辛算法在电磁计算中的应用

辛算法在电磁计算中的应用
辛算法在电磁计算中的应用

辛算法在电磁计算中的应用

摘要

近几年,随着计算机性能的飞速发展和计算物理中各种新型算法的出现,各种电磁场数值方法层出不穷,但很多算法面临着计算时间长、储存空间不足及计算精度低等方面的困难。Hamilton系统理论是当代数学物理中的一个重要的工具。一切守恒的物理过程,总能表示成适当的Hamilton系统。辛算法正是保持Hamilton系统内在性质的一种新型数值方法,该算法在长时间的数值计算中,具有一般数值方法无可比拟的计算优势。

本文首先介绍了电磁学的基本背景和电磁计算的研究,然后介绍了辛算法。接着,介绍了辛算法在Maxwell方程中的应用,然后在无耗煤质和散射存在时的情况下分析了辛时域有限差分法的计算式。最后,以真空中一维的高斯脉冲电磁波为例用辛算法进行了数值运算。

关键词:电磁计算;辛算法;Hamilton系统;Maxwell方程

一.引言

电磁场理论的应用遍及地理学、生命科学、医学、材料科学和信息科学等几乎所有技术学科领域。计算电磁学是以电磁场理论为基础,以高性能的计算技术为手段,运用计算数学提供的各种方法,解决复杂电磁场理论和工程问题的应用科学。因此,开展计算电磁学的研究不仅可以产生国际水平的基础研究成果,更重要的是可以促进我国民用和军用电磁学相关领域的发展。

早在1864年,Maxwell在前人理论和实验的基础上建立了统一的电磁场理论,并用数学模型揭示了自然界一切宏观电磁现象所遵循的普遍规律,这就是Maxwell方程组,它包括微分形式和积分形式。简单地说,所有的宏观电磁问题都可以归结为Maxwell方程组在各种边界条件下的求解问题。计算电磁学自20世纪60年代兴起,至今40余年。纵观整个电磁理论发展的过程,电磁学的发展可以分为两个阶段。以20世纪60年代为分界点,之前可以称为经典电磁学阶段,在这个时期,电磁场理论和工程中的许多问题大多采用解析或渐进的

方法进行处理,即在几种可分离变量的坐标系中求解Maxwell方程组或其退化形式,最后得到解析解。之后基于积分方程的矩量法和基于微分方程的差分类方法为代表的数值计算方法的运用标志着计算电磁学阶段的到来,电子计算机的迅速发展,使大型数值运算成为可能。之后计算Maxwell方程进入了高速发展阶段,所采用的方法大都是先将Maxwell方程离散化,再运用程序进行数值结果计算。

二.电磁学中常见的计算方法

从计算电磁学作为一门学科问世以来,频域方法一直占据着主导地位。然而,随着人们在应用电磁学领域研究的深入,传统的点频法和窄频带方法已经不能满足需要。科学实践的需求推动了时域数值技术的发展和成熟。随着计算机硬件技术的发展,人们逐步具有了直接在时域对具有宽频带特性的瞬变电磁场计算分析的能力,从而实现了对物理量和物理现象更深刻、更直观的理解。时域数值技术的一个突出优点是可以给出关于问题空间的丰富的时域信息,而且经过简单的时频变换,即可得到宽带范围的频域信息,相对频域方法显著地节约了计算量。最近几十年是电磁场时域技术蓬勃发展的时期,各具优势和特色的新颖时域算法层出不穷。

计算中应用的方法有:蒙特卡罗法有限差分法有限元法、矩量法、辛算法等;时域方面的方法有:时域有限差分法、时域多分辨法、时域伪谱法等。

三.辛算法与Hamilton系统

由于电磁场方程可以转化为一无穷维Hamilton系统,而Hamilton系统具有一系列的内在性质,因而在对Hamilton系统的数值求解时,保持其内在性质就显得尤为重要。辛算法正是保持Hamilton系统内在性质的一种新型数值方法,该算法在长时间的数值计算中,具有常见数值方法无可比拟的计算优势。

哈密顿系统理论是当代数学物理中的一个重要的工具。一切守恒的物理过程,无论是经典的,量子的或相对论的,无论自由度为有限的或无限的,总能表示为适当的Hamilton系统。从理论上来说,线性的或非线性的电磁场方程,如标量波动方程,Maxwell方程也都可转化为Hamilton系统。基于Hamilton系统的辛算法,应用于电磁散射数值方法的研究的演化永远是辛变换演进,因此其主要特征就是系统的相空间体积保持不变和总能量守恒。而常用的数值方法如有限元法等都不能保持这种性质,会引入人为的耗散机制和虚假的激励以及种种非Hamilton系统原有的干扰和歪曲,特别是在迭代步数很大的情况下,这种现象尤为

突出。

辛算法是一种基于Hamilton系统的算法,能量守恒对应的数学表述为系统状态的演化过程是辛变换,因而在计算系统状态时的离散化方程也应该是辛变换,满足这一条件的数值方法统称为辛算法。正因为如此,辛算法能够保证系统随着时间的演化过程永远是辛变换,即始终保持Hamilton系统的基本特征,这也确保了该数值方法的对称和守恒。

八十年代初期,国内外专家开始对Hamilton系统的算法进行研究。国内已故著名数学家冯康先生在一九八四年国际微分几何和微分方程会议上系统地提出了一种能够保持Hamilton系统基本特征的算法——辛几何算法也称为辛算法或辛格式。随后,辛算法不仅因其本身丰富的内涵而成为目前数值算法研究的热点,而且因其良好的数值特性广泛应用于许多学科领域中。例如,辛算法已应用于量子力学和强场物理、化学反应动力学、天体力学和大气与海洋科学、分子动力学、地理学等领域的研究中,并已取得了很好的成果。四.辛算法在Maxwell方程中的应用

1.Maxwell方程组的Hamilton表述

时域Maxwell旋度方程在介质中传播时的方程形式为

▽×H=ε+J

▽×E=-ε-Jm

电磁场中的Maxwell方程组可以用如下的Hamilton函数H表示

Π(B,D)=(B▽×B+D▽×D)-JB+JmD

则Maxwell可以表示为下面的Hamilton典则方程形式

=

=-

这样就可以把适用于Hamilton系统的辛算法应用到求解Maxwell方程的FDTD方法中来。2.辛时域有限差分法的计算式

(1)无耗媒质的情况

当电流密度为零,即J=0时,建立辛差分格式。为了和传统的FDTD取得一致的形式,用E,H来代替D,B,则上面的Maxwell方程的典则形式如下:

==-▽×E

=-=▽×H

可以得到迭代式

如果取系数C1=C2 =1/2,d1=1,d2=0,则有

在四阶显式辛算法中,取系数C1=C4=1/6(2+α),C2=C3=1/6(1-α),d1=d3=1/3(2+α),d2=-1/3(1+2α),d4=0。其中α=+

这里讨论了时间显式辛格式建立的过程。

(2) 散射体存在时的辛FDTD方法

若目标散射体存在,那么电流密度J就不为零,我们知道此时:

J=Σe

可以看出Hamilton函数此时不再是可分的,原则上不能用前面的方法建立显式辛格式。但是仍然可以把辛PRK方法应用于Maxwell方程,并且其格式是显式的。以下面方程为例:

对上式进行离散则有:

可以得到磁场的迭代式

五.辛算法数值算例

以真空中一维的高斯脉冲电磁波为例:E(t)=exp,模拟其传播过程,计算空间步长为1cm,每波长划分10个网格,CFL=0.5。图1给出FDTD方法与时间二阶辛时域有限差分法(2nd,2th)和辛算法(2nd,4th)电场波曲线的比较图。图2给出FDTD与时间四阶辛时域有限差分法(4nd,2th)、辛算法(4nd,4th)计算所得的电场波曲线的比较图。可以看出,在计算前期,不同格式的算法对波形均有很好的计算结果,波形结果基本相互吻合。

图3,4分别为迭代2170步和4950步情况下,辛算法(4nd, 2th)、辛算法(4nd,4th)与Yee 格式(2nd,2th)计算的电场波剖面曲线的比较图。从图中可以看出,在计算前期,不同格式对波形均有好的计算结果,但随着时间步的增加,波形开始失真,并有能量的耗散,幅值减小,Yee格式尤为明显。

同时可以看出辛算法(4nd,2th) 在迭代2170步时波形基本保持,但到4950步也幵始振荡。从图4可以看出,辛算法(4nd,2th)达到稳定所需的迭代步比前面两种方法要少,对脉冲传播的模拟不论计算前期和后期,都有很好的结果,并且电场幅值没有明显的衰减,峰值始终在1附近,能量保持了守恒,说明了辛算法的有效性。

由此可以看出,传统的时域有限差分法(Yee格式),在时间空间导数离散上都采用二阶中心差分格式,格式精度较低,色散耗散误差较大。对电大问题作电磁波传播长期响应分析时,由于误差的积累,往往造成波形的失真,这是传统的FDTD方法的固有缺陷。

这里采用的时间、空间均达到四阶精度的辛算法(4nd,4th),由于它保持了Hamilton系统的内在守恒,理论上不产生耗散误差,相比其他一些典型高精度格式有更低的色散误差和更

好的稳定性。

图1.FDTD与辛T2S2方法、辛T2S4方法电场值比较

图2.FDTD与辛T4S2方法、辛T4S4方法电场值比较

图3.迭代2170步时,FDTD法,辛T4S2法,辛T4S4法电场分布比较

图4.迭代4950步时,FDTD法,辛T4S2法,辛T4S4法电场分布比较

六.小结与展望

本文首先介绍了电磁学的基本背景和电磁计算的研究,列举了几种常见的电磁计算方法,其中着重介绍了辛算法。在此基础上,介绍了辛算法在Maxwell方程中的应用,将适用于Hamilton系统的辛算法应用到求解Maxwell方程的FDTD方法中来。然后在无耗煤质和散射存在时的情况下分析了辛时域有限差分法的计算式。最后,以真空中一维的高斯脉冲电磁波为例用辛算法进行了数值运算。

关于本课题,还有很多方面值得进一步深入研究,分别有以下几点:

1.对于辛算法的理论及其应用还需作更深一步的研究及探索,对于辛算法进行构造更多种的应用于电磁计算中。

2.在高阶辛算法研究过程中,对于辛算法与FDTD法结果之间的误差及产生的原因,还有待进一步研究,还应构造更高效的适应于电磁计算问题的高阶辛算法。

3.开展辛算法对二维、三维电磁波还需进行深一步的计算研究。

参考文献:

[1]王秉中.计算电磁学[M].北京:科学出版社.2002

[2]王长清.现代计算电磁学基础[M].北京:北京大学出版社.2005

[3]邹异明.辛几何引论[M].北京:科学出版社.1986

[4]冯康秦孟兆.哈密尔顿系统的辛几何算法[M].浙江:科学出版社.2003

[5]黄志祥吴先良.辛算法的稳定性及数值色散性分析[J].电子学报.2006.34(3):535~538

电磁铁的设计计算

电磁铁的设计计算 1原始数据 YDF-42 电磁铁为直流电磁铁工作制式为长期根据产品技术条件已知电磁铁的工作参数 额定工作电压UH=24V 额定工作电压时的工作电流IH ≤1A 2 测试数据 测试参数工作行程δ=1mm 吸力F=7.5kg 电阻R=3.5Ω 4 设计程序 根据已测绘出的基本尺寸通过理论计算确定线圈的主要参数并验算校核所设计出的电磁铁性能 4.1 确定衔铁直径dc 电磁铁衔铁的工作行程比较小因此电磁吸力计算时只需考虑表面力的作用已知工作行程δ=1mm 时的吸合力F=7.5kg 则电磁铁的结构因数 K = F/δ7.5/0.1=27 (1) 电磁铁的结构形式应为平面柱挡板中心管式 根据结构因数查参考资料,可得磁感应强度BP=10000 高斯 当线圈长度比衔铁行程大的多时,可以不考虑螺管力的作用,认为全部吸力都由表面力产生由吸力公式 F= (Bp/5000)2×Π/4×dc2 (2) 式中Bp磁感应强度(高斯) dc 活动铁心直径(毫米) 可以求得衔铁直径为 dc= 5800×F Bp = 5800×7.510000 =1.59cm=15.9mm 取dc=16 mm 4.2 确定外壳内径D2 在螺管式电磁铁产品中它的内径D2与铁心直径dc之比值n 约为2~ 3 ,选取n=2.7 D2=n ×dc=2.76×16=28.16 毫米(3) 式中D2 外壳内径毫米 4.3 确定线圈厚度 bk= D2?dc 2 ?Δ(4) 式中bk -----线圈厚度毫米 Δ------线圈骨架及绝缘厚度毫米今取Δ=1.7 毫米 bk= 28.16?16 2 ?1.7 =4.38毫米 今取bk=5 毫米 4.4 确定线圈长度 线圈的高度lk与厚度bk比值为β,则线圈高度

代谢当量(MET)计算方法和应用

代谢当量(MET)计算方法 1. 任务的代谢当量(MET),或简单地代谢当量,是一种生理表示的物理活动的能源成本的措施,被定义为在一个特定的物理活动的代谢率的比值(因此能量 ·千克-1·分钟-1或等价的:消耗率)到参考代谢率,按照惯例,以3.5毫升? 2 2. 梅脱(静息坐位时的代谢水平)= 3.5mlO2/公斤/分=0.0167 千卡/公斤/分 体力活动能量消耗的分级 ?低强度:≤3mets(梅脱) ?中等强度:3梅脱---6梅脱 ?高强度:≥6梅脱 例A:体重50kg,运动强度3MET,运动时间20分钟;请计算这段时间的能量消耗 3met×0.0167×20×50=50千卡 例B:体重50kg,能量监测仪上显示运动量100千卡,运动时间30分钟,请计算此段时间的运动强度? 100千卡÷30分钟÷50kg÷0.0167=4met 例C:体重50kg,运动10分钟,耗氧量。 3.5mlO2×50×10=1750 mlO2

3. 强度等级表 体力活动MET 光照强度活动<3 睡眠0.9 看电视 1.0 写作,伏案工作,打字 1.8 步行1.7英里(2.7公里/小时),水平地面上,闲庭信步,很慢 2.3 散步,4公里每小时2.5英里() 2.9 中等强度活动3至6个骑自行车,文具,50瓦,非常轻的努力 3.0 步行3.0英里(4.8公里/小时) 3.3 课间操,家庭运动,轻或中度的努力,一般 3.5 步行3.4英里(5.5公里每小时) 3.6 骑自行车,10英里(16公里/小时),休闲,工作或休闲 4.0 骑自行车,文具,100瓦,轻便省力 5.5

剧烈强度活动> 6 慢跑,一般7 健美操(如俯卧撑,仰卧起坐,拉,跳插孔),重,大力8 跑跑步,到位8 跳绳10.0

电磁场综合计算题

电磁场综合计算题 1、(磁场与运动学综合)如图18所示,质量m=0.1g的小物块,带有 5×10-4C的电荷,放在倾角为30°的光滑绝缘斜面上,整个斜面置于 B=0.5T的匀强磁场中,磁场方向垂直纸面指向纸里,物块由静止开始下滑,滑到某一位置时,开始离开斜面,求:(中等) 图18 (1)物块带什么电? (2)物块离开斜面时速度多大? (3)斜面至少有多长? 2.(电磁场与运动学综合)一个质量为m,电量为+q的金属球套在绝缘长杆上,球与杆间的动摩擦因数为μ,整个装置放在匀强电场与匀强磁场互相垂直的复合场中,如图19所示。若已知电场强度为E,磁感应强度为B,由静止开始释放小球,求:(中等) (1)小球最大加速度是多少? (2)小球最大速度是多少? 图19 3、(电磁场与运动学综合)电磁炮是一种理想的兵 器,它的主要原理如图所示。1982年澳大利亚国立大 学制成了能把m=2.2g的弹体(包括金属杆EF的质 量)加速到v=10km/s的电磁炮(常规炮弹的速度约为 2km/s),若轨道宽L=2m,长为x=100m,通过的电流为I=10A,试问轨道间所加匀强磁场的磁感应强度和磁场的最大功率P m有多大(轨道摩擦不计)?(中等) 4、(电磁场与运动学综合)如图所示,某区域有正交的匀强电场和匀强磁场,电场方向水平向右,磁场方向垂直纸面向里.场强E=10N/C.磁

感应强度B=1T.现有一个质量m=2×10-6kg,带电量q=+2×10-6C的液滴以某一速度进入该区域恰能作匀速直线运动,求这个速度的大小和方向.(g取10m/s2) (简单) 5.(回旋加速器)有一回旋加速器,加在D形盒内两极的 交变电压的频率为1.5×107Hz,D形盒的半径为0.56m,求:(中等)(1)加速α粒子所需的磁感应强度B。 (2)α粒子所达到的最大速率。(α粒子质量为质子质量的4倍,质子质量为1.67×10-27Kg) 6.(磁场与运动学综合)有一匀强磁场,磁感应强度为1.0T,放一根与磁场方向垂直、长度为0.6m的通电直导线,导线中的电流为1.2A。这根导线在与磁场方向垂直的平面内沿安培力的方向移动了0.3m,求安培力对导线所做的功。(简单) 7.(磁场与运动学综合)在竖直向下的匀强磁场中,两根相距L的平行金属导轨与水平方向的夹角为θ,如图所示,电池、滑线可变电阻、电流表按图示方法与两导轨相连,当质量为m的直导线ab横跨于两根导轨之上时,电路闭合,有电流由a到b通过直导线,在导轨光滑的情况下,调节可变电阻,当电流表示数为I0时,ab恰好沿水平方向静止在导轨上,求匀强磁场的磁感强度B多大?(中等) )θ A )θ B a b

电磁铁计算公式

第一章常用低压电器 电器:电能的生产、输送、分配与应用起着控制、调节、检测和保护的作用。 根据外界的信号和要求,自动或手动接通或断开电路,断续或连续地改变电路参数,以实现对电路或非电路对象的切换、控制、保护、检测、变换和调节用的电气设备。 定义:一种能控制电能的器件。 第一节电磁式低压电器的结构和工作原理 ●低压电器:用于交流1200V、直流1500V以下电路的器件 ●高压电器:用于交流1200V、直流1500V以上电路的电器。 电力传动系统的组成: 1)主电路:由电动机、(接通、分断、控制电动机)接触器主触点等电器元件所组成。 特点:电流大 2)控制电路:由接触器线圈、继电器等电器元件组成。 特点:电流小 ●任务:按给定的指令,依照自动控制系统的规律和具体的工艺要求对主电路进行控制。 一、低压电器的分类 1、按使用的系统

1)低压配电电器 用于低压供电系统。电路出现故障(过载、短路、欠压、失压、断相、漏电等)起保护作用,断开故障电路。(动动稳定性、热稳定性) 例如:低压断路器、熔断器、刀开关和转换开关等。 2)低压控制电器 用于电力传动控制系统。能分断过载电流,但不能分断短路电流。(通断能力、操作频率、电气和机械寿命等) 例如:接触器、继电器、控制器及主令电器等。 2、按操作方式 1)手动电器:刀开关、按钮、转换开关 2)自动电器:低压断路器、接触器、继电器 3、按工作原理 1)电磁式电器:电磁机构控制电器动作 2)非电量控制电器:非电磁式控制电器动作 ◆电磁式电器由感测和执行两部分组成。 感测部分(电磁机构):接受外界输入的信号,使执行部分动作,实现控制的目的。 执行部分:触点系统。 二、电磁机构

电磁场相关计算

一.选择题(共6小题) 1.用回旋加速器来加速α粒子,为使α粒子获得的动能增为原来的4倍,原则上可采用的方法是:() A.将回旋加速器的磁感应强度B增为原来的2倍;(其他条件不变) B.将回旋加速器的电压U增为原来的4倍;(其他条件不变) C.将D形盒的半径增大为原来的2倍;(其他条件不变) D.将磁感应强度B与D形盒的半径,同时增大为原来的2倍.(其他条件不变) 2.两个相同的半圆型光滑轨道分别竖直放在匀强电场和磁场中,轨道两端在同一高度上,两个相同的带正电的小球同时从两轨道左端最高点由静止释放,M、N为轨道的最低点,以下说法正确的是() A.两小球到达轨道最低点的速度v M>v N B.两小球到达轨道最低点的速度v M<v N C.两小球第1次到达轨道最低点时对轨道压力N M>N N D.在磁场中小球能到达轨道另一端最高点,在电场中小球不能到达轨道另一端最高点3.如图所示,一带负电的滑块从粗糙的绝缘斜面的顶端滑至底端时速率为V,若加一个垂直纸面向外的匀强磁场,则它滑至底端时的速率将() A.不变 B.变大 C.变小 D.不能确定 4.如图所示,真空中狭长区域内的匀强磁场的磁感应强度为B,方向垂直纸面向里,区域宽度为d,边界为CD和EF,速度为v的电子从边界CD外侧沿垂直于磁场方向射入磁场,入射方向跟CD的夹角为θ,已知电子的质量为m、带电荷量为e,为使电子能从另一边界EF射出,电子的速率应满足的条件是() A.v>B.v<C.v>D.v<

5.如图所示,相同的带正电粒子A和B,同时以v A和v B的速度从宽度为d的有界匀强磁场的边界上的0点分别以60°和30°(与边界的夹角)方向射入磁场,又恰好不从另一边界飞出,则下列说法中正确的是() A.A、B两粒子的速度之比 B.A、B两粒子在磁场中的位移之比1:1 C.A、B两粒子在磁场中的路程之比1:2 D.A、B两粒子在磁场中的时间之比2:1 6.如图所示,金属棒ab置于水平放置的金属导轨cdef上,棒ab与导轨相互垂直并接触良好,导轨间接有电源.现用两种方式在空间加匀强磁场,ab棒均处于静止.第一次匀强磁场方向竖直向上;第二次匀强磁场方向斜向左上与金属导轨平面成θ=30°角,两次匀强磁场的磁感应强度大小相等.下列说法中正确的是() A.两次金属棒ab所受的安培力大小不变 B.第二次金属棒ab所受的安培力大 C.第二次金属棒ab受的摩擦力小 D.第二次金属棒ab受的摩擦力大 二.解答题(共6小题) 7.如图所示,一束电荷量为e、质量为m的电子以速度v垂直左边界射入宽度为d的有界匀强磁场中,穿过磁场时的速度方向与原来的电子的入射方向的夹角θ是30°,则磁感应强度为多大?电子穿过磁场的时间又是多少?

工程经济计算公式汇总,例题讲解

《建设工程经济》重点计算公式汇总1、P6,资金等值计算及应用 系数名称符号表 示 标准表达 式 公式形象记忆 一次支付复本利和系数 终值 一次存钱,到期本利取出 一次支付现值系数已知到期本利合计数,求最初本金。等额支付终值系数等额零存整取 等额支付现值系数若干年每年可领取年金若干,求当初一次存入多少钱 等额支付偿还基金系数已知最后要取出一笔钱,每年应等额存入多少钱 等额支付资本回收系数住房按揭贷款,已知贷款额,求月供或年供记住,,其余可推到。 2、P11,名义利率(名义年利率)的计算公式: 年有效利率(又称实际利率)的计算公式: 3 、P23 ,静态投资回收期:越小越好 P t 累计净现金流量开始出-1 现正值的年份数 上一年累计净现金流量 出现正值年份的净现金 的绝对值 流量 如果只给出现金流入与流出,则先计算净现金流量(流入- 流出, 可能为负值),再计算累计净现金流量(本年净现金流量+上一年累计净现金流量) 4、P24、财务净现值:财务净现值(FNPV)=现金流入现值之和- 现金流出现值之和 先求现值P,在根据公式计算, 基准收益率ic 变小,FNPV变大,反之相同。但FIRR 不变。 FNPV大于等于零,方案可行;FNPV小于零,方案不可行,但不一定亏损。 5、P25、财务内部收益率FIRR:利用财务净现值公式,当FNPV等于零时,求得的ic 即为FIRR。FIRR 与ic 无关, 当FNPV=0时,FIRR=ic ,当FNPV大于零时,FIRR 大于ic 6、P34,量本利模型: B=p ×Q-C u ×Q-C F-T u×Q 利润=单价×销量-[( 单位可变成本+税金) ×销量+固定成本] 为了方便记忆可上式变形如下:B=p×Q-「(C u+T u)×Q-C F」 式中 B ——表示利润: p——表示单位产品售价;

2021年电磁铁电磁力计算方法

电磁铁电磁力计算方法 欧阳光明(2021.03.07) 1磁动势计算(又叫安匝数)IN E = 匝数2 2)12(212d D D L d L d D D N -=-= 其中: -L 绕线宽度)(mm -2D 绕线外径)(mm -1D 绕线内径)(mm -d 漆包线直径)(mm 绕线长度 根据电阻公式 222223324(21)(21)41010()d 4L D D l L D D d R d S πρρρπ----==?=?Ω绕其中: 根据4322224 10(21)(21)d U U Ud I L D D R L D D ρρ===?-- 故磁动势

2磁感应强度计算(磁动势在磁路上往往有不同的磁降,但每一圈的磁降和应等于磁动势) 即:()IN HL =∑ 其中: 一般情况下,电磁阀除气隙处外,其余部分均采用导磁性能很好的材料,绝大部分磁动势降是在气隙处, 即0()IN HL H δ=≈?∑ 其中: 而000= B H μ 其中: 所以:30 00=10B IN H δδμ-≈?? 又因为23102(21) d U IN D D ρ=?+ 故:2600102(21)d U B D D μρδ=?+

3电磁力的计算 根据26000 1102F B S μ=? 其中: 又因为2600102(21)d U B D D μρδ=?+ 所以:2262600000110[]1028(21)S d U F B S D D μμρδ =?=?+ 其中: -70μπ-?导磁率,410亨/米; 20S mm -气隙面积(); -d 漆包线直径)(mm ; U -电压(V ) ; 20.0178./mm m ρ-Ω铜的电阻率; -2D 绕线外径)(mm ; -1D 绕线内径)(mm ; mm δ-气隙长度()即行程;

电磁场复习要点

电磁场复习要点 (考试题型:填空15空×2分,单选10题×2分,计算50分) 第一章 矢量分析 一、重要公式、概念、结论 1. 掌握矢量的基本运算(加减运算、乘法运算等)。 2. 梯度、散度、旋度的基本性质,及在直角坐标系下的计算公式。 梯度:x y z u u u u x y z ????=++???e e e 散度:y x z A A A x y z ?????= ++???A 旋度: 3. 两个重要的恒等式: ()0u ???=,()0????=A 4. 亥姆霍兹定理揭示了:研究一个矢量场,必须研究它的散度和旋度,才能确 定该矢量场的性质。 5. 二、计算:两个矢量的加减法、点乘、叉乘运算以及矢量的散度、旋度的计算。 第二章 电磁场的基本规律 一、重要公式、概念、结论 1.电荷和电流是产生电磁场的源量。 2.从宏观效应看,物质对电磁场的响应可分为极化、磁化和传导三种现象。 3. 静电场的基本方程: s l D D ds Q E E dl ρ??=?=??=?=?? 表明:静电场是有散无旋场。 电介质的本构关系: 0r D E E εεε== (记忆0ε的值) x y z y y z x z x x y z x y z A A A A A A x y z y z z x x y A A A ??????? ??????? ???= =-+-+- ??? ???????????????e e e A e e e

4. 恒定磁场的基本方程: l s H J H dl I B B ds ??=?=??=?=?? 磁介质的本构关系:0r B H H μμμ== (记忆0μ的值) 5. 相同场源条件下,均匀电介质中的电场强度为真空中电场强度值的 倍r 1 ε。 6. 相同场源条件下,均匀磁介质中的磁感应强度是真空中磁感应强度的r μ倍。 7. 电场强度的单位是V/m ;磁感应强度B 的单位是T (特斯拉),或Wb/m 2 8. 电磁感应定律表明:变化的磁场可以激发电场。 9. 全电流定律表明:变化的电场也可激发磁场。 10. 理解麦克斯韦方程组: 微分形式: 积分形式: ??????=?=??=?=?????-=???- =?????+=???+ =??s s l s l s s d B B Q s d D D s d t B l d E t B E s d t D J l d H t D J H 0 )( ρ 本构关系: E J H B E D σμε=== 二、计算。

计算方法与软件应用1

数学计算方法与软件的工程应用 第一章 MATLAB 软件基础介绍 MATLAB 是Matrix Laboratory (矩阵实验室)的缩写,最初是专门用于处理矩阵计算的软件。目前,它是集计算、可视化及编程等功能于一身的一个最流行的数学软件。其特点是: 1、功能强大 它不仅具有强大的数值计算功能,可以处理如:矩阵计算、微积分运算、各种方程的求 解、插值和拟合计算、完成各种统计和优化问题,最新的版本甚至可以进行数字图象处理、小波分析等;同时它还有方便的画图功能和完善的图形可视化功能。 2、使用方便 MATLAB 语言灵活,它将编译、连接和执行融为一体,是一种演算式语言。与其他语言不同,在MATLAB 中各种变量不需先说明变量的数据类型或定义向量或矩阵变量的维数。此外,MATLAB 的帮助系统使用也十分方便,用户可以通过演示和示例学习如何使用该软件。 3、编程容易效率高 MATLAB 具有结构化的控制语句,又具有面向对象的编程特性。它允许用户以数学形式的语言编程,比其他语言更接近书写计算公式的思维方式。MATLAB 程序文件是文本文件,它的编写和修改可以用任何字处理软件进行,程序调试也非常方便。 4、扩充能力强 MATLAB 软件是一个开放的系统,除内部函数外它的其他函数的源程序都是可以修改的;同时,用户自行编写的程序和开发的工具箱可以象库函数一样任意调用。MATLAB 也可以方便地与FORTRAN 、C 等语言进行对接,实现不同语言编写的程序、子程序之间的相互调用。 本章主要介绍MATLAB 的基础应用,在后面的各个部分中,我们将详细介绍MATLAB 在这一部分的调用,编程或计算。 一、数据和变量 1、表达式 在命令窗口做一些简单的计算,就如同使用一个功能强大的计算器,使用变量无须预先 定义类型。如 设球的半径为2=r ,求球的体积3 3 4r V π= ,则在命令窗口中输入:

电磁场数值计算方法的发展及应用

电磁场数值计算方法地发展及应用 专业:电气工程 姓名:毛煜杰 学号: 一、电磁场数值计算方法产生和发展地必然性 麦克斯韦尔通过对以往科学家们对电磁现象研究地总结,认为原来地研究工作缺乏严格地数学形式,并认为应把电流地规律与电场和磁场地规律统一起来.为此,他引入了位移电流和涡旋场地概念,于年提出了电磁场普遍规律地数学描述—电磁场基本方程组,即麦克斯韦尔方程组.它定量地刻画了电磁场地转化和电磁波地传播规律.麦克斯韦尔地理论奠定了经典地电磁场理论,揭示了电、磁和光地统一性.资料个人收集整理,勿做商业用途 但是,在电磁场计算地方法中,诸如直接求解场地基本方程—拉普拉斯方程和泊松方程地方法、镜象法、复变函数法以及其它种种解析方法,其应用甚为局限,基本上不能用于求解边界情况复杂地、三维空间地实际问题.至于图解法又欠准确.因此,这些电磁场地计算方法在较复杂地电磁系统地设计计算中,实际上长期未能得到有效地采用.于是,人们开始采用磁路地计算方法,在相当长地时期内它可以说是唯一实用地方法.它地依据是磁系统中磁通绝大部分是沿着以铁磁材料为主体地“路径”—磁路“流通”.这种计算方法与电路地解法极其相似,易于掌握和理解,并得以沿用至今.然而,众所周知,对于磁通是无绝缘体可言地,所以磁路实际上是一种分布参数性质地“路”.为了将磁路逼近实际情况,当磁系统结构复杂、铁磁材料饱和时,其计算十分复杂.资料个人收集整理,勿做商业用途 现代工业地飞速发展使得电器产品地结构越来越复杂,特殊使用场合越来趁多.电机和变压器地单机容量越来越大,现代超导电机和磁流体发电机必须用场地观点和方法去解决设计问题.由于现代物理学地发展,许多高精度地电磁铁、波导管和谐振腔应用到有关设备中,它们不仅要赋与带电粒子能量,并且要有特殊地型场去控制带电粒子地轨迹.这些都对电磁系统地设计和制造提出了新地要求,传统地分析计算方法越来越感到不足,这就促使人们发展经典地电磁场理论,促使人们用场地观点、数值计算地方法进行定量研究.资料个人收集整理,勿做商业用途 电子计算机地出现为数值计算方法地迅速发展创造了必不可少地条件.即使采用“路”地方法来计算,由于计算速度地加快和新地算法地应用,不仅使得计算精度得到了很大地提高,而且使得工程设计人员能从繁重地计算工作中解脱出来.从“场”地计算方面来看,由于很多求解偏微分方程地数值方法,诸如有限差分法、有限元法、积分方程法等等地运用,使得大量工程电磁场问题有可能利用数值计算地方法获得符合工程精度要求地解答,它使电磁系纯地设计计算地面貌焕然一新.电磁场地各种数值计算方法正是在计算机地发展、计算数学地前进和工程实际问题不断地提出地情况下取得一系列进展地.资料个人收集整理,勿做商业用途 二、电磁场数值计算方法地发展历史 电磁场数值计算已发展了许多方法,主要可分为积分法(积分方程法、边界积分法和边界元法)、微分法(有限差分法、有限元法和网络图论法等)及微分积分法地混合法.资料个人收集整理,勿做商业用途 年,利用向量位,采用有限差分法离散,求解了二维非线性磁场问题.随后和用该程序设计了同步加速器磁铁,并把它发展成为软件包.此后,采用有限差分法计算线性和非线性二维场地程序如雨后春笋般地在美国和西欧出现.有限差分法不仅能求解均匀线性媒质中地位场,还能解决非线性媒质中地场;它不仅能求解恒定场和似稳场,还能求解时变场.在边值问题地数位方法中,此法是相当简便地.在计算机存储容量许可地情况下,采取较精细地网格,使离散化模型较精确地逼近真实问题,可以获得足够精度地数值解.但是, 当场城几何特

电磁铁电磁力计算方法

电磁铁电磁力计算方法 1磁动势计算(又叫安匝数)IN E = 匝数2 2)12(212d D D L d L d D D N -=-= 其中: -L 绕线宽度)(mm -2D 绕线外径)(mm -1D 绕线内径)(mm -d 漆包线直径)(mm 绕线长度 2 22322121(21)=222(21)10()4D D D D L D D l DN N d L D D m d ππππ-++-==-=?绕

根据电阻公式 222223324(21)(21)41010()d 4L D D l L D D d R d S πρρρπ----==?=?Ω绕其中: 20.0178./mm m ρ-Ω铜的电阻率 2S mm -漆包线的截面积() 根据4322224 10(21)(21)d U U Ud I L D D R L D D ρρ===?-- 故磁动势 23102(21) d U IN D D ρ=?+ 2磁感应强度计算(磁动势在磁路上往往有不同的磁降,但每一圈的磁降和应等于磁动势) 即:()IN HL = ∑ 其中: H -磁场强度(A/m) L m -该段磁介质的长度() 一般情况下,电磁阀除气隙处外,其余部分均采用导磁性能

很好的材料,绝大部分磁动势降是在气隙处, 即0()IN HL H δ= ≈?∑ 其中: 0H -气隙处磁场强度(A/m) mm δ-气隙长度()即行程 而0 00=B H μ 其中: 0B -气隙中的磁感应强度(特斯拉) -70μπ-?导磁率,410亨/米 所以:30 00=10B IN H δδμ-≈?? 又因为23102(21) d U IN D D ρ=?+ 故:2600102(21)d U B D D μρδ=?+ 3电磁力的计算 根据26000 1102F B S μ=? 其中:

电场与磁场计算

△ MPN 勺区域内存在垂直于 XOY 平面向外的匀强磁场,磁感应强度 0)、N (泓,0), / PMNMPNM=30 , PM PN 边界无阻碍。坐标系 x 轴负方 向的匀强电场应,第四象限存在一个沿 x 轴正方向的匀强 巴=1召%。在MN 的正下方垂直于y 轴处放置一个荧光屏,与 y 轴 2 着y 轴正方向射入磁 场, 略电子间的相互影响,不计重力。求: (2) 电子打在荧光屏上的长度 (3) 讨论电子能否垂直打在荧光屏上,若能,请分析这 些 电子进入磁场时的横坐标;若不能,请分析原因。 电场与磁场计算 交于Q 点,已知Q (0, -邓)。一系列电子以相同的速度 %从MN 的直线区域内任意位置沿 25. ( 18分)如图所示, 为*,已知M ( — 电场应,电场强度均为 已知由坐标原点 O 发射的电子, 从点(—囚,0)处进入电场,忽 £ (1)电子的荷质比临

24. (14分)如图所示,金属板M 、N 板竖直平行放置,中心开有小孔,板间电压为U0, E 、 F 金属板水平平行放置, 间距为d ,板长为L ,其右侧区域有垂直纸面向里的匀强磁场, 磁场AC 边界与AB 竖直边界的夹角为 60°现有一质量为 m 、电荷量为q 的正电粒子, 从极板M 的中央小孔S 1处由静止出发,穿过小孔S 2后沿EF 板间中轴线进入偏转电场, 从P 处离开偏转电场,平行AC 方向进入磁场,若P 距磁场AC 与AB 两边界的交点 A 距 离为a ,忽略粒子重力及平行板间电场的边缘效应,试求: (1) 粒子到 达小孔S 2时的速度 (2)EF 两极板间电压U ; (3)要使粒子进入磁场区域后能从 AB 边射出,磁场磁感应强度的最小值。 16. (16分)在直角坐标系中,三个边长都为 l =2m 的正方形排列如图所示, 方形区域ABOC 中有水平向左的匀强电场,电场强度大小为 E 0,第二象限正方形 COED 的 对角线CE 左侧CED 区域内有竖直向下的匀强电场,三角形 OEC 区域内无电场,正方形 DENM 区域内无电场。 (1)(5分)现有一带电荷量为+q 、质量为m 的带电粒子(重力不计)从AB 边上的A 点静止 释放,恰好能通过 E 点,求CED 区域内的匀强电场的电场强度 E 1的大小。 ⑵(5分)保持(1)问中电场强度不变,若在正方形区域 ABOC 中某些点静止释放与上述相 同的带电粒子,要使所有的粒子都经过 E 点,则释放的坐标值 X 、y 间应满足什么关系? (3)(6分)若CDE 区域内的电场强度大小变为 E 2 = - E 0,方向不变,其他条件都不变,则 3 在正方形区域ABOC 中某些点静止释放与上述相同的带电粒子, 要使所有粒子都经过 N 点, 则释放点坐标值X 、y 间又应满足什么关系? 第一象限正 vO ;

电磁铁电磁力计算方法之令狐文艳创作

电磁铁电磁力计算方法 令狐文艳 1磁动势计算(又叫安匝数)IN E = 匝数2 2)12(212d D D L d L d D D N -=-= 其中: -L 绕线宽度)(mm -2D 绕线外径)(mm -1D 绕线内径)(mm -d 漆包线直径)(mm 绕线长度 根据电阻公式 222223324(21)(21)41010()d 4L D D l L D D d R d S πρρρπ----==?=?Ω绕其中: 根据4322224 10(21)(21)d U U Ud I L D D R L D D ρρ===?-- 故磁动势

2磁感应强度计算(磁动势在磁路上往往有不同的磁降,但每一圈的磁降和应等于磁动势) 即:()IN HL = ∑ 其中: 一般情况下,电磁阀除气隙处外,其余部分均采用导磁性能很好的材料,绝大部分磁动势降是在气隙处, 即0()IN HL H δ= ≈?∑ 其中: 而000= B H μ 其中: 所以:30 00=10B IN H δδμ-≈?? 又因为23102(21) d U IN D D ρ=?+ 故:2600102(21)d U B D D μρδ=?+

3电磁力的计算 根据26000 1102F B S μ=? 其中: 又因为2600102(21)d U B D D μρδ=?+ 所以:2262600000110[]1028(21)S d U F B S D D μμρδ =?=?+ 其中: -70μπ-?导磁率,410亨/米; 20S mm -气隙面积(); -d 漆包线直径)(mm ; U -电压(V ) ; 20.0178./mm m ρ-Ω铜的电阻率; -2D 绕线外径)(mm ; -1D 绕线内径)(mm ; mm δ-气隙长度()即行程;

投资项目分析方法及其计算应用

龙源期刊网 https://www.360docs.net/doc/697254281.html, 投资项目分析方法及其计算应用 作者:王南南 来源:《管理观察》2010年第18期 摘要:本文对基本的投资项目分析方法进行了简要介绍,并详细说明了常见投资项目分析方法的应用及利用Excel表格方便快捷地计算评价指标。 关键词:净现值内部收益率投资回收期现金流量Excel 企业进行对外投资是进行生产的必要手段,是分散风险、实现财务管理目标的重要方法。 但是对外长期投资往往具有耗费资金多、变现能力弱、回收期长、风险大的特点,因此做好投 资项目分析就尤为重要,即主要通过计算一定的经济评价指标,进行项目的评价与优选,以降低投资风险,获得最佳投资效益。 一、投资项目分析的基本方法 对项目的投资效果进行经济评价的方法,有静态分析法和动态分析法。静态分析法是对若 干方案进行粗略评价,或对短期投资项目作经济分析时,不考虑资金的时间价值,主要有投资回收期法(=原始投资/每年现金净流量)、投资收益率法(=年平均现金净流量/原始投资额)等,这类经 济评价方法计算简单,在这里不再一一比较介绍。 动态分析法也叫贴现法,主要包括净现值法、内部收益率法、投资回收期法、获利能力指 数法等方法。因为它考虑了资金的时间价值,较静态分析法更为实际,合理,因而在国内外企业中获得了广泛的应用。本文就普遍使用的净现值法、内部收益法、投资回收期法的具体操作予以介绍。 (一)净现值法(NPV法) 净现值法是目前国内外评价工程项目经济效果的最普遍,最重要的方法之一。把不同时期 发生的现金流量(或净现金流量)按一定的折算率折算为基准时点的等值额,求其代数和即得净现值。净现值为正,方案可行,否则不可行。净现值越大越好。净现值的关键是确定折现率,一是根据资金的成本来确定,另一种方法是根据企业要求的最低资金利润率来确定。 计算公式:NPV(io)=∑Ft[1/((1+io)^t)]-IO= ∑Ft(1+io)^(-t)-IO 式中NPV(io)-基准收益率等于io时的净现值 io-基准收益率

2015高中物理磁场经典计算题一含详解

磁场综合训练(一) 1.弹性挡板围成边长为L = 100cm 的正方形abcd ,固定在光滑的水平面上,匀强磁场竖直向 下,磁感应强度为B = 0.5T ,如图所示. 质量为m =2×10-4kg 、带电量为q =4×10-3C 的小 球,从cd 边中点的小孔P 处以某一速度v 垂直于cd 边和磁场方向射入,以后小球与挡板 的碰撞过程中没有能量损失. (1)为使小球在最短的时间内从P 点垂直于dc 射出来,小球入射的速度v 1是多少? (2)若小球以v 2 = 1 m/s 的速度入射,则需经过多少时间才能由P 点出来? 2. 如图所示, 在区域足够大空间中充满磁感应强度大小为B 的匀强磁场,其方向垂直于纸面 向里.在纸面内固定放置一绝缘材料制成的边长为L 的等边三角形框架DEF , DE 中点S 处 有一粒子发射源,发射粒子的方向皆在图中截面内且垂直于DE 边向下,如图(a )所示. 发射粒子的电量为+q ,质量为m ,但速度v 有各种不同的数值.若这些粒子与三角形框架碰撞 时均无能量损失,并要求每一次碰撞时速度方向垂直于被碰的边.试求: (1)带电粒子的速度v 为多大时,能够打到E 点? (2)为使S 点发出的粒子最终又回到S 点,且运动时间最短,v 应为多大?最短时间为多少? (3)若磁场是半径为a 的圆柱形区域,如图(b )所示(图中圆为其横截面),圆柱的轴线 通过等边三角形的中心O ,且a =)10 1 33( L .要使S 点发出的粒子最终又回到S 点, 带电粒子速度v 的大小应取哪些数值? a b c d B P v L B v E S F D (a ) a O E S F D L v (b )

电磁铁的吸力计算

我将有关电磁铁吸力的计算方法稍作整理,如下: 1、凡线圈通以直流电的电磁铁都称之为直流电磁铁。通常,直流电磁铁的衔铁和铁心均由软钢和工程纯铁制成。当电磁线圈接上电源时,线圈中就有了激磁电流,使电磁铁回路中产生密集的磁通。该磁通作用于衔铁,使衔铁受到电磁吸力的作用产生运动。 从实践中发现,在同样大小的气隙δ下,铁心的激磁安匝IW越大,作用于衔铁的电磁吸力Fx就越大;或者说,在同样大小的激磁安匝IW下,气隙δ越小,作用于衔铁的电磁吸力Fx就越大。通过理论分析可知,电磁吸力Fx与IW和δ之间的关系可用下式来表达: Fx=5.1×I2×(dL/dδ)(其中L—线圈的电感) (1~1) 在电磁铁未饱和的情况下,可以近似地认为线圈电感L=W2Gδ(式中Gδ—气隙的磁导)。 于是式(1~1)又可写为Fx=5.1×(IW)2×d Gδ/dδ(1~3)这就是说,作用于衔铁的电磁吸力Fx是和电磁线圈激磁安匝数IW的平方以及气隙磁 导随气隙大小而改变的变化率d Gδ/dδ成正比。 气隙磁导Gδ的大小是随磁极的形状和气隙的大小而改变的。如果气隙中的磁通Φδ为均匀分布,则气隙磁导可以表示为: Gδ=μ0×(KS/δ)(亨)(1~4) 式中:μ0—空气的磁导率,=1.25×10-8(亨/厘米); S-决定磁导和电磁吸力的衔铁面面积(厘米2); δ—气隙长度,即磁极间的距离(厘米); K—考虑到磁通能从磁极边缘扩张通过气隙的一个系数,它大于1,而且δ值越大,K值也就越大。 可以推导出:d Gδ/dδ=-μ0×(S/δ2) 于是有:F x=-5.1×{μ0 (IW)2S/δ} 式中的负号表示随着气隙δ的减小,电磁吸力Fx随之增大,若不考虑磁极边缘存在的扩散磁通的影响(K≈1),则气隙磁感强度为: B=Φ/S={(IW)Gδ}/S={(IW)μ0S}/Sδ=(IWμ0)/δ 所以电磁吸力的公式还可写为:F x=5.1B2S/μ0

《电磁场计算方法》读书报告

《电磁场计算方法》 ——读书报告 专业所在院(系、部)核工程技术学院 研究生姓名郭猛猛 学号 2010070807 专业名称固体地球物理学 日期 2011年6月30日

电磁场计算方法有很多种,上完这门课后我对下面这两种比较常用的方法进行总结: 有限元法: 有限元法(finite element method)是一种高效能、常用的计算方法。有限元法在早期是以变分原理为基础发展起来的,所以它广泛地应用于以拉普拉斯方程和泊松方程所描述的各类物理场中(这类场与泛函的极值问题有着紧密的联系)。自从1969年以来,某些学者在流体力学中应用加权余数法中的迦辽金法(Galerkin)或最小二乘法等同样获得了有限元方程,因而有限元法可应用于以任何微分方程所描述的各类物理场中,而不再要求这类物理场和泛函的极值问题有所联系。基本思想:由解给定的泊松方程化为求解泛函的极值问题。 将连续的求解域离散为一组单元的组合体,用在每个单元内假设的近似函数来分片的表示求解域上待求的未知场函数,近似函数通常由未知场函数及其导数在单元各节点的数值插值函数来表达。从而使一个连续的无限自由度问题变成离散的有限自由度问题。 步骤1:剖分: 将待解区域进行分割,离散成有限个元素的集合.元素(单元)的形状原则上是任意的.二维问题一般采用三角形单元或矩形单元,三维空间可采用四面体或多面体等.每个单元的顶点称为节点(或结点). 步骤2:单元分析: 进行分片插值,即将分割单元中任意点的未知函数用该分割单元中形状函数及离散网格点上的函数值展开,即建立一个线性插值函数 步骤3:求解近似变分方程 用有限个单元将连续体离散化,通过对有限个单元作分片插值求解各种力学、物理问题的一种数值方法。有限元法把连续体离散成有限个单元:杆系结构的单元是每一个杆件;连续体的单元是各种形状(如三角形、四边形、六面体等)的单元体。每个单元的场函数是只包含有限个待定节点参量的简单场函数,这些单元场函数的集合就能近似代表整个连续体的场函数。根据能量方程或加权残量方程可建立有限个待定参量的代数方程组,求解此离散方程组就得到有限元法的数值解。有限元法已被用于求解线性和非

电磁铁电磁力计算方法精选文档

电磁铁电磁力计算方法 精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

电磁铁电磁力计算方法1磁动势计算(又叫安匝数)IN E= 匝数 2 2 )1 2 ( 2 1 2 d D D L d L d D D N - = - = 其中: - L绕线宽度) (mm - 2 D绕线外径) (mm - 1 D绕线内径) (mm - d漆包线直径) (mm 绕线长度

2 22322121(21)=222(21)10()4D D D D L D D l DN N d L D D m d ππππ-++-==-=?绕 根据电阻公式 222223324(21)(21)41010()d 4L D D l L D D d R d S πρρρπ----==?=?Ω绕其中: 20.0178./mm m ρ-Ω铜的电阻率 2S mm -漆包线的截面积() 根据4322224 10(21)(21)d U U Ud I L D D R L D D ρρ===?-- 故磁动势

23102(21) d U IN D D ρ=?+ 2磁感应强度计算(磁动势在磁路上往往有不同的磁降,但每一圈的磁降和应等于磁动势) 即:()IN HL =∑ 其中: H -磁场强度(A/m) L m -该段磁介质的长度() 一般情况下,电磁阀除气隙处外,其余部分均采用导磁性能很好的材料,绝大部分磁动势降是在气隙处, 即0()IN HL H δ=≈?∑ 其中: 0H -气隙处磁场强度(A/m) mm δ-气隙长度()即行程 而0 00=B H μ 其中:

工程计算方法及软件应用--本科生考查大作业

工程计算方法与软件应用 本科生大作业 考核方式:考查(成绩按各软件的课外作业成绩综合给出)。 各软件讲完后1~2星期内上交作业。 一、CAD/CAE软件作业(每个学生完成下列任意一题) 题目一: 一端固定支撑,一端集中力的梁,横截面为10x10cm,长为150cm,受集中载荷作用,P=50N。弹性模量E=70GPa,泊松比r=0.2。用ABAQUS 软件建模并计算最大应力和最大位移的位置和大小。 (1)二维;(2)三维 图1梁受力简图

题目二: 图中所示为一个连接件,一端焊接到设备母体上,一端在圆柱销子作用下的圆孔,圆孔下半周受到30 kN的均布载荷作用,用ABAQUS 软件建模并计算最大应力和最大位移的位置和大小。 图2 连接件受力简图 题目三: 如图3所示为一薄壁圆筒,在圆筒中心受集中力F作用,对此进行受力分析,并给出应力、位移云图,并求A、B两点位移。 圆筒几何参数:长度L=0.2m;半径R=0.05m壁厚t=2.5mm。 材料参数:弹性模量E=120Gpa;泊松比0.3 载荷:F=1.5kN。

图3薄壁管受力简图 题目四: 如图4所示为一燃气输送管道截面及受力见图,试分析管道在内部压力作用下的应力场。 几何参数:外径0.6m,内径0.4m,壁厚0.2m 材料参数:弹性模量E=120Gpa;泊松比0.26 载荷P=1Mpa。 图4燃气管受力简图

题目五: 如图5为一三角桁架受力简图,途中各杆件通过铰链链接,杆件材料及几何参数见表1和表2所示,桁架受集中力F1=5kN、F2=2.5kN 作用,求桁架各点位移及反作用力。 图5 三角桁架受力简图 表1 杆件材料参数 表2 杆件几何参数

电磁场计算题专项练习

电磁场计算题专项练习 一、电场 1、(20分)如图所示,为一个实验室模拟货物传送的装置,A是一个表面绝缘质量为1kg的小车,小车置于光滑的水平面上,在小车左端放置一质量为0.1kg 带电量为q=1×10-2C的绝缘货柜,现将一质量为0.9kg的货物放在货柜内.在传送途中有一水平电场,可以通过开关控制其有、无及方向.先产生一个方向水平向右,大小E1=3×102N/m的电场,小车和货柜开始运动,作用时间2s后,改变电场,电场大小变为E2=1×102N/m,方向向左,电场作用一段时间后,关闭电场,小车正好到达目的地,货物到达小车的最右端,且小车和货物的速度恰好为零。已知货柜与小车间的动摩擦因数μ=0.1,(小车不带电,货柜及货物体积大小不计,g取10m/s2)求: ⑴第二次电场作用的时间; B ⑵小车的长度; A ⑶小车右端到达目的地的距离. 16(8分)如图所示,水平轨道与直径为d=0.8m的半圆轨道相接,半圆轨道的两端点A、B连线是一条竖直线,整个装置处于方向水平向右,大小为103V/m的匀强电场中,一小球质量m=0.5kg,带有q=5×10-3C电量的正电荷,在电场力作用下由静止开始运动,不计一切摩擦,g=10m/s2, (1)若它运动的起点离A为L,它恰能到达轨道最高点B,求小球在B点的速度和L的值. (2)若它运动起点离A为L=2.6m,且它运动到B点时电场消失,它继续运动直到 落地,求落地点与起点的距离.

6如图所示,两平行金属板A、B长l=8cm,两板间距离d=8cm,A板比B板电势高300V,即UAB=300V。一带正电的粒子电量q=10-10C,质量m=10-20kg,从R点沿电场中心线垂直电场线飞入电场,初速度v0=2×106m/s,粒子飞出平行板电场后经过界面MN、PS间的无电场区域后,进入固定在中心线上的O点的点电荷Q形成的电场区域(设界面PS右边点电荷的电场分布不受界面的影响)。已知两界面MN、PS相距为L=12cm,粒子穿过界面PS最后垂直打在放置于中心线上的荧光屏EF上。求(静电力常数k=9×109N·m2/C2) (1)粒子穿过界面PS时偏离中心线 RO的距离多远? (2)点电荷的电量。 B A R E F

电磁铁吸力的计算

5050、、电磁铁吸力的计算电磁铁吸力的计算 吴义声 电磁铁在工业生产中有着广泛的应用,大的如电磁铁起重机,小的如电气控制箱中的继电器,都要用到电磁铁。电磁铁吸力的大小,是电磁铁应用中必须考虑一个问题。 下面分别计算直流电磁铁和交流电磁铁对衔的吸力。 一、直流电磁铁的吸力 如图50-1所示,当面积为A 的扁平衔铁C ,受电磁铁的吸引力F 而移动距离dx 时,力F 作功为 Fdx dW = 与此同时,空气隙处的体积减小了dV Adx dV = 设空气隙内的磁感应强度为B 0,那么,空气隙中的磁场能量密度m w 是 2 021μB w m = 对于直流电磁铁而言,在衔铁被吸引的过程中,B 0保持不变,即铁心与衔铁之间空气隙的磁通密度保持不变。由于当衔铁C 移动距离dx 时,对衔铁C 作功dW ,从而使空气隙的体积减小了dV ,于是空气隙处的磁场能量减少了dEm ,即 图50-1

Adx B dV B dV w dEm m 0 2 00202121μμ=== 根据能量守恒,减少的磁场能量转变成衔铁的机械能,即 Adx B Fdx 0 2 021μ= 则电磁铁的吸引力为 A B F 0 2 021μ= (1) 用式(1)计算电磁铁吸引力时,还需注意,此式是在假定磁极端面附近磁通密度均匀分布(即B 0=C )的条件下得到的,因此,只适用于计算空气隙长度δ较小时的情况(如衔铁在吸合位置或接近吸合位置)。另外,还要指出,如使用的是蹄形电磁铁,而且空气隙处的B 0的数值又相同,则电磁铁产生的吸引力应当是式(1)所得数值的两倍。 二、交流电磁铁的吸力 若电磁铁线圈中通以交流电,它所激发的磁场是交变磁场,这时,在交流电磁铁中,磁感应强度是随时间变化的。由式(1)可知,对衔铁的吸力也是随时间而变化的。设空气隙中的磁感应中度为 B 0=B m sin ωt 式中,B m 为空气隙处的磁感应强度的最大值。由式(1)可得交流电磁铁的吸引力为 t A B F m ωμ20 2 sin 21= 令Fm A B F m m ,210 2μ=是吸引力F 的最大值,则 F=F m sin 2ωt 那么,在一个周期T 内,交流电磁铁的吸引力的平均值为 tdt F T Fdt T F T T m ω∫∫==00 2sin 11 A B F m m 0 2 4121μ== (2)

相关文档
最新文档