Agilent 4294A阻抗分析仪使用手册

Agilent  4294A阻抗分析仪使用手册
Agilent  4294A阻抗分析仪使用手册

Agilent 4294A阻抗分析仪

使用手册

华中科技大学激光技术国家重点实验室

2002年1月

目录

目录 (2)

一、介绍 (3)

二、基本原理: (4)

三、A GILENT 4294A的主要技术指标: (4)

四、前/后面板、硬/软键介绍 (5)

五、测量方法 (7)

一、介绍

Agilent 4294A精密阻抗分析仪可以对各种电子器件(元件和电路)以及电子材料和非电子材料的精确阻抗测量提供广泛的支持。它是对电子元件进行设计、签定、质量控制和生产测试的强有力工具。它所提供的性能和功能对于电路设计开发人员将获益匪浅。此外,Agilent 4294A的优良测量性能和功能为电路的设计和开发以及材料(电子材料和非电子材料)的研究和开发提供强有力的工具。它具有:

·在宽阻抗范围的宽频率范围内进行精确测量

·强大的阻抗分析功能

·便于使用并能用多种方式与PC机配套

电子器件:

无源元件:二端元件如电容器、电感器、铁氧体珠、电阻器、变压器、晶体/陶瓷谐振器、多芯片组件或阵列/网络元件的阻抗测量。

半导体元件:变容二极管的C-V(电流-电压)特性分析;二极管、晶体管或集成电路(IC)封装终端/引线的寄生分析;放大器的输入/输出阻抗测量。

其它元件:印制电路板、继电器、开关、电缆、电池等的阻抗评估。材料:

介质材料:塑料、陶瓷、印制电路板和其它介质材料和损耗切角评估。

磁性材料:铁氧体、非晶体和其它磁性材料的导磁率和损耗角评估。

半导体材料:半导体材料的介电常熟、导电率和C-V特性。

二、基本原理:

Agilent 4294A 阻抗分析仪所采用的是自动平衡电桥技术。如图所示:可以将平衡电桥看作一个放大器电路,基于欧姆定律V=I*R 进行测量。被测器件(DUT)通过一个交流源激励,它的电压就是在高端H 监测到的电压。低端L 为虚拟地,电压为0V 。通过电阻器R 2的电流I 2跟通过被测器件(DUT)的电流I 相等。因此,输出电压和通过被测器件(DUT)的电流成正比,电压和电流自动平衡,这也就是它的名字的由来。

222R I V = 2

2121V R V I V Z == 在实际应用中,为了覆盖更加大的频率范围,通常用一个null-detector 和modulator 来代替电路中的放大器。当然,这只是一个基本的测量原理电路,为了得到精确的结果,还有许多的附加电路。

三、Agilent 4294A 的主要技术指标:

200kHz)

四、前/后面板、硬/软键介绍

前面板示意图:(见仪器)

后面板示意图:(见仪器)

在阻抗分析仪的前面板上提供了分组的硬键和一个液晶显示屏,在显示屏的右侧是一些软菜单,可以通过位于旁边的8个按键(软键)来选择菜单中的内容。

46个按键位于前面板的右上方,根据它们的功能不同被分别放在六个区中。每一个按键都有一个文字标记来说明它的功能。下面将分组介绍硬键的具体功能:

1、激活通道区

【A】激活通道A,然后你就可以在通道A中设置参量以及进行分析工作

【B】激活通道A,然后你就可以在通道A中设置参量以及进行分析工作

2、测量区

【Meas】激活一个软键菜单,在其中你可以选择测量的参数【Format】激活一个软键菜单,在其中你可以选择数据显示的格

式(曲线轴格式),并设置相位显示单位【Display】激活一个软键菜单,在其中你可以配置一般的显示参

量(不包括显示格式和比例设置)并且可以进行等效

电路分析

【Scale Ref】激活一个软键菜单,配置曲线的显示比例

【Bw/Avg】激活一个软键菜单,配置带宽和平均设置

【Cal】仪器校准

3、激励区

【Sweep】测试信号的扫描设定

【Source】设置频率(CW频率),测试信号电平,和直流偏置。

当你设定一个扫描参数时,你可以用【Start】,【Stop】,

【Center】,【Span】来设定扫描范围

【Trigger】设置触发系统

【Start】指定扫描范围的开始值

【Stop】指定扫描范围的终止值

【Center】指定扫描范围的中间值

【Span】指定扫描范围

4、输入区

【O旋钮】你可以旋转这个旋钮来调整当前设定值,这个方法更

改的设定值立即生效,而不用再按别的键。同样你也

可以用这个旋钮来改变光标的水平位置

【↑】【↓】增加或减少当前的设定值,更改的设定值立刻生效【Entry Off】从输入模式切换到普通模式,参量的名称和设定值也

从液晶显示屏的左上方消失

【Back Space】删除光标左边的一个字符,同时光标左移一位

【0】-【9】输入数字

【G/n】-【×1】设置输入数值的单位

5、标记区

【Marker】打开/关闭标记,配置标记设定

【Marker→】改变当前标记值,例如你可以选择MKR→START将当

前标记值作为扫描范围的起始值,从而开始以这个新

的扫描范围进行扫描

【Search】查找,如查找最大值、最小值等

【Utility】

6、仪器状态区

【System】控制管理整台仪器,也可以设置有限线测试功能

【Local】将分析仪从远程控制切换到本地控制,在这里也可以

配置GPIB和局域网

【Preset】初始化分析仪到它的初始状态

【Copy】将显示屏上的曲线输出到打印机

【Save】存贮当前设置、测量数据、屏幕图象等

【Recall】载入分析仪中以前存储的信息

由于软键数目繁多,但从它的文本标记中可以很容易了解它的作用,所以这里就不再一一列举了。

五、测量方法

a)所需仪器:Agilent 4294A精密阻抗分析仪、16047A夹具、被测物。

b)夹具安装,打开电源。

c)【Cal】->ADAPTER->NONE,选择分析仪工作在没有适配器的环

境下(因为我们所购买的仪器中没有需要补偿的适配器,所以这里

就不介绍适配器补偿的步骤了)。

d)指定测量环境

i.初始化【Preset】

ii.选择要测量的参数:【Meas】->***(如|Z|-D等,这里可以根据你所要测量的量来选择,选择完成后在A、B两个通道中就会

显示这两个参量的曲线)

iii.设置扫描参数的频率【Sweep】->PARAMETER[]->FREQ,然后设置扫描方式TYPE[](这里根据所选择的参量不同会有不

同的方式,如线型(LIN)、对数(LOG))等,【Start】【Stop】设

置扫描范围,或者用【Center】【Span】是一样的效果iv.【Source】设置频率(CW频率),测试信号电平,和直流偏置等

v.【Bw/Avg】->BANDWIDTH[]设定带宽

e)夹具补偿

(1)【Cal】->FIXTURE COMPEN

(2)将夹具的两电极开路,按OPEN,当OPEN on OFF中的on

大写时开路补偿完成

(3)用短路器将两电极短路,按SHORT,当SHORT on OFF中的on大写时短路补偿完成,然后移开短路器

(4)如果需要更精确的补偿,可以选一个参数已知的器件,用上述方法进行负载补偿,一般情况下不需要

f)测量并观测结果,在这里可以根据不同的需要进行不同的操作

i.夹好被测器件

ii.【A】激活A通道,【Format】选择一种显示格式,【Scale Ref】选择显示比例

iii.【B】激活B通道,【Format】选择一种显示格式,【Scale Ref】选择显示比例

iv.【Marker】标记一个点,并显示该点的数值,用旋钮可以改变标记点的位置

v.【Copy】打印,【Save】储存

上面所介绍的只是一个基本的测量步骤,还有许多步骤和功能因为不常用被忽略了,比如:电缆补偿、等效电路分析、BASIC程序设计、远程控制等等。

频谱分析仪的使用方法

频谱分析仪的使用方法(第一页) 13MHz信号。一般情况下,可以用示波器判断13MHz电路信号的存在与否,以及信号的幅度是否正常,然而,却无法利用示波器确定13MHz电路信号的频率是否正常,用频率计可以确定13MHz电路信号的有无,以及信号的频率是否准确,但却无法用频率计判断信号的幅度是否正常。然而,使用频谱分析仪可迎刃而解,因为频谱分析仪既可检查信号的有无,又可判断信号的频率是否准确,还可以判断信号的幅度是否正常。同时它还可以判断信号,特别是VCO信号是否纯净。可见频谱分析仪在手机维修过程中是十分重要的。 另外,数字手机的接收机、发射机电路在待机状态下是间隙工作的,所以在待机状态下,频率计很难测到射频电路中的信号,对于这一点,应用频谱分析仪不难做到。 一、使用前须知 在使用频谱分析仪之前,有必要了解一下分贝(dB)和分贝毫瓦(dBm)的基本概念,下面作一简要介绍。 1.分贝(dB) 分贝是增益的一种电量单位,常用来表示放大器的放大能力、衰减量等,表示的是一个相对量,分贝对功率、电压、电流的定义如下: 分贝数:101g(dB) 分贝数=201g(dB) 分贝数=201g(dB) 例如:A功率比B功率大一倍,那么,101gA/B=10182’3dB,也就是说,A功率比B功率大3dB, 2.分贝毫瓦(dBm) 分贝毫瓦(dBm)是一个表示功率绝对值的单位,计算公式为: 分贝毫瓦=101g(dBm) 例如,如果发射功率为lmw,则按dBm进行折算后应为:101glmw/1mw=0dBm。如果发射功率为40mw,则10g40w/1mw--46dBm。 二、频谱分析仪介绍 生产频谱分析仪的厂家不多。我们通常所知的频谱分析仪有惠普(现在惠普的测试设备分离出来,为安捷伦)、马可尼、惠美以及国产的安泰信。相比之下,惠普的频谱分析仪性能最好,但其价格也相当可观,早期惠美的5010频谱分析仪比较便宜,国产的安泰5010频谱分析仪的功能与惠美的5010差不多,其价格却便宜得多。 下面以国产安泰5010频谱分析仪为例进行介绍。 1.性能特点 AT5010最低能测到2.24uv,即是-100dBm。一般示波器在lmv,频率计要在20mv以上,跟频谱仪比相差10000倍。如用频率计测频率时,有的频率点测量很难,有的频率点测最不准,频率数字显示不

AgilentA阻抗分析仪使用手册

A g i l e n t4294A阻抗分析仪 使用手册 华中科技大学激光技术国家重点实验室 2002年1月 目录 目录.......................................... 一、介绍...................................... 二、基本原理:................................ 三、A GILENT 4294A的主要技术指标: ............... 四、前/后面板、硬/软键介绍 .................... 五、测量方法.................................. 一、介绍 Agilent 4294A精密阻抗分析仪可以对各种电子器件(元件和电路)以及电子材料和非电子材料的精确阻抗测量提供广泛的支持。它是对电子元件进行设计、签定、质量控制和生产测试的强有力工具。它所提供的性能和功能对于电路设计开发人员将获益匪浅。此外,Agilent 4294A的优良测量性能和功能为电路的设计和开发以及材料(电子材料和非电子材料)的研究和开发提供强有力的工具。它具有:·在宽阻抗范围的宽频率范围内进行精确测量 ·强大的阻抗分析功能 ·便于使用并能用多种方式与PC机配套 电子器件: 无源元件:二端元件如电容器、电感器、铁氧体珠、电阻器、变压器、晶体/陶瓷谐振器、多芯片组件或阵列/网络元件的阻抗测量。 半导体元件:变容二极管的C-V(电流-电压)特性分析;二极管、晶体管或集成电路(IC)封装终端/引线的寄生分析;放大器的输入/输出阻抗测量。 其它元件:印制电路板、继电器、开关、电缆、电池等的阻抗评估。 材料:

阻抗概念

阻抗[编辑] 维基百科,自由的百科全书 相量图能够展示复阻抗。 阻抗(electrical impedance)就是电路中电阻、电感、电容对交流电的阻碍作用的统称。阻抗衡量流动于电路的交流电所遇到的阻碍。阻抗将电阻的概念加以延伸至交流电路领域,不仅描述电压与电流的相对振幅,也描述其相对相位。当通过电路的电流就是直流电时,电阻与阻抗相等,电阻可以视为相位为零的阻抗。 阻抗通常以符号标记。阻抗就是复数,可以以相量或来表示;其中,就是阻抗的大小,就是阻抗的相位。这种表式法称为“相量表示法”。 具体而言,阻抗定义为电压与电流的频域比率[1]。阻抗的大小就是电压振幅与电流振幅的绝对值比率,阻抗的相位就是电压与电流的相位差。采用国际单位制,阻抗的单位就是欧姆(Ω),与电阻的单位相同。阻抗的倒数就是导纳,即电流与电压的频域比率。导纳的单位就是西门子(单位)(旧单位就是姆欧)。 英文术语“impedance”就是由物理学者奥利弗·赫维赛德于1886年发表论文《电工》给出[2][3]。于1893年,电机工程师亚瑟·肯乃利(Arthur Kennelly)最先以复数表示阻抗[4]。 复阻抗[编辑] 阻抗就是复数,可以与术语“复阻抗”替换使用。阻抗通常以相量来表示,这种表示法称为“相量表示法”。相量有三种等价形式: 1. 直角形式:、 2. 极形式:、 3. 指数形式: ;

其中,电阻就是阻抗的实部,电抗就是阻抗的虚部,就是阻抗的大小,就是虚数单位,就是阻抗的相位。 从直角形式转换到指数形式可以使用方程 、 。 从指数形式转换到直角形式可以使用方程 、 。 极形式适用于实际工程标示,而直角形式比较适用于几个阻抗相加或相减的案例,指数形式则比较适用于几个阻抗相乘或相除的案例。在作电路分析时,例如在计算两个阻抗并联的总阻抗时,可能会需要作几次形式转换。这种形式转换必需要依照复数转换定则。 欧姆定律[编辑] 连接于电路的交流电源会给出电压于负载的两端,并且驱动电 流于电路。 主条目:欧姆定律 借着欧姆定律,可以了解阻抗的内涵[5]: 。 阻抗大小的作用恰巧就像电阻,设定电流 ,就可计算出阻抗两端的 电压降。相位因子则就是电流滞后于电压的相位差 (在时域,电流信 号会比电压信号慢秒;其中, 就是单位为秒的周期)。

Agilen阻抗分析仪使用手册

Agilent 4294A阻抗分析仪 使用手册 华中科技大学激光技术国家重点实验室 2002年1月 目录 目录...................................................................................... 一、介绍.............................................................................. 二、基本原理: ................................................................. 三、A GILENT 4294A的主要技术指标: ............................. 四、前/后面板、硬/软键介绍 ........................................... 五、测量方法...................................................................... 一、介绍 Agilent 4294A精密阻抗分析仪可以对各种电子器件(元件和电路)以及电子材料和非电子材料的精确阻抗测量提供广泛的支持。它是对电子元件进行设计、签定、质量控制和生产测试的强有力工具。它所提供的性能和功能对于电路设计开发人员将获益匪浅。此外,Agilent 4294A的优良测量性能和功能为电路的设计和开发以及材料(电子材料和非电子材料)的研究和

开发提供强有力的工具。它具有: ·在宽阻抗范围的宽频率范围内进行精确测量 ·强大的阻抗分析功能 ·便于使用并能用多种方式与PC机配套 电子器件: 无源元件:二端元件如电容器、电感器、铁氧体珠、电阻器、变压器、晶体/陶瓷谐振器、多芯片组件或阵列/网络元件的阻抗测量。 半导体元件:变容二极管的C-V(电流-电压)特性分析;二极管、晶体管或集成电路(IC)封装终端/引线的寄生分析;放大器的输入/输出阻抗测量。 其它元件:印制电路板、继电器、开关、电缆、电池等的阻抗评估。材料: 介质材料:塑料、陶瓷、印制电路板和其它介质材料和损耗切角评估。 磁性材料:铁氧体、非晶体和其它磁性材料的导磁率和损耗角评估。 半导体材料:半导体材料的介电常熟、导电率和C-V特性。 二、基本原理: Agilent 4294A阻抗分析仪所采用的是自动平衡电桥技术。如图所示:可以将平衡电桥看作一个放大器电路,基于欧姆定律V=I*R进行测量。被测器件(DUT)通过一个交流源激励,它的电压就是在高端H监测到的电压。低端L为虚拟地,电压为0V。通过电阻器R2的电流I2跟通过被测器件(DUT)的电流I相等。因此,输出电压和通过被测器件(DUT)的电流成正比,电压和电流自动平衡,这也就是它的名字的由来。 在实际应用中,为了覆盖更加大的频率范围,通常用一个null-detector 和modulator来代替电路中的放大器。当然,这只是一个基本的测量原理电路,为了得到精确的结果,还有许多的附加电路。 三、Agilent 4294A的主要技术指标:

PCB阻抗值因素与计算方法

PCB阻抗设计及计算简介

特性阻抗的定义 ?何谓特性阻抗(Characteristic Impedance ,Z0) ?电子设备传输信号线中,其高频信号在传输线中传播时所遇到的阻力称之为特性阻抗;包括阻抗、容抗、感抗等,已不再只是简单直流电的“欧姆电阻”。 ?阻抗在显示电子电路,元件和元件材料的特色上是最重要的参数.阻抗(Z)一般定义为:一装置或电路在提供某特定频率的交流电(AC)时所遭遇的总阻力. ?简单的说,在具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。

设计阻抗的目的 ?随着信号传送速度迅猛的提高和高频电路的广泛应用,对印刷电路板也提出了更高的要求。印刷电路板提供的电路性能必须能够使信号在传输过程中不发生反射现象,信号保持完整,降低传输损耗,起到匹配阻抗的作用,这样才能得到完整、可靠、精确、无干扰、噪音的传输信号。?阻抗匹配在高频设计中是很重要的,阻抗匹配与否关系到信号的质量优劣。而阻抗匹配的目的主要在于传输线上所有高频的微波信号皆能到达负载点,不会有信号反射回源点。

?因此,在有高频信号传输的PCB板中,特性阻抗的控制是尤为重要的。 ?当选定板材类型和完成高频线路或高速数字线路的PCB 设计之后,则特性阻抗值已确定,但是真正要做到预计的特性阻抗或实际控制在预计的特性阻抗值的围,只有通过PCB生产加工过程的管理与控制才能达到。

?从PCB制造的角度来讲,影响阻抗和关键因素主要有: –线宽(w) –线距(s)、 –线厚(t)、 –介质厚度(h) –介质常数(Dk) εr相对电容率(原俗称Dk介质常数),白容生对此有研究和专门诠释。 注:其实阻焊也对阻抗有影响,只是由于阻焊层贴在介质上,导致介电常数增大,将此归于介电常数的影响,阻抗值会相 应减少4%

LCR表、阻抗分析仪和测试夹具选购指南_10.9.2

Agilent LCR表、阻抗分析仪和测试夹具选购指南 元器件和材料测试解决方案

适应您各种应用的具有成本效益的测试解决方案 无论您的应用是在研究开发、生产制造、质量保 证、还是来料检验方面,Agilent科技都可以向您提供正 确的阻抗测试解决方案。Agilent科技备有完整的系列 阻抗测试设备和测试附件来帮助您高效率地完成测试任 务,当您决定从Agilent购买一台阻抗测试仪表时,您 将得到的不仅仅是精确和可靠的测试结果,我们还向您 提供: 完整的解决方案: Agilent的阻抗分析仪产品系列的 频率覆盖范围从20 Hz到3 GHz,从而为您的应用提供 最为广泛的选择范围。此外,还有一些第三方合作伙伴 可以向您提供专门和Agilent仪器配合使用满足特殊测 试要求的辅助产品。这份资料将对您可以选择的各种阻 抗测试产品和附件做一个概括性的描述。 广泛而深刻的知识: Agilent在提供阻抗测试解决方 案方面有几十年的经验,多年的经验和持续不断的技术 创新已经融合到每种LCR表和阻抗测试仪的设计和生 产制造过程当中。Agilent还有一系列的技术出版物,对 您各种不同的测试应用提供技术协助 (在第15页我们列 出了所有这些出版物的清单)。 快捷方便的服务: 任何时候,只要您有阻抗测试的 需求,您都可以方便地从Agilent公司获得快捷的帮 助。Agilent可以向您提供三种类型的阻抗测试解决方案,如表1所示,您只要联系到Agilent训练有素的技术支持工程师,便可以在他们的帮助下找出正确的解决方案。图1. 阻抗测试技术比较 应用范围广泛的先进测试技术 图1是Agilent的LCR表和阻抗分析仪所使用的不同测试技术的比较,正如您所看到的那样,每一种技术都有其特别的测试优: 自动平衡桥法的阻抗测试范围最宽,典型的测试频率在20 Hz到110 MHz之间,这项技术比较适用于低频和通用的测试。 阻 抗 测 量 范 围 ( 欧 姆 ) 测量频率范围(Hz) 在10%的精度范围内, Agilent阻抗测试技术的比较 自动平衡桥法 I-V方法 射频 I-V方法 网络分析方法 表1. 阻抗测试产品类型 2

阻抗概念

阻抗[编辑] 维基百科,自由的百科全书 相量图能够展示复阻抗。 阻抗(electrical impedance)是电路中电阻、电感、电容对交流电的阻碍作用的统称。阻抗衡量流动于电路的交流电所遇到的阻碍。阻抗将电阻的概念加以延伸至交流电路领域,不仅描述电压与电流的相对振幅,也描述其相对相位。当通过电路的电流是直流电时,电阻与阻抗相等,电阻可以视为相位为零的阻抗。 阻抗通常以符号标记。阻抗是复数,可以以相量或来表示;其中,是阻 抗的大小,是阻抗的相位。这种表式法称为“相量表示法”。 具体而言,阻抗定义为电压与电流的频域比率[1]。阻抗的大小是电压振幅与电流振幅的绝对值 比率,阻抗的相位是电压与电流的相位差。采用国际单位制,阻抗的单位是欧姆(Ω),与电阻的单位相同。阻抗的倒数是导纳,即电流与电压的频域比率。导纳的单位是西门子(单位)(旧单位是姆欧)。 英文术语“impedance”是由物理学者奥利弗·赫维赛德于1886年发表论文《电工》给出[2][3]。于1893年,电机工程师亚瑟·肯乃利(Arthur Kennelly)最先以复数表示阻抗[4]。 复阻抗[编辑] 阻抗是复数,可以与术语“复阻抗”替换使用。阻抗通常以相量来表示,这种表示法称为“相量表示法”。相量有三种等价形式: 1. 直角形式:、 2. 极形式:、 3. 指数形式:;

其中,电阻是阻抗的实部,电抗是阻抗的虚部,是阻抗的大小,是虚数单位,是阻抗的相位。 从直角形式转换到指数形式可以使用方程 、 。 从指数形式转换到直角形式可以使用方程 、 。 极形式适用于实际工程标示,而直角形式比较适用于几个阻抗相加或相减的案例,指数形式则比较适用于几个阻抗相乘或相除的案例。在作电路分析时,例如在计算两个阻抗并联的总阻抗时,可能会需要作几次形式转换。这种形式转换必需要依照复数转换定则。 欧姆定律[编辑] 连接于电路的交流电源会给出电压于负载的两端,并且驱动电 流于电路。 主条目:欧姆定律 借着欧姆定律,可以了解阻抗的内涵[5]: 。 阻抗大小的作用恰巧就像电阻,设定电流,就可计算出阻抗两端 的电压降。相位因子则是电流滞后于电压的相位差(在时域,电流 信号会比电压信号慢秒;其中,是单位为秒的周期)。

4395A 阻抗分析仪使用方法

安捷伦4395A 阻抗分析仪使用方法 1.使用频率范围:100kHz ~ 500MHz 2.使用配件(非标配):41951-69001阻抗适配器,16092弹簧夹具,0S/0Ω/50Ω校准用标准配件,同轴线缆(3条) 3.同轴线缆连接41951-69001阻抗适配器与4395A阻抗分析仪 同轴线缆4395A阻抗分析仪41951-69001阻抗适配器 NO. 1 RF OUT 50Ω端Input S端 NO. 2 R 50Ω端OUTPUT R端 NO. 3 A 50Ω或B 50Ω端OUTPUT T端 备注:连接41951-69001阻抗适配器与4395A阻抗分析仪应当在关机状态下进行。4.测试参数设置 阻抗测试至少应当设置以下参数: (a)测试频率范围——通过4395A阻抗分析仪前面板上的START/STOP或者CENTER/SPAN即可设置起始/终止频率或者中心频率/范围。 (b)信号输出等级——选择4395A阻抗分析仪前面板上的Source硬键,在出现的菜单中选择POWER软键可以设置信号输出等级。参数可选范围为:-15dB ~ +15dB。该参数与测试过程中可能出现的A或B端过载报警有关。为避免出现报警,可以将其设置为负值。5.校机 5.1 选择4395A前面板上的Cal硬键,在出现的软键菜单中选择CALIBRATE MENU。 5.2 开路校机。连接0S标准配件到41951-69001阻抗适配器,选择OPEN软键。当本操

作实施后,OPEN字样下方会出现下划线,此时可以取下0S标准配件。 5.2 短路校机。连接0Ω标准配件到41951-69001阻抗适配器,选择SHORT软键。当本操作实施后,SHORT字样下方会出现下划线,此时可以取下0Ω标准配件。 5.3 50Ω负载校机。连接50Ω标准配件到41951-69001阻抗适配器,选择LOAD软键。当本操作实施后,SHORT字样下方会出现下划线。 5.4 选择DONE CAL软键实施校机。显示屏幕上会出现一条水平线及Cor字样,如果设置有Maker List,将会在表中显示各Maker点处的阻抗约为50Ω。此时校机完成,可以取下50Ω标准配件。

安捷伦glenB 频谱分析仪使用说明简介

Agilent E4402B ESA-E Series Spectrum Analyzer 使用方法简介 宁波之猫 2009-6-17

目录

1简介 Agilent ESA-E系列是能适应未来需要的Agilent中性能频谱分析仪解决方案。该系列在测量速度、动态范围、精度和功率分辨能力上,都为类似价位的产品建立了性能标准。它灵活的平台设计使研发、制造和现场服务工程师能自定义产品,以满足特定测试要求,和在需要时用新的特性升级产品。该产品

采用单键测量解决方案,并具有易于浏览的用户界面和高速测量的性能,使工程师能把较少的时间用于测试,而把更多的时间用在元件和产品的设计、制作和查错上。 2.面板 操作区 1.观察角度键,用于调节显示,以适于使用者的观察角度。 2.Esc键,可以取消输入,终止打印。 3.无标识键,实现左边屏幕上紧挨的右边栏菜单的功能。 4.Frequency Channel(频率通道)、Span X Scale(扫宽X刻度)和Amplitude Y scale(幅度Y 刻度)三个键,可以激活主要的调节功能(频率、X轴、Y轴)并在右边栏显示相应的菜单。 5.Control(控制)功能区。 6.Measure(测量)功能区。 7.System(系统)功能区。 8.Marker(标记)功能区。 9.软驱和耳机插孔。 10.步进键和旋钮,用于改变所选中有效功能的数值。 11.音量调节。 12.外接键盘插口。 13.探头电源,为高阻抗交流探头或其它附件提供电源。 14.Return键,用于返回先前选择过的一级菜单。 15.Amptd Ref Out,可提供-20dBm的50MHz幅度参考信号。 16.Tab(制表)键,用于在界限编辑器和修正编辑器中四处移动,也用于在有File菜单键所访问对话 框的域中移动。 17.信号输入口(50Ω)。在使用中,接50ΩBNC电缆,探头上必须串联一隔直电容(30PF左右,陶瓷 封装)。探头实物:

电阻电抗和阻抗

电阻、电抗和阻抗 电阻、电抗和阻抗的定义 电阻——欧姆定律定义的参数:电压与电流之比,单位欧姆。 电抗——交流电流通过电感或者电容压降时,电压与电流之比,虚数表示,单位欧姆。 阻抗——电阻与电抗的复合参数,用复数表示,实部为电阻,虚部为电抗,单位欧姆。 电阻 在直流电中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。电阻很小的物质称作良导体,如金属等;电阻极大的物质称作绝缘体,如木头和塑料等。还有一种介于两者之间的导体叫做半导体,而超导体则是一种电阻值几近于零的物质。 电抗 在交流电的领域中则除了电阻会阻碍电流以外,电容及电感也会阻碍电流的流动,这种作用就称之为电抗(用X表示),意即抵抗电流的作用。电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗。它们的计量单位与电阻一样是欧姆,而其值的大小则和交流电的频率有关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小。此外电容抗和电感抗还有相位角度的问题,具有向量上的关系式。 感抗(XL)

电流变化越大,即电路频率越大,感抗越大;当频率变为0,即成为直流电时,感抗也变为0。感抗会引起电流与电压之间的相位差。感抗可由下面公式计算而来: XL = ωL = 2×π×f× L XL 就是感抗,单位为欧姆Ω ω 是角频率,单位为弧度/每秒rad/s f 是频率,单位为赫兹Hz L是电感,单位为亨利H 1、当交流电通过电感线圈的电路时,电路中产生自感电动势,阻碍电流的改变,形成了感抗,自感系数越大则自感电动势也越大,感抗也就越大。如果交流电频率大则电流的变化率也大,那么自感电动势也必然大,所以感抗也随交流电的频率增大而增大。交流电中的感抗和交流电的频率、电感线圈的自感系数成正比。在实际应用中,电感是起着“阻交、通直”的作用,因而在交流电路中常应用感抗的特性来旁通低频及直流电,阻止高频交流电。 2、在纯电感电路中,电感线圈两端的交流电压(u)和自感电动势(εL)之间的关系是u=-εL,而εL =-Ldi/dt,所以u=Ldi/dt。正弦交流电作周期性变化,线圈内自感电动势也在不断变化,当正弦交流电的电流为零时,电流变化率最大,所以电压最大。当电流为最大值时,电流变化率最小,所以电压为零。由此得出电感两端的电压位相超前电流位相π/2。在纯电感电路中,电流和电压的频率是相同的,电感元件的阻抗就是感抗(XL=ωL=2πfL),它和ω、L都成正比,当ω=0时则XL =0,所以电感起“通直流、阻交流”或者“通低频,阻高频”的作用。 3、在纯电感电路中,感抗不消耗电能,因为在任何一个电流由零增加到最大值的1/4周期的过程中,电路中的电流在线圈附近将产生磁场,电能转换为磁场能储藏在磁场里,但在下一个1/4周期内,电流由大变小,则磁场随着逐渐减

阻抗分析仪Measuring Impedance with the Bode 100

Measuring Impedance with the Bode 100 OMICRON Lab Webinar Nov. 2014 深圳市迪福伦斯科技有限公司 www.deffense.com.cn

Let‘s start with a question ?Why do the presenters wear moustaches? http://moteam.co/omimobros

Agenda ?Direct Impedance measurement methods ?Indirect Impedance via Gain ?Measurement examples ?Time for discussion ?Wishes & feature requests 深圳市迪福伦斯科技有限公司 www.deffense.com.cn

Impedance Measurement Methods ?Direct Measurements ?One-Port ?Impedance Adapter ?External bridge (e.g. High Impedance)?Indirect Measurements (via Gain) ?Two-Port shunt-thru ?Two-Port series-thru ?Voltage-Current Gain

?Support full impedance calibration (open/short/load)?Directly displaying impedance, reflection and admittance ?Ls, Lp, Rs, Rp, Cs, Cp, Q, VSWR

频谱分析报告仪地使用方法

频谱分析仪的使用方法 13MHz信号。一般情况下,可以用示波器判断13MHz电路信号的存在与否,以及信号的幅度是否正常,然而,却无法利用示波器确定13MHz电路信号的频率是否正常,用频率计可以确定13MHz电路信号的有无,以及信号的频率是否准确,但却无法用频率计判断信号的幅度是否正常。然而,使用频谱分析仪可迎刃而解,因为频谱分析仪既可检查信号的有无,又可判断信号的频率是否准确,还可以判断信号的幅度是否正常。同时它还可以判断信号,特别是VCO信号是否纯净。可见频谱分析仪在手机维修过程中是十分重要的。 另外,数字手机的接收机、发射机电路在待机状态下是间隙工作的,所以在待机状态下,频率计很难测到射频电路中的信号,对于这一点,应用频谱分析仪不难做到。 一、使用前须知 在使用频谱分析仪之前,有必要了解一下分贝(dB)和分贝毫瓦(dBm)的基本概念,下面作一简要介绍。 1.分贝(dB) 分贝是增益的一种电量单位,常用来表示放大器的放大能力、衰减量等,表示的是一个相对量,分贝对功率、电压、电流的定义如下: 分贝数:101g(dB) 分贝数=201g(dB) 分贝数=201g(dB) 例如:A功率比B功率大一倍,那么,101gA/B=10182’3dB,也就是说,A功率比B功率大3dB, 2.分贝毫瓦(dBm) 分贝毫瓦(dBm)是一个表示功率绝对值的单位,计算公式为: 分贝毫瓦=101g(dBm) 例如,如果发射功率为lmw,则按dBm进行折算后应为:101glmw/1mw=0dBm。如果发射功率为40mw,则10g40w/1mw--46dBm。 二、频谱分析仪介绍 生产频谱分析仪的厂家不多。我们通常所知的频谱分析仪有惠普(现在惠普的测试设备分离出来,为安捷伦)、马可尼、惠美以及国产的安泰信。相比之下,惠普的频谱分析仪性能最好,但其价格也相当可观,早期惠美的5010频谱分析仪比较便宜,国产的安泰5010频谱分析仪的功能与惠美的5010差不多,其价格却便宜得多。 下面以国产安泰5010频谱分析仪为例进行介绍。 1.性能特点 AT5010最低能测到2.24uv,即是-100dBm。一般示波器在lmv,频率计要在20mv以上,跟频谱仪比相差10000倍。如用频率计测频率时,有的频率点测量很难,有的频率点测最不准,频率数字显示不稳定,甚至测不出来。这主要足频率计灵敏度问题,即信号低于20mv频率计就无能为力了,如用示波器测量时,信号5%失真示波器看不出来,在频谱仪上万分之一的失真都能看出来。

阻抗匹配概念

阻抗匹配概念 阻抗匹配概念 阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。对于不同特性的电路,匹配条件是不一样的。 在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。 当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份只数值相等而符号相反。这种匹配条件称为共扼匹配。 阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。 大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。 要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。 改变阻抗力把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。 调整传输线由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配 阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载时,输出功率最大,此时阻抗匹配。最大功率传输定理,如果是高频的话,就是无反射波。对于普通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了.反之则在传输中有能量损失。高速PCB布线时,为了防止信号的反射,要求是线路的阻抗为50欧姆。这是个大约的数字,一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线则为100欧姆,只是取个整而已,为了匹配方便. 阻抗从字面上看就与电阻不一样,其中只有一个阻字是相同的,而另一个抗字呢?简单地说,阻抗就是电阻加电抗,所以才叫阻抗;周延一点地说,阻抗就是电阻、电容抗及电感抗在向量上的和。在直流电的世界中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。电阻小的物质称作良导体,电阻很大的物质称作非导体,而最近在高科技领域中称的超

频谱仪的简单操作使用方法

R3131A频谱仪简单操作使用方法 一.R3131A频谱仪简介。 R3131A频谱仪是日本ADV ANTEST公司的产品,用于测量高频信号,可测量的频率范围为9K—3GHz。对于GSM手机的维修,通过频谱仪可测量射频电路中的以下电路信号, (维修人员可以通过对所测出信号的幅度、频率偏移、干扰程度等参数的分析,以判断出故障点,进行快速有效的维修): 1.手机参考基准时钟(13M,26M等); 2.射频本振(RFVCO)的输出频率信号(视手机型号而异); 3.发射本振(TXVCO)的输出频率信号(GSM:890M—915M;DCS:1710—1785M); 4.由天线至中频芯片间接收和发射通路的高频信号; 5.接收中频和发射中频信号(视手机型号而异)。 面板上各按键(如图-1所示)的功能如下: A区:此区按键是其他区功能按键对应的详细功能选择按键,例如按下B区的FREQ 键后,会在屏幕的右边弹出一列功能菜单,要选择其中的“START”功能就可通过按下其对 (图-1) B区:此区按键是主要设置参数的功能按键区,包括:FREQ—中心频率; SPAN—扫描频率宽度;LEVEL—参考电平。此区中按键只需直接按下对应键输入数值及单位即可。 C区:此区是数字数值及标点符号选择输入区,其中“1”键的另一个功能是“CAL(校

准)”,此功能要先按下“SHIFT(蓝色键)”后再按下“1”键进行相应选择才起作用; “-”是退格删除键,可删除错误输入。 D 区:参数单位选择区,包括幅度、电平、频率、时间的单位,其中“Hz ”键还有“ENTER(确认)”的作用。 E 区:系统功能按键控制区,较常使用的有“SHIFT ”第二功能选择键,“SHIFT+CONFIG(PRESET )”选择系统复位功能,“RECALL ”调用存储的设置信息键,“SHIFT+RECALL(SA VE )”选择将设置信息保存功能。 F 区:信号波形峰值检测功能选择区。 G 区:其他参数功能选择控制区,常用的有“BW ”信号带宽选择及“SWEEP ”扫描时间选择,“SWEEP ”是指显示屏幕从左边到右边扫描一次的时间。 显示屏幕上的信息(如图-2所示)。 二.一般操作步骤。[“ ”表示的是菜单面板上直接功能按键,“ ” 表 示单个菜单键的详细功能按键(在显示屏幕的右边)]: 1) 按Power On 键开机。 2) 每次开始使用时,开机30分钟后进行自动校准,先按 Shift+7(cal ) ,再选择 cal all 键,校准过程中出现“Calibrating ”字样,校准结束后如通过则回复校准前状态。校准过程约进行3分钟。 3) 校准完成后首先按 FREQ 键,设置中心频率数值,例如需测中心频率为902.4M 的信

安捷伦4294A阻抗分析仪基础手册(中文版)

AGILENT TECHNOLOGIES, INC. 4294A 精密阻抗分析仪 操作手册 简明中文版

目录 4294A精密阻抗分析仪简介 (1) 4294A 前面板介绍 (2) 4294A 操作示例 (4) 其他测试夹具简介 (22) 将PC上的.bas程序上传至4294A主机 (23)

4294A 精密阻抗分析仪简介及操作指南 Agilent4294A精密阻抗分析仪是一种可以对元件和电路进行高效率阻抗测量和分析的综合测试仪器,凭借自动平衡电桥技术,在其所覆盖的测试频率范围内(40Hz~110MHz)基本阻抗精度可达到±0.08%。它拥有出色的高Q/低D精度,适于对低损耗元件进行分析,较宽的信号电平范围也能在实际工作条件下对器件作出准确评估。 在具体应用中,可选取不同的等效电路模型对待测器件进行全面分析,其丰富的测试性能可以满足用户的各种需求,以下是该测试仪表的几项重要参数:

4294A 前面板介绍 1. 2. 3. 4. 可选择激活当前操作曲线(曲线A/B)[Meas]-激活软键进行测试参数选择[Format]-可调整曲线的显示方式(线性/对数)[Display]-可进入选择电路的等效模型等[Scale Ref]-可调整曲线的刻度 [Bw/Avg]-可调整带宽和平均 [Cal]-进行校准相关操作 [Sweep]-对测试信号进行配置 [Source]-调整信号电平,DC偏置等 [Trigger]-触发设置 [Start]-设置起始扫描参数 [Stop]-设置终止扫描参数 [Center]-设置中心频率 [Span]-设置频率范围 旋钮-可连续调节数值 [↓] 和[↑]-可步进调节数值 [Entry Off]-关闭输入 [Back Space]-删除键 [0] - [9] [.] [-]-可设置具体数值及命名文件名 [G/n][M/μ][k/m][x1]-设置变量单位

阻抗定义

阻抗定义 在具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。阻抗常用Z表示。阻抗由电阻、感抗和容抗三者组成,但不是三者简单相加。阻抗的单位是欧。在直流电中,物体对电流阻碍的作用叫做电阻。但是在交流电的领域中电容及电感也会阻碍电流的流动,这种作用就称之为电抗,意即抵抗电流的作用。电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗。它们值的大小则和交流电的频率有关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小。此外电容抗和电感抗还有相位角度的问题,具有向量上的关系式,因此才会说:阻抗是电阻与电抗在向量上的和。对于一个具体电路,阻抗不是不变的,而是随着频率变化而变化。 输入阻抗定义: 输入阻抗是指一个电路输入端的等效阻抗。在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin就是U/I。你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗。 它反映了对电流阻碍作用的大小。对于电压驱动的电路,输入阻抗越大,则对电压源的负载就越轻,因而就越容易驱动,也不会对信号源有影响;而对于电流驱动型的电路,输入阻抗越小,则对电流源的负载就越轻。 因此,我们可以这样认为:如果是用电压源来驱动的,则输入阻抗越大越好;如果是用电流源来驱动的,则阻抗越小越好(注:只适合于低频电路,在高频电路中,还要考虑阻抗匹配问题。另外如果要获取最大输出功率时,也要考虑阻抗匹配问题。 输出阻抗 输出阻抗就是一个信号源的内阻。本来,对于一个理想的电压源(包括电源),内阻应该为0,或理想电流源的阻抗应当为无穷大。但现实中的电压源,则不能做到这一点。我们常用一个理想电压源串联一个电阻r的方式来等效一个实际的电压源。这个跟理想电压源串联的电阻r,就是(信号源/放大器输出/电源)的内阻了。当这个电压源给负载供电时,就会有电流I从这个负载上流过,并在这个电阻上产生I×r的电压降。这将导致电源输出电压的下降,从而限制了最大输出功率。同样的,一个理想的电流源,输出阻抗应该是无穷大,但实际的电路是不可能的。

阻抗概念知识讲解

阻抗概念

阻抗[编辑] 维基百科,自由的百科全书 https://www.360docs.net/doc/666681986.html,/wiki/%E9%98%BB%E6%8A%97 - mw- navigationhttps://www.360docs.net/doc/666681986.html,/wiki/%E9%98%BB%E6%8A%97 - p-search 相量图能够展示复阻抗。 阻抗(electrical impedance)是电路中电阻、电感、电容对交流电的阻碍作用的统称。阻抗衡量流动于电路的交流电所遇到的阻碍。阻抗将电阻的概念加以延伸至交流电路领域,不仅描述电压与电流的相对振幅,也描述其相对相位。当通过电路的电流是直流电时,电阻与阻抗相等,电阻可以视为相位为零的阻抗。 阻抗通常以符号标记。阻抗是复数,可以以相量或来表示;其中,是阻抗的大小,是阻抗的相位。这种表式法称为“相量表示法”。 具体而言,阻抗定义为电压与电流的频域比率[1]。阻抗的大小是电压振幅与电流振幅的绝对值比率,阻抗的相位是电压与电流的相位差。采用国际单位制,阻抗的单位是欧姆(Ω),与电阻的单位相同。阻抗的倒数是导纳,即电流与电压的频域比率。导纳的单位是西门子 (单位)(旧单位是姆欧)。 英文术语“impedance”是由物理学者奥利弗·赫维赛德于1886年发表论文《电工》给出[2][3]。于1893年,电机工程师亚瑟·肯乃利(Arthur Kennelly)最先以复数表示阻抗[4]。 复阻抗[编辑] 阻抗是复数,可以与术语“复阻抗”替换使用。阻抗通常以相量来表示,这种表示法称为“相量表示法”。相量有三种等价形式: 1. 直角形式:、 2. 极形式:、

频谱分析仪使用注意

正确使用频谱分析仪需注意的几点 首先,电源对于频谱分析仪来说是非常重要的,在给频谱分析仪加电之前,一定要确保电源接确,保证地线可靠接地。频谱仪配置的是三芯电源线,开机之前,必须将电源线插头插入标准的三相插座中,不要使用没有保护地的电源线,以防止可能造成的人身伤害。 其次,对信号进行精确测量前,开机后应预热三十分钟,当测试环境温度改变3—5度时,频谱仪应重新进行校准。 三,任何频谱仪在输入端口都有一个允许输入的最大安全功率,称为最大输入电平。如国产多功能频谱分析仪AV4032要求连续波输入信号的最大功率不能超过+30dBmW(1W),且不允许直流输入。若输入信号值超出了频谱仪所允许的最大输入电平值,则会造成仪器损坏;对于不允许直流输入的频谱仪,若输入信号中含有直流成份,则也会对频谱仪造成损伤。 一般频谱仪的最大输入电平值通常在前面板靠近输入连接口的地方标出。如果频谱仪不允许信号中含有直流电压,当测量带有直流分量的信号时,应外接一个恰当数值的电容器用于隔直流。 当对所测信号的性质不太了解时,可采用以下的办法来保证频谱分析仪的安全使用:如果有RF功率计,可以用它来先测一下信号电平,如果没有功率计,则在信号电缆与频谱仪的输入端之间应接上一个一定量值的外部衰减器,频谱仪应选择最大的射频衰减和可能的最大基准电平,并且使用最宽的频率扫宽(SPAN),保证可能偏出屏幕的信号可以清晰看见。我们也可以使用示波器、电压表等仪器来检查DC及AC信号电平。 频谱分析仪的工作原理 频谱分析仪架构犹如时域用途的示波器,外观如图1.2所示,面板上布建许多功能控制按键,作为系统功能之调整与控制,系统主要的功能是在频域里显示输入信号的频谱特性.频谱分

电阻&阻抗定义

阻抗 阻抗(impedance) 在具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。阻抗常用Z表示。阻抗由电阻、感抗和容抗三者组成,但不是三者简单相加。阻抗的单位是欧。在直流电中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。电阻很小的物质称作良导体,如金属等;电阻极大的物质称作绝缘体,如木头和塑料等。还有一种介于两者之间的导体叫做半导体,而超导体则是一种电阻值几近于零的物质。但是在交流电的领域中则除了电阻会阻碍电流以外,电容及电感也会阻碍电流的流动,这种作用就称之为电抗,意即抵抗电流的作用。电容及电感的电抗分别称作电容抗及电感抗,简称容抗及感抗。它们的计量单位与电阻一样是欧姆,而其值的大小则和交流电的频率有关系,频率愈高则容抗愈小感抗愈大,频率愈低则容抗愈大而感抗愈小。此外电容抗和电感抗还有相位角度的问题,具有向量上的关系式,因此才会说:阻抗是电阻与电抗在向量上的和。对于一个具体电路,阻抗不是不变的,而是随着频率变化而变化。在电阻、电感和电容串联电路中,电路的阻抗一般来说比电阻大。也就是阻抗减小到最小值。在电感和电容并联电路中,谐振的时候阻抗增加到最大值,这和串联电路相反。 电阻 定义:导体对电流的阻碍作用就叫导体的电阻。 电阻(Resistor)是所有电子电路中使用最多的元件。电阻的主要物理特征是变电能为热能,也可说它是一个耗能元件,电流经过它就产生内能。电阻在电路中通常起分压分流的作用,对信号来说,交流与直流信号都可以通过电阻。 电阻都有一定的阻值,它代表这个电阻对电流流动阻挡力的大小。电阻的单位是欧姆,用符号“Ω”表示。欧姆是这样定义的:当在一个电阻器的两端加上1伏特的电压时,如果在这个电阻器中有1安培的电流通过,则这个电阻器的阻值为1欧姆。出了欧姆外,电阻的单位还有千欧(KΩ,兆欧(MΩ)等。 电阻器的电气性能指标通常有标称阻值,误差与额定功率等。 它与其它元件一起构成一些功能电路,如RC电路等。

AgilentA阻抗分析仪使用手册

A g i l e n t A阻抗分析仪 使用手册 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

A g i l e n t4294A阻抗分析仪 使用手册 华中科技大学激光技术国家重点实验室 2002年1月 目录 一、介绍 Agilent 4294A精密阻抗分析仪可以对各种电子器件(元件和电路)以及电子材料和非电子材料的精确阻抗测量提供广泛的支持。它是对电子元件进行设计、签定、质量控制和生产测试的强有力工具。它所提供的性能和功能对于电路设计开发人员将获益匪浅。此外,Agilent 4294A的优良测量性能和功能为电路的设计和开发以及材料(电子材料和非电子材料)的研究和开发提供强有力的工具。它具有:·在宽阻抗范围的宽频率范围内进行精确测量 ·强大的阻抗分析功能 ·便于使用并能用多种方式与PC机配套

电子器件: 无源元件:二端元件如电容器、电感器、铁氧体珠、电阻器、变压器、晶体/陶瓷谐振器、多芯片组件或阵列/网络元件的阻抗测量。 半导体元件:变容二极管的C-V(电流-电压)特性分析;二极管、晶体管或集成电路(IC)封装终端/引线的寄生分析;放大器的输入/输出阻抗测量。 其它元件:印制电路板、继电器、开关、电缆、电池等的阻抗评估。 材料: 介质材料:塑料、陶瓷、印制电路板和其它介质材料和损耗切角评估。 磁性材料:铁氧体、非晶体和其它磁性材料的导磁率和损耗角评估。 半导体材料:半导体材料的介电常熟、导电率和C-V特性。 二、基本原理: Agilent 4294A阻抗分析仪所采用的是自动平衡电桥技术。如图所示:可以将平衡电桥看作一个放大器电路,基于欧姆定律V=I*R进行测量。被测器件(DUT)通过一个交流源激励,它的电压就是在高端H监测到的电压。低端L为虚拟地,电压为 0V。通过电阻器R 2的电流I 2 跟通过被测器件(DUT)的电流I相等。因此,输出电压 和通过被测器件(DUT)的电流成正比,电压和电流自动平衡,这也就是它的名字的由来。 在实际应用中,为了覆盖更加大的频率范围,通常用一个null-detector和modulator来代替电路中的放大器。当然,这只是一个基本的测量原理电路,为了得到精确的结果,还有许多的附加电路。

相关文档
最新文档