:学号: 一、课题的目的及意义 任何物体产生振动后,由于其本身的构成、大小、形状等物理特性,原先以多种频率开始的振动,渐渐会固定在某一频率上振动,这个频率叫做该物体的“固有频率”,因为它与该物体的物理特性有关。当人们从外界再给这个物体加上一个振动(称为策动)时,如果策动力的频率与该物体的固有频率正好相同,物体振动的振幅达到最大,这种现象叫做“共振”。物体产生共振时,由于它能从外界的策动源处取得最多的能量,往往会产生一些意想不到的后果。研究共振现象的目的和意义如下: 目的:对共振现象的条件以及结论进行理论推理,综述防振减振技术及共振现象的应用。 意义:物体发生共振时,由于它能从外界的策动源处取得最多的能量,往往会产生一些意想不到的后果。通过对共振现象的条件以及结论进行理论推理,对共振有充分的认识,巧妙利用,消除危害。那么,共振就能成为我们开发自然的最好的工具。 二、国内外研究概况 共振是物理学上的一个运用频率非常高的专业术语。共振的定义是驱动力的频率接近物体的固有频率时,受迫振动的振幅增大的现象。 超声振动检测法是使被检测物体受激产生振动,通过对其振动特性(主要是振动系统的等效力阻抗Z )的测量从而检测物体的缺陷或特性。实现振动检测的 M 具体方法很多,其中之一是共振法。共振法是利用换能器激发被测物体共振, 又利用换能器测量此共振频率(即Z ,中力抗X=O时的频率)以实现检测【1】。 M 世界上最早进行共振实验是在11世纪,我国宋代科学家沈括,剪一个小纸人放在弦线先上,弹动发生振动的弦,纸人就跳跃颤动,弹动别的弦,纸人却不动。这个实验比欧洲所做的同样的实验早好几个世纪。15世纪,意大利的达·芬奇才开始做共振实验,直到17世纪,牛津的诺布耳和皮戈特才以所谓的“纸游码”

机械振动在生活生产中的实际应用以及共振的危害

机械振动在生活生产中的实际应用以及共振的危害 (一)、机械振动在生活生产中的实际应用 机械振动,也简称为振动,物理学上是这样给它定义的:物体在平衡位置附近做往复运动的运动。在现实生活中我们能看到很多机械都是运用机械振动这一学说理论来建造出来的。比如筛分设备、输送设备、给料设备、粉碎设备等等机械设备都是将理论运用到现实生活中的结果。以下我就举些例子来加以说明机械振动具体得在哪些产品中运用到了。 先说说筛分设备,筛分设备是机械振动在现实生活中运用的最多的产品。比如热矿筛、旋振筛、脱水筛等各种各样的筛分设备。顾名思义,筛分设备就是运用振动的知识和筛分部件将不同大小不同类型的物品区分开来,以减少劳动力和提到生产效率。例如:热矿筛采用带偏心块的双轴激振器,双轴振动器两根轴上的偏心块由两台电动机分别带动做反向自同步旋转,使筛箱产生直线振动,筛体沿直线方向作周期性往复运动,从而达到筛分目的。又如南方用的小型水稻落谷机,机箱里有一块筛网,由发动机带动连杆做往复运动,当水稻连同稻草落入筛网的时候,不停的振动会让稻谷通过筛网落入机箱存谷槽,以实现稻谷与稻草的分离,减少人力资源,提高了农业效率。 输送设备运用到机械振动也是很多的。比如:螺旋输送机、往复式给料机、振动输送机、买刮板输送机等输送设备。输送设备就是将物体从一个地方通过输送管道输送到另一个地方的设备,以节约人力资源,提高生产效率。例如:广泛用于冶金、煤炭、建材、化工等行业中粉末状及颗粒状物料输送的振动输送机,采用电动机作为优质动源,使物料被抛起的同时通过输送管道做向前运动,达到输送的目的。 给料设备在某种程度上与输送设备有共同之处,例如:振动给料机、单管螺旋喂料机、振动料斗等设备。就拿振动料斗来说吧,振动料斗是一种新型给料设备,安装在各种料仓下部,通过振动使物料活化,能够有效消除物料的起拱,堵塞和粘仓现象,解决料仓排料难的问题。 总而言之,机械振动在现实生活生产中的应用是多种多样的,有的是直接应用,有的是间接应用。总之,科学的力量是强大的,只有把科学转变为科技才能造化人类,造福社会。当然振动也是会带来灾害的,尤其是共振时,其灾害是最危险的,以下我就举例来说明下。 (二)、共振的危害 古希腊的学者阿基米德曾豪情万丈地宣称:给我一个支点,我能撬动地球。而现代的美国发明家特斯拉更是“牛气”,他说:用一件共振器,我就

15机械振动习题解答

第十五章 机械振动 一 选择题 1. 对一个作简谐振动的物体,下面哪种说法是正确的?( ) A. 物体在运动正方向的端点时,速度和加速度都达到最大值; B. 物体位于平衡位置且向负方向运动时,速度和加速度都为零; C. 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; D. 物体处负方向的端点时,速度最大,加速度为零。 解:根据简谐振动的速度和加速度公式分析。 答案选C 。 2.下列四种运动(忽略阻力)中哪一种不是简谐振动?( ) A. 小球在地面上作完全弹性的上下跳动; B. 竖直悬挂的弹簧振子的运动; C. 放在光滑斜面上弹簧振子的运动; D. 浮在水里的一均匀球形木块,将它部分按入水中,然后松开,使木块上下浮动。 解:A 中小球没有受到回复力的作用。 答案选A 。 3. 一个轻质弹簧竖直悬挂,当一物体系于弹簧的下端时,弹簧伸长了l 而平衡。则此系统作简谐振动时振动的角频率为( ) A. l g B. l g C. g l D. g l 解 由kl =mg 可得k =mg /l ,系统作简谐振动时振动的固有角频率为l g m k ==ω。 故本题答案为B 。 4. 一质点作简谐振动(用余弦函数表达),若将振动速度处于正最大值的某时刻取作t =0,则振动初相?为( ) A. 2π- B. 0 C. 2π D. π 解 由 ) cos(?ω+=t A x 可得振动速度为 ) sin(d d ?ωω+-==t A t x v 。速度正最大时有0) cos(=+?ωt ,1) sin(-=+?ωt ,若t =0,则 2 π-=?。 故本题答案为A 。 5. 如图所示,质量为m 的物体,由劲度系数为k 1和k 2的两个轻弹簧连接,在光滑导轨上作微小振动,其振动频率为 ( )

全国振动理论与应用学术会议日程安排

中国振动工程学会第七次全国会员代表大会暨第十届全国振动理论及应用学术会议(2011年10月27-29日,南京) 日程表 2011年10月26日晚 预备会议:中国振动工程学会第六届常务理事会第六次会议 主持人:刘人怀院士 主题时间地点 1、讨论通过中国振动工程学会第七次全国会员代表大会 议程和主持人2、会议准备事项 20:00-21:00 钟山宾馆 主楼203 2011年10月27日上午 开幕式 主持人:欧进萍院士主题时间地点 1、刘人怀院士致开幕词 2、南航校领导致欢迎词 3、代表合影8:30-9:40 南航明故宫校区 大学生活动中心 大会学术报告(1) 主持人:陈心昭教授报告人题目时间地点 陈予恕非线性动力学理论、工程应用与进展10:00-11:00 南航明故宫校区 大学生活动中心 孟光我国航天工程发展与主要的动力学问题11:00-11:40 12:00-13:00午餐

2011年10月27日下午 代表大会专场:中国振动工程学会第七次全国会员代表大会 主持人:刘人怀院士 主 题 时 间 地 点 1、 为2010年度学会青年科技奖获得者颁奖 2、 学会副理事长陈国平教授代表六届理事会作学会工作 报告和财务报告(含会费标准) 3、 审议、通过学会工作报告、财务报告、会费标准 4、 审议、通过中国振动工程学会第七次全国会员代表大会 关于第六届理事会工作报告的决议 5、 通过监票人、计票人名单,通过第七届理事会选举办法 6、 选举学会第七届理事会 14:00-16:00 钟山宾馆 (主楼三层) 金陵厅 大会学术报告(2) 主持人:杨绍普教授 报告人 题 目 时 间 地 点 高金吉 机械振动故障靶向抑制原理与自愈化 16:20-17:00 钟山宾馆 (主楼三层) 金陵厅 熊诗波 机械系统动态测试、多体动力学仿真与疲 劳耐久性设计 17:00-17:40 18:00-晚宴

机械振动理论基础及其应用

旋转机械振动与故障诊断研究综述 丄、八 1.前言 工业生产离不开回转机械,随着装置规模不断扩大,越来越多的高速回转机械应用于工业生产,诸如高速离心压缩机、汽轮机发电机组。动态失稳造成的重大恶性事故屡见不鲜。急剧上升的振动可在几十秒之内造成机组解体, 甚至祸及厂房,造成巨大的经济损失和人员伤亡。此外,机械振动可能降低设备机械性能,加速机械零部件的磨损,发出的噪声损害操作者的健康。但是振动也能合理运用,如工业上常用的振动筛、振动破碎等都是振动的有效利用。工程技术人员必须认真对待机械振动问题,当机组产生有害的振动时,及时分析原因,坚持用合理的振动测试标准,采取科学的防治措施。 2.旋转机械振动标准 旋转机械分类: I类:为固定的小机器或固定在整机上的小电机,功率小于15KW U类:为没有专用基础的中型机器,功率为15~75KW刚性安装在专用基础上功率小于300KW的机器。 川类:为刚性或重型基础上的大型旋转机械,如透平发电机组。 W类:为轻型结构基础上的大型旋转机械,如透平发电机组。 机械振动评价等级: 好:振动在良好限值以下,认为振动状态良好。 满意:振动在良好限值和报警值之间,认为机组振动状态是可接受的(合格),可长期运行。 不满意:振动在报警限值和停机限值之间,机组可短期运行,但必须加强监测并采 取措施。 不允许:振动超过停机限值,应立即停机。 3.振动产生的原因 旋转机械振动的产生主要有以下四个方面原因,转子不平衡,共振,转子不对中和

机械故障。 4.旋转机械振动故障诊断 4.1 转子不平衡振动的故障特征 当发生不平衡振动时,其故障特征主要表现在如下方面: 1 )不平衡故障主要引起转子或轴承径向振动,在转子径向测点上得到的频谱图, 转速频率成分具有突出的峰值。 2 )单纯的不平衡振动,转速频率的高次谐波幅值很低,因此在时域上的波形是一个正弦波。 3 )转子振幅对转速变化很敏感,转速下降,振幅将明显下降。 4 )转子的轴心轨迹基本上为一个圆或椭圆,这意味着置于转轴同一截面上相互垂直的两个探头,其信号相位差接近90°。 4.2 旋转机械振动模糊诊断 4.2.1 振动模糊诊断基本原理 振动反映了系统状态及变化规律的主要信息,统计资料表明:机械设备的故障有67 % 左右是由于振动引起的,并且能从振动和振动辐射出的噪声反映出来。回转机械的振动信息尤其明显,且振动诊断具有快速、简便、准确和在线诊断等一系列优点,所以振动诊断法是旋转机械状态识别和故障诊断的最有效、最常用的方法。 但是,由于机械系统本身的复杂性以及所摄取的振动信号强烈的模糊性,使故障之间没有清晰的界限,这时利用传统的振动频谱分析,对一个故障可能有多个征兆来表现,一个征兆也可能有多个故障原因的复杂现象,往往难定两者的对应关系进行指导维修。振动模糊法,将模糊数学与振动诊断相结合,利用模糊综合评判技术,较好地处理了回转机械故障的不确定性问题。 4.2.2 旋转机械振动模糊诊断法的实现 隶属函数的确定

机械振动及其在机械工程中的应用

机械振动及其在机械工程中的应用 杨杰 (江苏师范大学海洋港口学院江苏连云港 222000) 摘要:本文主要讲的是机械振动在机械工程中的应用.首先讲述机械振动的发展史;然后对机械振动的种类进行了详细的叙述;接着写了机械振动的危害和应用;最后对机械振动在机械工程中的应用进行了阐述,如振动筛,冷却及烘干振动机和振动清理及时效处理,并对它的发展加入个人看法。 关键词:机械振动,机械振动的应用,机械工程 Mechanical vibration and Application in Mechanical Engineering Yang Jie (Jiangsu Normal University ,Jiangsu, Lianyungang 222000) Abstract:This article is primarily concerned with mechanical vibration applications in mechanical engineering starts by describing the history of mechanical vibration; then on the type of mechanical vibration were described in detail; then write a hazard and the application of mechanical vibrations; Finally, the mechanical vibration in machinery Engineering are described, such as vibrating screen, cooling and drying machine vibration and vibration cleaning and aging treatment, and added personal views of its development. Keywords: Mechanical vibration, application of mechanical vibrations, mechanical engineering 1.引言 随着机械工业和科学技术的发展,产品愈加复杂化,精度要求更高,性能要求更加稳定与高效,因此,振动问题已经成为必须解决的重要课题。振动是在日常生活和工程实际中普遍存在的一中现象,也是整个力学中

6.机械振动习题及答案

一、 选择题 1、一质点作简谐振动,其运动速度与时间的曲线如图所示,若质点的振动按余弦函数描述,则其初相为 [ D ] (A ) 6π (B) 56π (C) 56π- (D) 6π- (E) 23 π- 2、已知一质点沿y 轴作简谐振动,如图所示。其振动方程为3cos()4 y A t π ω=+,与之对应的振动曲线为 [ B ] 3、一质点作简谐振动,振幅为A ,周期为T ,则质点从平衡位置运动到离最大 振幅 2A 处需最短时间为 [ B ] (A );4T (B) ;6T (C) ;8 T (D) .12T 4、如图所示,在一竖直悬挂的弹簧下系一质量为m 的物体,再用此弹簧改系一质量为m 4的物体,最后将此弹簧截断为两个弹簧后并联悬挂质量为m 的物体, 此三个系统振动周期之比为 (A);2 1 : 2:1 (B) ;2:21:1 [ C ] (C) ;21:2:1 (D) .4 1 :2:1

5、一质点在x 轴上作简谐振动,振幅cm A 4=,周期s T 2=,其平衡位置取坐标原点。若0=t 时刻质点第一次通过cm x 2-=处,且向x 轴负方向运动,则质点第二次通过cm x 2-=处的时刻为 (A);1s (B) ;32s (C) ;34 s (D) .2s [ B ] 6、一长度为l ,劲度系数为k 的均匀轻弹簧分割成长度分别为21,l l 的两部分, 且21nl l =,则相应的劲度系数1k ,2k 为 [ C ] (A );)1(,121k n k k n n k +=+= (B );11,121k n k k n n k +=+= (C) ;)1(,121k n k k n n k +=+= (D) .1 1 ,121k n k k n n k +=+= 7、对一个作简谐振动的物体,下面哪种说法是正确的 [ C ] (A ) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B ) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C ) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D ) 物体处于负方向的端点时,速度最大,加速度为零。 8、 一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为 A 2 1 ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为 [ B ]

机械振动知识点

简谐运动及其图象 知识点一:弹簧振子 (一)弹簧振子 如图,把连在一起的弹簧和小球穿在水平杆上,弹簧左端固定在支架上,小球可以在杆上滑动。小球滑动时的摩擦力可以,弹簧的质量比小球的质量得多,也可忽略。这样就成了一个弹簧振子。 注意: (1)小球原来的位置就是平衡位置。小球在平衡位置附近所做的往复运动,是一种机械振动。 (2)小球的运动是平动,可以看作质点。 (3)弹簧振子是一个不考虑阻力,不考虑弹簧的,不考虑振子(金属小球)的的化的物理模型。 (二)弹簧振子的位移——时间图象 (1)振动物体的位移是指由位置指向_的有向线段,可以说某时刻的位移。 说明:振动物体的位移与运动学中位移的含义不同,振子的位移总是相对于位置而言的,即初位置是位置,末位置是振子所在的位置。 (2)振子位移的变化规律 曲线。 知识点二:简谐运动 (一)简谐运动 如果质点的位移与时间的关系遵从函数的规律,即它的振动图象(x-t图象)是一条正弦曲线,这样的振动,叫做简谐运动。 简谐运动是机械振动中最简单、最基本的振动。弹簧振子的运动就是简谐运动。 (二)描述简谐运动的物理量 (1)振幅(A) 振幅是指振动物体离开位置的距离,是表征振动强弱的物理量。 一定要将振幅跟位移相区别,在简谐运动的振动过程中,振幅是变的,而位移是时刻在变的。 (2)周期(T)和频率(f) 振动物体完成一次所需的时间称为周期,单位是秒(s);单位时间内完成的次数称为频率,单位是赫兹(H Z)。 周期和频率都是描述振动快慢的物理量。周期越小,频率越大,表示振动得越快。 周期和频率的关系是:

(3)相位(φ) 相位是表示物体振动步调的物理量,用相位来描述简谐运动在一个全振动中所处的阶段。 (三)固有周期、固有频率 任何简谐运动都有共同的周期公式:2 T=m是振动物体的,k是回复力系数,对弹簧振子来说k为弹簧的系数。 对一个确定的简谐运动系统来说,m和k都是恒量,所以T和f也是恒量,也就是说简谐运动的周期只由本身的特性决定,与振幅关,只由振子质量和回复力系数决定。T叫系统的周期,f叫频率。 可以证明,竖直放置的弹簧振子的振动也是简谐运动,周期公式也是2 T=。这个结论可以直接使用。 (四)简谐运动的表达式 y=Asin(ωt+φ),其中A是,f ω==,φ是t=0时的相位,即初相位或初相。 T 知识点三:简谐运动的回复力和能量 (一)回复力:使振动物体回到平衡位置的力。 (1)回复力是以命名的力。性质上回复力可以是重力、弹力、摩擦力、电场力、磁场力等,它可能是几个力的合力,也可能是某个力或某个力的分力。 如在水平方向上振动的弹簧振子的回复力是弹簧在伸长和压缩时产生的 力;在竖直方向上振动的弹簧振子的回复力是弹簧力和力的合力。 (2)回复力的作用是使振动物体回到平衡位置。回复力的方向总是“平衡位置”。 (3)回复力是是振动物体在方向上的合外力,但不一定是物体受到的合外力。 (二)对平衡位置的理解 (1)平衡位置是振动物体最终振动后振子所在的位置。 (2)平衡位置是回复力为的位置,但平衡位置是合力为零的位置。 (3)不同振动系统平衡位置不同。竖直方向的弹簧振子,平衡位置是其弹力 于重力的位置;水平匀强电场和重力场共同作用的单摆,平衡位置在电场力与重力的合力方向上。(三)简谐运动的动力学特征 F回=,a回=-kx/m,其中k为比例系数,对于弹簧振子来说,就等于弹簧的系数。负号表示回复力的方向与位移的方向。 也就是说简谐运动是在跟对平衡位置的位移大小成正比、方向总是指向平衡位置的力作用下的振动。 = 。当振子振动过程中,位移为x时,由胡克定律(弹簧不超出弹簧振子在平衡位置时F 回 = ,k为弹簧的劲度系数,所以弹弹性限度),考虑到回复力的方向跟位移的方向相反,有F 回 簧振子做简谐运动。 (四)简谐运动的能量特征 振动过程是一个动能和势能不断转化的过程,总的机械能。 振动物体总的机械能的大小与振幅有关,振幅越大,振动的能量越。 知识点四:简谐运动过程中各物理量大小、方向变化情况 (一)全振动 振动物体连续两次运动状态(位移和速度)完全相同所经历的的过程,即物体运动完成一次规律性变化。 (二)弹簧振子振动过程中各物理量大小、方向变化情况 过程:物体从A由静止释放,从A→O→B→O→,经历一次全振动, 图中O为平衡位置,A、B为最大位移处: 取OB方向为正:

机械振动机械波试题(附答案全解)

专题十九、机械振动机械波 1.如图,t=0时刻,波源在坐标原点从平衡位置沿y轴正方向开始振动,振动周期为0.4s,在同一均匀介质中形成沿x轴正、负两方向传播的简谐横波。下图中能够正确表示t=0.6时波形的图是 答案:C 解析:波源振动在同一均匀介质中形成沿x轴正、负两方向传播的简谐横波。t=0.6时沿x轴正、负两方向各传播1.5个波长,能够正确表示t=0.6时波形的图是C。2.做简谐振动的物体,当它每次经过同一位置时,可能不同的物理量是 (A)位移(B)速度(C)加速度(D)回复力 答案:B 解析:做简谐振动的物体,当它每次经过同一位置时,位移相同,加速度相同,位移相同,可能不同的物理量是速度,选项B正确。 3.一列横波沿水平绳传播,绳的一端在t=0时开始做周期为T的简谐运动,经过时间t(3 4 T <t<T),绳上某点位于平衡位置上方的最大位移处。则在2t时,该点位于平衡位置的 (A)上方,且向上运动(B)上方,且向下运动 (C)下方,且向上运动(D)下方,且向下运动 答案:B 解析:由于再经过T时间,该点才能位于平衡位置上方的最大位移处,所以在2t时,该点位于平衡位置的上方,且向上运动,选项B正确。 4.在学校运动场上50 m直跑道的两端,分别安装了由同一信号发生器带动的两个相同的扬声器。两个扬声器连续发出波长为5 m的声波。一同学从该跑道的中点出发,向某一端点缓慢行进10 m。在此过程中,他听到扬声器声音由强变弱的次数为()A.2 B.4 C.6 D.8 答案:B 解析:向某一端点每缓慢行进2.5m,他距离两波源的路程差为5m,听到扬声器声音强,缓慢行进10 m,他听到扬声器声音由强变弱的次数为4次,选项B正确。 5. 如图,a. b, c. d是均匀媒质中x轴上的四个质点.相邻两点的间距依次为2m、4m和6m 一列简谐横波以2m/s的波速沿x轴正向传播,在t=0时刻到达质点a处,质点a由平衡位置开始竖直向下运动,t=3s时a第一次到达最高点。下列说法正确的是 (填正确答

随机振动理论在工程中的应用

目录 1 随机振动介绍 (1) 1.1 随机振动发展历程 (1) 1.2 随机振动基本理论及一些计算方法 (1) 1.2.1 线性随机振动 (1) 1.2.2 非线性随机振动 (2) 1.3 随机振动理论在工程中的应用 (3) 1.4 随机振动理论展望 (4) 2 应用分析实例 (5) 2.1 桥梁抗震分析 (5) 2.1.1 桥梁结构介绍 (5) 2.1.2 桥梁模态及地震反应谱分析 (6) 2.1.3 桥梁地震作用时程分析 (12) 2.2 海洋平台在波浪载荷作用下随机振动分析 (13) 2.2.1 海洋平台结构介绍 (13) 2.2.1 海洋平台结构模态分析 (14) 2.2.3 海浪作用下结构随机振动分析 (18)

【概述】本文简述了有关随机振动的发展历程、基本理论和相关计算方法,并介绍了该领域的研究动态和热点。同时,本文亦阐述了随机振动理论在工程中的实际应用,并介绍了某桥梁在小地震作用下及海洋平台在波浪作用下的分析计算实例。 1 随机振动介绍 1.1 随机振动发展历程 振动现象可分为两大类:一类称为确定性振动,另一类称为随机振动。 所谓确定性振动就是指那些运动时间历程可以用确定性函数来描述的振动,如单自由度无阻尼线性系统的自由振动。随机振动则与之大大不同了,它是无规则,杂乱无章的振动。 随机振动作为力学的一个分支,主要研究动力学系统在随机性激励(包括外激和参激)下的响应特性。从1905年爱因斯坦研究布朗运动,人们开始了对随机振动的研究。现在所说的随机振动始于20世纪50年代中期,当时由于火箭和喷气技术的发展,在航空航天工程中提出了3个问题:大气湍流引起的飞机抖振(气流分离或湍流激起结构或部分结构的不规则振动);喷气噪声引起的飞行器表面结构的声疲劳;火箭运载工具中的有效负载的可靠性。以上问题的共同特点是激励的随机性。为了解决这些问题,把统计力学、通讯噪声及湍流理论中当时已有的方法移植到机械振动中来,随机振动也由此形成了一门学科。 1.2 随机振动基本理论及一些计算方法 表述一个随机振动比表述一个正弦振动要复杂。表述一个正弦振动用频率和振幅或加速度就可以了。而随机振动没有固定的周期,它包含的的频率成分是连续的而不像周期振动那样离散的,所以振幅或加速度要用随频率的变化曲线来表示,这个曲线叫频谱曲线。 随机振动有线性与非线性之分。 1.2.1 线性随机振动 对于线性系统随机振动的研究,理论上已经比较成熟。随机响应的精确高效求解方法是目前研究的热点问题之一,常规的求解方法有传统CQC(complete quadratic combination)方法和传统SRSS(square root of the sum of squares)方法。前一种方法是精确的,但是效率很低,甚至导致不可行;后一种方法效率有所提高,但是精度却有很大牺牲。正是由于这些不足,近年来大连理工大学林家浩教授提出并发展了的虚拟激励法(快速CQC算法),不仅提高了计算效率,而且精度也可以得到保证。 现简要介绍一下虚拟激励法和精细积分法。 (一)虚拟激励法 虚拟激励法的思想是,将一个包含随机载荷功率谱信息的虚拟载荷加到原系统上

机械振动习题及答案

第一章 概述 1.一简谐振动,振幅为0、20cm,周期为0、15s,求最大速度与加速度。 解: max max max 1*2***2***8.37/x w x f x A cm s T ππ==== .. 2222max max max 1*(2**)*(2**)*350.56/x w x f x A cm s T ππ==== 2.一加速度计指示结构谐振在80HZ 时具有最大加速度50g,求振动的振幅。(g=10m/s2) 解:.. 22max max max *(2**)*x w x f x π== ..22max max /(2**)(50*10)/(2*3.14*80) 1.98x x f mm π=== 3.一简谐振动,频率为10Hz,最大速度为4、57m/s,求谐振动的振幅、周期、最大加速度。 解: .max max /(2**) 4.57/(2*3.14*10)72.77x x f mm π=== 110.110T s f = == .. 2max max max *2***2*3.14*10*4.57287.00/x w x f x m s π==== 4、 机械振动按激励输入类型分为哪几类?按自由度分为哪几类? 答:按激励输入类型分为自由振动、强迫振动、自激振动 按自由度分为单自由度系统、多自由度系统、连续系统振动

5、 什么就是线性振动?什么就是非 线性振动?其中哪种振动满足叠加原理? 答:描述系统的方程为线性微分方程的为线性振动系统,如00I mga θθ+= 描述系统的方程为非线性微分方程的为非线性振动系统0sin 0I mga θθ+= 线性系统满足线性叠加原理 6、 请画出同一方向的两个运动:1()2sin(4)x t t π=,2()4sin(4)x t t π=合成的的振动波形 7、请画出互相垂直的两个运动:1()2sin(4)x t t π=,2()2sin(4)x t t π=合成的结果。 如果就是1()2sin(4/2)x t t ππ=+,2()2sin(4)x t t π=

浅谈机械振动在机械工业中的危害与应用

编号:AQ-Lw-06235 ( 安全论文) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 浅谈机械振动在机械工业中的 危害与应用 The harm and application of mechanical vibration in mechanical industry

浅谈机械振动在机械工业中的危害 与应用 备注:加强安全教育培训,是确保企业生产安全的重要举措,也是培育安全生产文化之路。安全事故的发生,除了员工安全意识淡薄是其根源外,还有一个重要的原因是员工的自觉安全行为规范缺失、自我防范能力不强。 摘要:在工业生产过程中,尤其是机械工业中,机械使用必然导致各种损耗和故障问题的方式,机械振动作为一种常见的机械危害,有关部门必须予以严格的控制和预防,并且要善于运用其积极的一面。 关键词:机械振动机械工业危害应用 1机械振动的基本含义和概念 在机械使用的过程中,造成的机械振动是一种机械俄特殊运行状态,在机械的振动过程中,机械设备的整个系统是根据现有的整体平衡位置也就是平衡核心进行循环往复运行的,所以,从本质上看机械的振动并不是物理学上讲的振动,而是一种位移。 从运动学的角度出发,机械在使用过程中产生的振动是在一定

的时间内,机械的位移和速度的变化,也就是说根据一定的函数关系形成的位移和往复。机械振动学是基于机械振动的相关数学测量和数学实验产生的一种规律性的总结,也就是说对现有的机械材料的运动方式的拓展。 所以,要想实现对机械振动的有效研究和利用,即必须对现有的各种相关的机械数据进行详细的分析,以更好的实现机械计算和相关的材料之间的关系的协调。 2常见的机械振动类型 一般来说,在机械振动的研究过程中,振动类型和现象是各有侧重的,即根据不同飞机械振动需要对现有的机械振动的形式进行分类和整理,从而形成不同的机械振动类型的划分。 首先,在分类过程中,如果按照系统的输入方式的不同,可以将现有的机械振动分为以下三种类型:即机械的自由振动、机械的强迫振动和机械的自激振动。不同的振动类型在运行过程中产生的振动强度和幅度都是有所区别的。另外,还可以按照振动的规律的不同,将其分为四种不同的类型:即机械的简谐振动方式和机械的

《机械振动》测试题(含答案)(1)

《机械振动》测试题(含答案)(1) 一、机械振动 选择题 1.如图所示,物块M 与m 叠放在一起,以O 为平衡位置,在ab 之间做简谐振动,两者始终保持相对静止,取向右为正方向,其振动的位移x 随时间t 的变化图像如图,则下列说法正确的是( ) A .在1~ 2 T t 时间内,物块m 的速度和所受摩擦力都沿负方向,且都在增大 B .从1t 时刻开始计时,接下来4 T 内,两物块通过的路程为A C .在某段时间内,两物块速度增大时,加速度可能增大,也可能减小 D .两物块运动到最大位移处时,若轻轻取走m ,则M 的振幅不变 2.下列说法中 不正确 的是( ) A .将单摆从地球赤道移到南(北)极,振动频率将变大 B .将单摆从地面移至距地面高度为地球半径的高度时,则其振动周期将变到原来的2倍 C .将单摆移至绕地球运转的人造卫星中,其振动频率将不变 D .在摆角很小的情况下,将单摆的振幅增大或减小,单摆的振动周期保持不变 3.如图所示,甲、乙两物块在两根相同的弹簧和一根张紧的细线作用下静止在光滑水平面上,已知甲的质量小于乙的质量.当细线突然断开斤两物块都开始做简谐运动,在运动过程中( ) A .甲的最大速度大于乙的最大速度 B .甲的最大速度小于乙的最大速度 C .甲的振幅大于乙的振幅 D .甲的振幅小于乙的振幅 4.甲、乙两单摆的振动图像如图所示,由图像可知 A .甲、乙两单摆的周期之比是3:2 B .甲、乙两单摆的摆长之比是2:3

C .t b 时刻甲、乙两摆球的速度相同 D .t a 时刻甲、乙两单摆的摆角不等 5.下列叙述中符合物理学史实的是( ) A .伽利略发现了单摆的周期公式 B .奥斯特发现了电流的磁效应 C .库仑通过扭秤实验得出了万有引力定律 D .牛顿通过斜面理想实验得出了维持运动不需要力的结论 6.如图所示,质量为m 的物块放置在质量为M 的木板上,木板与弹簧相连,它们一起在光滑水平面上做简谐振动,周期为T ,振动过程中m 、M 之间无相对运动,设弹簧的劲度系数为k 、物块和木板之间滑动摩擦因数为μ, A .若t 时刻和()t t +?时刻物块受到的摩擦力大小相等,方向相反,则t ?一定等于2 T 的整数倍 B .若2 T t ?= ,则在t 时刻和()t t +?时刻弹簧的长度一定相同 C .研究木板的运动,弹簧弹力充当了木板做简谐运动的回复力 D .当整体离开平衡位置的位移为x 时,物块与木板间的摩擦力大小等于 m kx m M + 7.如图所示,弹簧的一端固定,另一端与质量为2m 的物体B 相连,质量为1m 的物体A 放在B 上,212m m =.A 、B 两物体一起在光滑水平面上的N 、N '之间做简谐运动,运动过程中A 、B 之间无相对运动,O 是平衡位置.已知当两物体运动到N '时,弹簧的弹性势能为p E ,则它们由N '运动到O 的过程中,摩擦力对A 所做的功等于( ) A .p E B . 12 p E C .13 p E D . 14 p E 8.质点做简谐运动,其x —t 关系如图,以x 轴正向为速度v 的正方向,该质点的v —t 关系是( )

李峰机械振动作业

2013-2014学年第二学期研究生课程考核 (读书报告,研究报告) 考核科目:机械振动理论 学生所在院(系):机电学院 学生所在学科:机械工程 姓名:李峰 学号:1302210115 题目:机械振动理论作业

1. 请指出弹簧的串、并联组合方式的计算方法。确定弹性元件的组合方式是串联还是并联的方法是什么?对两种组合方式分别加以说明。 答:,由此推出n 个并联弹簧组合的等效刚度∑==n i i eq k K 1 。由此推 出n 个弹簧并联等效刚度 ∑ ==n i i eq k k 1 11 。并联弹簧刚度较各组成弹簧 “硬”,串联弹簧较各组成弹簧“软”。 确定弹性元件的组合方式是串联还是并联的方法:若弹性元件共位移——端部位移相等,则并联关系;若弹性元件共力——受力相等,则为串联关系。 2.阻尼元件的意义与性质是什么?对于线性阻尼器,所受到的外力与振动速度的关系是什么?非粘性阻尼包括哪几种?它们的定义及计算公式分别是什么? 答:(1)阻尼元件的意义与性质:阻尼元件对外力作用的相应表现为端点的一定的移动速度。阻尼系统所受外力为F d ,是振动速度x 的函数,)(x f F d =。通常假定阻尼器元件的质量是可以忽略不计的,

阻尼元件与弹性元件不同的是,它是消耗能量的,它以热能、声能等方式耗散系统的机械能。 (2)线形系统受到的外力为F d ,阻尼系数为C ,振动速x c F d =。 在角振动系统中,阻尼力矩M ,单位角速度为θ ,则M=θ c (3)非粘性阻尼包括:库伦阻尼,流体阻尼和结构阻尼。库伦阻尼计算公式: )sgn(x umg Fe *-=,其中sgn 为符号函数这里定义) ()()sgn(t x t x x = ,需注意当0)(=t x 时。库伦阻力是不定的,它取决于合力的大小,而方向与之相反; 流体阻尼:当物体以较大速度在粘性较小的流体(如空气)中运动时,由流体介质产生的阻尼,)sgn(2 x Fn x *-=γ;结构阻尼:材料内部产生摩擦所产生的阻尼,计算公式X Es 2 α=?。 3.单自由度无阻尼系统的自由振动的运动微分方程是什么?其自然频率、振幅、初相角的计算公式分别是什么? 答:单自由度无阻尼系统的自由振动的微分方程;0)(=+t kx x m 自然频率 m k f w n ∏= ∏= 212;振幅:)( 02 20 w v x n X += ; 初相角: x w v n arctan =φ 。 4. 对于单自由度无阻尼系统自由振动,确定自然频率的方法有哪几种?具体过程是什么? 答:单自由度无阻尼系统自由振动,确定自然频率的方法: ((1)静变形法:该方法不需要到处系统的运动微分方程,只需根据

相关文档
最新文档